17
Chapitre 1 : Les états physiques de la matière Chapitre 1 : Les états physiques de la matière La transformation chimique revêt une importance particulière, en raison de l'étendue de son champ d'application : élaboration de nouveaux matériaux, utilisation de l'énergie libérée par la réorganisation, ouverture vers de nouveaux solvants... L'eau est la molécule la plus facile à appréhender à notre échelle dans ces différents états : gaz, liquide et solide mais existe-t-il d'autres formes pour la matière ? Quels paramètres conditionnent le passage d'une forme à une autre ? I- Les différents états de la matières : 1- Présentation : Les différents états de la matière se distinguent par : l'intensité des interactions entre les particules la régularité dans la disposition des particules Vocabulaire : On appelle phase une forme de la matière qui est uniforme en tout point par sa composition chimique et par son état physique. ......................... ............................. ......................... ....................... Définition Propriétés 1

Chapitre 1 : Les états physiques de la matière I- Les ...pcsi-chimie-damas.e-monsite.com/medias/files/ch1-2015.pdf · II- Changements d'états de la matière : Suivi des paramètres

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapitre 1 : Les états physiques de la matière I- Les ...pcsi-chimie-damas.e-monsite.com/medias/files/ch1-2015.pdf · II- Changements d'états de la matière : Suivi des paramètres

Chapitre 1 : Les états physiques de la matière

Chapitre 1 : Les états physiques de la matière

La transformation chimique revêt une importance particulière, en raison de l'étendue de son champd'application : élaboration de nouveaux matériaux, utilisation de l'énergie libérée par la réorganisation,ouverture vers de nouveaux solvants...

L'eau est la molécule la plus facile à appréhender à notre échelle dans ces différents états : gaz, liquide etsolide mais existe-t-il d'autres formes pour la matière ? Quels paramètres conditionnent le passage d'uneforme à une autre ?

I- Les différents états de la matières :

1- Présentation :

Les différents états de la matière se distinguent par : • l'intensité des interactions entre les particules• la régularité dans la disposition des particules

Vocabulaire : On appelle phase une forme de la matière qui est uniforme en tout point par sa compositionchimique et par son état physique.

…......................... …............................. …......................... ….......................

Déf

init

ion

Pro

prié

tés

1

Page 2: Chapitre 1 : Les états physiques de la matière I- Les ...pcsi-chimie-damas.e-monsite.com/medias/files/ch1-2015.pdf · II- Changements d'états de la matière : Suivi des paramètres

Chapitre 1 : Les états physiques de la matière

Il existe une multitude d'états de la matière, intermédiaires entre structures ordonnées et structuresdésordonnées. → solides polycristallins (ensemble de cristaux désorganisés constitués de particules organisées)→ solides semis-cristallins (polymère à longue chaîne cristallisé)→ les cristaux ioniques (une certaine liberté de mouvement tout en restant ordonné).

Solide polycristallin Solide semi-cristallin Cristaux ioniques

2- Les paramètres pour décrire l'état de la matière :

a) Paramètre intensif ou extensif ? Paramètre intensif : paramètre local défini en tout point de l'espace, il est non additif et de dépend pasde la quantité de matière contenue dans le système.Exemple :

Paramètre extensif : paramètre proportionnel à la quantité de matière contenue dans le système, il estadditif, il décrit le système dans son ensemble et n'a pas de sens au niveau local. Si on multiplie la tailledu système par 2 et que le paramètre a doublé alors le paramètre est extensif.Exemple :

b) Notion de pression :

● Pression d'un gaz : La pression d'un gaz exercée par un gaz sur une surface provient des collisions de ses molécules.

● Le modèle du gaz parfait : Un gaz parfait est constitué de particules identiques, ponctuelles et sans interactions entre elles. Il vérifiel'équation d'état suivante :

En pratique en chimie, on considérera dans les exercices que tous les gaz sont parfaits à T et P ambiantes.

Défi : à l'aide d'une analyse dimensionnelle, déterminer l'unité de R constante des gaz parfait.Exercice d'application : On considère une enceinte de volume V=10L à la température Θ=25°C quicontient une quantité de matière n=0,5mol de diazote N2 gaz. Déterminer la pression dans l'enceinte.

