22
Theore&cal Chemistry Frédéric Castet [email protected]

cours CT part1 - u-bordeaux.frtheo.ism.u-bordeaux.fr/~castet/doc4/Cours_CT_part1.pdf · Hˆ=! 1 2 " µ µ=1 2N #! Z A r A=1µ P # µ=1 2N #+ 1 r $=1µ$ 2N # µ

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: cours CT part1 - u-bordeaux.frtheo.ism.u-bordeaux.fr/~castet/doc4/Cours_CT_part1.pdf · Hˆ=! 1 2 " µ µ=1 2N #! Z A r A=1µ P # µ=1 2N #+ 1 r $=1µ$ 2N # µ

Theore&cal  Chemistry      

Frédéric  Castet    

frederic.castet@u-­‐bordeaux.fr  

Page 2: cours CT part1 - u-bordeaux.frtheo.ism.u-bordeaux.fr/~castet/doc4/Cours_CT_part1.pdf · Hˆ=! 1 2 " µ µ=1 2N #! Z A r A=1µ P # µ=1 2N #+ 1 r $=1µ$ 2N # µ

Summary  •  The  Hartree-­‐Fock-­‐Roothaan  method  •  Pople  and  Dunning  basis  sets  •  Semiempirical  models  •  Configura&on  interac&on  •  Möller-­‐Plesset  perturba&on  theory  •  Density  func&onal  theory  •  Time-­‐dependent  DFT  

Download  material  (lectures  &  prac&cals)  at  the  address  hHp://blake.ism.u-­‐bordeaux1.fr/~castet/doc4.html  

Page 3: cours CT part1 - u-bordeaux.frtheo.ism.u-bordeaux.fr/~castet/doc4/Cours_CT_part1.pdf · Hˆ=! 1 2 " µ µ=1 2N #! Z A r A=1µ P # µ=1 2N #+ 1 r $=1µ$ 2N # µ

Douglas  Hartree  (1897-­‐1958)  

Vladimir  Fock  (1898-­‐1974)  

THE  HARTREE-­‐FOCK-­‐ROOTHAAN  METHOD  

Clemens  Roothaan  (1918-­‐)  

Page 4: cours CT part1 - u-bordeaux.frtheo.ism.u-bordeaux.fr/~castet/doc4/Cours_CT_part1.pdf · Hˆ=! 1 2 " µ µ=1 2N #! Z A r A=1µ P # µ=1 2N #+ 1 r $=1µ$ 2N # µ

H = ! 12"µ

µ=1

2N

# !ZArµA=1

P

#µ=1

2N

# +1rµ$$=1

2N

#µ<$

2N

# = hµ

µ=1

2N

# +1rµ$$=1

2N

#µ<$

2N

#

Electronic  Hamiltonian  for  a  molecule  with  2N  electrons  and  P  nuclei    

! =1(2N)!

"1(r1) "2 (r1) ... "2N (r1)"1(r2 ) "2 (r2 ) ... "2N (r2 )... ... ... ...

"1(r2N ) "2 (r2N ) ... "2N (r2N )

THE  HARTREE-­‐FOCK-­‐ROOTHAAN  METHOD  

Single  determinant  wavefuncNon  

!µ (rµ ) = "µ (rµ )# $µ (%µ )Spin-­‐orbitals  

Spin  func&on  α  or  β

Molecular  orbital

HF:  search  for  the  best  varia%onal  wavefuncNon  

x  

y  

z  θ

ϕ

O  

–e  

r  

r = r,!,"{ }dr = dV = r2 sin!drd!d"

Page 5: cours CT part1 - u-bordeaux.frtheo.ism.u-bordeaux.fr/~castet/doc4/Cours_CT_part1.pdf · Hˆ=! 1 2 " µ µ=1 2N #! Z A r A=1µ P # µ=1 2N #+ 1 r $=1µ$ 2N # µ

