155
Université de Montréal Caractérisation de gènes ostéogéniques chez l’axolotl Par Cara ilutchison Département de biochimie Faculté de médecine Mémoire présenté à la Faculté des études supérieures en vue de l’obtention du grade de Maître ès Sciences (M. Sc.) en biochimie Août 2006 © Cara Hutchison, 2006 “j

j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

Université de Montréal

Caractérisation de gènes ostéogéniques chez l’axolotl

ParCara ilutchison

Département de biochimieFaculté de médecine

Mémoire présenté à la Faculté des études supérieures en vue de l’obtention dugrade de Maître ès Sciences (M. Sc.) en biochimie

Août 2006

© Cara Hutchison, 2006 “j

Page 2: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

w

C

n

Page 3: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

Université (IIIde Montréal

Direction des bïbliothèques

AVIS

L’auteur a autorisé l’Université de Montréal à reproduite et diffuser, en totalitéou en partie, par quelque moyen que ce soit et sur quelque support que cesoit, et exclusivement à des fins non lucratives d’enseignement et derecherche, des copies de ce mémoire ou de cette thèse.

L’auteur et les coauteurs le cas échéant conservent la propriété du droitd’auteur et des droits moraux qui protègent ce document. Ni la thèse ou lemémoire, ni des extraits substantiels de ce document, ne doivent êtreimprimés ou autrement reproduits sans l’autorisation de l’auteur.

Afin de se conformer à la Loi canadienne sur la protection desrenseignements personnels, quelques formulaires secondaires, coordonnéesou signatures intégrées au texte ont pu être enlevés de ce document. Bienque cela ait pu affecter la pagination, il n’y a aucun contenu manquant.

NOTICE

The author of this thesis or dissertation has granted a nonexclusive licenseallowing Université de Montréal to reproduce and publish the document, inpart or in whole, and in any format, solely for noncommercial educational andresearch purposes.

The author and co-authors if applicable retain copyright ownership and moralrights in this document. Neither the whole thesis or dissertation, norsubstantial extracts from it, may be printed or otherwise reproduced withoutthe author’s permission.

In compliance with the Canadian Privacy Act some supporting forms, contactinformation or signatures may have been removed from the document. Whilethis may affect the document page count, it does flot represent any loss ofcontent from the document.

Page 4: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

Université de MontréalFaculté des études supérieures

Ce mémoire intituléCaractérisation de gènes ostéogéniques chez l’axolotl

Présenté parCara Hutchison

À été évalué par un jury composé des personnes suivantes:

Président-rapporteur: Guy BoileauDirecteur de recherche: Stépliane Roy

1’Iembre du jury: Antonlo Nanci

Page 5: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

Résumé

Les amphibiens urodèles (e.g., axolotl) sont les seuls vertébrés à posséder lacapacité exceptionnelle de régénérer parfaitement, tout au long de leur vie, plusieursparties de leur corps. Parmi les structures complexes, le membre constitue unmodèle de choix pour étudier la régénération de l’os. Pour débuter notre étude, nousavons choisi d’étudier l’expression de trois gènes chez l’axolotl impliqués dansl’ostéogénèse; Cbfa-1, FTHrP et Sox-9. Nos résultats démontrent que ces gènes sontspécifiques pour les éléments squelettiques durant le développement et durant larégénération. De plus, leurs patrons d’expression suggèrent que le mécanismed’ostéogénèse régulé par Cbfa-] et $ox-9 est conservé durant les stades avancés deces deux processus. Au contraire, l’expression de PlI-h-P n’était pas conservée,laissant croire qu’il est aussi impliqué dans d’autres processus physiologiques.

Etant capable de régénérer complètement un membre, nous avonsquestionné si l’axolotl est capable de régénérer une fracture. Nos études démontrentque l’axolotl, comme les autres vertébrés, répare ses fractures jointes, mais estincapable de guérir des fractures non-jointes de dimension critique.

Curieusement, Sox-9 joue aussi un rôle dans le développement de la crêteneurale; nous avons ainsi caractérisé l’expression de Sox-9 et Sox-JO (aussi impliquédans le développement de la crête neurale) durant I’embryogénèse. Notre étude chezl’axolotl confirme que ces protéines sont exprimés et régulés durant ledéveloppement embryonnaire et que ces gènes sont exprimés principalement auniveau de la crête neurale et de ses dérivés, tout comme chez les autres vertébrés.

MOTS CLÉS: AXOLOTL, URODÈLE, RÉGÉNÉRATION, OSTÉOGENÈSE,

PTHrP, CBFA-l, SOX-9/lO, COLLAGÈNE II, FRACTURES,

DÉVELOPPEMENT

Page 6: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

11

Abstract

Arnong vertebrates, urodele arnphibians (e.g., axolotl) have the unique

ability to perfectly regenerate complex body parts afier amputation throughout theirlife. The limb provides an ideal structure to study skeletogenesis during axolotlregeneration. We report the cloning and characterization of three axolotl genesinvolved in osteogenesis; Cbfa-], PTHrF, Sox-9. Cartilage staining results confirms

that all three gene expression patterns are specific for skeletal elements during limb

development and regeneration. Experirnental data collected thus far supports the

concept that the mechanisrns controlling growth and pattern formation during late

limb regeneration are a recapitulation of those in developing lirnbs. Our expression

resuits suggest a possible conserved rnechanism in osteogenesis during limbdevelopment and late Iimb regeneration for Cbfa-1 and Sox-9 whereas PTHrP mayhave other roles.

With the axolotl’s ability to regenerate a perfect lirnb, we questionedwhether the axolotl uses the regeneration process to heal bone fractures. We showthat while the axolotl is able to heal a non-stabilized union fracture, like other

vertebrates; the axolotl is incapable of healing a bone gap of critical dimension.Tnterestingly, Sox-9 is also involved in neural crest development: we

therefore characterized Sox-9 and Sox-JO (an important regulator of neural crest

ceils) during embryogenesis. Western blot results show that Sox-9 and Sox-lO

proteins are expressed and regulated during embryonic development. Moreover,

both genes are expressed mainly in the neural crest and its derivatives,

demonstrating comparable expression with other vertebrates.

KEYWORDS: AXOLOTL, URODELE, LIMB REGENERATION,

OSTEOGENESIS, PTHrP, CBFA-1, SOX-9/lO, COLLAGEN II, FRACTURE

HEALING, DEVELOPMENT

Page 7: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

1H

Table des matières

Résumé.

Abstract ii

Table des matières iii

Liste des figtires y

Liste des sigles et abréviations vii

Remerciements ix

CHAPITRE 1: Introduction 1

1 .1 La régénération : généralités 1

1.1.1 Régénération morphaHaxique versus épimorphique 1

1.1.2 Invertébrés versus vertébrés 3

1.2 L’axolotl comme modèle pour étudier la régénération 5

1.2.1 Le processus de la régénération du membre 7

1.2.1.1 Stades de régénération et les processus cellulaires 7

1.2.1.2 Phénomène biphasique 10

1.2.1.3 Gènes exprimés et leurs rôles 11

1.3 Étude de gènes exprimés durant le développement et la régénération

osseuse 13

1.3.1 Le développement osseux 13

1.3.1.1 Les gènes Sox: Sox-9 et Sox-lO 15

1.3.1.2 Collagènetype II 16

1.3.1.3PTHrP 17

1.3.1.4Cbfa-1 17

1.3.2 La régénération osseuse 1$

1.3.3 La régénération versus la guérison osseuse 19

1.4 But duprojet 21

CHAPITRE 2: Article 1: «The axolotl 11mb: a model for bone devetopment,

regeneration and fracture healing» 22

2.1 Contribution de l’auteur et déclaration des coauteurs 23

Page 8: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

iv

2.2 Abstract .24

2.3 Introduction 25

2.4 Matériels et Méthodes 2$

2.5 Résultats 32

2.6 Discussion 42

2.7 Références 47

CHAPITRE 3: Article 2: «Cloning and expression pattern of Sox genes

during development and limb regeneration» 56

3.1 Contribution de l’auteur et déclaration des coauteurs 57

3.2 Abstract 5$

3.3 Introduction 59

3.4 Matériels et Méthodes 63

3.5 Résultats 67

3.6 Discussion $0

3.7 Références $5

CHAPITRE 4: Discussion 91

4.1 Expression de Sox-9 et Sox-lO durant l’embryogénèse 91

4.2 Expression de Sox-9, Cbfa-1 et PTHrP durant le développement

et régénération osseuse du membre 92

4.2.1 Sox-9 92

4.2.2 PTHrP 92

4.2.3 Cbfa-1 93

4.3 Guérison des fractures osseuses 94

CHAPITRE 5: Conclusions et perspectives 97

CHAPITRE 6: Références 99

Annexe 1: Article in press «The axolotl limb: a model for bone development,

regeneration and fracture healing» 113

Page 9: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

V

Liste des figures

CHAPITRE 1

Figure 1: Les parties qui régénèrent chez l’axolotl 6

Figure 2 : Phénomène biphasique 8

Figure 3: Diagramme schématique du processus d’ossification endochondral 14

CHAPITRE 2

figure 1: Analyse de la séquence de Cbfa-I d’axolotl 33

Figure 2: Analyse de la séquence partielle de PTHrF d’axolotl 34

figure 3: Hybridation in situ de type «Whole-mount», irnmunohistochimieet coloration du cartilage des pattes en développement pourCbfa-1, collagène type II. le cartilage et PTHrF 36

Figure 4: Hybridation in situ de type «Whole-rnount», irnmunohistochimieet coloration du cartilage des pattes en régénération pourCbfa-1, collagène type II, le cartilage et PTHrP 3$

Figure 5: Double coloration des fractures jointes et des fractures non-jointes 41

CHAPITRE 3

Figure 1: Analyse de la séquence partielle de Sox-9 d’axolotl 6$

Figure 2: Analyse de la séquence de Sox-JO d’axolotl 69

Figure 3: Hybridation in situ de type «Whole-mount» pour $ox-9 durantle développement embryonnaire 71

f igure 4: Hybridation in situ de type «Whole-mount» pour Sox-JO durantle développement embryonnaire 72

figure 5: Trnrnunobuvardage de type «Western» pour Sox-9 et $ox-1O durantle développement embryonnaire 74

Figure 6: Hybridation in situ de type «Whole-mount» pour $ox-9 et caractérisationde la chondrogenèse durant le développementdu membre 75

Page 10: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

vi

Figure 7: Hybridation in situ de type «WhoÏe-mount» pour Sox-9 et caractérisation

de la chondrogenèse durant la régénérationdu membre 77

Figure 8: Immunobuvardage de type «Western» pour $ox-9 durantla régénération de la patte 79

Page 11: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

vii

Liste des sigtes et abréviations

Pourcentage

® Registered tradernarkTM Trade Mark

Micro (1 Oj

Microlitre

Micrornolaire

°C Degré Celsius

A Adénine

ADN Acide désoxyribonucléique

AMPc Adénosine monophosphate cyclique

ARN Acide ribonucléique

BSA Bovine Serum Albumin

C Cytosine

c- Carboxy

CAE Coiffe Apicale Ectodermique

ADNc Acide désoxyribonucléique complémentaire

DEPC Diéthyl pyrocarbonate

dNTP Déoxynucléotidetriphosphate

EDTA Éthylènediarnine tétra-acétate

EGTA Ethylen glycol N.N.N’N’ tetraacetic acid

EST Expressed Sequence Tag

et aï. et collaborateurs

EtOH éthanol

G Guanine

g gramme

Hac Acide acétique glaciale

kDA KiloDalton

L Litre

M Molaire (mole/litre)

MEM solution saline composée de MOPS, EGTA et MgSO4

Page 12: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

viii

MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde

mg milligramme

min minutes

mL millilitre

mM millirnolaire

pb paires de bases

PBS phosphate buffered saline

PCR réaction de polymérisation en chaîne

RT reverse transcription

SSC solution Sodium et Sodium Citrate

sec seconde

T Thymine

TAE tampon Tris-Acide Acétique et EDTA

y volume

w poids

Page 13: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

ix

Remerciements

Avant toute chose, j’aimerai remercier mon directeur de recherche Stéphane

Roy. Sa présence et ses conseils tout au long de ma maîtrise m’ont sans doute

permis de réaliser un travail de qualité supérieur autant au niveau de ma recherche

dans le laboratoire que de la rédaction des résultats. Non seulement est-il un

chercheur scientifique génial, mais ses qualités personnelles ont facilité énormément

le travail quotidien. Sa générosité et son sens de humour ont établi une ambianceagréable et un sens de valoir parmi notre équipe de laboratoire.

J’aimerai également remercier tous les membres du laboratoire Mathieu

Lévesque, Jean-Charles Guimond, Eric Villard et Sophie Desmeules. Il est

impossible de tabuler le nombre d’heures que nous avons travaillé ensemble dans lelaboratoire, mais sachez que votre aide durant ce temps sera indéfiniment appréciée.

En suivant vos conseils, vous m’avez toujours replacé sur le bon chemin quand

j’avais viré de bord. De plus, je suis reconnaissante des corrections des fautes de

français des travaux de cours, les bourses et le présent mémoire. Encore plus,

j’aimerai vous remercier pour m’avoir accueilli chaleureusement dans le laboratoire.

J’ai commencé ma maîtrise dans une ville lointaine avec du monde étranger et

maintenant, quelques deux ans plus tard. je termine mon voyage agréable avec des

amis pour toujours. Pour ceci, il n’y a pas de mots pour exprimer mes sentiments.

Un remerciement partictilier est réservé pour Mireille Pilote. Sans son travail

et organisation impeccable, cela aurait été impossible de continuer ses travaux demaîtrise. De plus, je la remercie pour sa contribution de ses résultats dans les

articles.

Je ne peux pas passer sous silence la contribution de plusieurs personnes

avec qui j’ai interagi aux cours de deux dernières aimées et qui ont tous contribué,

de près ou de loin, à mon projet t Aimie, Jacynthe, Delphine, Cristina, Pierre-Lue,

Ken, et Josh.

Finalement, j’aimerai remercier les proches dans ma vie qui connaissent très

peu la science, mais ont contribué énormément à l’accomplissement de ma maîtrise.

En premier lieu, je nomme mes parents. Sans leur support je n’aurais jamais eu

l’opportunité exceptionnelle d’entreprendre mes études jusqu’où je me suis rendue

aujourd’hui. Merci pour vos encouragements, je vous aime avec tout mon coetir.

Dernièrement, j’aimerai remercier ma colocataire et mon amie chère Colleen. En

plus de la multitude de corrections de français. sa patience avec moi durant ces

derniers deux ans ne pourrait jamais être dûment appréciée.

Page 14: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

1

CHAPITRE 1

Introduction

1.1 La régénération : généralités

Le processus de régénération est défini comme étant l’habileté que possède

un organisme, pleinement développé ou non, de remplacer ses tissus, organes ou

membres par la croissance ou le remodelage de tissu somatique [1]. Ce phénomène

a été constaté la première fois dans le dix-huitième siècle par Trembley. Ses travaux

sur l’hydre ont démontré que des êtres du règne animal, une fois morcelés,

pouvaient reconstruire des organismes complets à partir de simples fragments [2].

C’était Réaumur, qui a continué les recherches de Trernbley en découvrant que

l’écrevisse possédait aussi une capacité de régénérer ses appendices [3]. En 176$, la

recherche en régénération a été révolutionnée lorsque Spallanzani confirme les

capacités de régénération de plusieurs espèces tels les vers de terre, les mollusques

et les amphibiens [4]. Depuis Spallanzani, de nombreux chercheurs ont concentré

leurs études sur la régénération. Leurs découvertes ont permis de comprendre

l’étendue véritable des espèces capables de régénérer ainsi que la complexité de ce

phénomène.

1.1.1 Régénération morphallaxique versus épimorphique

La régénération morphallaxique et la régénération épimorphique sont les

deux modes principaux par lequel un organisme se régénère. La régénération

morphallaxique implique la réorganisation des tissus existants afin de reconstituer

des parties corporelles manquantes; le tout en absence de prolifération cellulaire [1].

Parmi les espèces qui régénèrent par morphollaxie, l’hydre est un modèle

exemplaire. Lorsqu’une hydre est sectionnée transversalement, la partie antérieure

reforme un pied et la partie postérieure une tête, donnant deux entités complètes de

petite taille. Par la suite, les hydre-filles grandiront jusqu’à ce qu’elles atteignent la

taille de l’hydre d’origine [5, 6]. Même après multiples sectionnements

transversaux, chacun des tronçons peut redonner un individu normal. De plus, une

section longitudinale complète formera deux hérni-hydres qui régénéreront pour

Page 15: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

2

reformer deux hydres complètes. Encore plus remarquable est la capacité de l’hydre

à former des animaux complets à partir d’agrégats de cellules t7].

Contrairement à la régénération mm-phallaxique. la régénération

épimorphique implique la division cellulaire. Ce mode de régénération se divise en

deux sous-catégories. En ce qui concerne la première catégorie, elle se caractérise

par la dédifférenciation cellulaire. Pour reformer la structure manquante, les cellules

vont prendre un état dédifférencié prévalant lors du stade embryonnaire. Ces

cellules non différenciées vont éventuellement se redifférencier pour former le tissu

manquant. La régénération des appendices chez les amphibiens urodèles est un

exemple classique de l’épirnorphose impliquant la dédifférenciation cellulaire (voir

section 1.2.1.1).

Le deuxième mode de régénération épirnorphique ne dépend pas de la

dédifférenciation des cellules mais plutôt de la migration des cellules-souches de

réserve de l’organisme au site d’amputation. Elles vont ultérieurement se

différencier pour reformer la structure manquante [1, 6]. C’est le cas des planaires.

Lorsqu’il y a perte d’une partie du planaire, les néoblastes (des cellules souches

totipotentes réparties dans tout son corps) avoisinants le site d’amputation migrent

jusqu’à la blessure et se différencient selon les besoins cellulaires de l’organisme

pour remplacer la partie manquante [1, 6, 8-12].