2

Page 3: Chapitre 1 : Les états physiques de la matière I- Les ...pcsi-chimie-damas.e-monsite.com/medias/files/ch1-2015.pdf · II- Changements d'états de la matière : Suivi des paramètres

Chapitre 1 : Les états physiques de la matière

II- Changements d'états de la matière :

Suivi des paramètres pression et température lors des expériences de changements d'état :

Changement d'état à pression constante Changement d'état à température constante

→ Que pouvez-vous dire de l'évolution de la température lorsqu'un changement d'état se fait à pressionfixée ? Même question pour la pression lorsque la température est fixée.

Vocabulaire : Pression de vapeur saturante : pression d'un phase vapeur en équilibre avec la phaseliquide ou pression du gaz lors du changement d'état liquide-gaz.

III- Diagramme d'état :

Comme l'état de la matière dépend de 2 paramètres qui ne sont pas indépendants, on représente l'influencede ces 2 paramètres sur un graphique que l'on appelle diagramme P,T.

3

Page 4: Chapitre 1 : Les états physiques de la matière I- Les ...pcsi-chimie-damas.e-monsite.com/medias/files/ch1-2015.pdf · II- Changements d'états de la matière : Suivi des paramètres

Chapitre 1 : Les états physiques de la matière

1- Présentation générale :

Les frontières indiquent les conditions de température et de pression pour que les deux phases coexistent.Elles transcrivent bien le fait que pour une pression donnée, une seule température est permise lors duchangement d'état.

2- Le diagramme de l'eau :

a- Quelle est la différence majeure entre le diagramme général et celui de l'eau, qui fait de l'eau un casparticulier ?b- Pourquoi est-il difficile de faire cuire des pâtes au sommet du mont blanc ? c- Pour quelles conditions obtient-on de l'eau supercritique ?

4

Page 5: Chapitre 1 : Les états physiques de la matière I- Les ...pcsi-chimie-damas.e-monsite.com/medias/files/ch1-2015.pdf · II- Changements d'états de la matière : Suivi des paramètres

Chapitre 1 : Les états physiques de la matière

3- Le diagramme du dioxyde de carbone : Activité documentaire : le CO2 un fluide supercritique.

Travail à effectuer1) Compléter le document 2 en donnant le nom de l’état physique dans chacune des quatre zones 1, 2, 3 et4 puis donner les particularités des points b et c. 2) Le CO2 peut-il exister à l'état liquide sous pression atmosphérique ? Que se passe-t-il si l'on expose duCO2 solide à l'air libre ? 3) Si on augmente la pression, comment varie la température de fusion du CO2 ?4) Quel est l’état physique du dioxyde de carbone à 40 °C sous 800 bar (On rappelle que T(K) = T (°C) + 273 et P(bar) = 10-5×P(Pa)) ? Comment revenir à l’état gazeux ? 5) Proposer des conditions expérimentales d’utilisation du CO2 supercritique pour réaliser une extraction efficace d’espèces chimiques. On prendra l’exemple de l’extraction du naphtalène pour argumenter la réponse. 6) Justifier que le solvant CO2 supercritique réponde au cahier des charges d’une Chimie verte.

Document 1 : Fluides supercritiques Lorsqu’un fluide est placé dans des conditions de température et de pression supérieures au point critique,il entre dans un état dit supercritique. C’est un état qui n’existe pas dans la nature : il faut placer le fluidedans ces conditions de température et de pression pour qu’il apparaisse. Les changements d’étatgaz/fluide supercritique et liquide/fluide supercritique se font de manière continue. Les fluidessupercritiques ont des propriétés différentes de celles d’un gaz ou d’un liquide mais qui sont comprisesentre les deux. Ils ont une viscosité proche de celle d’un gaz, une densité proche de celle du liquide avecun pouvoir de diffusivité très élevé par rapport au fluide liquide. Ce qui facilite leur pénétration dans desmilieux poreux.

Le choix du fluide supercritique est lié à ses propriétés notamment ses coordonnées critiques qui doiventpermettre son emploi à une température voisine de l’ambiante et à des pressions « acceptables »; il doitêtre bon marché, abondant et non toxique. Ce sera alors un solvant de choix pour les applications dans lesindustries alimentaires, pharmaceutiques, cosmétologiques..., où l’extraction et le fractionnement doiventêtre conduits à des températures aussi voisines que possible de l’ambiante afin d’éviter toute dégradationthermique et exigeant l’élimination de toute trace de solvant « chimique » dont l’innocuité est toujourssujette à caution.

