1
Quan%ta%ve Risk Analysis of Linear Infrastructure from Geotechnical Proper%es to Societal Impacts (Analyse quan%ta%ve des risques des infrastructures linéaires allant de propriétés géotechniques aux impacts sociaux) Heather Brooks, PE Ph.D. Candidate and Guy Doré, PhD, ing. Professor Genie Civil, L’Université Laval, Québec, Québec References Baecher & Chris@an (2003). Reliability and Sta-s-cs in Geotechnical Engineering. Chichester, West Sussex, England: John Wiley & Sons, Inc. Banerjee & DiPa (1991). Reliability Analysis of ThawInduced Pore Pressures, Journal of Cold Regions Engineering, 5(3), 125141. Public Safety Canada (2011). All Hazards Risk Assessment Methodology Guidelines. Risk Analysis Process and Research Plan Figure 1. Public Safety Canada Risk Evalua@on Process (Public Safety Canada, 2011) Preliminary Event Tree Analysis for Embankments on Permafrost Project Needs Infrastructure in the North is supported by permafrost. Popula@ons and business interests are increasing in the North. Road, rail and airport infrastructure are significant travel and shipping methods. Climate change is adversely effec@ng permafrost. Public money is limited and must be spent wisely. Project Objec%ves Building an objec@ve tool to analyze risks to these infrastructures based on measurable data Following the process outlined in Figure 1 and presented to the right in Risk Analysis and Research Plan Providing guidance to effec@vely use this tool in the infrastructure decision making process 2. Risk Event Descrip%on Determine engineering calcula@on process for each node Determine inputs, outputs and defini@ons of failure for each node Example: thaw sePlement calculate thaw depth (Modified Berggren Equa@on) calculate thaw strain for soil (Thaw Consolida@on Theory or empirical data) 3. Risk Analysis R=PxC R = Risk P = Probability/Likelihood of Failure C = Consequence of Failure Qualita@ve P & C are scalar values from a ra@ng system Quan@ta@ve P & C are calculated from available data Calculated for each event tree node Problems of Embankments on Permafrost Subsurface Voids in the Embankment (Dempster Hwy) Localized Thaw SeTlement (Dempster Hwy) Thermal Erosion Induced Kars%ng (Alaska Hwy) Subsurface Massive Ice Ice Wedge (Alaska Hwy) Tension Cracking from Lateral Embankment Spreading (Alaska Hwy) Thermal Erosion in a Drainage Ditch (Alaska Hwy) Addi@onal problems include retrogressive thaw slumps, ac@ve layer detachment failures, and culvert problems. 1. Iden%fy the Risk Events Iden@fy all possible failure modes of embankments on permafrost (photos to the leg) Map failure modes into an event tree (nodes) 5. Risk Treatment Take ac@on on risks Redesign or reconstruct high risk sec@ons Manage Infrastructure Rank high risk areas Allocate repair money Design infrastructure inspec@on plan 4. Risk Evalua%on Rank risk of each node of the event tree Map highest risks along the infrastructure 3b. Consequence Assessment Economic Costs to communi@es & businesses Direct Costs to repair, reconstruct or maintain the infrastructure Indirect Costs businesses & communi@es due to infrastructure closure Environmental Poten@al impacts from failures Societal Poten@al impacts to people Injuries & Fatali%es Direct impacts to people injured or killed from an infrastructure failure Health & Safety Indirect impacts to people from failures; road closure requiring airligs of people to another hospital 3a. Likelihood Assessment Uncertainty Defini%ons (Baecher & Chris@an, 2003) Aleatory Random varia@on Epistemic Sample & measurement bias; the difference between the engineering model & reality Determine the equa@ons for uncertainty for the analysis process at each node (Banerjee & DiPa, 1991) Start at input uncertain@es Build up uncertainty equa@ons at each level of the calcula@on process Calculate probability of failure for each node compared to a cri@cal value (defini@on of failure) Acknowledgements Special thanks to Chantal Lemieux from Université Laval and Ouranous for allowing me to present my poster in English.

H. Brooks - Revised Ouranos Poster · H. Brooks - Revised Ouranos Poster Created Date: 12/1/2014 3:14:12 PM

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: H. Brooks - Revised Ouranos Poster · H. Brooks - Revised Ouranos Poster Created Date: 12/1/2014 3:14:12 PM

Quan%ta%ve  Risk  Analysis  of  Linear  Infrastructure  from  Geotechnical  Proper%es  to  Societal  Impacts  (Analyse  quan%ta%ve  des  risques  des  infrastructures  linéaires  allant  de  propriétés  géotechniques  aux  impacts  sociaux)

Heather  Brooks,  PE  -­‐  Ph.D.  Candidate  and  Guy  Doré,  PhD,  ing.  -­‐  Professor  Genie  Civil,    L’Université  Laval,  Québec,  Québec

References  Baecher  &  Chris@an  (2003).  Reliability  and  Sta-s-cs  in  Geotechnical  Engineering.  Chichester,  West  Sussex,  England:  John  Wiley  &  Sons,  Inc.    

Banerjee  &  DiPa  (1991).  Reliability  Analysis  of  Thaw-­‐Induced  Pore  Pressures,  Journal  of  Cold  Regions  Engineering,  5(3),  125-­‐141.  