Il est important de préciser qu’il existe un mode de pseudo-régénération dite

compensatoire. Elle diffère des deux autres types de régénération puisque lors de la

régénération compensatoire hyperpiasique, les cellules se divisent tout en

conservant leurs fonctions normales. Les cellules en division produisent des cellules

similaires à elles-mêmes et ne prennent pas un état dédifférencié. Ce phénomène

peut être observé dans le foie chez les mammifères. Lorsqu’un lobe du foie est

enlevé, la partie manquante ne repousse pas mais les lobes restants vont croître

jusqu’au volume original afin de compenser la perte [13]. Dans ce cas, on dit qu’il y

a croissance hyperplasique plutôt que la régénération [14].

Page 16: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

3

1.1.2 Invertébrés versus vertébrés

Le pouvoir de régénération ne dépend pas de la taxonomie et ne suit pas la

phylogenèse. Cependant, plusieurs invertébrés ont la capacité de régénérer toutes ou

encore certaines parties de leurs corps, tandis que les vertébrés capables de

régénérer sont peu nombreux et ont souvent une capacité régénératrice limitée à

certains organes ou tissus (sauf quelques exceptions). Parmi les invertébrés capables

de régénérer, l’étoile de mer, l’hydre et le vers planaire sont d’intérêt particulier

puisqu’ils possèdent la capacité de régénérer leur corps au complet à partir d’un

petit fragment [5, 6]. Ce phénomène est généralement associé avec le type de

reproduction asexuée et un <(turnover» continu des cellules souche indifférenciées

qui formeront les principales parties du corps. Un autre aspect essentiel de la

capacité régénératrice des invertébrés mentionnés ci-dessus est qu’elle est

bidirectionnelle. La même surface de coupure peut régénérer soit une tête, soit une

queue. Ni les insectes, ni les vertébrés ne démontrent cette régénération

bidirectionnelle. Ils démontrent plutôt une régénération monodirectionnelle. Par

exemple, nous pouvons observer la régénération monodirectionnelle lors de la

régénération du membre. Une fois l’amputation effectuée, le membre de

l’organisme amputé va régénérer mais la partie amputée ne donnera pas tin autre

organisme complet [15].

Certains insectes qui ne traversent pas un stade pupal (stade de

développement où la larve s’entoure d’une enveloppe de cuticule durant sa

métamorphose) possèdent aussi la capacité de régénérer [16]. Les insectes

appartenant à la famille des hémirnétaboles, tels que la sauterelle ou la blatte, se

développent graduellement par une série de formes larvaires vers l’âge adtilte et ont

la capacité de régénérer une patte ou une antenne. Cependant, les holométaboles

comme la drosophile, qui présentent un passage abrupt de la larve au stade adulte,

ne peuvent régénérer des structures matures [17]. Ces derniers peuvent régénérer au

niveau des disques imaginaux (structures qui donnent naissance aux différentes

parties de l’insecte telles la patte, l’antemte, les ailes etc.) seulement s’ils sont

endommagés avant la métamorphose [1$].

Page 17: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

4

La régénération chez les vertébrés est présente principalement (mais non

exclusivement) chez les amphibiens. Elle est également présente chez les

mammifères mais de manière plus restreinte. Parmi les mammifères ayant la

capacité de régénérer, on mentionne le cerf, la souris et l’humain. Le cerf est

d’intérêt particulier puisqu’il est le seul modèle mammalien ayant le pouvoir de

régénérer un organe au complet. À chaque printemps, le cerf perd ses ramures et les

régénère annuellement. La régénération des ces structures osseuses

impressionnantes s’effectue via la régénération épirnorphique [19. 20]. La repousse

des ramures implique la régénération de l’os qui va croître par un processus continu

de différenciation cellulaire à partir d’une masse de cellules non différenciées du

mésenchyme. Ces cellules vont proliférer et se différencier en chondrocytes et ces

derniers vont éventuellement être remplacer par des ostéoblastes pour compléter la

repousse de cette structure [21, 22].

Les souris ont aussi une capacité limitée de régénérer les bouts de leurs

doigts. La régénération se réalise seulement si l’amputation est distale à la dernière

phalange du doigt. Si l’amputation est faite de manière proximale à ce plan

d’amputation, il n’y a pas de régénération [23]. En 2003, Han et aL ont caractérisé

la régénération des bouts des doigts chez la souris et ont trouvé que la capacité de

régénérer corrélait avec l’expression du nztiscle segment homeobox gene-] (Msx-1)

[24]. Effectivement, Odelberg et aï. ont démontré de façon directe l’implication de

Msx-1 dans la dédifférenciation de cellules de mammifères et que ces cellules

peuvent être dirigées vers des types cellulaires différents (par exemple : cellules

osseuses ou adipocytes) [25]. En fait, il est déjà documenté que les humains peuvent

régénérer les bouts de leurs doigts jusqu’à l’adolescence [261. Comme chez les

souris, la capacité régénératrice des doigts de l’humain est limitée à la dernière

phalange. De plus, pour qu’il y ait régénération, l’amputation ne peut être traitée de

façon chirurgicale; dès que la plaie est refermée par des points de sutures la

régénération est inhibée. Notons aussi la capacité de régénération compensatoire, ou

plus précisément, la croissance hyperplasique du foie chez l’humain décrite plus

haut [14].

Page 18: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

Un autre vertébré ayant la capacité de régénérer est le poisson zèbre (Danio

rerio). Il peut régénérer le bout de ses nageoires, les muscles cardiaques, les nerfs

optiques, la moelle épinière ainsi que les écailles [27-32]. En outre, les amphibiens

anoures (grenouilles et crapauds) peuvent régénérer leurs membres et leur queue et

tous les tissus qui les composent. Pourtant, tout comme les holornétaboles, ils

perdent leur capacité régénératrice après la métamorphose [33]. Les champions

incontestés de la régénération sont sans doute les amphibiens urodèles (tritons et

salamandres). Parmi les urodèles, ont retrouve notre modèle: l’axolotl.

1.2 L’axolotl comme modèle pour étudier la régénération

L’axolotl tAmbystoma mexicanwn) est un amphibien urodèle originaire du

lac XochimiÏco au Mexique. Au milieu du dix-neuvième siècle, cette salamandre a

été introduite au monde scientifique par l’herpétologiste August Durnéril [34].

Actuellement cette espèce est en voie d’extinction dans son habitat naturel. Pour les

fins de la recherche, une colonie d’élevage d’axolotls (The Ambystoma Genetic

Stock Center) s’est établie à Lexington Kentucky au États-Unis. Le centre maintient

un élevage de différentes souches d’axolotls de pigments variés (wiÏd type, mutant

aibino, mutant color). Le mutant albino est particulièrement utile dans le laboratoire

puisqu’il na pas de pigments noirs dans sa peau. Cette déficience permet de réaliser

certaine expérience telle que l’hybridation in situ de type «whole mounb>, où il faut

visualiser le marquage des tissus. Aussi, l’entretient des axolotls est facile et ils sont

peu coûteux à maintenir.

Les urodèles (e.g. axolotl) sont des modèles exemplaires pour étudier les

mécanismes de la régénération puisqu’ils sont les seuls vertébrés à posséder la

capacité exceptionnelle de régénérer parfaitement, tout au long de leur vie, leurs

membres (pattes et queue) de même que certains de leurs organes (moelle épinière,

yeux, apex du coeur etc.) (figure 1) [15, 35, 36]. Parmi ]es structures complexes qui

régénèrent, le membre est sans doute le plus étudié. De nombreuses études ont

permis aux chercheurs d’acquérir une bonne connaissance des mécanismes qui

contrôlent la croissance et l’organisation de cette structure durant le développement

ainsi que durant la régénération. Ces connaissances offre un aperçu des mécanismes

Page 19: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

6

Figure 1: Les parties qui régénèrent chez l’axolotl

Page 20: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

DD

D

Page 21: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

7

de régénération chez les vertébrés. L’étude de la régénération du membi-e présente

certains avantages par rapports aux autres structures qui régénèrent. D’abord, le

membre possède trois axes définis (antéro-postérieur, proximo-distal et dorso

ventral) et est facile à manipuler. D’ailleurs, le membre est une structure complexe

composée de différents tissus incluant l’os, le muscle squelettique, les nerfs et

l’épithélium. L’étude de la régénération du membre nécessite une intervention

chirurgicale. Les amputations peuvent se faire de façon proximale (au milieu de

l’humérus/férnur) ou de façon distale (au milieu des deux os radius/cubitus ou

tibialfibula) par rapport au corps. Peu importe le site d’amputation du membre, la

séquence d’évènements menant à la régénération reste la même (Figure 2) [37].

1.2.1 Le processus de la régénération du membre

1.2.1.1 Stades de régénération et les processus cellulaires

Chez les urodèles, le processus de la régénération du membre peut être décrit

en tripartie la phase de guérison, de préparation et la phase de redéveloppement

[38]. La première phase du processus de régénération qui est engendrée après

l’amputation d’une patte est la guérison de la plaie. En moins d’une heure, les

cellules épithéliales de la périphérie du plan d’amputation commencent à migrer

pour former une couche mince afin de recouvrir les tissus mésenchymateux exposés

[37]. La guérison de la plaie est rapide et, pour des animaux de petite taille, la plaie

est fermée dans les 2 heures suivant l’amputation [37. 39]. La phase de guérison est

essentielle pour la régénération car si elle est inhibée, la régénération n’aura pas lieu

[40, 41]. Après l’établissement de l’épithélium de guérison, celui-ci s’épaissit pour

former ce que l’on appelle la coiffe apicale épidermique (CAE). Elle est comparable

à la crête apicale ectodermique, impliquée dans la croissance du bourgeon du

membre chez le poulet [42-44]. Il semble que la CAE relâche des substances

importantes pour la stimulation et la formation du blastème, malgré que leur rôles

soient encore mal compris [45].

La prochaine étape dans la régénération du membre implique la

dédifférenciation cellulaire. Les cellules provenant des tissus proximaux du plan

d’amputation du membre vont se dédifférencier, c’est-à-dire qu’elles vont perdre

Page 22: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

$

Figure 2 : Phénomène biphasique

Page 23: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

nPhase de AmI)UtatiOfl

fiDedifferentiation

préparation

VoundHealing

[tEarlvBud

fi,Medium

Bud

î)Pattettc

LateBUd Phase de Re

Développement

CompleteEarlvDifferentiation

Page 24: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

9

leur caractéristiques spécialisées en retournant vers un état pseudo-ernbryonnaire

[37]. Plus précisément, les cellules dérivés des fibroblastes se dédifférencient et

vont subséquemment migrer sous l’épiderme de guérison pour former le blastème,

une population de cellules prolifératives non-différenciées qui s’accumule au bout

distale du moignon amputé [46]. Les fibroblastes jouent un rôle primordial dans la

croissance et l’organisation de la patte en régénération [47, 4$]. Cette notion a été

premièrement testée par Lheureux qui a démontré qu’après avoir greffé un morceau

de peau (derme et épiderme) sur une patte inadiée, incapable de régénérer, il y a

régénération complète de toutes les structures sauf les muscles [49]. Les expériences

suivant celle de Lheureux ont pu démontrer que la peau contient tout ce qui est

nécessaire, excluant les cellules capables de former les muscles, pour assurer la

régénération parfaite du membre [49-51]. Les derniers stades de la phase de

dédifférenciation; les étapes de bourgeon primaire et intermédiaire (EarÏy bud EB et

Medium bud MB) sont aisément identifiées morphologiquement sous un stéréoscope

et se sont caractérisées histologiquement par la prolifération et l’accumulation des

cellules dédifférenciées du mésenchyme dans le blastème [52].

L’étape finale du processus de la régénération du membre implique le

phénomène de redifférenciation cellulaire, c’est-à-dire, les cellules du blastème non-

différenciées vont se différencier pour donner tous les tissus nécessaires afin de

reformer le membre [53]. Encore plus, il a déjà été démontré que des cellules

musculaires qui se sont dédifférenciées peuvent se redifférencier pour donner des

cellules cartilagineuses [54], ainsi supportant le concept de transdifférenciation

cellulaire dans le blastème. Lorsque la patte continue à régénérer, il y a

condensation progressive des cellules mésenchymateuses afin de créer la matrice

cartilagineuse qui composera le squelette du membre. Des condensations

mésenchymateuses additionnelles se produit de la même manière pour former les

doigts à la fin du processus (au stade early clfferenciation ED). Finalement, la patte

va croître pour atteindre sa taille normale et rétablir ses fonctions normales [37].

Page 25: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

10

1.2.1.2 Phénomène biphasique

Plusieurs experts dans le domaine de la régénération supportent l’hypothèse

que la régénération du membre est un processus biphasique (Figure 2) [38, 46, 55].

La première phase, la phase de préparation, implique les évènements à partir de

l’amputation jusqu’à la formation du blastèrne (bourgeon intermédiaire). La

deuxième phase, la phase de redéveloppement. est caractérisée par le contrôle de la

croissance et l’organisation axiale du blastème. Les données accumulées jusqti’ici

suggèrent que les mécanismes moléculaires impliqués durant la phase de

préparation sont uniques au processus de régénération tandis que, durant la phase de

redéveloppernent, l’organisme reprend les étapes de formation du membre que l’on

retrouve normalement lors de la vie embryonnaire [56-63].

Un facteur qui supporte la régénération biphasique de façon importante est la

présence des nerfs durant la régénération de la patte. Plusieurs études ont démontré

que les nerfs sont requis pour la première phase de régénération; la dénervation du

membre durant la phase de préparation inhibe le processus de régénération [37, 48].

De plus, lorsque la patte est dénervée lors de la phase de redéveloppement, la patte

devient indépendante de la présence des nerfs et la régénération peut se compléter

[64-67].

En plus de la notion de régénération biphasique du membre, il est aussi

proposé que les gènes exprimés dans les premiers 24h durant la régénération du

membre partagent des mécanismes similaires que celles mis en place pour la

guérison d’une plaie chez les mammifères [55, 59]. Cependant, après une

amputation, contrairement aux mammifères, l’axolotl va régénérer son membre sans

cicatrisation résiduelle entre le moignon et la structure régénérée; ainsi fournissant

une patte parfaite. Cette capacité permet l’étude de l’axolotl non seulement pour la

régénération mais aussi pour la minimisation des cicatrises chez les mammifères

[68]. La caractérisation de plusieurs gènes durant le développement et durant la

régénération du membre ont permis davantage de déchiffrer les mécanismes

moléculaires impliquées durant la guérison de la plaie et durant la régénération du

membre et ainsi, seront traités dans la prochaine section.

Page 26: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

il

1.2.1.3 Les gènes exprimés et leurs rôles

Le premier gène connu à être exprimé lors du processus de la régénération du

membre est le muscle segment homeobox gene-2 (IVIsx-2) qui est détecté aussi tôt

qu’une heure suite à l’amputation. Ce gène est également exprimé dans le processus

de guérison des plaies, ainsi suggérant que Msx-2 joue un rôle dans une voie

commune à la fois dans la guérison des plaies et dans la régénération [39]. Durant

les premières 24 heures de la régénération de la patte, certains gènes de la famille

des ivimp (e.g. Mmp-9) et les gènes HoxD (e.g. Hoxd-1O et Hoxd-8) sont exprimés.

Il est probable que ces gènes ont une fonction dans le rétablissement de l’identité

positionnelle du membre amputé, bien que les mécanismes qui régulent ces

évènements sont encore inconnus [59, 69, 70]. Les gènes de la famille HoxA sont

exprimés 24-4$h après amputation et ont un rôle dans la spécification de l’axe

proximo-distale du membre [57]. Gardiner et al. ont décrit l’expression des gênes

HoxA9 et HoxA]3 durant la régénération et durant le développement de la patte. Ils

ont démontré que ces gènes sont exprimés de façon conservés durant le

développement du membre chez l’axolotl comparé avec d’autres vertébrés; HoxA9

est exprimé tôt dans l’entier du bourgeon tandis que HoxA]3 est exprimé plus tard

dans la région la plus distale du moignon. L’expression proximo-distale de ces

gènes durant la régénération est plutôt différent durant la phase de préparation; les

deux gènes étant exprimés tôt avec un patron d’expression qui se chevauchent.

Lorsque la régénération continue, le patron d’expression pour HoxA9 et HoxA]3

s’éloignent jusqu’à la phase de redéveloppement où. comme durant le

développement, HoxA9 est exprimé dans l’entièreté du blastème et HoxA]3 est

exprimé dans la partie distale du blastème [57J. Curieusement, des études

génétiques ont relié l’expression chevauchant de ces gènes avec l’organisation

axiale de la région la plus distale du blastème, alors que la région la plus proxirnale

exprimerait HoxA9 mais non HoxAl3 [71]. Ces résultats sont en accordance avec le

model de régénération par intercalation qui stipule que la partie la plus distale du

membre est spécifiée en premier et que les sections entre te moignon et le blastèrne

sont intercalées par la suite [72, 73].

Page 27: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

12

L’innervation de la patte est un volet de la régénération qu’attire

considérablement d’attention. Les découvertes soutenant le besoin des nerfs pour la

régénération du membre ont poussé la recherche pour un facteur neurotrophe

responsable pour ce paradigme. Conséquemment, le gène D1x3 a été identifié chez

l’axolotl [64]. Ce gène fait partie de la famille des gènes Hox et est l’homologue du

gène DistalÏess (Dli), un gène reconnu pour sa fonction régulatrice sur la croissance

distale des appendices chez la drosophile [74, 75]. D1x3 est reconnu pour son

implication dans les interactions épithél iaux/rnésenchymateux. Chez les vertébrés,

ces interactions jouent un rôle dans le développement de plusieurs structures (e.g.

dents, appendices, poumons, reins) [76-80]. Une étude fait par Mullen et al. a donné

un aperçu quant à l’interaction entre les nerfs et l’expression de Dlx3 durant la

régénération chez l’axolotl. Ce groupe a premièrement démontré que pendant la

régénération de la patte, les patrons spatio-temporels de DÏx3 sont consistants avec

une fonction dans le contrôle de la croissance distale des appendices. De plus,

l’expression de DÏx3 culmine juste avant la phase de redifférenciation et diminue

jusqu’à nul rendue au stade tardifs de la régénération, ainsi coïncidant avec la

transition à l’indépendance des nerfs. Ils ont démontré davantage que la dénervation

des pattes en régénération des stades jusqu’au bourgeon intermédiaire résulte dans

une perte rapide mais éphémère de l’expression de Dx13. Au contraire, la

dénervation des stades à partir du bourgeon tardifs n’a aucun effet sur l’expression

de ce gène [64].