5

Page 6: Chapitre 1 : Les états physiques de la matière I- Les ...pcsi-chimie-damas.e-monsite.com/medias/files/ch1-2015.pdf · II- Changements d'états de la matière : Suivi des paramètres

Chapitre 1 : Les états physiques de la matière

Document 2 : Diagramme de phases du CO2 :

Document 3 : Expérience de changement d'état : Vidéo : CO2 liquide chauffé sous pression qui atteint son point critique et devient du CO2 supercritique http://www.youtube.com/watch?feature=player_embedded&v=GEr3NxsPTOA#!

Document 4 : Solubilité du naphtalène dans le CO2 supercritique Les fluides supercritiques sont des solvants « à géométrie variable » : excellents solvants dans lesconditions supercritiques, très mauvais solvants à l’état de gaz comprimés. Ainsi on peut citer, à titred’exemple, la solubilité du naphtalène dans le CO2, qui varie considérablement avec la masse volumiquedu fluide, c’est-à-dire, à température constante, avec sa pression comme présenté sur la figure 3.

Document 5 : Le CO2 supercritique (sc-CO2), un solvant alternatif vert Le CO2 supercritique est un solvant non polaire et non donneur de liaisons Hydrogène. A noter égalementque sc-CO2 peut interagir avec le soluté, notamment comme acide de Lewis. C’est un bon solvant pourdes solutés non polaires de petite masse moléculaire ainsi que les gaz mais un mauvais solvant pour laplupart des autres solutés. Son utilisation est donc limitée au niveau industriel à des procédés où soncomportement est vraiment avantageux, puisqu’il faut contrebalancer le surcoût financier et énergétiquede l’opération à haute pression. La plus grande application est sans doute l’industrie de l’alimentaire où sc-CO2 est utilisé comme solvantd’extraction. - Il sert entre autres à la décaféination du café : l’utilisation de sc-CO2 remplace un processus mettant en

6

Page 7: Chapitre 1 : Les états physiques de la matière I- Les ...pcsi-chimie-damas.e-monsite.com/medias/files/ch1-2015.pdf · II- Changements d'états de la matière : Suivi des paramètres

Chapitre 1 : Les états physiques de la matière

jeu du dichlorométhane, non seulement dangereux pour l’environnement et la santé mais qui nécessiteaussi des étapes de synthèse supplémentaires. Le dioxyde de carbone est lui, non toxique et « naturel ». - Il sert également à l'élimination de la 2,4,6-trichloroanisole (TCA) des bouchons de liège traités auchlore (ou à l'hypochlorite) pour éviter de donner « un goût de bouchon » au vin après sa mise enbouteille. Le sc-CO2 est aussi un solvant utilisé dans le cadre de réactions de polymérisation : il intervient dans lafabrication du Téflon (ou polytetrafluoroethene, PTFE) par DuPont. Dans ce procédé, il sert à manipulerle monomère en toute sécurité et à empêcher les risques d’explosion liés à la formation de peroxyde enprésence d’oxygène. Il remplace un mode opératoire plus ancien basé sur l’eau. C’est un exemple quimontre que même si un procédé établi est vert (utilisation de l'eau en première intention), la recherche nes’arrête pas là. Le procédé utilisant sc-CO2 produit moins de déchets et propose un produit de meilleurequalité alors que la polymérisation par émulsion d’eau utilise un dérivé d’acide perfluorooctanoique (quifut lui-même le remplaçant vert d’un procédé encore plus ancien utilisant des solvantschlorofluorocarbones, aujourd’hui interdits).

