44
Instruction no. 1 Introduction to laboratory and MULTISIM AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.1

Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Instruction no. 1

Introduction to laboratory and MULTISIM

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.1

Page 2: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

ELECTRONIC CIRCUITS

Lecture:

prof. dr hab. inż. Wojciech Kucewicz

Laboratory:

mgr inż. Piotr Dorosz (C2/409) [email protected]

Department of Electronics, AGH-UST,

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.2

Page 3: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Classes 90 minutes a week

From the beginning of electronics (Ohm’s law, Kirchhoff’s rule)

Through electronics devices (semiconductor, diode, bipolar transistor,

unipolar transistor)

Ending with integrated circuits used in practical applications

(automotive in particular).

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.3

Page 4: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

How the final grade is determined (from laboratory):

1. Points acquired during lab (60% of the final grade - 20 points max):

a) Successfully following and completing instructions 1-6 (6x1 point) – 6 points

b) 3 miniprojects from instructions 7-9 (5+4+5 points) – 14 points

2. Test (40% of the final grade – 40 points max)

a) Twice a semester

b) Regarding topics appearing during laboratories

c) One test for whole Mechatronics. There is no lab in „test” week.

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.4

𝐹𝑖𝑛𝑎𝑙 𝑔𝑟𝑎𝑑𝑒 % = 𝐿𝐴𝐵

20× 100% × 0.6 +

𝑇𝐸𝑆𝑇

40× 100% × 0.4

Page 5: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Electronics deals with electrical circuits that involve active electrical

components such as vacuum tubes, transistors, diodes and integrated

circuits, and associated passive interconnection technologies. The

nonlinear behaviour of active components and their ability to control

electron flows makes amplification of weak signals possible and

electronics is widely used in information processing,

telecommunications, and signal processing. The ability of electronic

devices to act as switches makes digital information processing possible.

Interconnection technologies such as circuit boards, electronics

packaging technology, and other varied forms of communication

infrastructure complete circuit functionality and transform the mixed

components into a regular working system.

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.5

Page 6: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

General distinction:

-analog electronic circuits

-digital electronic circuits.

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.6

Page 7: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Analogue electronics (or analog in American English) are electronic

systems with a continuously variable signal, in contrast to digital

electronics where signals usually take only two different levels. The term

"analogue" describes the proportional relationship between a signal and a

voltage or current that represents the signal. The word analogue is

derived from the Greek word ανάλογος (analogos) meaning

"proportional„

Digital electronics, or digital (electronic) circuits, represent signals by

discrete bands of analog levels, rather than by a continuous range. All

levels within a band represent the same signal state. Relatively small

changes to the analog signal levels due to manufacturing tolerance,

signal attenuation or parasitic noise do not leave the discrete envelope,

and as a result are ignored by signal state sensing circuitry.

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.7

Page 8: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

An analog or analogue signal is any continuous signal for which the

time varying feature (variable) of the signal is a representation of some

other time varying quantity, i.e., analogous to another time varying

signal. An analog signal has a theoretically infinite resolution.

Digital electronics, or digital (electronic) circuits, represent signals by

discrete bands of analog levels, rather than by a continuous range. All

levels within a band represent the same signal state. In most cases the

number of these states is two, and they are represented by two voltage

bands: one near a reference value (typically termed as "ground" or zero

volts) and a value near the supply voltage, corresponding to the "false"

("0") and "true" ("1") values of the Boolean domain respectively.

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.8

Page 9: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Basic Electrical Quantities:

-current,

-voltage,

-electrical resistance,

-capacity.

Basic Passive Elements:

-resistor,

-capacitor,

-potentiometer.

Basic Electronics Laws:

-Ohm’s law,

-Kirchhoff’s law.

They are the key issues in understanding what is going on during these classes!!!

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.9

Page 10: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Electric current intensity- I (called electric current), it is a physical

quantity characterizing the flow of current. It is defined as the ratio

between the electric load vaule flowing through defined surface and the

time of the flow:

Ampere – electric current intensity unit. It is the base unit in both SI and

MKSA systems of unit, marked with A symbol.

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.10

Page 11: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Electric voltage– difference of electric potentials between two points of

an electric circuit or electric field. The symbol of voltage is U. Voltage is

equal to the work done per unit charge against a static electric field to

move the charge between two points.

The volt (symbol: V) is the SI derived unit for electric potential

(voltage), electric potential difference, and electromotive force. A single

volt is defined as the difference in electric potential across a wire when

an electric current of one ampere dissipates one watt of power.

Additionally, it is the potential difference between two points that will

impart one joule of energy per coulomb of charge that passes through it.

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.11

Page 12: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Electrical resistance (R symbol) – a quantity characterizing the relations

between voltage and electric current intensity in the circuits of direct

current (DC). In alternating current (AC) circuits electrical resistance is

the real part of complex impedance. The unit of resistance in SI is an

Ohm (Ω).

U=RI

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.12

Page 13: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Electrical capacitance of the secluded conductor is a physical quantity

C equal to the ratio between load q accumulated on the conductor and the

electrical potential of that conductor.

1 Farad (F) – the unit of electrical capacitance in SI (SI derived unit)

This is the capacitance of the electrical conductor, the potential of which

is increased by 1 volt after 1 Coulomb load delivery.