Il existe aussi des gènes identifiés lors de la phase de redéveloppement de la

repousse du membre qui sont exprimés de manière similaire durant le

développement. Par exemple, $onic hedgehog (‘ShÏi,). un morphogène exprimé dans

la région postérieur du bourgeon du membre en développement et qui est important

pour l’établissement antéro-postérieur de la patte [$1]. Pareillement, ce gène est

exprimé dans la région postérieur du blastème de la patte en régénération et semble

avoir une fonction conservée durant la régénération de la patte comme dans le

développement d’autres vertébrés [47, 82-84]. Semblablement, les études portant

sur l’expression des gènes Hox distinguent une multitude de gènes appartenant à

Page 28: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

13

cette famille qui, eux aussi, sont exprimés de façon similaire durant le processus du

développement et la régénération du membre [56, 57, 85].

1.3 Étude de gènes exprimés durant ]e dévdoppement et ]a

régénération osseuse

1.3.1 Le développement osseux

Le squelette axial est formé à partir de 3 souices embryonnaires: 1) les

somites qui génèrent le squelette axial, 2) la plaque latérale du mésoderme qui

génère le squelette des membres et 3) les cellules de la crête neurale (CCN) qui

génèrent, entre autre, les arcs branchiaux ainsi que l’os et le cartilage cranio-facial

[86]. Quelle que soit la structure squelettique, l’os se formera par une des deux

façons suivantes : soit par ossification intrarnembranaire ou soit par ossification

endochondrale [87]. Le processus d’ossification intramembranaire convertit

directement les tissus mésenchymateux en os tandis que l’ossification

endochondrale passe par plusieurs étapes intermédiaires; c’est-à-dire la

différenciation des cellules mésenchymateuses en chondrocytes, la prolifération et

l’hypertrophie de ces derniers, suivi par leur remplacement par l’os (le mécanisme

détaillé est décrit ci-dessous). Des exemples classiques de structures formées par

ossification intramembraneuse sont les os cranio-faciaux. Comme mentionné

auparavant, ces dernières structures sont générées à partir des CCN. Les CCN sont

formées lors de la fermeture du tube neural durant la neurulation primaire. Les

cellules qui composent la crête neurale vont migrer en périphérie et vont

progressivement adopter un type cellulaire spécifique afin de contribuer à la

formation des différents tissus de l’embryon. Parmi les structures dérivées des CCN,

on compte: le tissu conjonctif, les cellules pigmentaires et le ganglion entérique.

Le deuxième mode d’ossification, dit endochondral (figure 3), est associé à

la formation des vertèbres, des côtes et de façon plus importante, des appendices. Le

processus d’ossification endochondral peut être décrit en 5 étapes; i) l’engagement

des cellules du mésenchyme dans la voie qui mène aux cellules cartilagineuses; ii)

la condensation subséquente de ces cellules et leur différentiation en chondrocytes;

iii) la prolifération des chondrocytes; iv) l’hypertrophie des chondrocytes; et

Page 29: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

14

Figure 3: Diagramme schématique du processus d’ossification endochondral

démontrant les étapes où interviennent les gènes Sox-9, PTHrP et Cbfa-1. (A, B)

Les cellules mésenchymateuses se condensent et différencient en chondrocytes pour

former le model cartilagineux de l’os. (C) Les chondrocytes dans le centre de la

colonne vont s’hypertrophier et vont subir l’apoptose pendant qu’ils changent et

minéralisent leurs matrices extracellulaires. Leurs extinctions permettent aux

vaisseaux sanguins d’entrer. (D, E) Les vaisseaux sanguins apportent les

ostéoblastes, qui se lient à la matrice cartilagineuse en dégénérescence et vont

déposer une matrice de l’os. Concurremment, les ostéoclastes participent à la

résorption de la matrice osseuse pour maintenir la solidité de l’os. (F-H) La

croissance et la formation de l’os comprennent la prolifération d’un ensemble

ordonné des chondrocytes en prolifération, hypertrophie et minéralisation. Les

centres secondaires d’ossifications vont aussi former aux extrémités de l’os.

Page 30: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

Cartilageépiphyséal

Plaque decroissance

Os

Plaque decroissance

Mésenchyme Cartilage Chondrocytes Ostéoblastes Chondrocyteshypertrophiques (Os) Vaisseau prolifération

(A) (B) (C)

(G)Centre d’ossificationsecondaire (H)

Page 31: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

15

y) l’apoptose des chondrocytes et leur remplacement par des ostéoblastes [8$]. Il est

donc clair que les os sont des tissus complexes à former. Par conséquent, le

processus d’ossification fait intervenir une très grande variété de gènes et

molécules. Certains gènes qui jouent des rôles de premier plan lors de la formation

du squelette chez l’embryon ont retenu notre attention pour leurs rôles potentiels

lors du processus de guérison et de régénération osseuse et seront traités dans les

prochaines sections.

1.3.1.1 Les gènes Sox: Sox-9 et Sox-lO

Les gènes de la famille Sry-type HMG box (Sox) sont essentiels pour une

variété de processus lors du développement embryonnaire. Parmi leurs fonctions, ils

jouent un rôle prédominant durant le développement de la crête neurale (résumé

dans [89]). Suite à l’induction de cette dernière, il y a quatre gènes Sox qui sont

exprimés au niveau de la plaque neurale, incluant Sox-9 et Sox-lO. Ces deux gènes,

avec Sox-8, sont regroupés dans la classe $oxE, et sont reconnus pour être des

régulateurs importants des CCN. Au niveau axial du tube neural, l’expression de

Sox-9 est maintenue généralement dans la région craniale, dans les cellules craniales

de la crête neurale, tandis que l’expression de $ox-]O est située plutôt dans la région

du tronc [90, 91]. Des mutations dans le gène Sox-JO entrainent des défectuosités

des dérivés des CCN de la région vagale et du tronc (ganglions entériques, cellules

pigmentaires, système nerveux périphérique et arches pharyngiales) tandis que les

structures formées à partir des dérivées des cellules craniales de la crête neurale

semblent se développer normalement [92]. Des mutations du gène Sox-JO sont

responsables du syndrome de Waardenburg-Shah [92, 93] chez l’humain qui se

caractérise, entre autre, par la surdité et des défauts pigmentaires [92, 94].

Quant à Sox-9, il est exprimé tôt dans les cellules souches de la crête neurale

et est essentiel pour le développement des dérivés squelettiques des cellules

craniales de la crête neurale tels les os/cartilages cranio-faciaux. Des expériences

«knock-out» pour ce gène chez la souris présentent des embryons chez qui les

structures squelettiques endochondrales dérivées des cellules craniales de la crête

neurale manquent tandis que les CCN dérivées du tronc semblent normales [91, 95].

Page 32: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

16

Récemment, le groupe de Mori-Akiyarna a démontré que la raison pour laquelle les

structures squelettiques craniales ne se forment pas est une conséquence de

l’inhabilité des cellules craniales de la crête neurale post-migratoires à se

différencier en chondrocytes [96J. En plus de son rôle dans le développement des

dérivés des cellules craniales de la crête neurale, Sox-9 joue aussi un rôle critique

dans le processus de chondrogenèse [83, 97-99]. Il est premièrement exprimé au

niveau des cellules précurseurs des chondrocytes et lors de la condensation de ces

préchondrocytes. Sox-9 est également responsable pour la différenciation des

cellules mésenchymateuses non-différenciées en chondrocytes et de la maturation et

prolifération des cellules chondrocytaires [$3, 95]. Des mutations hétérozygotes

pour ce gène chez les humains entraînent une maladie qui se nomme la dyspiasie

campornélique (CD) et se caractérise principalement par de nombreuses

malformations squelettiques [99, 100]. Plus récemment. Ng et al ont démontré que

durant la chondrogenèse chez la souris, Sox-9 est co-exprimé avec le gène collagène

type II alpha 1 (Col2al) et qu’il active la transcription de ce dernier. Ceci suggère

un rôle régulateur de la protéine $ox-9 sur Col2a] durant la chondrogenêse [83].

1.3.1.2 Collagène type II

Les collagènes sont les glycoprotéines fibreuses les plus abondantes

composant la matrice extracellulaire des tissus conjonctifs. Leur présence assure le

maintien, la stabilité et l’intégrité structurale de plusieurs tissus et organes [101].

Les divers types de collagènes sont regroupés dans plusieurs familles selon leur

structure et organisation supramoléculaire. Par exemple, le collagène type II (Co12)

est regroupé avec les collagènes de type I, III, V et XI, car ils font tous partie de la

famille des collagènes qui forme des fibrilles. Le Co12 est particulièrement

intéressant puisqu’il code pour une composante majeure de la matrice

extracellulaire du cartilage [83]. À juste titre, le Co12 est la composante

prédominante dans le cartilage hyalin qui se situe dans les articulations, la cloison

nasale, les ameaux des grosses bronches et de la trachée, et à l’extrémité des côtes

chez l’humain [101].

Page 33: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

17

L’épissage alternatif de pre-ARNm CoÏ2 donne 2 formes différentes

Col2a], une forme embryonnaire exprimé dans le mésenchyme pré-chondrocytaire,

et Col2], retrouvé dans le cartilage mature [102, 103]. Durant la chondrogenèse, la

transcription de CoÏ2a] s’effectue dans les cellules mésenchyrnateuses, précédant

leur différenciation en chondrocytes [104-107]. Des mutations dans CoÏ2al chez

l’humain entrainent une variété de chondrodyspiasies tels l’achondrogenèse II

(Langer-Saldino), qui se caractérise par des malformations graves du cartilage et du

squelette, telles un crâne excessivement volumineux, des membres très courts et un

tronc large et court; et la maladie de Kniest, qui se caractérise par une dysmorphie

faciale, des anomalies rachidiennes et des atteintes articulaires des membres

supérieurs [102, 109]. De plus, les études sur des souris transgéniques qui expriment

une mutation dans le gène de CoÏ2 démontrent une formation squelettique anormale

[110-113]

1.3.1.3 PTIIrP

Parathyroid hormone reÏated peptide (FTHrF,,) est une hormone peptidique

premièrement identifiée comme l’agent responsable de l’hypercalcérnie humorale

maligne [114, 1151. Elle est impliquée dans plusieurs fonctions biologiques et est

reconnue pour être, entres autres, un relaxant des muscles lisses, un régulateur du

transport calcique trans-épithélial ainsi qu’un régulateur du développement de

certains organes et tissus [116]. Durant l’ostéogenèse, le gène PTHrP intervient au

niveau de la résorption osseuse, de la différenciation et maturation des chondrocytes

ainsi que dans la stimulation de la différenciation et prolifération des ostéoblastes

[117-119]. Les mutations nulles pour le gène FTHrF produisent des anormalités

sévères dans le développement endochondral des os; conséquence d’une

prolifération réduite, d’ hypertrophie et d’ apoptose précoce des chondrocytes [120-

122].

1.3.1.4 Cbfal

Core-binding factor a-1 (Cbfa-]), quant à lui, intervient un peu plus tard

dans le processus d’ossification. Aussi connu comme Runt domain 2 (Rzinx2),

Page 34: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

18

Folyomavirus enhancer core binding protein aA (PEBP2aA), Acute ,nyeÏocytic

Ïeukemia 3 (AML3), et OsteobÏast-specflc cis-acting eÏement 2 (‘0sJ2,), Cbfa-] est

un facteur de transcription qui appartient à la famille des gènes portant des

domaines Runt. Cette famille comprend trois gènes soit Cbfa-1, Cbfa-2 et Cbfa-3

[123-125]. Il semble que Cbfa-] possède plusieurs rôles durant l’ostéogenèse. En

plus d’être connu comme un facteur essentiel pour la différenciation et la maturation

des ostéoblastes, Cbfa-] est aussi un régulateur de la maturation et de la

différenciation des chondrocytes [126]. Récemment, Kim et al. ont démontré que

Cbfa-1 semble davantage posséder un rôle dans l’initiation et le maintient de l’état

hypertrophique des chondrocytes [127]. Une mutation homozygote pour ce gène

chez l’humain entraine la maladie héréditaire de dyspiasie cleidocraniale (CCD).

Elle se traduit par le nanisme et une altération de la forme, de la taille et du nombre

de certains os [12$, 129].

1.3.2 La régénération osseuse

On compte beaucoup moins d’études portant sur la régénération!guérison de

l’os comparativement à celles portant sur le développement de cette structure.

Malgré ce fait, nous pouvons nous fier sur certaines découvertes afin de mieux

comprendre le processus d’ostéogenèse durant la régénération. Par exemple, une

étude fait par Muneoka et aï. a démontré qu’après amputation d’une patte d’axolotl,

l’os représente environ 50% de la surface amputée, tandis que seulement 2% des

cellules en dérivent lors de la régénération [60]. D’autres études portant sur la

régénération de la patte suggèrent aussi que les nouvelles structures squelettiques

sont générées à partir d’autres cellules [130, 131]. finalement, plusieurs études

supportent la notion que la régénération est en partie une récapitulation des

mécanismes moléculaires qui ont lieu durant le développement [56-63]. Ceci étant,

nous pouvons nous attendre à ce que certains gènes qui interviennent durant

l’ostéogenèse lors du développement interviennent également lors de la

régénération, particulièrement Sox-9, FTHrP et Cbfa-].

Durant le développement, $ox-9 agit au niveau des cellules non-

différenciées en prolifération qui sont maintenues dans une zone de progression

Page 35: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

19

dans le bourgeon du membre [83, 95]. Ceci est comparable aux stades de

dédifférenciation et de prolifération auxquels sont soumises certaines cellules du

blastèrne lors de la régénération du membre d’axolotl [15, 132]. FTHrP, lui aussi est

un bon candidat pour avoir une fonction dans le processus de la régénération de la

patte puisqu’il agit au niveau de la différenciation et de la prolifération des

chondrocytes embryonnaires [117]. PTHrP pourrait très bien être un élément

régulateur dans la différenciation des cellules pluripotentes du blastème durant la

régénération afin de les diriger vers un destin chondrocytaire. De plus, il a déjà été

démontré que FTHrF a un rôle dans la formation du blastème durant la régénération

des ramures chez le cerf Il est exprimé particulièrement dans l’épithélium en

régénération ainsi que dans les cellules mésenchyrnateuses non-différenciées du

blastème t20]. Dernièrement, l’implication de Cbfa-1 dans la différenciation des

chondrocytes et ostéoblastes est un processus qu’il faut considérer lors de l’étude de

la régénération osseuse du membre [129, 133]. Kim et aï. ont démontré qu’on

retrouve l’expression de Cbfa-J au niveau de la zone de croissance des os long

[1271. On observe également une zone de croissance osseuse dans le membre en

régénération [52], donc nous pounions spéculer que Cbfa-] interviendra d’une

manière similaire.

1.3.3 La régénération versus la guérison osseuse

Plusieurs études se concentrent sur la capacité exceptionnelle que possède

l’axolotl de régénérer un appendice au complet et ainsi tous les tissus qui le

composent, incluant l’os. Par contre chez l’axolotl, peu d’études portent sur le

processus de réparation osseuse ou sur la capacité de régénération de l’os suite à une

fracture [134]. Les amputations se traduisent par la perte totale d’un bout d’os, mais

les fractures ne sont que des blessures ou perte partielle que l’on inflige aux os. Il

existe d’abord deux catégories de fractures osseuses les fractures jointes et les

fractures non-jointes de dimension critique (gap» osseux). Pour ce qui concerne les

fractures jointes, elles peuvent être de deux types stabilisées par des interventions

de nature médicales (plâtres ou tiges métalliques) ou encore non-stabilisées. Les

fractures jointes se guérissent via la formation d’un cale osseux due à une

Page 36: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

20

accumulation cartilagineuse t1351. Concernant les fractures non-jointes, elles sont

souvent provoquées par des interventions chirurgicales. Pour ce type de fracture, il

est possible de caractériser la dimension critique, c’est-à-dire la longueur maximale

que doit avoir l’expiant d’os pour que la reformation d’un cale soit possible. Si la

longueur critique est dépassée, il est alors impossible d’obtenir une guérison

osseuse. La longueur critique d’un explant osseux dépend de la taille de l’animal,

quoiqu’elle semble être accrue par certaines molécules telles que Transforming

grrnt’thfactor] (Tgf-/ll) [136].

Chez les vertébrés, le processus de réparation osseuse est bien caractérisé

[137-141]. Bien que la plupart des vertébrés soient capables de guérir une fracture

osseuse par la formation d’un cale, tous les vertébrés étudiés jusqu’à présent sont

incapables de réparer une fracture de dimension critique [142]. Étant donné que

l’axolotl adulte possède la capacité exceptionnelle de régénérer complètement un

membre amputé, nous sommes particulièrement intéressés aux évènements qui

mènent à la réparation et à la guérison de l’os. Est-ce que l’axolotl utilise la

régénération pour la réparationlguérison des fractures ou des «gap» osseux? L’étude

des mécanismes mis en place lors de la réparation!guérison osseuse va nous

permettre de mieux comprendre les mécanismes de régénération des structures

squelettiques chez l’axolotl.