VariaNonal  principle  

E = !H!dr " Eexact#1.  Introduc&on  of  varia&onal  parameters   !"! #1…#M( )

2.  Op&miza&on  of  the  parameters  

! E!"i

= 0 # i

Linear  CombinaNon  of  Atomic  Orbitals  (Roothaan)  

Basis  set  of  known  atomic  func&ons

Expansion  coefficients  =  varia%onal  parameters

!i r( ) = Cpi"p r( )p=1

M

#

Minimiza%on  of  the  total  energy  

HF:  search  for  the  best  orbitals  

THE  HARTREE-­‐FOCK-­‐ROOTHAAN  METHOD  

Page 6: cours CT part1 - u-bordeaux.frtheo.ism.u-bordeaux.fr/~castet/doc4/Cours_CT_part1.pdf · Hˆ=! 1 2 " µ µ=1 2N #! Z A r A=1µ P # µ=1 2N #+ 1 r $=1µ$ 2N # µ

Total  energy  

E = 2Iii=1

N

! + 2Jij "Kij( )j=1

N

!i=1

N

!

E = !H!dr"! =

1(2N)!

"1(r1) "2 (r1) ... "2N (r1)"1(r2 ) "2 (r2 ) ... "2N (r2 )... ... ... ...

"1(r2N ) "2 (r2N ) ... "2N (r2N )

Jij =!i*(rµ )!i (rµ )! j

*(r" )! j (r" )rµ"

# drµdr"

Ii = !i*(rµ )h!i (rµ )" drµ

HF  integrals

Kij =!i*(rµ )!i (r" )! j

*(r" )! j (rµ )rµ"

# drµdr"

1-­‐electron  integrals

Coulomb  integrals

Exchange  integrals

Sum  over  N  doubly  occupied  molecular  orbitals  

THE  HARTREE-­‐FOCK-­‐ROOTHAAN  METHOD  

Page 7: cours CT part1 - u-bordeaux.frtheo.ism.u-bordeaux.fr/~castet/doc4/Cours_CT_part1.pdf · Hˆ=! 1 2 " µ µ=1 2N #! Z A r A=1µ P # µ=1 2N #+ 1 r $=1µ$ 2N # µ

Roothaan  expansion  

Ii = !i*(rµ )h!i (rµ )" drµ = CpiCqihpq

q=1

M

#p=1

M

#

M2  integrals  

Jij =!i*(rµ )!i (rµ )! j

*(r" )! j(r" )rµ"

# drµdr" = CpiCqiCrjCsj pq( rs)s=1

M

$r=1

M

$q=1

M

$p=1

M

$

pq( rs) =!p (rµ )!q (rµ )!r (r" )!s (r" )

rµ"drµ dr"#

Integrals  in  the  AO  basis  

hpq = !p (rµ )h!q (rµ )" drµ

M4  integrals  

pq rs( ) = qp rs( ) = pq sr( ) = qp sr( ) = rs pq( ) = sr pq( ) = rs qp( ) = sr qp( )

THE  HARTREE-­‐FOCK-­‐ROOTHAAN  METHOD  

!i r( ) = Cpi "p r( )!p=1

M

#Atomic  basis  func%ons  

Page 8: cours CT part1 - u-bordeaux.frtheo.ism.u-bordeaux.fr/~castet/doc4/Cours_CT_part1.pdf · Hˆ=! 1 2 " µ µ=1 2N #! Z A r A=1µ P # µ=1 2N #+ 1 r $=1µ$ 2N # µ

Energy  minimizaNon  

E = 2Iii=1

N

! + 2Jij "Kij( )j=1

N

!i=1

N

! F(r)!i (r) = "i!i (r)Minimisa6on    

N  Fock  equa%ons  

F(rµ ) = h(rµ )+ 2Ji (rµ )! Ki (rµ )"#

$%

i=1

N

&

J i (rµ )! j (rµ ) =!i*(r" )!i (r" )rµ"