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.13

Page 14: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

A resistor is a passive two-terminal electrical component that

implements electrical resistance as a circuit element. The ratio of the

voltage applied across a resistor's terminals to the intensity of current in

the circuit is called its resistance, and this can be assumed to be a

constant (independent of the voltage) for ordinary resistors working

within their ratings. It is a linear element i.e. voltage drop over it is

proportional to the current flowing through it. Practical resistors have a

series inductance and a small parallel capacitance.

Capacitor is an electrical element built with two conductors (electrodes)

separated by dielectric. Voltage supplied to the capacitor electrodes

causes the assembly of the electric charge. After disconnecting the power

supply, load remains on the electrodes because of the electrostatic forces.

If the capacitor as a whole is not electrified then the charge accumulated

on both covers is equal in value but of opposite sign. The capacitor has a

capacitance C determining the ability of the capacitor to accumulate the

charge.

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.14

Page 15: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

A potentiometer, informally a pot, is a three-terminal resistor with a

sliding contact that forms an adjustable voltage divider. If only two

terminals are used, one end and the wiper, it acts as a variable resistor or

rheostat.

A potentiometer measuring instrument is essentially a voltage divider

used for measuring electric potential (voltage); the component is an

implementation of the same principle, hence its name.

Potentiometers are commonly used to control electrical devices such as

volume controls on audio equipment. Potentiometers operated by a

mechanism can be used as position transducers, for example, in a

joystick. Potentiometers are rarely used to directly control significant

power (more than a watt), since the power dissipated in the

potentiometer would be comparable to the power in the controlled load.

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.15

Page 16: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Ohm’s Law

Georg Simon Ohm was a German physicist and mathematician. He

discovered the relationship in 1825-1826.

Ohm's law states that the current through a conductor between two points

is directly proportional to the potential difference across the two points.

I

UR

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.16

Page 17: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Design Tool

MULTISIM: electronic circuits simulator.

It allows to:

Check how the circuit built from virtual elements works, without the need of physically creating the circuit itself.

Free version of the program can be downloaded from: http://www.ni.com/multisim/

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.17

Page 18: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

źródła

podstawowe

elementy

diody

tranzystory

układy analogowe

układy cyfrowe

Toolbar-elements of electronic and electrical systems AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.18

Page 19: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Measurement devices

and analyzers menu

przyrząd pomiarowy

generator

oscyloskop

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.19

Page 20: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

„Checking” OHM’S LAW using MULTISIM

Stage 1- „placing” voltage

controlled voltage source.

1. Wybierz

źródła

2. Wybierz

źródło

napięcia

sterowane

napięciem

3. Połóż

element

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.20

Page 21: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

The result

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.21

Page 22: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Stage 2. „placing” voltage source

Result

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.22

Page 23: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Placing potentiometer (regulated resistor)

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.23

Page 24: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Placing multimeter

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.24

Page 25: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Build the circuit!!!

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.25

Page 26: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Start the simulation

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.26

Page 27: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Current measurement (click twice on multimeter 1

with LMB – Left Mouse Button)

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.27

Page 28: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Voltage measurement on the resistance AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.28

Page 29: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Changing the voltage on voltage source in

the circuit with the test 1kOhm resistor – click

twice LMB AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.29

Page 30: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Setting the potentiometer on 40%, the results of voltage and current

measured (U to I ratio stays constant!!!) AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.30

Page 31: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Check voltage and current for different settings of the potentiometer

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.31

Page 32: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Function generator: electronic device used for generating electrical

signals of different shape:

-sinusoidal,

-rectangle,

-triangle.

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.32

Page 33: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Setting the generator

(LMB click twice)

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.33

Page 34: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Oscilloscope - is a type of electronic test instrument that allows

observation of constantly varying electrical signals, usually as a two-

dimensional graph.

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.34

Page 35: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Oscilloscope – settings

(LMB click twice)

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.35

Page 36: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Connecting the devices

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.36

Page 37: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Simulation – functional generator connected to the oscilloscope

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.37

Page 38: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

A light-emitting diode (LED) is a semiconductor

light source. Appearing as practical electronic

components in 1962, early LEDs emitted low-intensity

red light, but modern versions are available across the

visible, ultraviolet, and infrared wavelengths, with

very high brightness.

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.38

Page 39: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Build the circuit

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.39

Page 40: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Run the simulation AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.40

Page 41: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Setting the frequency of the generator enables to change the period of

częstotliwości generatora pozwala na zmianę okresu of lighting and

extinguishing the LED.

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.41

Page 42: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Coming up next

week!!!

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.42

Page 43: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Kirchhoff’s Laws

Kirchhoff's first law – At any node (junction) in an electrical circuit, the

sum of currents flowing into that node is equal to the sum of currents

flowing out of that node, or:

The algebraic sum of currents in a network of conductors meeting at a

point is zero.

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.43

Page 44: Instruction no. 1home.agh.edu.pl/.../2014_UE_lab/2016/Lab1_eng_2016.pdf · c) One test for whole Mechatronics. There is no lab in „test” week. AGH • Zespół Mikroelektroniki

Kirchhoff's second law– also called voltage law, applies to the balance

of voltage in the closed circuit.

In the closed circuit voltage drops on the total resistance is the sum of

electromotive forces present in the circuit.

AGH • Zespół Mikroelektroniki • Electronic Circuits • P. Dorosz Lab 1.44