Page 37: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

21

1.4 But du projet

Le but principal de cette étude est de caractériser les gènes

ostéogéniques exprimés durant la régénération chez l’axolotl afin de mieux

comprendre le processus de chondrogenêse et d’ostéogénèse durant ce

processus. Des études antérieures suggèrent que les mécanismes qui dirigent la

reformation du membre en régénération sont les mêmes que ceux qui dirigent la

formation du membre au cours du développement embryonnaire. Nous sommes

donc intéressés par l’étude des gênes responsables de la formation de l’os

durant la régénération et durant le développement. Parmi les gènes importants

impliqués dans ce processus, nous avons étudié particulièrement les gènes

Cbfa-], FTHrP, Sox-9 et Sox-JO.

Pour atteindre nos objectifs, nous avons, dans un premier temps, cloné

les séquences partielles des gènes d’axolotl Cbfa-J, FTHrP, Sox-9 et Sox-JO en

utilisant la technique de RT-PCR avec des amorces dégénérées. Nous avons

subséquemment obtenu les séquences complètes de Cbfa-] et de Sox-JO en

utilisant la méthode de RACE-PCR. Afin de caractériser l’expression spatio

temporelle et l’expression protéinique des gènes clonés durant le

développement et la régénération, nous avons utilisé respectivement la

technique d’hybridation in situ de type «Whole-rnount» et la technique

d’immunobuvardage de type «Western>).

Page 38: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

22

CHAPITRE 2

Article 1: «The axolotl limb: a model for bone development,regeneration and fracture healing»

Article in Press, Bone (2006)

($ee Annexe 1)

Cara Hutchison’, Mireille Pilote’ and Stéphane Roy”2’

1- Department of Biochemistry, 2- Faculty of Dentistry, Université de Montréal,

Québec, Canada

*To whom correspondence should be addressed:

Departrnent of Stornatology, Université de Montréal, C.P. 6128, succursale Centre

Ville, Montréal, QC, Canada, H3C 3J7

Fax: (514) 343-2233

Email:

This work was funded by a grant from the National Sciences and Engineering

Research Council of Canada. S. R. is a Chercheur Boursier Junior 1 from the Fond

de Recherche en Santé du Québec.

KEYWORDS: URODELE/AXOLOTL, FRACTURE HEALING, LIMBREGENERATION, OSTEOGENESIS, CBFA-1/PTHrP/COLLAGEN

Page 39: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

23

2.1 Contribution de l’auteur et déclaration des coauteurs

Contribution de l’auteur

Pour ce premier article, j’ai isolé la séquence complète du gène Cbfa-]. J’ai

également effectué l’analyse des séquences pour les gènes Cbfa-1 et PTHrP. De

plus, j’ai caractérisé l’expression du collagène type II par la technique

d’immunohistochimie in situ de type «Whole-rnount» pour les stades de

régénération et développement de la patte. Avec ceci, j’ai rassemblé mes résultats et

ceux obtenus antérieurement par Mireille Pilote et j ‘ai créé les figures appropriées

pour me permettre de rédiger et de soumettre l’article ci-dessus. En outre, il y avait

plusieurs modifications à faire quant à la re-soumission de ce papier. J’ai refait

certaines manipulations pour améliorer la qualité des résultats, par exemple,

l’hybridation in situ de type «Whole-mount» pour les pattes en développement pour

PTHrP ainsi que la coloration du cartilage pour plusieurs stades de régénération de

pattes. De plus, j’ai aussi re-photographié plusieurs échantillons afin d’améliorer la

résolution des images.

1. Mireille Pilote, M.$c. Biochimie

À titre de coauteur de l’article identifié ci-dessus, je suis d’accord pour que

Cara Hutchison inclus cet article dans son mémoire de maitrise qui a pour titre

«Caractérisation de gènes ostéogéniques chez l’axolotl».

Coauteur $ignaure Date

Page 40: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

24

2.2 Abstract

Among vertebrates, urodele amphibians (e.g., axolotls) have the unique

ability to perfectly regenerate complex body parts after amputation. The limb has

been the most widely studied due to the presence of three defined axes and its ease

of manipulation. Hence, the limb has been chosen as a model to study the process of

skeÏetogenesis during axolotl development, regeneration and to analyse this

animal’s ability to heal bone fractures. Extensive studies have allowed researchers

to gain some knowledge of the mechanisms controlling growth and pattern

formation in regenerating and developing limbs, offering an insight into how

vertebrates are able to regenerate tissues. In this study, we report the cloning and

characterization of two axolotl genes; Cbfa-], a transcription factor that controls the

remodelling of cartilage into bone and FTHrP. known for its involvement in the

differentiation and maturation of chondrocytes. Whole-mount in situ hybridization

and immunohistochemistry resuits show that Cbfa-1, PTHrF and type II collagen

are expressed during limb development and regeneration. These genes are expressed

during specific stages of Ïimb development and regeneration which are consistent

with the appearance of skeletal elements. The expression pattern for Cbfa-] in late

limb development was sirnilar to the expression pattern found in the late stages of

lirnb regeneration (i.e. re-developrnent phase) and it did flot overlap with the

expression of type II collagen. It has been reported that the molecular mechanisms

involved in the re-developrnent phase of lirnb regeneration are a recapitulation of

thosc used in developing lirnbs; therefore the detection of Cbfa-1 expression during

regeneration supports this assertion. Conversely, PTHrP expression pattern was

different during limb development and regeneration, by its intensity and by the

localization ofthe signal. f inally, despite its unsurpassed abilities to regenerate. we

tested whether the axolotl was able to regenerate non-union bone fractures. We

show that while the axolotl is able to heal a non-stabilized union fracture, like other

vertebrates; it is incapable ofhealing a bone gap ofcritical dimension. These results

suggest that the axolotl does flot use the regeneration process to repair bone

fractures.

Page 41: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

25

2.3 Introduction

The ability of an aduit vertebrate to regenerate lost body parts is very

limited; however urodele amphibians such as the axolotl tAmbystoma mexicanum)

are known to have exceptional abilities to regenerate multiple body parts tbroughout

their life. The axolotl’s capacity to regenerate its lirnbs as an adult offers the

opportunity to conduct comparative studies of the genes expressed during

development and regeneration in an identical genetic background. Among the

complex structures able to regenerate, the 11mb has been the most widely studied

due to the presence of three defined axes and its ease of manipulation. During limb

development, the cells that forrn Iimb tissues are derived from undiffercntiated

progenitor ceils (50). This process is paralleled in the case of the regenerating limb,

with the exception that differentiated ceils become undifferentiated before

subsequently reforming the missing parts afier amputation (7, 50). It bas been

hypothesized that the process of limb regeneration is biphasic (8, 24, 60). The first

phase, known as the preparation phase, involves the events spanning from

amputation to blasterna formation whereas the second phase. known as the re

development phase, is characterized by the control of growth and pattern formation

within the blasterna and finally the re-differentiation of celis to reform the missing

limb. Experirnental data collected to date supports the concept that the molecular

mechanisms involved in limb development are recapitulated during the re

development phase of limb regeneration (48. 58, 59. 71). In addition to the

aforementioned advantages, the complexity of the limb provides an excellent

opportunity for studying many different tissue types including bone and cartilage.

Bone represents approxirnately 50% of the exposed surface following limb

amputation, however, as little as 2% of cells in a regenerated lirnb are derived from

bone (4$). Previous limb regeneration studies also suggest that new bone is

generated from dedifferentiated cells of the blastema and not derived from pre

existing bone (41, 74). Most skeletal bones, including those of the appendage,

develop via an endochondral ossification process which involves the replacement of

cartilage tissue by bone. This process can be divided into five stages: i) the

Page 42: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

26

cornrnitment of mesenchymal celis to cartilage ceils; ii) the subsequent

condensation of these celis and their differentiation into chondrocytes; iii)

chondrocyte proliferation; iv) chondrocyte hypertrophy; and y) chondrocyte

apoptosis and replacement by osteoblasts (30). Among the nurnerous genes

potentially involved in the formation of skeÏetal elements during lirnb regeneration,

two of them are of particular interest; Core-binding factor a-J (Cbfa-]), a

transcription factor required for mesenchymal condensation, chondrocyte

hypertrophy and osteoblast differentiation (34, 53) and Farathyroid hormone

related peptide (FTHrF,), involved in the differentiation and maturation of

chondrocytes(37). The Cbfa-I gene, also known as Runx2/PEBP2aA/AML3/Osf2,

is characterized by a Runt dornain that binds DNA and heterodimerizes with Core

bindingfacior fi (Cbffl,) (4, 51). Studies have shown Cbfa-] to be an essential factor

for osteoblast maturation and normal ossification (34). However, additional research

has revealed a dual action for Cbfa-1: first as an osteoblast differentiation factor and

also as a regulator of chondrocyte maturation and differentiation. Homozygous

mutations in this gene are responsible for the skeletal malformation syndrome:

cleidocranial dyspiasia (CCD) (46). This dyspiasia is characterized by multiple

skeletal malformations and the absence of ossification (46, 53). In fact, without

Cbfa-], osteoblasts are unable to differentiate and therefore abolish bone matrix

deposition (46). A more recent study by Kim et al. bas revealed yet another function

for Cbfa-J as a regulator of chondrocyte hypertrophy (33). PTHrP is another

important player to consider wben characterizing skeletogenesis during the

regeneration process. FTHrP is a small peptide first identified as the causative agent

for humoral hypercalcemia rnalignancy (43, 67). This peptide uses the same

transmembrane receptor as parathyroid hormone (FTI; consequently they share a

well conserved PTH-like domain (54). In addition to causing hypercalcernia, PTHrP

is a major regulator of chondrocyte maturation, differentiation and proliferation

(37). PTHrP is known to be expresscd in chondrocytes throughout the developing

epiphyses, and in osteoblasts in metaphyseal bone (2). PTHrP-deficient knockout

mice die prematurely due to severe osteochondrodysplasia, characterized by shorter

bones due to an early ossification. This can be explained primarily by redticed

Page 43: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

27

proliferation and increased apoptosis of immature chondrocytes as well as the

precocious hypertrophy ofchondrocytes (3, 32, 36).

Numerous studies have demonstrated the axolotl’s ability to completely

regenerate lost appendages in which every tissue including bone is regenerated, yet

very few have concentrated on whether the axolotl can regenerate bone in a gap or

how well they can heal a fracture (25). The bone healing process bas been well

characterized in nurnerous vertebrates (6, 19, 61, 65, 72). Most vertebrates are

capable of healing a bone fracture tbrough a callus formation process, however ail

vertebrates studied to date are unable to heal bone defects of critical dimension (62).

These defects are gaps within which bone repair does flot take place. The critical

dimensions are dependent on the size of the animal. for example, the critical

dimension in a rabbit ulna is 15 mm, cornparatively; in a rat it is 4-5 mm (11, 29).

Under this circumstance. bone formation must be assisted by inductive substances

(57). We are particularly interested in the axolotl’s abilities to heal and repair bone

since they can regenerate entire limbs including the skeletal elernents. Does their

unique ability to regenerate complex tissues also apply to bone defects or fractures

of critical dimension? In this article, we describe the molecular cloning, sequence

analysis and expression of Cbfa-] as well as PTHrF during limb development and

regeneration in the axolotl. We also characterized the expression of type II collagen,

a cartilage specific protein, during limb regeneration. Cbfa-] is an inhibitor of type

II collagen and their expression sbould flot overlap (20). Both Cbfa-1 and PTHrP

regulate essential aspects of chondrogenesis and osteogenesis in vertebrate

development (e.g. mammals & birds). Given that part of the regeneration process is

a recapitulation of the developrnental process, the regenerating axolotl limb offers

an excellent model to analyse whether or not these genes are also required for bone

regeneration. Our results show that. Cbfa-] and FTHrP as well as type II collagen

are expressed during lirnb development and regeneration. Additionally, we found

that particular gene expression patterns during axolotl lirnb development are similar

to those during regeneration. finally, we show that while the axolotl is able to heal a

non-stabilized fracture, like other vertebrates; the axolotl is incapable of healing or

regenerating a bone gap of critical dimension.

Page 44: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

2$

2.4 Materials and methods

Cloning axolotl Cbfa-] and FTHrF cDNA

Partial axolotl Cbfa-] and PTHrP cDNA sequences were cloned (5 and 3

clones for each gene respectively) by RT-PCR using degenerate prirners (see

below). To obtain the full length Cbfa-J gene, the SMART RACE cDNA

Amplification kit (BD Biosciences, Ciontech. USA) was used to construct 5’- and

3’- RACE ready cDNA from total RNA extracted from the axolotl hind 11mb during

the medium bud regeneration stage using Trizol reagent (Tnvitrogen). Following the

manufacturer’s instructions, PCR products were obtained using 5’- and 3’- gene

specific primers (GSPs) and nested gene specific prirners (NGSPs) designed from

the partial sequence cloned in the lab. The designs of ail primers were as foiiows:

dfPTHrP: 5’ -CAGCT(G/A/C)(A/C)T(G/T/C)CA(C/T)GACAAGGG-3’

dRPTHrP: 5’ -GTT(A/T/C/G)GT(C/T)TCCTG(A!G)G(G/T)(C/T)AGGT-3’

dFCbfa- 1: 5’ -ACAG(C/T)CC(G/C)AACTT(C/T)CT(G/C)TGCT-3’

dRCbfa-1: 5’-GGTA(A!C)G(A/T)CTG(A!G)TCATA(G/C)GAC-3’

5’GSP: 5’-TGGAGGAGATGACTGTGCTT -3’

5 ‘NGSP: 5’-CGTGAAGACAGTTATACTCA -3’

3’ GSP: 5’-TGACTATAACTGTCTTCACG-3’

3’ NGSP: 5’ -AAGCACAGTCATCTCCTCCA-3’

Ail PCR products were purified by gel extraction, cloned into the pCR II-

TOPO sequencing vector (Invitrogen) and sequenced by the McGill University

Genome Quebec Sequencing Centre (Montreal, Canada) with MI3R and MY3F

prirners. Resulting sequences were assembled using $eqManll (DNASTAR Inc.,

USA). Full length Cbfa-1 cDNA was subsequently arnplified by PCR using

[Axolotl forward CbF1] 5’-ATGGCATCCAACAGCCTGTTCA -3’ and [Axolotl

reverse CbR1 426] 5’ -AAAACAGGCACTTTGGCATT-3’ primers designed from

the sequencing data. The PCR reaction was performed using Taq DNA polymerase

(Invitrogen) and the conditions were 35 cycles of 95°C, 30s; 63,5-52,5°C, 20s;

72°C, imin; followed by 15 min at 72°C. Note that six fiifl-length Cbfa-] clones

Page 45: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

29

were isolated from the 5 independent RT-PCR reactions and aligned using

MegAlign (DNASTAR Inc., USA).

Animal maintenance and sztrgeiy

Axolotl embryos and larvae were purchased from the Ambystoma Genetic

Stock Center (Lexington, KY). Animais are kept in a 20% Holtfreter’s solution at a

room temperature varying from 19-22°C and a photoperiod cycle of 12 hours of

light and 12 hours of darkness. For amputations, animals were anaesthetized in

0.1% MS222 solution (ethyl 3-aminobenzoate methanesuifonate sait, Sigma

Aldrich, St. Louis, MO). Proximal (through humerus or fernur) and distal (through

radius/ulna or tibialfibula) amputations were perforrned with micro-surgical tools

(Fine Science Tools, B.C., Canada) on axolotls from 3 to 5 cm in iength. for

fixation, animais are euthanized and fixed in 1XMEMFA (1OX MEM salt (1M

MOPS pH 7.4, 2OrnM EGTA, lOmM MgSO4), 3,7% formaidehyde and DEPC

treated H20 then gradually transferred to a methanol solution and stored at -20°C

until needed.

Bone defects of critical dimension were generated by first making an

incision in the skin along the longitudinal axe of the distal part of the lirnb, followed

by careful dispiacement of soft tissues to expose the radius or tibia. The distal bones

in axolotl limb (radius/cubitus and tibialfibuia) are nearly identical in size and

shape, therefore either one of the two long bones was cut. A section of the radius or

tibia was extirpated to generate a gap of 4 mm, this being larger than the critical

dimension for this type of bone in the axolotl. The remaining bone was left intact to

prevent the limb from collapsing and to preserve the distance between the

disengaged bone extremities. It also served as an internai control for intact bone. In

order to generate bone fractures, surgeries were performed identically except the

radius or tibia was simply cut with surgical scissors. Following surgical

intervention. limbs were fixed at different periods and the double staining technique

was used to verify new cartilage and bone formation. Ail animal care and

experiments were done in accordance with the Université de Montréal animal care

cornmittee’s guidelines.

Page 46: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

30

WhoÏe-mount in situ hybridization

Whole-mount in situ hybridization was performed as described in Gardiner

et al. with a few modifications (22). Digoxigenin (DIG) —labeled antiscns RNA

probes were created using T7 RNA polymerase (Invitrogen) and DIG RNA

labelling mix (Roche Diagnostics, Lavai, Quebec, Canada). Sense probes were

generated with SP6 RNA polyrnerase (Invitrogen). for probe synthesis, a 400 bp

Cbfa-] and a 230 bp PTHrF fragment were cloned into the pCR II-TOPO plasmid

which was then linearized using the appropriate restriction enzymes. For tissue

permeabilization, developing embryos and amputated limbs were incubated with

20ig/ml and 30 ig/mi proteinase K respectively for 15 min on ice and then at 37°C

for 5 min or for 1h on ice then 1h at 37°C. Probe hybridization was 24h for embryos

and 72h for limbs. Prehybridization and hybridization temperatures were done

between 55°C and 65°C. Finally, BM purpie (Roche) was used as the enzyme

substrate for the colorimetric reaction for the aikaline phosphatase reaction.

