Chapitre 07

Embed Size (px)

Citation preview

  • ChapterVII

    IN-PLANE BENDING

    1

  • Beam axis

    Crosssection( totheaxis)AreaA

    DEFINITION OF A BEAM

    CROSSSECTIONDIMENSIONS

  • INTERNAL FORCES IN CROSS-SECTION

    G

    EXTERNALFORCESANDREACTIONS CUT stresses(equilibrium )INTERNALFORCES

    3

  • AxisCrosssection( totheaxis)

    DEXTORSUMSYSTEMOFAXES

    INTERNAL FORCES IN CROSS-SECTION

    4

  • IN-PLANE BENDING5

    ShorteningCompressivestresses

    ElongationTensile stresses

    =0somewhereinbetween(neutral axis)

    BEAMDEFORMATIONUNDERCONSTANTMOMENT:CIRCLE

  • BERNOUILLIS PRINCIPLE6

    Crosssectionsremain flatandperpendicular tothebeam axis

  • IN-PLANE BENDING7

    Sliceofunitlength

  • IN-PLANE BENDING8

    andso

  • IN-PLANE BENDING9

    Lineardistributionof and

    y

    Linear distributionofdeformations

    Hookes law

    Linear distributionofstresses

    y

    E yE E

    ENA

  • IN-PLANE BENDING10

    Determinationoftheneutralaxisand Longitudinalequilibrium(alongthebeamaxis)

    Neutralaxiscorrespondstothecentreofgravity

    0 0A A

    EdA ydA

  • IN-PLANE BENDING11

    Determinationoftheneutralaxisand Equilibriuminrotation

    as

    2

    A A

    EydA y dA M 2

    A

    y dA I1 M

    EI

    Flexural rigidity

  • IN-PLANE BENDING12

    Stressdistribution

    1 M yand EEI

    : MyNavierI

    yENA

  • IN-PLANE BENDING13

    Navier applicabletosymmetricalandnonsymmetricalcrosssectionsaslongastheplaneofbendingcorrespondstooneoftheprincipalaxesofthecrosssection

    y

    z

  • IN-PLANE BENDING14

    Navier notdirectlyapplicabletocrosssectionssubjectedtobendingnotappliedaboutthemainaxes

  • Navier stillassumedtobevalidforbeamssubjectedtononconstantbendingmomentsalongthebeamlength

    IN-PLANE BENDING15

    Mmax = pL/8T1 = PL/2

    T2 = -PL/2

    p

  • LimitationsoftheNavier lineardistribution

    IN-PLANE BENDING16

    b

    h

    Rectangularcrosssection

  • Navier stillassumedtobevalidforbeamssubjectedtononconstantbendingmomentsalongthebeamlength

    IN-PLANE BENDING17

    Mmax = Pa(L-a)/LT1 = P(L-a)/L

    T2 = -Pa/L

    P

  • LimitationsoftheNavier lineardistribution

    IN-PLANE BENDING18

  • LimitationsoftheNavier lineardistribution

    Inpractice: Localeffect(StVenants principle)

    Localyieldingundertheconcentratedload

    Transversestiffeners Bearingplateplate

    IN-PLANE BENDING19

  • Navier stillassumedtobevalidfortaperedbeams(smoothcrosssectionvariation)

    IN-PLANE BENDING20

  • LimitationsoftheNavier lineardistribution

    IN-PLANE BENDING21

  • LimitationsoftheNavier lineardistribution

    IN-PLANE BENDING22

    !Stressconcentration

    cfr.tension

  • h
  • h
  • h1

    IN-PLANE BENDING Beamcrosssectionverification

    11,max 1

    1

    22,max 2

    2

    Mh M RI WMh M RI W

    1 1 2 2min( ; )M WR W R

    h2

    G

  • IN-PLANE BENDING Adaptcrosssectionshape

    Similar valuesofAandh: Icrosssection: W=0,32Ah rect.crosssection: W=0,167Ah

    Isectiontwice moreresistant

    max

  • IN-PLANE BENDING Adaptcrosssectionshape

    Similar valuesofAandh:

    W=0,32Ah

    W=0,5Ah

  • IN-PLANE BENDING Adaptcrosssectionshape

  • Beamsmadeoftwodifferentmaterials

    IN-PLANE BENDING29

    E0b modulus

    Ea modulus Ea modulus

    dy

    Equal forcesintheslicedy E0bbdy=Eab1dy

  • Beamsmadeoftwodifferentmaterials

    IN-PLANE BENDING30

    E0b modulus

    Ea modulus Ea modulus

    0

    1b

    a

    Eb bE

  • Beamsmadeoftwodifferentmaterials

    IN-PLANE BENDING31

    b

    a a=Eaa

    int a,intEaintb,intE0b/Ea int

    bE0b/Ea b,equ

    EQUIVALENTSECTION ACTUALSECTION

    b,equEab

    aEaa

    intEaint

  • Beamsmadeoftwodifferentmaterials

    IN-PLANE BENDING32

    0

    1 ( tan. ) ( )b ba a

    E Eb b ins loading or b after creepE E