Document 6 : Les douze principes de la Chimie verte Le concept de « Chimie verte » a été introduit en 1998 par les chimistes américains Paul Anastas et JohnC. Warner, appartenant à l'EPA (Environmental Protection Agency). 1. La prévention de la pollution à la source en évitant la production de résidus. 2. L’économie d'atomes et d’étapes qui permet de réaliser, à moindre coût, l’incorporation defonctionnalités dans les produits recherchés tout en limitant les problèmes de séparation et de purification.3. La conception de synthèses moins dangereuses grâce à l’utilisation de conditions douces et lapréparation de produits peu ou pas toxiques pour l’homme et l'environnement.4. La conception de produits chimiques moins toxiques avec la mise au point de molécules plus sélectiveset non toxiques impliquant des progrès dans les domaines de la formulation et de la vectorisation desprincipes actifs et des études toxicologiques à l’échelle cellulaire et au niveau de l’organisme. 5. La recherche d’alternatives aux solvants polluants et aux auxiliaires de synthèse. 6. La limitation des dépenses énergétiques avec la mise au point de nouveaux matériaux pour le stockagede l’énergie et la recherche de nouvelles sources d’énergie à faible teneur en carbone. 7. L'utilisation de ressources renouvelables à la place des produits fossiles. 8. La réduction du nombre de dérivés en minimisant l'utilisation de groupes protecteurs ou auxiliaires. 9. L’utilisation des procédés catalytiques de préférence aux procédés stoechiométriques avec la recherchede nouveaux réactifs plus efficaces et minimisant les risques en terme de manipulation et de toxicité. Lamodélisation des mécanismes par les méthodes de la chimie théorique doit permettre d’identifier lessystèmes les plus efficaces à mettre en œuvre (incluant de nouveaux catalyseurs chimiques, enzymatiqueset/ou microbiologiques). 10. La conception des produits en vue de leur dégradation finale dans des conditions naturelles ou forcéesde manière à minimiser l’incidence sur l’environnement. 11. La mise au point des méthodologies d'analyses en temps réel pour prévenir la pollution, en contrôlantle suivi des réactions chimiques. Le maintien de la qualité de l'environnement implique une capacité àdétecter et si possible à quantifier, la présence d'agents chimiques et biologiques réputés toxiques à l’étatde traces (échantillonnage, traitement et séparation, détection, quantification). 12. Le développement d’une chimie fondamentalement plus sûre pour prévenir les accidents, explosions,incendies et émissions de composés dangereux.

7

Page 8: Chapitre 1 : Les états physiques de la matière I- Les ...pcsi-chimie-damas.e-monsite.com/medias/files/ch1-2015.pdf · II- Changements d'états de la matière : Suivi des paramètres

Chapitre 1 : Les états physiques de la matière

Capacités à maîtriser à l'issue de ce chapitre : - Déterminer l'état physique d'une espèce chimique pour des conditions expérimentales données de P et T. - Savoir décrire les différents états de la matière. - Maîtriser l'équation d'état des gaz parfaits.

TD : Chapitre 1 : Les états de la matièreExercice 1 : Densité du méthane : 1- Exprimer la masse volumique ρ d'un gaz parfait en fonction de sa masse molaire. 2- En déduire l'expression de la densité d'un gaz parfait en fonction de sa masse molaire et de la massemolaire de l'air Mair. Rappel : la densité d'un gaz est la rapport entre la masse volumique ρ de ce gaz et la masse volumique del'air ρair dans les mêmes conditions de température et de pression. 3- Sachant que l'air est composé d'environ 80% de diazote et 20% de dioxygène, déterminer la massemolaire de l'air Mair. 4- En déduire la densité du méthane CH4 considéré comme un gaz parfait.

Exercice 2 : Physico-chimie du patin à glace : la qualité de glisse d'un patineur dépendrait d'une fine couched'eau liquide sous les patins...L'allure du diagramme d'état de l'eau est la suivante :

Un patineur de 70kg fait du patin à glace sur une surface d'eaugelée à -5C° et à la pression atmosphérique. La lame de chaquepatin a une surface de contact au sol de 3,5mmx22cm. 1- Expliquer pourquoi le patineur glisse sur la glace. 2- Expliquer pourquoi le même patineur glisserait beaucoupmoins s'il portait des chaussures.

Donnée : intensité du champ de pesanteur : g=10m.s-2.

Exercice 3 : Bouteille de butane Une bouteille de gaz pour usage domestique contient 13,0kg de butane C4H10 partiellement liquéfié. Labouteille a un volume interne V=30,6L.1- Vérifier qu'à 25°C le butane dans la bouteille est partiellement liquéfié, c'est à dire qu'il n'est nicomplètement gazeux ni complètement liquide. Dans ces conditions, donner la valeur de la pression àl'intérieur de la bouteille.2- Déterminer quel serait le volume de l'enceinte nécessaire pour contenir le butane à l'état gazeux dansles mêmes conditions de température et de pression. En déduire un premier avantage au fait de conserverle butane sous forme partiellement liquéfiée. 3- On ouvre légèrement le robinet de la bouteille afin de laisser sortir le butane gazeux pour l'utiliser.Déterminer qualitativement l'évolution de la pression dans la bouteille au cours de l'utilisation du gaz. Endéduire un deuxième avantage au fait de conserver le butane sous forme partiellement liquéfiée.4- Les distributeurs de gaz vendent également des bouteilles qui contiennent 13kg de propane C3H9

partiellement liquéfié. Expliquer quelle est la différence majeure entre les bouteilles de propane et debutane en termes de température d'utilisation.