Type II Collagen whoÏe-rnount in situ immunohistochemistiy

Samples were rehydrated from methanol and rinsed three times in a

phosphate-buffered saline solution with 0.1% Tween-20 (PTW). Lirnbs were then

bathed in 2.5% trypsin for either 15 min (developing iimbs) or 40 min (regenerating

limbs) foliowed by three 5-min rinses in water. Afier 10 min in -20°C acetone,

specimens were rinsed in water for 10 min and then washed three tirnes for 5 min

with PTW. Samples were then transferred to a blocking solution (phosphate-buffer

solution (0.7 X P135) + 1% DM50 + 5% sheep serum + 0.1% Tween) for 1 hour

and incubated in a mouse monoclonal antibody against Type II collagen (II-116B3,

Lab Vision Corporation, fremont, CA) diluted 1:100 in blocking solution overnight

at 4°C. The next day, limbs were rinsed eight times for 15 min in a PTW + 1%

DMSO solution before being placed in an anti-mouse horseradish peroxidase

labelled secondary antibody (Amersham Biosciences, Piscataway, NJ) diluted 1:500

in blocking solution overnight at 4°C. The foliowing morning, sampies were rinsed

eight times for 30 min with PTW and subsequently bathed in a diarninobenzidine

Page 47: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

31

(DAB) solution (Invitrogen). The reaction was stopped by two 5-min washes with

PTW and fixed in a formalin solution (3.7% formaldehyde in 0.7X PBS).

Specimens were cleared through a graded series of ethanol/glycerol and stored in

100% glycerol. As a control for specificity, the sarne protocol was followed except

the primary antibody was ornitted (Fig. 4 F).

SkeÏetal staining ofenzbîyos and Ïimbs

Developing and regenerating lirnbs were stained using the Victoria blue

method to verify new cartilage formation (9). Lirnbs were fixed in alcoholic Bouin’s

solution for 24 hours before being rinsed several times with 70% ethanol.

Specimens were rinsed regularly in 3.5% NH4OH for 2 days and subsequently

treated with Acid alcohol for 2 hours. Specirnens were stained with 1% Victoria

Blue for 2 hours and then rinsed with 70% ethanol. Limbs were gradually

dehydrated to 100% ethanol, then cleared and stored in methyl salicylate.

A double staining technique of Alizarin Red and Alcian Blue was used to

stain cartilage blue and calcified matrix red for bone fracture experiments (12).

fixed specimens were rinsed regularly with distilled water for 1 h. Specimens were

placed in an alcian blue staining solution (20 mg of alcian blue powder and a 7:3

EtOH/glacial acetic acid solution (EtOH/Hac)) for one day. and then were

transferred to an EtOH/Hac solution for one hour. Afier being placed in 100%

EtOH for 24 h, the sample was rinsed with tap water frequently for 2 days before

being transferred to a 1% trypsin solution diluted in a 30% saturated sodium borate

solution. The specimen is trypsinized for a period of about 24 h, depending on the

size, and then transfened for 24 h to an alizarin red solution (saturated alizarin red

in water added to a 0.5% KOH solution until it takes on a dark purpie color). This

step was followed by several changes of a 0.5% KOH solution within a 24 h period

before specimens were finally treated with 0.5%KOH/glycerol solutions: 2:1, 1:1,

1:2 and preserved in 100% glycerol.

Page 48: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

32

2.5 Resuits

Isolation and sequence analysis ofaxoÏofl Cbfa-] and PTHrP cDNA

A partial axolotl Cbfa-] sequence was obtained by first isolating a 400 bp

cDNA fragment from axolotl larvae total RNA by RT-PCR using degenerate

primers. Afier using the RACE-nested PCR strategy (21), a 1371 bp contig was

analyzed using the NCBI BLAST database. Resuits show a 975 bp ORF (Fig. lA)

which encodes a 325 aa protein containing a partial Runt domain of 40 aa (Fig. 13).

Cbfa-1 is known to belong to the Runt dornain gene farnily which are characterized

by a conserved Runt domain (51). Axolotl protein analysis using BLAST showed a

94% sequence hornology with chicken (39), 93% with human (51) and 86% with

mouse (56) (Fig. 1C). A phylogenetic tree was created by comparing full length

Cbfa-] cDNA sequences from different species and placed the axolotl sequence

doser to that ofbirds than to hurnans which is consistent with the phylogeny ofthis

specie (fig. ÏD).

The same strategy was used to isolate a 225 bp fragment of axolotl PTHrF

cDNA. The resuits show a corresponding 75 aa partial PTHrP sequence located

towards the 5’ of the gene (Fig. 2A). Protein aligmiient analysis demonstrate that

our partial sequence shares a 77%, 65% and 64% homology with chicken (52),

human (26) and mouse (66) FTHrP respectively (Fig. 23). High homology is

expected between species since the cloned sequence contains a partial Parathyroid

domain characteristic to the parathyroid hormone farnily. Integrated in this

sequence, is a partial PTH-like dornain, unique to the parathyroid hormone, this

sequence is required for ligand-receptor interactions (63). Protein alignment of the

partial PTH-like domain shows even higher conservation having 90% chicken and

69% mouse and human hornology (Fig. 2B). Analysis ofthe cloned 225 nt sequence

with PTHrP cDNA from other species was performed using MegAlign (DNASTAR

Inc., USA). The resulting phylogenetic tree is consistent with the sequence

homology data and evolutionary relationships are conserved (Fig. 2C). This resuit

shows a sirnilar evolutionary relationship for PTHrP as that of Cbfa-1, where the

axolotl sequences are closest to the chicken.

Page 49: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

33

figure 1. Anatysis of the axolotl Cbfa-1 sequdnce. (A) cDNA sequence. (B)

Amino acid sequence. Red characters indicate start and stop codons. Blue characters

indicate conserved partial Runt domain. Green characters indicate Runx conserved

carboxyterminal pentapeptide. (C) Arnino acid alignment of Cbfa-J from multiple

model organisms used for developmental and biomedical research (mice, hurnan,

chicken and axolotl). Blue box contains the runt dornain and the green box indicates

Runx conserved carboxyterminal pentapeptide. (D) Phylogenetic tree. $pecies

evolutionary comparison of Cbfa-] ORF sequences. [GenBank accession number

DQ$$5240]

Page 50: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

A) ATG STOP

I RUNT I5’ UTR

Axolotl Cbfa-1 975 nt3’ UTR

TGTACTACCTTCCTGGCITTTTGCAIGTTTCCAGCGCAATACAATCTTTGGACCAAAAAGG

GAGTAGGCACGCAGTAGAACITC TGAGCGAATAAGTTGAGAATCTAAAACCAGACATGGTC

TGTACTTACAGATTAAGGATTGCAGGAGTGTTTACACCGTAAGGTGCAAGACCTGACTGGG

AAAGACAACAAGAGAACAGGAACCATGGCATCCAACAGCCTGTTCAGCTCAGTCGCACCTT

GTCAGCAAAACTTCTTTTGGGGCAAGAGTTTTACCCTGACTATAACTGTCTTCACGAACCC

GCCCCAAGTAGCCACCTACCACAGAGCTATTAAAGTCACGGTGGATGGACCACGGGAGCCC

AGGAGGCACAGACAGAAGCTTGATGACTCTAAACCTAGTTTGTTCTCTGAACGCCTCAGTG

ATTTAGGGCGTATTCCTCATCCCAGTATGAGAGTGGGTGTCCCAACTCAGAGTCCTCGGCC

TTCCCTAAACTCTGCACCAAGTCCTTTTAATCCACAAGGACAGAGTCAGACTGCAGATCCT

AGACAAGCACAGTCATCTCCTCCATGGTCCTATGACCAGTCCTACCCAGCATACTTGAGCC

AGATCACCTCGCCGTCCATTCACTCCACAACACCCCTTTCATCCTCCCGAGGTACAGGACT

TCCTGCTATCACTGATGTGCCCACACGTCTCTCAGGTGCTTCACAACTTCGTCCATTTTCT

GATCCCACGCAGTTTACAAGCATTTCGTCCCTCACCGAAAGTCCTITTTCCAATCAACGAA

TGCACTATCCAACCACATTTACTTATACACCGCCTGTCACTTCTGCCATGTCICTOGCAAT

GTCAGCGMCCACCCATTACCACACC TATTTACCACCACCCTATCCTGGATCITCACAAAC

CAAAGTGGACACTTCCAAACAAGCAGCACCCCGTACCTATACTATGGTACATCATCAGGAT

CATATCAGTTCCCCATGOTGCCCCGCGGACACCGTTCTCCCTCTAGGATGCTACCACCATG

CACCACCACATCAAACGGAGGCACGCTGATCAACCCAAACCTGTCAAACCAAAATCATGGC

GTGGATGCCGATGGAAGCCATAGCAGCTCCCCGACAATTCTGAATTCAAGTGGCAGAATGG

GTGAGTCGGTTTGGAGACCTTATTGAAATATTTATTCGGTGGCCTAACTTCGTTTGGCCCA

ACCTGATCAATOAATGCCAAAGTGCCTGTTTTCATAACGTTTACTGTTAATATACTCAATA

TATGCA]\AATCAGATGGCTGTATGGCCATAAGCAGACAATTGCATTATGTTTTTAAAGCMA

ACGCTGACACGTTTATGCTGTTTACTTTG

G20 K59

I I

RUNT

I 325aa I

MASNSLFSSVAPCQQNFFWGKSFTLT ITVFTNPPQVATYHRAI KVTVDGPREPRRHRQKLDDS

KPSLFSERLSDLGRI PHPS’4RVGVPTQSPRPSLNSAPSPFNPQGQSQTADPRQAQSSPPWSYD

QSYPAYLSQMTSPSIHSTTPLSSSRGTGLPAITDVPRRLSCASELGPFSDPRQFTSISSLTES

RFSNQRMHYPTTfTYTPPVTSAMSLGMSAXTHYHTYLPPPYPGSSQNQSGHFQTSSTPYLYYG

TSSGSYQFPMVPGGDRSPSRMLPPCTTTSNGGTLINPNLSNQNDGVDADGSHSSSPTILNSSG

RMGESVWRPY

B)

Page 51: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

u

(a

IAAMASAONADSSN1AIASSSHSDDADADDNDNA1NAN115soNSI1iISP

AANMASSDNADSSNSAAASDSHDDDASAODSDId1NANS1ISONSIHISAS

________________

AANMA59DNADSSN1AIdSSAHSODVDAODNDNd1NN11150NSIAIISP

1NMAI590N5555N1IIASDSHSODV5ADDNDNSSNdNI1SOONSIIIGAZ

SrN1J3IAV9IDAAANNDAAN005AANAJDADVSSHOlÀlIAIIS_DJAODDSDNSOcAAAA11SHAH_1VISP

I9NSrDDAA1NNSASN005AAPIAADASOSSIOII1IAISS_DAADSDNDSSOAAAAA1AIH1HIIAA

£U3JOECIqJDAA1VINSASNDODAANAJDÂSOS5IDÀ111A1551DJAODDSDSDDAAAAA1ÂAHAH11VPISNIA

SJAIflj%SNO1SNOSIAAA1AIA1AAAHNAANSAASSL1SAIAAADAADSJAS1JDADADS)1.AS1SSISA

SNpS1LDDN015NDSIAAAIA1AIVAAHNHANSHAH1155INIADNASAAA51HAADPIC

suadAuA94SHD1SHDNIAAAIAIA1AA1HHAAN5ANSSA1SSIAAADNADSJAO1ASADADSIIHS11SVGA

ILYaRIIO4A[5I5D1SHHSIAAAIAAA1AAAHNADN5JH59A155lAIADHADSJAD1ASASAHI

Pfl13flNS5AM1DJDSINIDDDSINAAADIIAA1DIDNIA51AAISHISASJND5115AASDDASMAAAISA

INPJIN1)IDS1NAAADIIAA1DIOAISA1AIISHISAAINDS1ÂSAISDDÀAMAASAGA

IuaAau4lAM13JDS1HIDDDSIHAAAD1IAA1DADAISS1AIAAHISASANDD1ÂSAASDDASMAASPAS

51NNdADIIAA1DAOASAS1AAASHISAAAHDS1IVAISDDAIMAASGAI

Anr3nnsrçlSDADNADIIDSDDDANJASAASN1SANANDAAADANNSAHAIND1DS1ADSA15ADSAD1115

ASANNIIHASDVDNADIIDADDDANJASAHAN15ANAADIAADANNSAHAINO1DASAAAA1AADSDD1ISA

-PuaALsowqJSDADNADIIDSDDDANJAAAASN1SANANDAAADANNSAHAIND1DS1NN5A1SAASDD1PAS

lILNJI’YrIJAncpNIEV5DVDNANVID5DDDANJA5AH5N15ANA551AA55NN5AHAIND1D5SN5NJ1AA)155D1GA

ITD7tSIINADNHHNA9NADCAIAAIAHHAAAADAANIAAII111A5ADNDSNDAAN1DNANVADNANAHI

IRVAIAIODADAHNNASNADDAISAIAAHÀIHADAANI1H11H11JSADSDANDAAN109ANHADNANAAPI

SUOUflJADNHNNAJNADDA1AAIAAHkIAADAANIAAII111JSADADSNDAJN1DNANVADNANAPAl

HD5HNHAANADDAISSIIRANA1H40AAN!AHIIA11ASNO

IrTAnAITIVSANN15AAANJDNOVNAIAAIDDAARS1AAANJVAA11ANDNMHSA1ASDANAS015A151

19,IISflIODADVNN1]A5ANNDNDANAIAASDDAAND1AAAAJSAA1IANDNMH5A1AADJPIAADIHAAN

-IuaAounJV5AN51JV5ANJDNDVNAlAAlDDA5JD1yAA54JVAA1SAND5MHSA1A551ANA5D15AVII

JAnXUJJÇNAIPtSA

;rDr9l1AAAHDHIIRANINNDHAN1AAAHAAAAVAVVAAAAAHAAASDDDDDDDD000D0000D19

CR541111511SAAHSAIIJANISNDHAN1AAAVHJH

:uaJmcuqJ1AVAHDVIIAANINNJHAAN1kAAANVVNAAAHAAAAAHNV3DDDDDDDDDDD19

SA

:IrrA;NIIAIDDD000D00000AAAAASADSPIADADSSSSAAAJNNSISAOMJJSDDDAAAADJ1SNSAVS1

IVIS1IIDDDDDD0000000NAAAASA3SI-9ADAD1SSSAAAANASISADMAJNDDDAASSSA1SHSHNI

rrraAIorIwpJDDDDDDDD0000AAAAAAADANNDAD155SAASANASISADMJJNDDDAlAISAlSNSNNI

MAAN005ANASSA1ANSHNI

(D

sndouaXsoduqrnn6nJpsei

SUO!dESOWON

srnnesogSflO!6BMOUSflflBd

snlnDsnWSfl

u

Page 52: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

34

Figure 2. Analysïs of the axolotl PTHrP sequence. (A) cDNA and conesponding

arnino acid sequence with respect to the full length sequence. Red characters

indicate partial PTH-like dornain. Amalgamation of blue and red characters indicate

partial Parathyroid domain. (B) Amino acid aligmnent of FTHrF from multiple

model organisms used for developrnental and biomedical research (mice, human,

chicken and axolotl). Red box shows the PTH-like dornain and the combined red

and blue boxes the Parathyroid domain. (C) Phylogenetic tree. Partial axolotl cDNA

was cornpared to PTHrP ORF sequences from other species. [GenBank accession

number DQ$85239]

Page 53: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

DD

D

w

00

0

7;>

.,;

0>

0

00

0

z>

>

00

0

r>

>

>>

>

02

0

‘0

0

>-;—

>0

0

ozo

rn

mQ

oC

’V

-u-cm

20

0

nI

z>

>

r

roro

00

<

mono

<-;1

<’

—<

—<

00

0’

IZ

IZ

00

0

z>

>>

>>

>r>

>’

mm

mm

<‘1<

‘-z>

.

r>

>>

<0<

s>

>0-u-u-n

<<

-<

-<

-<

>0

>>

>0

>’

cO

ta

<<

0’

zzz0

‘ut-u’

-u-c-c’a

000’

>>

>>

z>

>’

zzzz

<<

r’

7;>

.>>

.000’

r-<

I-<

Dru

,’

‘‘‘z

<<

0<

7;>

.,;’

‘,-

u-c

s>

>’

00

00

<<

<0

00

00

TIlT

0000

00

0

>0>

0‘-‘-‘-1

-<

-c-c-c

rIT

Z

0000

0000

0000

z—

7;>

.>.>

0000

no

me’-’

-<

-<

22>

>>

‘:‘

G)

H G)

-1 G)

G)

G)

G)

G) G)

G)

G)

H G)

H G) G)

G)

G)

> G)

> G)

G) G)

:is G)

G)

H o G)

H o > G)

G)

3,,

G)

G)

H o G) G)

0u,O

Ou,

u,

00

0=

o.

2. u,

2.

oC

)C u,

Page 54: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

35

Whole-motint in situ anctÏysis of Cbfa-1 cind PTHrF expression during Ïimb

developinent

Whole-mount in situ hybridization was used to determine the expression

pattern of Cbfa-] and PTHrP at different developrnental stages of the lirnb in

axolotl embryos using RNA anti-sense probes (Fig. 3). Victoria blue was used to

stain skeletal elements at different developmental stages of the limb in order to

compare Cbfa-] and PTHrP expression with the appearance of skeletal elements.