# dV"

$

%&&

'

())! j(rµ )

Fock  operator

Ki (rµ )! j (rµ ) =!i*(r" )! j (r" )rµ"

# dV"

$

%&&

'

())!i (rµ )

Coulomb  operator

Exchange  operator

1-­‐electron  Fock  operator  

The  Fock  operator  depends  on  its  own  solu%ons  φ(r)

Itera%ve  process  un%l  self-­‐consistence

Describes  electron  µ  in  the  mean  electrosta6c  field  of  the  other  electrons  

THE  HARTREE-­‐FOCK-­‐ROOTHAAN  METHOD  

Page 9: cours CT part1 - u-bordeaux.frtheo.ism.u-bordeaux.fr/~castet/doc4/Cours_CT_part1.pdf · Hˆ=! 1 2 " µ µ=1 2N #! Z A r A=1µ P # µ=1 2N #+ 1 r $=1µ$ 2N # µ

Matrix  form  of  the  Fock  equaNons  

F(r)!i (r) = "i!i (r)

with  

Fock  matrix  F

!

FC = "SC

Fpq = !p*" (r# )F(r# )!q (r# )dr# = hpq + Drs pq rs( )$ ps rq( )%& '(

s)

r)

Spq = !p*" (r# )!q (r# )dr#

Overlap  matrix  S

Dimension  M  x  M

Elements

Dimension  M  x  M

Elements

!i r( ) = Cpi"p r( )p=1

M

#

Dpq = niCpiCqii!

First-­‐order  density  matrix  D

Dimension  M  x  M

Elements

Method  of  Linear  Varia%ons  

W.  Ritz,  J.  Reine  Angew.  Math.  135,  1  (1909).  See  A.  Szabo  and  N.  S.  Ostlund,  Modern  Quantum  Chemistry:  Introduc6on  to  Advanced  Electronic  Structure  Theory,  McGraw-­‐Hill,  New  York,  1989.  

THE  HARTREE-­‐FOCK-­‐ROOTHAAN  METHOD  

Page 10: cours CT part1 - u-bordeaux.frtheo.ism.u-bordeaux.fr/~castet/doc4/Cours_CT_part1.pdf · Hˆ=! 1 2 " µ µ=1 2N #! Z A r A=1µ P # µ=1 2N #+ 1 r $=1µ$ 2N # µ

General  soluNon  of  the  HF  matrix  equaNons  for  non  orthogonal  basis  sets  

By  mul6plying  by  S–1/2  on  each  side

FC = SC!

!F

F!S"1/2 !S1/2 !C = S1/2 !S1/2C#

C = S!1/2 "C

S!1/2 "F"S!1/2! "## $## "S1/2 "C!"$ = S1/2C!#

!F !C !C

One  seeks  to  obtain  an  eigenvalue  equaNon  of  the  form  

Löwdin  orthogonalizaNon  P.  O.  Löwdin  J.  Chem.  Phys.  1950,  18,  365  

!! "F "C = "C #!C =  eigenvectors  of    

!F !C = !C "

THE  HARTREE-­‐FOCK-­‐ROOTHAAN  METHOD  

Page 11: cours CT part1 - u-bordeaux.frtheo.ism.u-bordeaux.fr/~castet/doc4/Cours_CT_part1.pdf · Hˆ=! 1 2 " µ µ=1 2N #! Z A r A=1µ P # µ=1 2N #+ 1 r $=1µ$ 2N # µ

M  basis  func%ons  ⇒    M  MOs    

ε    MO  

energy  

Koopmans  theorem:  IP  ≈  –  ε  

SoluNon  of  the  HF  equaNons  

HOMO  

LUMO  

Virtual  MOs  

Occupied  MOs  

THE  HARTREE-­‐FOCK-­‐ROOTHAAN  METHOD  

Page 12: cours CT part1 - u-bordeaux.frtheo.ism.u-bordeaux.fr/~castet/doc4/Cours_CT_part1.pdf · Hˆ=! 1 2 " µ µ=1 2N #! Z A r A=1µ P # µ=1 2N #+ 1 r $=1µ$ 2N # µ