Données : Masse volumique du butane liquide à 25°C : ρ=590kg.m-3

Pression de vapeur saturante du butane à 25°C : PV=2,5barTempératures d'ébullition à P=1atm : Teb,butane=-0,5°C, Teb,propane=- 42°C

8

Page 9: Chapitre 1 : Les états physiques de la matière I- Les ...pcsi-chimie-damas.e-monsite.com/medias/files/ch1-2015.pdf · II- Changements d'états de la matière : Suivi des paramètres

Chapitre 1 : Les états physiques de la matière

CORRECTION : Chapitre 1 : Les états physiques de la matière

La transformation chimique revêt une importance particulière, en raison de l'étendue de son champd'application : élaboration de nouveaux matériaux, utilisation de l'énergie libérée par la réorganisation,ouverture vers de nouveaux solvants...

L'eau est la molécule la plus facile à appréhender à notre échelle dans ces différents états : gaz, liquide etsolide mais existe-t-il d'autres formes pour la matière ? Quels paramètres conditionnent le passage d'uneforme à une autre ?

I- Les différents états de la matières :

1- Présentation :

Les différents états de la matière se distinguent par : • l'intensité des interactions entre les particules• la régularité dans la disposition des particules

Vocabulaire : On appelle phase une forme de la matière qui est uniforme en tout point par sa composition chimique etpar son état physique.

…......................... …............................. …......................... ….......................

Déf

init

ion

Un gaz est unesubstance fluide quioccupe uniformémenttout contenant. Lesparticules sontquasimentindépendantes les unesdes autres.

Un liquide est constituéd'un ensemble departicules reliées les unesaux autres mais disposéesde manière irrégulière.

Ensemble departicules reliéesles unes aux autreset disposées demanièreirrégulière.

L'arrangement est lesparticules est bien défini,un motif se répète àl'identique dans tout lecristal.

Pro

prié

tés

- facilementcompressible- interactions entre lesparticules très faibles- état de la matière leplus désordonné- tous les constituantssont miscibles à l'étatgazeux : il ne formequ'une seule phase.

- Interactions entre lesparticules : faible àmoyenne- Régularité dans ladisposition desparticules : faible- déformable- Peu compressible

- Interactionsfortes- Faible régularitéde disposition- très peudéformable- très peucompressible

IndéformableIncompressible

Un même corps simplepeut donner naissance àplusieurs structurescristallines différentesqu'on appelle variétésallotropiques. Exemple : Carbonegraphite et diamant.

9

Page 10: Chapitre 1 : Les états physiques de la matière I- Les ...pcsi-chimie-damas.e-monsite.com/medias/files/ch1-2015.pdf · II- Changements d'états de la matière : Suivi des paramètres

Chapitre 1 : Les états physiques de la matière

Il existe une multitude d'états de la matière, intermédiaires entre structures ordonnées et structuresdésordonnées. → solides polycristallins (ensemble de cristaux désorganisés constitués de particules organisées)→ solides semis-cristallins (polymère à longue chaîne cristallisé)→ les cristaux ioniques (une certaine liberté de mouvement tout en restant ordonné).

Solide polycristallin Solide semi-cristallin Cristaux ioniques

2- Les paramètres pour décrire l'état de la matière :

a) Paramètre intensif ou extensif ? Paramètre intensif : paramètre local défini en tout point de l'espace, il est non additif et de dépend pasde la quantité de matière contenue dans le système.Exemple : température, pression, indice de réfraction, densité...

Paramètre extensif : paramètre proportionnel à la quantité de matière contenue dans le système, il estadditif, il décrit le système dans son ensemble et n'a pas de sens au niveau local. Si on multiplie la tailledu système par 2 et que le paramètre a doublé alors le paramètre est extensif.Ex : quantité de matière,masse, volume...

b) Notion de pression :

● Pression d'un gaz : La pression d'un gaz exercée par un gaz sur une surface provient des collisions de ses molécules. La pression P est le rapport de la force F exercée par le gaz à la surface S sur laquelle est s'exerce :

P=FS

Remarque : Cette formule permet de calculer la pression dans tous les cas, même lorsque la situation neconcerne pas des gaz.

● Le modèle du gaz parfait : Un gaz parfait est constitué de particules identiques, ponctuelles et sans interactions entre elles. Il vérifiel'équation d'état suivante :

PV = nRT P : pression en Pa n : quantité de matière en molV : volume en m3 R= 8,314 SI constante des gaz parfaitT : température en K ( T = Θ + 273K avec Θ température en ° celsius)

En pratique en chimie, on considérera dans les exercices que tous les gaz sont parfaits à T et P ambiantes.