Type II collagen protein expression was determined by whole-mount in situ

imrnunohistochernistry to further demarcate the skeleton in developing limbs. Celis

in permanent cartilage express type II collagen in pi-ehypertropic chondrocytes (40,

44) but do not express Cbfa-] (10, 17, 31, 33, 35, 69). The type II collagen resuits

provide confirmation that the Cbfa-] expression observed is specific as they do not

overÏap. Cbfa-l expression is observed throughout the developmental process ofthe

axolotl limb (Fig. 3A-C). Forelirnb developrnent in the axolotl begins at stages 44-

45 (49) where it is possible to distinguish prominent budding containing some Cbfa

1 expression (data flot shown). At stage 48, weak expression is observed at the base

of the lirnb and in the mid region of the extremity. In the distal region, two strong

expression points are noticeable (Fig. 3A). Comparatively, it is possible to

distinguish a completely formed humerus and a budding radius at the tip of the same

stage (Fig. 3G). With the extension of the radius and the ulna in place, by stage 50,

carpal skeletal structures within the hand and the metacarpals of the first two digits

are in formation (Fig. 3H). Two Cbfa-1 expression regions corresponding to the

earliest forming digits can be observed as well as expression points in the carpal

region and weak expression in the mid lirnb region (Fig 3B). Reaching stage 52,

Cbfa-1 expression is restricted solely within the diaphysis of the phalanges showing

a particularly strong signal in the digit stili in formation (Fig. 3C). At the sanie tirne,

cartilage staining shows that by this stage, the first two digits are complete and there

is evidence for the formation of digit III (Fig. 31). Also, type II collagen staining in

the later stages of limb developrnent displays differential expression to Cbfa-],

further substantiating our whole-mount resuits (Fig. 3D-F). FTHrF expression was

Page 55: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

36

Figure 3. Whole-mount in situ hybridization, immunohistochemistry and

cartilage staining in developing limbs for Cbfa-1, type II collagen, cartilage and

PTHrP. (A-C) Cbfa-] expression, (D-F) Type II collagen protein expression, (G-I)

Cartilage staining with Victoria blue, and (J-L) FTHrF expression. Developing

limbs at stage 48 (A, D, G), Stage 50 (B, E, H, K) and Stage 52 (C, f, I, L). PTHrF

control limb using a sense probe (J). Black arrow indicates hurnerus. Note that

axolotl embryos were photographed anterior to the top and posterior to the bottom.

Page 56: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

C

J

E F

A E

D

G

J K L I

Page 57: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

37

also verified during limb developrnent (Fig. 3J-L). Expression rernained undetected

until stage 50, where expression is observed in the tips ofthe more developed digits

and in the carpal region (Fig. 3K). Stage 52 shows a sirnilar expression pattem,

though a littie more pronounced (Fig. 3L). Since the FTHrF expression detection

during these stages is weak, a sense probe was used as a control (Fig. 3J) to confirrn

that the signal detected was specific.

Whole-rnoïtnt in situ anatysis of Cbfa-] and FTHrP expression during lirnb

regenerat ion

Limbs were amputated proxirnally (mid-humerus) and whole-mount in situ

hybridization was used to detect Cbfa-1 and PTHrP expression at different stages of

regeneration. We used the Victoria blue staining tecirnique for cartilage and type II

collagen immunohistochernistry to characterize the developing skeleton during 1imb

regeneration in order to compare this process with Cbfa-J and PTHrF expression.

There was no visible Cbfa-1 signal in the flrst stages of regeneration, specifically

6h, 24h, and 48h afier amputation (data flot shown). The absence of expression is

flot surprising since at these stages the process of chondrogenesis lias flot yet begun

(70). At the early bud and medium bud stages, Victoria blue staining shows no sign

of cartilaginous structures in the blastema, only the skeletal elernent in the stump is

detected (Fig. 4K, L). The first appearance of Cbfa-l expression in the blastema

occurs at medium bud (Fig. 4B). At the late bud stage, new cartilage is forrned at the

end of the amputated bone (proximal portion of the blasterna) as resolved by both

Victoria blue staining and type II collagen expression (Fig. 4H, M) and a Cbfa-1

signal is detected in the distal region ofthe blastema (Fig. 4C). AccordingÏy, this is

the stage when cartilage differentiation begins in the periosteum of the amputated

bone (70). Kim et al. have previously shown that Cbfa-] is localized in the growth

plates of long bones during developrnent (33). Interestingly, a growth plate is also

formed during regeneration (70). As the limb continues to regenerate, the Cbfa-1

signal becomes more restricted to the distal part of the regenerating blastema at the

palette stage (Fig. 4D) and is concentrated in areas of future developing digits

Page 58: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

38

Figure 4. Whole-mount in situ hybridization, immunohistochemistry and

cartilage stainïng of regenerating limbs for Cbfa-1, type II collagen, cartilage

and PTHrP. (A-E) Cbfa-] expression, (F-J) type II collagen staining, (K-O)

cartilage staining with Victoria blue and (P-T) PTHrP expression in proximal

amputations during forelirnb regeneration. Regeneration stages are: (A, K, P) Early

bud stage, (B, G, L, Q) Medium bud stage, (C, H, M, R) Late bud stage, (D, I, N, S)

Palette stage and (E, J, O, T) Early differentiation stage. A negative control limb for

type II collagen expression is illustrated in (F). Note that axolotl regeneration stages

are characterized according to Tank et al. (70).

Page 59: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

D

I

B

G

L

Ip

I

A

F

K

P

C

C

H

M

R

E

J

o

T

N

L É’4

s

Page 60: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

39

sirnilar to the expression pattern observed during limb development (Fig. 3A-C).

Type II collagen expression at this stage shows a differential expression pattern to

that of Cbfa-1 (Fig. 41). The palette stage designates the beghming of cartilage

differentiation in the zeugopod ofthe limb and in bones ofthe forelimb (70). This is

illustrated in figure 4N where cartilage staining allows us to see a rough outiine of

the radius and ulna. At the early differentiation stage, the first digits have

completely formed and the third digit already has two metacarpals (Fig 40). At this

stage, the Cbfa-] signal shows specffic expression points in the diaphysis of the

phalanges and a particularly strong signal in the digit stiil in formation (Fig. 4E).

As was observed in development, type II collagen expression at the early

differentiation stage of regeneration corresponded to the appearance of cartilage

(Fig. 40) and did flot overlap with the domains of Cbfa-1 expression (Fig. 4E, J).

PTHrP expression was also characterized during axolotl limb regeneration

(Fig. 4P-T). In the early stages of regeneration (6h, 24h, and 4$h afier amputation),

PTHrP showed no visible signal of expression (data flot shown). However, from the

early bud to the late bud stage, strong expression is detected in the regenerating

blastema (Fig. 4P-R). At the palette stage, expression is localized to the digit

forming region (Fig. 4S) corresponding to formation of the first two digits. Cartilage

staining at the earty differentiation stage is characterized by the differentiation of

the digits (Fig. 40) where PTHrP expression can be detected around the contours of

the future digits ofthe limb (Fig. 4T).

Bone fracture and critical gap healing in axolotl Ïirnbs

As previously mentioned, rnost vertebrates are able to heal bone fractures (6,

19, 61, 65, 72) yet all vertebrates studied to date are incapable of healing bone

defects of critical dimension (62). Therefore, since axolotls are capable of

regenerating entire limb structures including the skeletal elernents without any

resulting scar or demarcation lines between the sturnp and the regenerated tissues,

we questioned whether the axolotl is also able to heal bone defects of critical

dimension. The resuits for the non-stabilized union and non-union fractures of

Page 61: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

40

critical dimension are shown in figure 5. A clear-cut union fracture is shown for the

limb 15 days afler fracturing (Fig. 5A) with no visible signs of healing. At 45 days

post-fracture, the two extremities of the fractured bone are unhinged and a blue halo

around the fracture site is noticeable (Fig. 5B). This indicates that cartilaginous celis

have migrated to the fracture site and that the healing process has been initiated.

After two months, the extrernities of the fractured bones are joined together by a

cartilaginous matrix which will eventually forrn a soft callus around the fracture site

(resuits flot shown). f ive rnonths post-fracture, the soft callus is completely replaced

by an envelope of calcified matrix that permanently joins the two bone extremities,

otherwise known as a hard callus (Figure 5C shows a completely healed bone

fracture after seven rnonths). Figure 5D shows a non-union fracture 15 days after

fracturing. Unlike the non-stabilized union fractures, staining resuits in the

following rnonths show no sign of cartilage at the fracture site (resuits not shown).

Furthermore, during this period there is no evidence that a healing process via a

cartilaginous phase has been triggered at the fracture site. Finally, seven rnonths

post-surgery, the bones extrernities are slightly rounded and there are stili no signs

of a healing process or bone regeneration (Fig. 5E).

Page 62: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

4

Figure 5. Double staining of non-stabilized union fractures. (A-C) and non

stabilized non-union fractures (D, E) on axolotl forelimbs. (A, D) 15 days afier

surgery, (B) 1 Y2 months post-fracture, (C, E) 7 months post-surgery and (F) sham

operated forellrnb.

Page 63: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

A B

‘1F

t

Page 64: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

42

2.5 Discussion

Cbfa-l ana’ PTHrP expression during Ïimb deveÏopment ctizd regeneration

In this study. we describe for the first time the cloning, analysis and

expression of axolotl Cbfa-1 and PTHrF genes during lirnb development and

regeneration. We also describe the expression of the type II collagen during limb

regeneration. Sequence analyses of both Cbfa-1 and FTHrP show high homologies

between the axolotl and other species. Cbfa-] is known to be expressed during

mesenchyrnal ceil condensation and to participate in the rernodelling of cartilage

and bone precursor celis (13, 53, 6$), which could explain its expression during the

early stages of limb development. In addition to its role in osteoblast differentiation,

a function in lirnb patterning has been proposed to explain early Cbfa-1 expression

during development (14, 45, 53). In fact, null-rnutant mice for Cbfa-J show

structural defects of the skeleton and, in sorne cases, lacked scapulae and clavicle

bones (46). It has been shown that Cbfa-1 is expressed in hypertrophic chondrocytes

and mature osteoblasts to regulate their maturation. These celis are mostÏy

concentrated in the diaphysis of the bone (33) which correlates to Cbfa-]

expression. To corroborate the Cbfa-] expression detected, type II collagen protein

expression was characterized in the developing limb. Our resuits were comparable

to those reported by Franssen et al. where they dernonstrated that type II collagen

expression is exclusive to condensing chondrocytes (20) and, more importantly for

the present study, is absent in regions expressing Cbfa-] which confirms the

expression data.

Unlike Cbfa-1, PTHrP expression was flot detected until reaching the more

advanced stages of limb development. It was not until stages 50 and 52 that a weak

FTHrF signal was observed at the distal end of the developing digits and in the

carpal region. Similar results were found in developing rat fetuses, the presence of

detectable FTHrP mRNA being attributed to the proliferative activity of

chondrocytes required for proper carpal and metacarpal formation (37, 54).

Page 65: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

43

Cbfa-1 and FTHrP are also expressed during axolotl limb regeneration.

During the first two-days following amputation. there is no detectable Cbfa-] or

PTHrF signal. The lacking expression may be due to the absence of ceil segregation

and differentiation in the blastema during these stages (70). The first noticeable

Cbfa-] expression is near the amputation site of the blastema at die medium stage.

Interestingly, Cbfa-1 action is not required until the replacernent of chondrocytes by

osteoblasts (46). events that do not occur until the late bud stage (70). Tank et al.

described the differentiation of the cuff of periosteal cartilage at the amputation site

around the time the medium bud stage occurs; these events take place before

cartilage differentiation occurs within the blasterna and could explain the expression

results for of Cbfct-] at this stage of regeneration (70). Tank et al. also reported that

during the palette stage of regeneration, there is overt differentiation of

chondrocytes at the digital primordial; these findings correlate with the expression

of Cbfa-J as a regulator of chondrocyte reptacement by osteblasts (14).

Despite the weak expression of FTHrP found in developing axolotl lirnbs,

expression during limb regeneration was strong. During regeneration, the blastema

is subject to intense mitotic activity and total RNA quantities become significantly

more important (73) thereby possibly explaining increased PTHrF levels. However,

there are several alternative reasons to explain the increased PTHrP expression at

the early bud stage. First, the perichondrium at the bone amputation site produces

chondrocytes that accumulate around the existing bone, and PTHrP is known to

play a role in chondrocyte proliferation (1, 36). Second, it has been proposed that

during this stage. the blastema contains exclusively undifferentiated cells (70),

interestingly, PTHrP expression has been associated with non-differentiated

mesenchyrnal cells destined to becorne chondrocytes (37, 54). Third, PTHrF bas

been proposed to regulate IhÏi, one of the molecules responsible for the

differentiation ofmesenchyrnal celis into chondrocytes (42, 72). Stark et al. reported

that the newt banded hedgehog (bhh) (homologue of mammalian and avian Ihh

(16)) was uniformly expressed in the blasterna from the initial stages of

regeneration. Interestingly, N-bhh expression was also dramatically reduced at tbe

palette and early differentiation stages of regeneration (64) as is PTJ-frP. Apart from

Page 66: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

44

the absence of PTHrF expression prior to blastema formation, N-bhh expression

pattern conelates with that of FTHrF observed during axolotl limb regeneration

(64). Studies on the regenerating deer antier have also shown FTHrP expression in

the regenerating blastema, particularly in the dermis of the skin, perichondrium,

underlying proliferating undifferentiated mesenchyrnal ceils as well as in recently

differentiated, non proliferating chondrocytes (1$), ail of which support the

expanded expression found throughout the axolotl blastema.

In general, both Cbfa-] and PTHrF exhibited different expression patterns

during limb development and regeneration which correlated with their own

functions in other species. Cbfa-1 expression pattern in late limb development is

conserved with the late regeneration stages, supporting the hypothesis of a biphasic

process consisting of an initial preparation phase that is followed by a re

development phase (23). It was aiso noted that Cbfa-J expression during lirnb

regeneration is weaker than during limb developrnent despite having a conserved

expression pattern between both processes. The presence of more mature tissues and

extracellular matrix could be an explanation for the difference in the intensity of

Cbfa-1 signal. On the other hand, the expression pattern of PTHrP was different

between limb development and regeneration, by its intensity but also by the

localization of the signal, thus suggesting a possible dual function of this gene

during these processes (23). Overall, the data for these 2 genes supports the

hypothesis that limb regeneration is a biphasic process. Recent research has shown

that there are conesponding sets of early and late genes associated with each phase

(23). 0f particular interest, events during the preparation phase of regeneration

differ significantly from what is observed during limb developrnent (23, 47, 48, 60)

whereas the mechanisms for controlling growth and pattern formation in the

blastema are recapitulated during development (23, 4$, 58, 59, 71). These findings

are supported by the expression patterns observed for Cbfa-1 during regeneration

and development, being differentially expressed throughout the early stages and

having nearly identical expression patterns in the later stages. The different FTHrF

expression observed during the early stages of developrnent and regeneration can

also 5e rationalized according to Muneoka’s findings (4$); however to support the

Page 67: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

45

notion of biphasic process, simiÏar expression patterns in the later stages wouÏd be

expected, as observed for Cbfa-1. The different FTHrP expression between

development and regeneration can be attributed to its many physiological .roles.

PTHrP has been reported to regulate keratinocyte growth and differentiation (5, 2$)

suggesting that it could be an important mediator for skin growth and wotmd

healing. In fact, the wound healing process shares nurnerous mechanisms with the

preparation phase of regeneration (60). FTHrF bas also been shown to participate in

blasterna formation during deer antler regeneration, particularly in the regcnerating

epithelium and in the mesenchymal celis of the blastema (55). These observations

provide a plausible explanation for the pronounced expression of PTHrP during the

preparation phase of regeneration and the differing expression patterns observed

during the re-development phase of regeneration and the late stages of limb

development.

fracture healing ofnon-stabiÏized union and non-unionfracture in the axolotl Ïirnb

finally, we verified the axolotl’s ability to heal union and non-union bone

fractures in order to establish whether these animais can specifically or directiy

regenerate their bones. The results from this study demonstrate that the axolotl heals

union fractures like any other vertebrates (72). Surprisingiy, based on the

regenerative capacity of these animals, no healing in the axolotls subjected to non-

union fractures of critical dimension was observed, the gap iength had not changed

7 months afier injury (fig. 5E). This leads us to conclude that the axolotl does not

use the regeneration process to beal fractures. Previous experiments bad shown that

the adult axolotl is incapable of replacing a missing bone when this one was

completely extirpated which is quite different than fracture healing (73). Studies

pertaining to the healing mechanisms used by the axolotl to heal bone fractures are

rare; though numerous hypotheses can be formulated to explain the reason this

organism is unable to regencrate bone fractures. f irst, afier fracturing, uniike limb

amputation, there is no open wound, thereby inhibiting important epithial

mesenchymal interactions essential for the regeneration process (7, 23, 73).

Page 68: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

46

Although this is a plausible explanation, it is flot likely since the axolotl is able to

regenerate missing parts of the heart afier ablation (7). Another important event,

essential for lirnb regeneration, is the large trauma to surrounding tissues that occurs

afier amputation. Goss (1969) demonstrated that if an axolotl lirnb is amputated

directly through the plane where bone bas previously been extirpated, the

redeveloped section will contain half of the extracted bone, without the base of the

bone being present (73). This experiment flot only reveals the importance of a

trauma factor, but also that celis composing the skeletal structures already in place

in the amputated limb seern to have little implication in the regeneration process

(4$). This notion was further tested by Lheureux who demonstrated that afier

graffing a piece of skin (dennis and epidermis) on an irradiated limb, incapable of

regeneration, there is complete regeneration of all structures aside muscle (38).

These experiments demonstrate that the skin contains all the necessary components,

exciuding cells capable of forming muscles, to assure perfect lirnb regeneration (15,

3$). Another important factor to consider when comparing bone healing and bone

regeneration is the presence of dedifferentiated celis during the regeneration

process. Cellular dedifferentiation is crucial to the regeneration process,

distinguishing regenerating limbs from nonregenerating limbs (27), therefore the

presence of dedifferentiated celis may be a determining factor in order to regenerate

a bone fracture of critical dimension. Further studies will be needed for a better

understanding of the genes involved in bone formation and fracture healing during

axolotl limb regeneration in order to establish their requirernents during this

process.

Acknowledgements

This work was frmnded by a grant from the National Sciences and Engineering

Research Council of Canada. S. R. is a Chercheur Boursier Junior 1 from the Fond

de Recherche en Santé du Québec. We would like to thank the members of the S.

Roy laboratory for their critical reviews ofthe rnanuscript.