Public  Safety  Canada  (2011).  All  Hazards  Risk  Assessment  -­‐  Methodology  Guidelines.

Risk  Analysis  Process  and  Research  Plan

Figure  1.  Public  Safety  Canada  Risk  Evalua@on  Process  (Public  Safety  Canada,  2011)

Preliminary  Event  Tree  Analysis  for  Embankments  on  Permafrost

Project  Needs  • Infrastructure  in  the  North  is  supported  by  permafrost.  

• Popula@ons  and  business  interests  are  increasing  in  the  North.  

• Road,  rail  and  airport  infrastructure  are  significant  travel  and  shipping  methods.  

• Climate  change  is  adversely  effec@ng  permafrost.  

• Public  money  is  limited  and  must  be  spent  wisely.  

Project  Objec%ves  • Building  an  objec@ve  tool  to  analyze  risks  to  these  infrastructures  based  on  measurable  data  

-­‐ Following  the  process  outlined  in  Figure  1  and  presented  to  the  right  in  Risk  Analysis  and  Research  Plan  

• Providing  guidance  to  effec@vely  use  this  tool  in  the  infrastructure  decision  making  process

2.  Risk  Event  Descrip%on  • Determine  engineering  calcula@on  process  for  each  node  

• Determine  inputs,  outputs  and  defini@ons  of  failure  for  each  node  

• Example:  thaw  sePlement  

-­‐ calculate  thaw  depth  (Modified  Berggren  Equa@on)    

-­‐ calculate  thaw  strain  for  soil  (Thaw  Consolida@on  Theory  or  empirical  data)

3.  Risk  Analysis  • R  =  P  x  C  

-­‐ R  =  Risk  

-­‐ P  =  Probability/Likelihood  of  Failure  

-­‐ C  =  Consequence  of  Failure  

• Qualita@ve  -­‐  P  &  C  are  scalar  values  from  a  ra@ng  system  

• Quan@ta@ve  -­‐  P  &  C  are  calculated  from  available  data  

• Calculated  for  each  event  tree  node

Problems  of  Embankments  on  Permafrost

Subsurface  Voids  in  the  Embankment  (Dempster  Hwy)

Localized  Thaw  SeTlement  (Dempster  Hwy)

Thermal  Erosion  Induced  Kars%ng  (Alaska  Hwy)

Subsurface  Massive  Ice  -­‐  Ice  Wedge  (Alaska  Hwy)

Tension  Cracking  from  Lateral  Embankment  Spreading  (Alaska  Hwy)

Thermal  Erosion  in  a  Drainage  Ditch  (Alaska  Hwy)

Addi@onal  problems  include  retrogressive  thaw  slumps,  ac@ve  layer  detachment  failures,  and  culvert  problems.

1.  Iden%fy  the  Risk  Events  • Iden@fy  all  possible  failure  modes  of  embankments  on  permafrost  (photos  to  the  leg)  

• Map  failure  modes  into  an  event  tree  (nodes)

5.  Risk  Treatment  • Take  ac@on  on  risks    

-­‐ Redesign  or  reconstruct  high  risk  sec@ons  

• Manage  Infrastructure  

-­‐ Rank  high  risk  areas  

-­‐ Allocate  repair  money  

-­‐ Design  infrastructure  inspec@on  plan 4.  Risk  Evalua%on  • Rank  risk  of  each  node  of  the  event  tree  

• Map  highest  risks  along  the  infrastructure

3b.  Consequence  Assessment  • Economic  -­‐  Costs  to  communi@es  &  businesses  

-­‐ Direct  -­‐  Costs  to  repair,  reconstruct  or  maintain  the  infrastructure  

-­‐ Indirect  -­‐  Costs  businesses  &  communi@es  due  to  infrastructure  closure  

• Environmental  -­‐  Poten@al  impacts  from  failures  

• Societal  -­‐  Poten@al  impacts  to  people    

-­‐ Injuries  &  Fatali%es  -­‐  Direct  impacts  to  people  injured  or  killed  from  an  infrastructure  failure  

-­‐ Health  &  Safety  -­‐  Indirect  impacts  to  people  from  failures;  road  closure  requiring  airligs  of  people  to  another  hospital

3a.  Likelihood  Assessment  • Uncertainty  Defini%ons  (Baecher  &  Chris@an,  2003)  

-­‐ Aleatory  -­‐  Random  varia@on  

-­‐ Epistemic  -­‐  Sample  &  measurement  bias;  the  difference  between  the  engineering  model  &  reality  

• Determine  the  equa@ons  for  uncertainty  for  the  analysis  process  at  each  node  (Banerjee  &  DiPa,  1991)  

-­‐ Start  at  input  uncertain@es  

-­‐ Build  up  uncertainty  equa@ons  at  each  level  of  the  calcula@on  process  

• Calculate  probability  of  failure  for  each  node  compared  to  a  cri@cal  value  (defini@on  of  failure)

Acknowledgements  Special  thanks  to  Chantal  Lemieux  from  Université  Laval  and  Ouranous  for  allowing  me  to  present  my  poster  in  English.