Défi : à l'aide d'une analyse dimensionnelle, déterminer l'unité de R constante des gaz parfait.

10

Page 11: Chapitre 1 : Les états physiques de la matière I- Les ...pcsi-chimie-damas.e-monsite.com/medias/files/ch1-2015.pdf · II- Changements d'états de la matière : Suivi des paramètres

Chapitre 1 : Les états physiques de la matière

R=PVnT

en terme d'unité :

R → Pa×m3

mol×K

Or la pression est homogène à une force divisée par une surface : unité : Pa → N.m−2

or les Newtons (force) sont homogène d'après la 2ème loi de Newton à une masse multipliée par uneaccélération : N → kg.m.s−2

Résumons ! Pa → kg.m.s−2. m−2 → kg.m−1. s−2

Donc l'unité de la constante des gaz parfait est : kg.m−1. s−2×m3

mol×K→ kg.m2. s−2

mol×K

Remarque : kg.m2 . s−2 est homogène à l'unité de l'énergie ( E c=12

m v2 par exemple) donc l'unité de

la constante des gaz parfait est J.mol−1 . K−1 c'est l'unité usuellement utilisée

Exercice d'application : On considère une enceinte de volume V=10L à la température Θ=25°C quicontient une quantité de matière n=0,5mol de diazote N2 gaz. Déterminer la pression dans l'enceinte.

P=nRT

V

Il faut faire attention aux unités !

P=0,5×8,314×298

10.10−3=123878 Pa=1,2 bar

II- Changements d'états de la matière :

Suivi des paramètres pression et température lors des expériences de changements d'état :

11

Page 12: Chapitre 1 : Les états physiques de la matière I- Les ...pcsi-chimie-damas.e-monsite.com/medias/files/ch1-2015.pdf · II- Changements d'états de la matière : Suivi des paramètres

Chapitre 1 : Les états physiques de la matière

Changement d'état à pression constante Changement d'état à température constante

→ Que pouvez-vous dire de l'évolution de la température lorsqu'un changement d'état se fait à pressionfixée ? Même question pour la pression lorsque la température est fixée.

→ A P constant, la glace fond à température constante→ A T constante, l'éther se vaporise à pression constante.

Vocabulaire : Pression de vapeur saturante : pression d'un phase vapeur en équilibre avec la phaseliquide ou pression du gaz lors du changement d'état liquide-gaz.

III- Diagramme d'état :

Comme l'état de la matière dépend de 2 paramètres qui ne sont pas indépendants, on représente l'influencede ces 2 paramètres sur un graphique que l'on appelle diagramme P,T.

1- Présentation générale :

12

Page 13: Chapitre 1 : Les états physiques de la matière I- Les ...pcsi-chimie-damas.e-monsite.com/medias/files/ch1-2015.pdf · II- Changements d'états de la matière : Suivi des paramètres

Chapitre 1 : Les états physiques de la matière

Les frontières indiquent les conditions de température et de pression pour que les deux phases coexistent.Elles transcrivent bien le fait que pour une pression donnée, une seule température est permise lors duchangement d'état.

Point triple : conditions bien particulières pour lesquelles les 3 phases coexistent.Point critique : au delà, la phase gaz se confond avec la phase liquide, la phase est uniforme : on parle defluide supercritique. Le fluide supercritique est une phase quasiment aussi dense qu'un liquide mais quipossède des propriétés de transport (viscosité, diffusion) proche de celles d'un gaz.

2- Le diagramme de l'eau :

a- Quelle est la différence majeure entre le diagramme général et celui de l'eau, qui fait de l'eau un casparticulier ? La pente de la courbe de la température de fusion est négative. Si la pression augmente, latempérature de fusion diminue. C'est un comportement quasi unique, lié au fait que la glace est plusvolumineuse que l'eau : quand on augmente P, il est plus favorable pour le solide de se transformer enliquide.

13

Page 14: Chapitre 1 : Les états physiques de la matière I- Les ...pcsi-chimie-damas.e-monsite.com/medias/files/ch1-2015.pdf · II- Changements d'états de la matière : Suivi des paramètres

Chapitre 1 : Les états physiques de la matière

b- Pourquoi est-il difficile de faire cuire des pâtes au sommet du mont blanc ? P est plus faible, d'après legraphe la température d'ébullition baisse. Donc lorsque l'eau bout dans la casserole elle n'est pas à 100°Cmais à 90°C par exemple. c- Pour quelles conditions obtient-on de l'eau supercritique ? 647,2K et 221,0bar ce sont des conditions difficiles à atteindre.