!(r) = ni" i

*(r)i=1

M

# "i(r)

Total  electron  density  

!(r)space" dr = ni

i=1

M

# $i

*(r)$i(r)

space" dr = ni

i=1

M

# = N

Mulliken  AO  populaNons  

!(r) = ni Cpiq=1

M

"p=1

M

" Cqi# p(r)

i=1

M

" #q(r) = Dpq# p

(r)#q(r)

q=1

M

"p=1

M

" Dpq = niCpiCqii=1

M

!

!(r)space" dr =N = DpqSpq

q=1

M

#p=1

M

# = Dpp + DpqSpqq$p

M

#%

&''

(

)**

p=1

M

# = Qp( )p=1

M

#

with  

Qp = Dpp + DpqSpqq!p

M

" Electron  popula%on  in  χp  

nA = Qpp!A"

Mulliken  atomic  charges  

!A = ZA " nA Net  charge  on  atom  A  

ELECTRON  DENSITY  AND  RELATED  PROPERTIES  

Page 13: cours CT part1 - u-bordeaux.frtheo.ism.u-bordeaux.fr/~castet/doc4/Cours_CT_part1.pdf · Hˆ=! 1 2 " µ µ=1 2N #! Z A r A=1µ P # µ=1 2N #+ 1 r $=1µ$ 2N # µ

!µ = !

!µ!" dr = !

!µelec +

!µnuc( )!" dr

Dipole  moment  

!µelec = !eri

i" !!!!!!!!!!!!! !µnuc = eZA

!RA

A" !

!µelec = !2e "

i

*(r)# ri=1

occ

$ "i

*(r)dr

with and

!µelec = !2e CpiCqi "p (r)# r "q (r)dr

q=1

M

$p=1

M

$i=1

occ

$

= !e Dpq "p (r)# r "q (r)dr" #$$$ %$$$q=1

M

$p=1

M

$

ELECTRON  DENSITY  AND  RELATED  PROPERTIES  

Dipole  integrals  

!µnuc = !

i

*(r)" eZA

!RA

A# !

i

*(r)dr = eZA

!RA

A#

Page 14: cours CT part1 - u-bordeaux.frtheo.ism.u-bordeaux.fr/~castet/doc4/Cours_CT_part1.pdf · Hˆ=! 1 2 " µ µ=1 2N #! Z A r A=1µ P # µ=1 2N #+ 1 r $=1µ$ 2N # µ

VARIOUS  TYPES  OF  BASIS  SETS  

!",n,l,mSTO r,#,$( ) =NYl,m #,$( )rn%1e%"r

Slater-­‐type  orbitals  (STO)    

STO  are  not  efficient  for  evalua%ng  the  3-­‐  and  4-­‐center  integrals  

!",n,l,mGTO r,#,$( ) =NYl,m #,$( )r2n%2%le%"r

2

The  use  of  GTO  ensures  analy%cal  solu%ons  for  all  integrals  appearing  in  the  HF  method    

!i r( ) = Cpi "p r( )!p=1

M

#

Gaussian-­‐type  orbitals  (GTO)    

Atomic  basis  func%ons  

Page 15: cours CT part1 - u-bordeaux.frtheo.ism.u-bordeaux.fr/~castet/doc4/Cours_CT_part1.pdf · Hˆ=! 1 2 " µ µ=1 2N #! Z A r A=1µ P # µ=1 2N #+ 1 r $=1µ$ 2N # µ

PRACTICAL  INTEREST  OF  GAUSSIAN  FUNCTIONS  

exp !"(r !A)2( )# exp !$(r !B)2( ) =Wexp !("+$)(r !P)2( )