Page 69: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

47

2.7 References

1. Amizuka, N., Davidson, D., Liu, H., Valverde-franco, G., Chai, S.,

Maeda, T., Ozawa, H., Hammond, V., Ornitz, D. M., GoÏtzrnan, D., and

Henderson, J. E. Signalling by fibroblast growth factor receptor 3 and

parathyroid hormone-related peptide coordinate cartilage and bone

development. Bone 34.13-25; 2004.

2. Arnizuka, N., Karaplis, A. C., Henderson, J. E., Warshawsky, H., Liprnan,

M. L., Matsuki, Y., Ejiri, S., Tanaka, M., Izumi, N., Ozawa, H., and

Goltzman. D. Haploinsufficiency of parathyroid horrnone-related peptide

(PTHrP) resuits in abnormal postnatal bone developrnent. Dey Biol

175:166-76; 1996.

3. Amizuka, N., Warshawsky, H., Henderson, J. E., Goltzman, D., and

Karaplis, A. C. Parathyroid horrnone-related peptide-depleted mice show

abnormal epiphyseal cartilage development and altered endochondral bone

formation. J Celi Biol 126:161 1-23: 1994.

4. Bae, S. C., Takahashi, E., Zhang, Y. W., Ogawa, E., Shigesada, K.,

Namba, Y., Satake, M., and Ito, Y. Cloning, mapping and expression of

PEBP2 alpha C, a third gene encoding the mammalian Runt domain. Gene

159:245-8; 1995.

5. Blomme, E. A., Sugimoto, Y., Lin, Y. C., Capen, C. C., and Rosol, T. J.

Parathyroid horrnone-related protein is a positive regulator of keratinocyte

growth factor expression by normal dermal flbroblasts. Mol Ce!!

Endocrinol 152:189-97; 1999.

6. Bolander, M. E. Regulation of fracture repair by growth factors. Proc Soc

Exp Biol Mcd 200:165-70.; 1992.

7. Brockes, J. P. Amphibian lirnb regeneration: rebuilding a complex

structure. Science 276:81-7.; 1997.

8. Bryant, S. V., Endo, T., and Gardiner, D. M. Vertebrate limb regeneration

and the origin oflimb stem celis. Int J Dey Biol 46.287-96; 2002.

Page 70: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

48

9. Bryant, S. V., and Iten, L. The regulative ability ofthe lirnb regeneration

blastema of NotophthaÏmus viridescens: Experirnents in situ. Wilhelm

Roux Arch 174:90-101; 1974.

10. Choi, K. Y., Lee, S. W., Park, M. H., Bae, Y. C., Shin, H. I., Nam, S.,

Kim, Y. J., Kim, H. J., and Ryoo, H. M. Spatio-temporal expression

patterns ofRunx2 isoforms in early skeletogenesis. Exp Mol Med 34:426-

33; 2002.

11. Cook, S. D., Baffes, G. C., Wolfe, M. W., Sampath, T. K., Rueger, D. C.,

and Whitecloud, T. S., 3rd The effect of recombinant human osteogenic

protein-1 on healing of large segmental bone defects. J Bone Joint Surg

Am 76:827-3$; 1994.

12. Dingerkus. G., and Uhier, L. D. Enzyme clearing of alcian blue stained

whole srnall vertebrates for demonstration of cartilage. Stain Technol

52:229-32; 1977.

13. Ducy, P. Cbfal: a molecular switch in osteoblast biology. Dey Dyn

219:461-71; 2000.

14. Ducy, P., Zhang, R., Geoffroy, V., Ridail, A. L., and Karsenty, G.

Osf2/Cbfal: a transcriptional activator of osteoblast differentiation. Cell

89.747-54; 1997.

15. Dunis, D. A., and Narnenwirth, M. The role of grafted skin in the

regeneration of x-irradiated axolotl limbs. Dey Biol 56.97-109; 1977.

16. Ekker, S. C., McGrew, L. L., Lai, C. J.. Lee, J. J., von Kessier, D. P.,

Moon, R. T., and Beachy, P. A. Distinct expression and shared activities

of members of the hedgehog gene farnily of Xenopus laevis. Development

121.2337-47; 1995.

17. Enornoto, H., Enomoto-Twamoto, M., Iwamoto, M., Nomura, S., Himeno,

M., Kitarnura, Y., Kishimoto, T., and Kornori, T. Cbfal is a positive

regulatory factor in chondrocyte maturation. J Biol Chem 275:8695-702;

2000.

18. Faucheux, C., Nicholis, B. M., Allen, S., Danks, J. A., Horton. M. A., and

Price, J. S. Recapitulation of the parathyroid horrnone-related peptide

Page 71: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

49

Indian hedgehog pathway in the regenerating deer antier. Dey Dyn

231:88-97; 2004.

19. Ferguson, C. M., Miclau, T., Ru, D., Alpern, E., and Heims, J. A.

Common molecular pathways in skeletal morphogenesis and repair. Ann

N Y Acad Sci 857.33-42; 1998.

20. Franssen. R. A., Marks, S., Wake, D., and Shubin, N. Limb

chondrogenesis of the seepage salamander, Desmognathus aeneus

(amphibia: plethodontidae). J Morphol 265:87-101; 2005.

21. frohman, M. A., Dush, M. K., and Martin, G. R. Rapid production of full

length cDNAs from rare transcripts: amplification using a single gene

specific oligonucleotide primer. Proc Nati Acad Sci U $ A 85:8998-9002;

1988.

22. Gardiner, D. M., Blurnberg, B., Komine, Y., and Bryant, S. V. Regulation

of BoxA expression in developing and regenerating axolotl limbs.

Development 121:1731-41; 1995.

23. Gardiner, D. M.. Canson, M. R.. and Roy, S. Towards a functional

analysis of Ïimb regeneration. Semin Celi Dcv Biol 10:385-93.; 1999.

24. Gardiner, D. M., Endo, T., and Bryant, S. V. The molecular basis of

arnphibian lirnb regeneration: integrating the old with the new. Sernin Ccli

Dey Biol 13:345-52; 2002.

25. Goss, R. J. The relation of bone to the histogenesis of cartilage in

regenerating forelimbs and tails of aduit Trituris virdenscens. J. Morph

98:89-123; 1956.

26. Grzesiak, J. J., Smith, K. C., Chalberg, C., Truong. C., Burton, D. W.,

Defios, L. J., and Bouvet, M. Heat shock protein-70 expressed on the

surface of cancer celis binds parathyroid horrnone-related protein in vitro.

Endocrinology 146.3567-76; 2005.

27. Han, M., Yang, X., Taylor, G., Burdsal, C. A., Anderson, R. A., and

Muneoka, K. Limb regeneration in higher vertebrates: developing a

roadmap. Anat Rec B New Anat 287.14-24; 2005.

Page 72: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

50

22. Henderson, J. E., Kremer, R., Rhim, J. S., and Goltzman, D. Identification

and functional characterization of adenylate cyclase-Iinked receptors for

parathyroid hormone-like peptides on immortalized hurnan keratinocytes.

Endocrinology 130:449-57; 1992.

29. Hietaniemi, K., Peltonen, J., and Paavolainen, P. An experirnental model

for non-union in rats. Injury 26:681-6; 1995.

30. Horton, W. A. The biology of bone growth. Growth Genet. Horrn. 6:1-3;

1990.

31. Inada, M., Yasui, T., Nornura, S., Miyake, S., Deguchi, K., Himeno, M.,

Sato, M., Yamagiwa, H.. Kirnura, T., Yasui, N., Ochi, T., Endo, N.,

Kitamura, Y., Kishimoto, T., and Kornori, T. Maturational disturbance of

chondrocytes in Cbfal-deficient mice. Dey Dyn 214:279-90; 1999.

32. Karaplis, A. C., Luz, A., Glowacki, J., Bronson, R. T., Tybulewicz, V. L.,

Kronenberg, H. M., and Mulligan, R. C. Lethal skeletal dyspiasia from

targeted disruption of the parathyroid horrnone-related peptide gene.

Genes Dey 8:277-$9; 1994.

33. Kim, I. S., Otto, F., Zabel, B., and Mundios, S. Regulation ofchondrocyte

differentiation by Cbfal. Mech Dey 80:159-70; 1999.

34. Kornori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi,

K., Shirnizu, Y., Bronson, R. T., Gao, Y. H., Inada, M., Sato, M.,

Okamoto, R., Kitarnura, Y., Yoshiki, S., and Kishirnoto, T. Targeted

disruption of Cbfal resuits in a complete lack of bone formation owing to

maturational arrest ofosteoblasts. Celi $9.755-64; 1997.

35. Kuboki, T., Kanyarna, M., Nakanishi, T., Akiyama, K., Nawachi, K.,

Yatani, H.. Yamashita, K., Takano-Yarnarnoto, T., and Takigawa, M.

Cbfal/Runx2 gene expression in articular chondrocytes of the mice

temporornandibular and knee joints in vivo. Arch Oral Biol 48:519-25;

2003.

36. Lanske, B., Arniing, M., Neff, L., Guiducci, J., Baron, R., and

Kronenberg, H. M. Ablation of the PTHrP gene or the PTH/PTHrP

Page 73: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

51

receptor gene leads to distinct abnorrnalities in bone development. J Clin

Invest 104:399-407.; 1999.

37. Lee, K.. Deeds, J. D.. and Segre, G. V. Expression of parathyroid

hormone-related peptide and its receptor messenger ribonucleic acids

during fetal developrnent of rats. Endocrinology 136.453-63; 1995.

38. Lheureux, E. Replacement of irradiated epidermis by migration of non

irradiated epidermis in the newt limb: the necessity of healthy epidermis

for regeneration. J Ernbiyol Exp Morphol 76:217-34; 1983.

39. Li, T. f.. Dong, Y., Ionescu, A. M., Rosier, R. N., Zuscik, M. J., Schwarz,

E. M., O’Keefe, R. J., and Drissi, H. Parathyroid hormone-related peptide

(PTHrP) inhibits Runx2 expression through the PKA signaling pathway.

Exp Ccli Res 299:128-36; 2004.

40. Linsenmayer, T. F., Chen, Q. A., Gibney, E., Gordon, M. K., Marchant, J.

K., Mayne, R., and Schmid, T. M. Collagen types IX and X in the

developing chick tibiotarsus: analyses of rnRNAs and proteins.

Development 111:191-6; 1991.

41. Maden, M., and Wallace, H. The origin of lirnb regenerates from cartilage

grafts. Acta Ernbryol Exp (Palermo):77-86; 1975.

42. Minina, E., Wenzel. H. M., Kreschel, C., Karp, S.. Gaffield, W.,

McMahon, A. P., and Vortkamp, A. BMP and Ihh!PTHrP signaling

interact to coordinate chondrocyte proliferation and differentiation.

Development 128:4523-34; 2001.

43. Moseley, J. M., Kubota, M., Diefenbach-Jagger, H., Wettenhall, R. E.,

Kernp, B. E., Suva. L. J., Rodda. C. P., Ebeling, P. R., Hudson, P. J.,

Zajac, J. D., and et al. Parathyroid horrnone-related protein purifled from a

human lung cancer celi line. Proc Nati Acad Sci U S A 84.5048-52; 1987.

44. Mundlos, S. Expression patterns of matrix genes during human skeletal

developrnent. Prog Histochem Cytochem 28:1-47; 1994.

45. Mundios, S., and Olsen, B. R. Rentable diseases of the skeleton. Part I:

Molecular insights into skeletal development-transcription factors and

signaling pathways. Faseb J 11.125-32; 1997.

Page 74: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

52

46. Mundlos, S., Otto, F.. Mundios, C., Mulliken, J. B., Aylsworth, A. S.,

Albright, S., Lindhout, D., Cote, W. G., Heim, W., Knoll, J. H., Owen, M.

J., MerteÏsmann, R., Zabel, B. U., and Olsen. B. R. Mutations involving

the transcription factor CBFAÏ cause cleidocranial dyspiasia. Celi $9.773-

9; 1997.

47. Muneoka, K., and Bryant, S. V. Cellular contribution to supernumerary

limbs resulting from the interaction between developing and regenerating

tissues in the axolotl. Dey Biol 105: 179-$7; 1984.

4$. Muneoka, K., and Bryant, S. V. Evidence that patterning rnechanisms in

developing and regenerating limbs are the same. Nature 298:369-71;

1982.

49. Nye, H. L., Carneron, J. A., Chernoff, E. A., and Stocum, D. L. Extending

the table of stages of normal developrnent of the axolotl: Lirnb

development. Dey Dyn 226.555-60.; 2003.

50. Nye, H. L, Carneron, J. A., Chernoff, E. A., and Stocum, D. L.

Regeneration ofthe urodele limb: a review. Dey Dyn 226.280-94; 2003.

51. Ogawa. E., Maruyama, M., Kagoshima, H., Inuzuka, M., Lu, J., Satake,

M., Shigesada, K., and Ito, Y. PEBP2/PEA2 represents a farnily of

transcription factors homologotis to the products of the Drosophila runt

gene and the human AML1 gene. Proc Nati Acad Sci U S A 90:6859-63;

1993.

52. Okabe, M., and Graham, A. The origin of the parathyroid gland. Proc Nati

Acad Sci USA 101:17716-9; 2004.

53. Otto, F., Thorneli, A. P., Crompton, T., Denzel, A., Gilmour, K. C.,

Roseweil, I. R., Starnp, G. W., Beddington, R. S.. Mundlos, S., Olsen, B.

R., Selby, P. B., and Owen, M. J. Cbfal, a candidate gene for cleidocranial

dyspiasia syndrome, is essential for osteoblast differentiation and bone

devetoprnent. Cdl 89:765-71; 1997.

54. Philbrick, W. M.. Wysolmerski. J. J.. Galbraith, S., Hoit. E.. Orloff, J. J.,

Yang, K. H., Vasavada, R. C., Weir, E. C., Broadtis, A. E., and Stewart, A.

Page 75: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

F. Defining the roles of parathyroid hormone-related protein in normal

physiology. Physiol Rev 76:127-73; 1996.

55. Price, J., and Allen, S. Exploring the mechanisrns regulating regeneration

ofdeer antiers. Philos Trans R Soc Lond B Bio! Sci 359:809-22; 2004.

56. Razzaque, M. S., Soegiarto, D. W., Chang, D., Long, F., and Lanske, B.

Conditional deletion of Indian hedgehog from collagen type 2alphal -

expressing ceils resuits in abnormal endochondral bone formation. J

Pathol 207.453-61; 2005.

57. Ripamonti, U., Heliotis, M., Rueger, D. C., and $arnpath, T. K. Induction

of cementogenesis by recombinant human osteogenic protein-1 (hop

1/bmp-7) in the baboon (Papio ursinus). Arch Oral Bio! 41:121-26; 1996.

52. Roy, S., and Gardiner, D. M. Cycloparnine induces digit loss in

regenerating axolotl limbs. J Exp Zoo! 293:186-90; 2002.

59. Roy, S., Gardiner, D. M., and Bryant, S. V. Vaccinia as a tool for

functional analysis in regenerating lirnbs: ectopic expression of Shh. Dey

Bio! 218:199-205; 2000.

60. Roy, S., and Lévesque, M. Limb Regeneration in Axolotl: Is It

Superbealing? TSW Development & Ernbryology 1.12-25; 2006.

61. Sandberg, M. M., Aro, H. T.. and Vuorio, E. I. Gene expression during

bone repair. Clin Orthop:292-3l2.; 1993.

62. Schmitz, J. P., and Hollinger, J. O. The critical size defect as an

experirnental mode! for craniornandibulofacial nonunions. Clin Orthop

Relat Res:299-308; 1986.

63. Segre, G. V. i. B., J. P., Raisz, L. G., and Rodan, G. A., eds), pp. 377-403,

Acadernic Press, New York Principles in Bone Biology. New York:

Academic Press; 1996.

64. Stark, D. R., Gates, P. B., Brockes, J. P., and Ferretti, P. Hedgehog family

member is expressed throughout regenerating and developing limbs. Dcv

Dyn212:352-63; 1998.

Page 76: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

54

65. Stone, C. A. Umavelling the secrets of foetal wound healing: an insight

into fracture repair in the mouse foetus and perspectives for clinical

application. Br J Plast Surg 53.337-41.; 2000.

66. Strausberg, R. L., Feingold, E. A., Grouse, L. H., Derge, J. G., Klausner,

R. D., Collins, F. S., Wagner, L., Shenrnen, C. M., Schuler, G. D.,

Altschul, S. F., Zeeberg, B., Buetow, K. H., Schaefer, C. F., Bhat, N. K.,

Hopkins, R. F., Jordan, H., Moore, T., Max, S. I., Wang, J., Hsieh, F.,

Diatchenko, L., Marusina, K., Farmer. A. A., Rubin, G. M., Hong, L.,

Stapleton, M., Soares, M. B., Bonaldo, M. f., Casavant, T. L., Scheetz, T.

E., Brownstein, M. J., Usdin, T. B., Toshiyuki, S., Carninci, P., Prange, C.,

Raha, S. S., Loquellano, N. A., Peters, G. J., Abramson, R. D., Mullahy, S.

J., Bosak, S. A., McEwan, P. J., McKernan, K. J., Malek, J. A., Gunaratne,

P. H., Richards, S.. Worley, K. C., Hale, S., Garcia, A. M., Gay, L. J.,

Hulyk, S. W., Villalon, D. K., Muzny, D. M., Sodergren. E. J., Lu, X.,

Gibbs, R. A., Fahey, J., Helton, E., Ketteman, M., Madan, A., Rodrigues,

S., Sanchez, A., Whiting, M., Madan, A., Young, A. C., Shevchenko, Y.,

Bouffard, G. G., Blakesley, R. W., Touchrnan, J. W., Green, E. D.,

Dickson, M. C., Rodriguez. A. C., Grirnwood, J., Schrnutz, J., Myers, R.