3- Le diagramme du dioxyde de carbone :

→ Activité : le CO2 un fluide supercritique.Travail à effectuer

1) Compléter le document 2 en donnant le nom de l’état physique dans chacune des quatre zones 1, 2, 3 et4 puis donner les particularités des points b et c. 1 → Solide 2 → liquide3 → Gaz4 → fluide supercritique b → point critiquec → point triple

2) Le CO2 peut-il exister à l'état liquide sous pression atmosphérique ? Que se passe-t-il si l'on expose duCO2 solide à l'air libre ? D'après le diagramme, à 1bar le CO2 ne peut être que gazeux ou solide. Si on met du CO2 solide à l'airlibre il se sublimera.

3) Si on augmente la pression, comment varie la température de fusion du CO2 ?La courbe entre 1 et 2 correspond au passage solide-liquide, donc elle correspond à la température defusion. Sa pente est positive , ce qui signifie que si la pression augmente, la température de fusionaugmente.

4) Quel est l’état physique du dioxyde de carbone à 40 °C sous 800 bar (On rappelle que T(K) = T (°C) + 273 et P(bar) = 10-5×P(Pa)) ? Comment revenir à l’état gazeux ? Il est à l'état de fluide supercritique. Il faudrait diminuer la pression à température constante pour revenirà l'état gazeux.

5) Proposer des conditions expérimentales d’utilisation du CO2 supercritique pour réaliser une extraction efficace d’espèces chimiques. On prendra l’exemple de l’extraction du naphtalène pour argumenter la réponse. Dans l'idéal il faut se mettre à 55° et la masse volumique de CO2 doit être de 800kg.m -3 pour avoir uneextraction maximale d'après le figure 3.

Quelle pression choisir pour avoir cette masse volumique ?

ρ=mV=

n×MV

or d'après la loi des gaz parfait : nV=

P(RT )

d'où ρ=P×MR×T

soit P=ρ×R×T

M

AN : P=800×8,314×(273+55)

44.10−3 =4,96.107 Pa soit 496 bar

14

Page 15: Chapitre 1 : Les états physiques de la matière I- Les ...pcsi-chimie-damas.e-monsite.com/medias/files/ch1-2015.pdf · II- Changements d'états de la matière : Suivi des paramètres

Chapitre 1 : Les états physiques de la matière

6) Justifier que le solvant CO2 supercritique réponde au cahier des charges d’une Chimie verte.

→ C'est un solvant « naturel », accessible à faible température donc qui a un faible coût énergétique. → Remplace des solvants toxiques (dichlorométhane par exemple) → Procédés qui limitent le risque d'explosion→ Procédés avec moins de produits secondaires et moins d'étapes

15

Page 16: Chapitre 1 : Les états physiques de la matière I- Les ...pcsi-chimie-damas.e-monsite.com/medias/files/ch1-2015.pdf · II- Changements d'états de la matière : Suivi des paramètres

Chapitre 1 : Les états physiques de la matière

TD : Chapitre 1 : Les états de la matièreExercice 1 : Densité du méthane : 1- Exprimer la masse volumique ρ d'un gaz parfait en fonction de sa masse molaire.

PV = nRT or n= mM

d'où PV=m

M GP

RT

soit la masse volumique : ρ=mV=

P M GP

RT2- En déduire l'expression de la densité d'un gaz parfait en fonction de sa masse molaire et de la massemolaire de l'air Mair. Rappel : la densité d'un gaz est la rapport entre la masse volumique ρ de ce gaz et la masse volumique del'air ρair dans les mêmes conditions de température et de pression.

ρair=P M air

RT

soit d=ρGP ρair=

M GP

M air

3- Sachant que l'air est composé d'environ 80% de diazote et 20% de dioxygène, déterminer la massemolaire de l'air Mair.