Product  of  2  Gaussian  funcNons  

The  product  of  two  Gaussian  func6ons  centered  on  A  and  B  respec6vely  is  a  Gaussian  centered  on  the  barycenter  P  of  A  and  B  

P = !A+"B!+"

W = exp !"#("+#)

A!B( )2$

%&

'

()with and

0  

0,2  

0,4  

0,6  

0,8  

1  

1,2  

-­‐20   -­‐15   -­‐10   -­‐5   0   5   10   15   20  

A=-­‐4  α=1/50  

B=+4  β=1/50  

Product  P=0,  W=0.527  

Page 16: cours CT part1 - u-bordeaux.frtheo.ism.u-bordeaux.fr/~castet/doc4/Cours_CT_part1.pdf · Hˆ=! 1 2 " µ µ=1 2N #! Z A r A=1µ P # µ=1 2N #+ 1 r $=1µ$ 2N # µ

GAUSSIAN  VS.  SLATER  FUNCTIONS:  EXAMPLE  OF  HELIUM  

He  atom  using  a  single  STO  

What  is  the  best  (varia%onal)  STO  to  describe  the  ground  state  of  He?  

1s(r) = !3/2

"1/2exp(#! r)!!!$!!!!?

! r1,r2( ) = 121s(r1)1s(r2 ) "(#1)$(#2 )%$(#1)"(#2 )[ ]

E = 2I+ J = 2 1s(r)h1s(r)! dr! "## $##

+ 1s1s 1s1s( )! "# $#

Total  energy  

!2 2" 2! 5! 8

d Ed!

= 0"! =2716

=1.6875 0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.5 1 1.5 2 2.5 3

1s o

rbita

l

Electron-nucleus distance r

E = !2 "278!

E = !2.84766!a.u.

Page 17: cours CT part1 - u-bordeaux.frtheo.ism.u-bordeaux.fr/~castet/doc4/Cours_CT_part1.pdf · Hˆ=! 1 2 " µ µ=1 2N #! Z A r A=1µ P # µ=1 2N #+ 1 r $=1µ$ 2N # µ

He  atom  using  a  single  GTO  

What  is  the  best  (varia%onal)  GTO  to  describe  the  ground  state  of  He?  

1s(r) = 2!"

#

$%

&

'(3/4

exp()!r2 )!!!*!!!!?

! r1,r2( ) = 121s(r1)1s(r2 ) "(#1)$(#2 )%$(#1)"(#2 )[ ]

E = 2I+ J = 2 1s(r)h1s(r)! dr+ 1s1s 1s1s( )

d Ed!

= 0"! = 0.766996

E = 3!" 8" 2#$

%&2!'

E = !2.300987!a.u.

Total  energy  

EGTO

>> ESTO

GAUSSIAN  VS.  SLATER  FUNCTIONS:  EXAMPLE  OF  HELIUM  

GTO  much  less  efficient  than  STO!  

Page 18: cours CT part1 - u-bordeaux.frtheo.ism.u-bordeaux.fr/~castet/doc4/Cours_CT_part1.pdf · Hˆ=! 1 2 " µ µ=1 2N #! Z A r A=1µ P # µ=1 2N #+ 1 r $=1µ$ 2N # µ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.5 1 1.5 2 2.5 3

1s o

rbita

l

Electron-nucleus distance r

Slater-­‐type  orbital  (STO)    

Gaussian-­‐type  orbital  (GTO)    

CUSP  

GAUSSIAN  VS.  SLATER  FUNCTIONS:  EXAMPLE  OF  HELIUM  

Page 19: cours CT part1 - u-bordeaux.frtheo.ism.u-bordeaux.fr/~castet/doc4/Cours_CT_part1.pdf · Hˆ=! 1 2 " µ µ=1 2N #! Z A r A=1µ P # µ=1 2N #+ 1 r $=1µ$ 2N # µ