Mair = 0,8 M(N2) + 0,2 M(O2)=0,8 x (2x14,0) + 0,2x(2x16,0)=28,8g/mol

4- En déduire la densité du méthane CH4 considéré comme un gaz parfait. M(CH4)= 12,0 + 4x1,0 =16,0 g/mol

dCH4=16,028,8

=0,556

Exercice 2 : Physico-chimie du patin à glace : la qualité de glisse d'un patineur dépendrait d'une finecouche d'eau liquide sous les patins...L'allure du diagramme d'état de l'eau est la suivante :

Un patineur de 70kg fait du patin à glace sur une surface d'eau gelée à -5C° et à la pressionatmosphérique. La lame de chaque patin a une surface de contact au sol de 3,5mmx22cm. 1- Expliquer pourquoi le patineur glisse sur la glace.

Il faut d'abord déterminer la pression sous le patin en utilisant la formule P=FS

avec F poids du

patineur : (attention aux unités !! )

16

Page 17: Chapitre 1 : Les états physiques de la matière I- Les ...pcsi-chimie-damas.e-monsite.com/medias/files/ch1-2015.pdf · II- Changements d'états de la matière : Suivi des paramètres

Chapitre 1 : Les états physiques de la matière

P=70×10

3,5.10−3×22.10−2=9,1.105 Pa

Si on se reporte au diagramme, on voit que le point de coordonnées (-5°C;9,1.105 Pa) correspond bien àla zone liquide. Il y a donc bien une couche d'eau liquide sous le patin.

2- Expliquer pourquoi le même patineur glisserait beaucoup moins s'il portait des chaussures. Si il porte des chaussures, la surface est plus grande, par conséquent la pression plus faible et donc on sesitue dans le domaine de l'eau solide.Donnée : intensité du champ de pesanteur : g=10m.s-2.

Exercice 3 : Bouteille de butane Une bouteille de gaz pour usage domestique contient 13,0kg de butane C4H10 partiellement liquéfié. Labouteille a un volume interne V=30,6L.1- Vérifier qu'à 25°C le butane dans la bouteille est partiellement liquéfié, c'est à dire qu'il n'est nicomplètement gazeux ni complètement liquide. Dans ces conditions, donner la valeur de la pression àl'intérieur de la bouteille.Supposons que le butane soit totalement liquide, dans ce cas la masse dans la bouteille serait :

m=ρ×V =590×30,6.10−3=18,0 kg ce qui est supérieur à 13kg donc il n'est pas totalement liquide. Imaginons qu'il soit gazeux, à sa pression de vapeur saturante (en effet si on est au dessus de PV il seratotalement gazeux, donc PV représente la limite), calculons la masse dans ce cas :

m=n×M =P VR T

×M =2,5.105

×30,6 .10−3

8,31×298×(4×12,0+10×1,0)=3,1×58=179g ce qui est inférieur

à 13kg. Donc le butane n'est pas totalement gazeux, il est partiellement liquéfié et la pression dans labouteille est la pression de vapeur saturante Pv=2,5bar

2- Déterminer quel serait le volume de l'enceinte nécessaire pour contenir le butane à l'état gazeux dansles mêmes conditions de température et de pression. En déduire un premier avantage au fait de conserverle butane sous forme partiellement liquéfiée.

V =n R T

PV

=m R TPV M

=13.103×8,31×298

2,5.105×58=2,22 m3 soit 2220L les bouteilles seraient trop grandes si le

butane était gazeux … 3- On ouvre légèrement le robinet de la bouteille afin de laisser sortir le butane gazeux pour l'utiliser.Déterminer qualitativement l'évolution de la pression dans la bouteille au cours de l'utilisation du gaz. Endéduire un deuxième avantage au fait de conserver le butane sous forme partiellement liquéfiée.Tant qu'il y a du liquide, la pression reste la pression de vapeur saturante ce qui garantit une pressionconstante en sortie de bouteille. Lorsqu'il n'y a plus de liquide, la pression diminue jusqu'à atteindre la pression atmosphérique.4- Les distributeurs de gaz vendent également des bouteilles qui contiennent 13kg de propane C3H9

partiellement liquéfié. Expliquer quelle est la différence majeure entre les bouteilles de propane et debutane en termes de température d'utilisation. Pour que le gaz sorte de la bouteille il faut que la pression soit supérieure à la pression atmosphérique.La température d'ébullition du butane indique que à -0,5°C la pression dans la bouteille sera de 1atm, celalimite son utilisation en extérieur. Avec le propane on pourra l'utiliser jusqu'à -42°C donc en extérieurdans les pays froids !

Données : Masse volumique du butane liquide à 25°C : ρ=590kg.m-3

Pression de vapeur saturante du butane à 25°C : PV=2,5barTempératures d'ébullition à P=1atm : Teb,butane=-0,5°C, Teb,propane=-42°C

17