CONTRACTED  GAUSSIAN  BASIS  SETS  

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.5 1 1.5 2 2.5 3

1s o

rbita

l

Electron-nucleus distance r

Slater-­‐type  orbital  (STO)    

Use  of  contracted  Gaussian  funcNons  

1s(r) = aii=1

X

! " iG ! i

G =2"i#

$

%&

'

()3/4

exp(*"ir2 )

STO-­‐2G  

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.5 1 1.5 2 2.5 3

1s o

rbita

l

Electron-nucleus distance r

STO-­‐3G  Slater  exponents  α  Contrac%on  coefficients      0.6362421394D+01!0.1543289673D+00!0.1158922999D+01!0.5353281423D+00!0.3136497915D+00!0.4446345422D+00!

Slater  exponents  α  Contrac%on  coefficients      0.2432879285D+01!0.4301284983D+00!0.4330512863D+00!0.6789135305D+00!

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.5 1 1.5 2 2.5 3

1s o

rbita

l

Electron-nucleus distance r

Page 20: cours CT part1 - u-bordeaux.frtheo.ism.u-bordeaux.fr/~castet/doc4/Cours_CT_part1.pdf · Hˆ=! 1 2 " µ µ=1 2N #! Z A r A=1µ P # µ=1 2N #+ 1 r $=1µ$ 2N # µ

Use  of  contracted  Gaussian  funcNons  

-2.900

-2.850

-2.800

-2.750

-2.700

2 3 4 5 6

Tota

l SCF

-LCA

O e

nerg

y (a

.u.)

X in STO-XG

using a single STO function

Influence  of  the  number  of  Gaussian  contrac%ons  on  the  total  energy      

CONTRACTED  GAUSSIAN  BASIS  SETS  

Page 21: cours CT part1 - u-bordeaux.frtheo.ism.u-bordeaux.fr/~castet/doc4/Cours_CT_part1.pdf · Hˆ=! 1 2 " µ µ=1 2N #! Z A r A=1µ P # µ=1 2N #+ 1 r $=1µ$ 2N # µ

SCF-­‐LCAO  CALCULATION  OF  THE  GROUND  STATE  OF  THE  HELIUM  ATOM    

PRACTICAL  EXERCISE  

Connect  to  the  worksta6on  bacon  with  your  login  and  password    ssh -Y [email protected]!Create  a  new  directory  named  TP1  mkdir TP1!Go  to  the  directory  TP1  cd TP1!Copy  the  input  file  (data)  used  by  the  helium  code  cp /home/tp/Helium/Test/data .!Modify  the  data  file  as  you  need  and  save!kwrite data!Run  the  helium  calcula6on!/home/tp/Helium/Src/helium < data > results!Open  the  result  file  (results)  and  note  the  relevant  informa6on!kwrite results!

Page 22: cours CT part1 - u-bordeaux.frtheo.ism.u-bordeaux.fr/~castet/doc4/Cours_CT_part1.pdf · Hˆ=! 1 2 " µ µ=1 2N #! Z A r A=1µ P # µ=1 2N #+ 1 r $=1µ$ 2N # µ

LOGIN  AND  PASSWORDS  

tp00  -­‐-­‐>  E9gLwpeP  tp01  -­‐-­‐>  wclzHhR7  tp02  -­‐-­‐>  Ookl9DMz  tp03  -­‐-­‐>  ypCp7Faf  tp04  -­‐-­‐>  HVg09F7X  tp05  -­‐-­‐>  NH8l0c6q  tp06  -­‐-­‐>  FgMy9xkx  tp07  -­‐-­‐>  YP5IeeTc  tp08  -­‐-­‐>  iYEWXZB4  tp09  -­‐-­‐>  I7DGJSg5  tp10  -­‐-­‐>  z4PiqfQy  

CHOOSE  YOUR  LOGIN  AND  PASSWORD  IN  THE  LIST