M., Butterfield, Y. S., Krzvwinski, M. I., Skalska, U., Smailus, D. E.,

Schnerch, A., Schein, J. E., Jones, S. J., and Marra, M. A. Generation and

initial analysis of more than 15,000 full-length human and mouse cDNA

sequences. Proc Natl Acad Sci U S A 99:16899-903; 2002.

67. Strewler, G. J., Stem, P. H., Jacobs, J. W., Eveloif, J., Klein, R. F., Leung,

S. C., Rosenblatt, M., and Nissenson. R. A. Parathyroid hormonelike

protein from human renal carcinoma celis. Structural and functional

homology with parathyroid hormone. J Clin Invest 80:1803-7; 1987.

68. Stricker, S., Fundele, R., Vortkamp, A., and Mundios, S. Role of Runx

genes in chondrocyle differentiation. Dey Biol 245:95-108; 2002.

69. Takeda, S., Boimamy, J. P.. Owen, M. J., Ducv, P., and Karsenty, G.

Continuous expression of Cbfal in nonhypertrophic chondrocytes

Page 77: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

55

uncovers its ability to induce hypertrophic chondrocyte differentiation and

partially rescues Cbfal-deficient mice. Genes Dey 15.467-81; 2001.

70. Tank, P. W., Canson, B. M., and Coirnelly, T. G. A staging system for

forelirnb regeneration in the axolotl, Ambystorna mexicanum. J Morphol

150:117-2$; 1976.

71. Torok, M. A., Gardiner, D. M., Shubin, N. H., and Bryant, S. V.

Expression of HoxD genes in developing and regenerating axolotl limbs.

Dey Bio! 200:225-33; 199$.

72. Vortkamp, A., Pathi, S., Peretti, G. M., Caruso, E. M., Za!eske, D. J., and

Tabin, C. J. Recapitulation of signais regulating embryonic bone

formation during postnatal growth and in fracture repair. Mech Dey

71:65-76.; 199$.

73. Wa!!ace, H. Vertebrate limb regeneration. Chichester Eng.; New York:

Wiley; 1981.

74. Wal!ace, H., Maden, M., and Wa!!ace, B. M. Participation of cartilage

grafis in amphibian limb regeneration. J Embryol Exp Morphol 32:391-

404; 1974.

Page 78: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

56

CHAPITRE 3

Article 2: «Cloning and developmcntal expression ofSox genes inthe axolotl and their regulation during limb regeneration»

Article in Review, Developrnental Dynamics

Cara Hutchison’, Mireille Pilote’, Mathieu Lévesque’ and Stéphane Roy’,2

1- Departrnent of Biochemistry, 2- Faculty of Dentistry, Université de Montréal,Québec,

Canada

*To whom correspondence should be addressed:

Department of Stornatology, Université de Montréal, C.P. 612$, succursale Centre-Ville,

Montréal, QC, Canada, H3C 3J7

Fax : (514) 343-2233

Email:

KEYWORDS: AXOLOTL, REGENERATION, DEVELOPMENT, SOX,CHONDROGENESIS

Page 79: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

57

3.1 Contribution de l’auteur et déclaration des coauteurs

Contribution de l’auteur

Pour cet article, j’ai effectué toute les expériences pour le gène SOX-lO, à

l’exception de son clonage (RACE-PCR) qui a été effectué par Mathieu Lévesque.

J’ai d’abord caractérisé son expression spatio-temporelle pour chaque stade

embryonnaire du développement et pour chaque stade du membre en régénération

par la technique d’hybridation in situ de type «Whole-rnount». J’ai également

effectué des immunobuvardages de type «Western» avec des anticorps dirigés

contre $OX-9 et SOX-JO (stades du développement et de la régénération). Mireille

Pilote a accompli le restant des résultats portant sur le gène Sox-9. Encore une fois,

j’ai fait les analyses de séquences et j’ai rassemblé tous les résultats pour les gènes

SOX afin de créer les figures et rédiger l’article.

Déclaration des coauteurs

1. Mireille Pilote

M.Sc., Département de Biochimie, Faculté de Médecine, Université de Montréal

2. Mathieu Lévesque

Étudiant Ph.D., Département de Biochimie, faculté de Médecine, Université de

Montréal

À titre de coauteur de l’article identifié ci-dessus, je suis d’accord pour queCara Hutchison inclus cet article dans son mémoire de maitrise qui a pour titre«Cloning and developmental expression of Sox genes in the axolotl and theirregulation during Iimb regeneralion».

\J”e J’fjtJ

Coauteur

Coauteur

)It)pDate

Signature

gj j.

Date

Page 80: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

5$

3.2 Abstract

In this paper, we report the cloning of axolotl Sox-9 and Sox-10 genes and the

characterization of their expression during embryogenesis by whole mount in situ

hybridization and western blot analysis. Cloning resuits show that both genes have

significant homologies with other species, in addition to containing conserved

HMG domains common to the Sox gene family. Both genes demonstrated regulated

protein expression consistent with their respective RNA expression. Furtherrnore,

these genes are expressed mainly in the neural crest and its derivatives,

demonstrating comparable expression with other vertebrates. Results reveal that

Sox-9 and Sox-10 have similar expression patterns during early development,

though demonstrating differential expression as the embryo develops. In early

ernbryogenesis, similar expression is observed particularly in the neural folds,

prospective cephalic and trunk regions, otic placodes and somites. In later

embryonic stages, Soi-10 expression is restricted to the otic placodes. while Sox-9

expression persists during skeletal formation in the cranial region and in developing

limbs. In order to better understand the process of chondrogenesis during limb

regeneration, we verified $ox-9 expression pattern during limb development and

regeneration. Previous limb regeneration studies suggest that new bone is generated

from the dedifferentiated celis of the blastema and is not derived from pre-existing

bone. We therefore used the Victoria blue staining technique and whole-mount in

situ immunohistochemistry for the type II collagen protein to directly correlate $ox

9 expression with chondrogenic events during these processes. ResuÏts show that

Sox-9 is expressed at the onset of chondrogenesis during limb development and

during limb regeneration.

Page 81: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

59

3.3 Introduction

Urodele amphibians, such as the axolotl (Anibysloma mexicanïtm), are the

only vertebrates known to have the exceptional ability to regenerate complete body

parts following amputation throughout their life. The limb has been the most widely

studied structure due to the presence of three defined axes and its ease of

manipulation. Once amputated, the process of urodele lirnb regeneration goes

through several phases including a dedifferentiation phase in which the

mesenchymal ceils proximal to the amputation site dedifferentiate to form a

blastema [1, 2]. These cells will subsequently proliferate and eventually

redifferentiate to forrn the lost parts ofthe appendage[3]. Limb regeneration is ofien

considered to be a biphasic process, consisting of a preparation phase and a re

developrnent phase. The preparation phase is unique to the regeneration process

and is characterised by several events such as wound healing, cellular

dedifferentiation and nerve dependency. The re-developrnent phase is characterised

by growth and pattern formation of the blasterna [4-7]. Experimental data collected

thus far supports the concept that during the re-developrnent phase, the mechanisms

controlling growth and pattern formation of limb regeneration are a recapitulation

ofthose in developing limbs [8-il]. During limb developrnent, ceils that form lirnb

tissues are derived from undifferentiated progenitor ceils [12] whereas in the case

of the regenerating limb, the process is similar except that differentiated celis

become undifferentiated and then reform the missing parts following amputation [1,

12].

The cornplexity of the axolotl lirnb provides a unique model for

regeneration research since it implicates various cellular types such as epithelial,

muscle, connective tissue and bone. Bone represents approximately 50% of the

exposed surface following limb amputation, however, as little as 2% of cells in a

regenerated limb are derived from bone [8]. Previous limb regeneration studies also

suggest that new bone is generated from dedifferentiated cells of the blastema and

is not derived from pre-existing bone [13, 14]. Most skeletal bones, including those

of the appendage, develop via an endochondral ossification process which involves

Page 82: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

60

the replacernent of cartilage tissue by bone. This process is initiated by the

commitment of mesenchymal cells to cartilage ceils which subsequently condense

and differentiate into chondrocytes. Afierwards, the chondrocytes will proliferate,

hypertrophy and finally be replaced by osteoblasts [1 5]. In order to understand the

mechanisms underlying skeletal regeneration, it is important to characterise the

expression of genes known for their role in the formation of skeletal elements

during bone development. The $ox-9 gene is an ideal candidate since it is a key

regulator of chondrogenesis. It acts not only during the initial stages of

chondrogenesis by stimulating mesenchymal condensations, but also acts to

regulate the differentiation of chondrocytes to osteoblasts [16].

Sox-9 belongs to the Sox ($iy-type HMG box) farnily, a group of

transcription factors that play diverse roles in many important developmental

processes. These proteins contain a highly conserved DNA-binding domain known

as the HMG (high mobility group) domain, comprising 79 amino acids [17] first

identified in the mammalian sex determination-related to Y chromosome ($ry)

protein [1$-20]. Outside the HMG domain, Sox sequences are variable though

having several other conserved domains which categorize these proteins into 10

subgroups (A-J). The SoxE genes (Sox-8, Sox-9 and Sox-JO) are known as

important regulators of neural crest celÏs, thereby playing a central role in the

development of the vertebrate body plan. However, in addition to having a role in

early neural crest specification, Sox-9 is also identified as a major regulator of

chondrogenesis [21-24]. In humans, Sox-9 heterozygous mutations in one of the

gene alleles are responsible of campomelic dysplasia (CD), a skeletal dysplasia that

is characterized by sex-reversal and many skeletal malformations, particularly in

the craniofacial region [24, 25]. Additionally, it has been demonstrated that $ox-9 is

co-expressed with CoÏ2a], the gene encoding for the major extracellular matrix

component: type lia collagen [23]. During development, Sox-9 was shown to be

expressed in early neural crest progenitors and is required for development of

skeletogenic derivatives of the mammalian cranial neural crest [26, 27]. Sox-9

knockdown experiments have shown that embryos lack endochondral skeletal

elements derived from the cranial neural crest while neural crest cells in the trunk

Page 83: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

61

appear to deveiop normaiiy. This is due to an inabiiity of the post-migrating cranial

neurai crest celis to differentiate into chondrocytes [2$].

Ail of the SoxE genes are known to be expressed in fleurai crest progenitors

though having differentiai expression depending on the species [29]. Generally,

Sox-9 expression is maintained in the migrating cranial neural crest ceiis and down

reguiated in the pre-migratroy trunk neurai crest ceiis, whiie Sox-1O expression

persists in the trunk and diminishes in the branchiai arches [26, 30]. Sox-JO is

recognised as a neurai crest ceii reguiator. The flrst evidence for Sox-lO in neurai

crest development was discovered from the neural crest phenotype observed in

Dominant megacolon (Dom) mice, in which the Sox-lO gene calTies a frameshifi

mutant rendering the protein functionally inactive [31, 32]. These mutations have

since been found in hurnans (Waardenburg-$hah disease), and zebraflsh [31-34]

who suffer from defects in the vagal/trunk neurai crest derivatives (enteric gangiia,

pigment ceiis and dorsal root gangiia) but flot in craniai (craniofaciai cartilages and

bones) or cardiac neurai crest derivatives [34]. Studies performed in the Dom

mouse modei have shown that mutants appear to have normai neurai crest

formation and that neural crest-derived embryonic structures are present, thus

suggesting that $ox-] O intervenes afier the initial stages of neurai crest specification

[31, 32, 35, 36]. In fact, Sox-lO is beiieved to have a role as a survivai factor since

in its absence, post-migratory neurai crest ceils that form and migrate undergo

apoptosis before they are abie to differentiate [32, 33, 37, 3$].

In this article, we describe the moiecuiar cloning, sequence anaiysis and

expression of Sox-9 and Sox-JO in the axolotl during embryonic deveiopment.

Expression patterns for both genes correlated with their respective functions and

were similar to the expression patterns found in other species [26, 27, 30, 33, 39-

42]. Recentiy, Tanaka’s group have described the expression of $ox-9 during tau

regeneration [43]. We are therefore interested in the expression of Sox-9 in the

developing and regenerating limb. Since part of the regeneration process is a

recapitulation of deveiopment, the regenerating axolotl lirnb offers an excellent

model to study bone formationlregeneration. We used a whole-mount in situ

immunohistochemistry technique to characterise the expression of type II collagen

Page 84: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

62

(a cartilage specific protein) and the Victoria btue cartilage staining rnethod in

order to demarcate the developing skeleton during limb developrnent and

regeneration. Results reveal that the expression of $ox-9 correlates with skeletal

events during axolotl lirnb development and regeneration, thus suggesting a role for

this gene in chondrogenesis during both processes.

Page 85: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

63

3.4 Materials and methods

Cloning and sequence analysis ofaxolotl Sox-9 and Sox-] O cDNA

Partial axolotl Sox-9 and $ox-1O cDNA sequences were cloned by RT-PCR

using degenerate primers (see below). b obtain the full length Sox-JO gene, the

SMART RACE cDNA Amplification kit (BD Biosciences, Clontech, USA) was

used to construct 5’- and 3’- RACE ready cDNA from total RNA extracted from

the axolotl hind limb during the medium bud regeneration stage using Trizol

reagent (Invitrogen). Following the manufacturer’s instructions, PCR products were

obtained using 5’- and 3’- gene specific prirners (GSPs) and nested gene specffic

prirners (NGSPs) designed from the partial sequence cloned in the lab. The designs

ofall prirners were as follows:

dFSox: 5’-GA(C/T)CAGTA(C/T)CC(G/C)CA(C/T)CTGCA-3’

dRSox: 5’-TGCT(G/C)AG(C/T)TC(A/T/C/G)CC(A/G)ATGTCC-3’

5’GSP: 5’-GTGTGTGTTCTTCTAGTGTC-3’

5’NGSP: 5’-TCGGCCTCCTCTATAAAGG-3’

3’ GSP: 5’ -ACCGGTCACCCATGTCTGAT-3’

3’ NGSP: 5’-AGCAGCAAACCACCCATTGA-3’

Ail PCR products were purified by gel extraction, cioned into the pCR II-TOPO

sequencing vector and sequenced by the McGill Genome Sequencing Centre with

M13R and M13f primers. Resulting sequences were assembled using SeqManII

(DNASTAR Inc., USA). fuli length Sox-lO cDNA was subsequently ampiified by

PCR using {Axolotl forward SOX1O 25$] 5’-AGAGACAAAATGGCGGATGA-3’

and [Axoloti reverse SOX1O 1646] 5’-GCTCTCCGTCTTTCCCTCAG-3’ primers

designed from the sequencing data. The PCR reaction was performed using Taq

DNA polymerase (Invitrogen) and the conditions were 30 cycles of 95°C, 30s;

64°C, 20s; 72°C, 45s; followed by 15 min at 72°C. Au sequences were analysed on

the NCBI BLAST database and phylogenetic trees were created using MegAlign

(DNASTAR Inc., USA).

Page 86: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

64

Animal maintenance and surgery

Axolotl embryos and larvae were purchased from the Ambystorna Genetic

Stock Center (Lexington, KY). Animals are kept in a 20% Holtfreter’s solution at a

room temperature varying from 19-22°C and a photoperiod cycle of 12 hours of

light and 12 hours of darkness. For amputations, animais were anaesthetized in

0.1% MS222 solution (ethyl 3-arninobenzoate methanesulfonate salt, $igma

Aldrich, St. Louis, MO). Proximal (through hurnerus or femur) and distal (through

radius/ulna or tibialfibula) amputations were performed with micro-surgical tools

(fine Science Tools, B.C., Canada) on axolotls from 3 to 5 cm in length. For

fixation, animals are euthanized and fixed in 1XMEMFA (1OX MEM salt (1M

MOPS pH 7.4, 2OmM EGIA, lOmM Mg$04), 3,7% formaldehyde and DEPC

treated H20 then gradually transferred to a methanol solution and stored at -20°C

until needed. Ail animal care and experiments were done in accordance with the

Université de Montréal animal care committee’s guidelines.

Whole-mount in. sittt hybridization

Whole-mount in situ hybridization was performed as described in Gardiner et

al. with a few modifications [44]. Digoxigenin (DIG) —labeled antisens RNA

probes were created using T7 RNA polymerase (Invitrogen) and DIG RNA

labelling mix (Roche Diagnostics, Laval, Quebec, Canada). for probe synthesis, a

45$ bp Sox-9 and a 334 bp Sox-JO fragment were cloned into the pCR II-TOPO

plasmid which was then linearized using the appropriate restriction enzymes. For

tissue permeabiiization, developing embryos and amputated limbs were incubated

with 20jig/ml and 30 jig/ml proteinase K respectively for 15 min on ice and then at

37°C for 5 min or for 1h on ice then 1h at 3 7°C. Probe hybridization was 24h for

embryos and 72h for limbs. Prehybridization and hybridization temperatures were

done between 55°C and 65°C. Finally, BM purple (Roche) was used as the enzyme

substrate for the colorimetric reaction for the alkaiine phosphatase reaction.

Page 87: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

65

Type II Coltagen whoÏe—inotint in situ irnmunohistochemisliy

Samples were rehydrated from methanol and rinsed three times in a

phosphate-buffered saline solution with 0.1% Tween-20 (PTW). Lirnbs were then

bathed in 2.5% trypsin for either 15 min (developing lirnbs) or 40 min (regenerating

limbs) followed by three 5-min rinses in water. Afier 10 min in -20°C acetone,

specimens were rinsed in water for 10 min and then washed three times for 5 min

with PTW. Samples were then transferred to a blocking solution (phosphate-buffer

solution (0.7 X PBS) + 1% DM50 + 5% sheep serum + 0.1% Tween) for 1 hour

and incubated in a mouse monoclonal antibody against Type II collagen (II-116B3,

Lab Vision Corporation, frernont, CA) diluted 1:100 in blocking solution ovemight

at 4°C. The next day, limbs were rinsed eight tirnes for 15 min in a PTW + 1%

DMSO solution before being placed in an anti-mouse horseradish peroxidase

labelled secondary antibody (Amersharn Biosciences, Piscataway, NJ) diluted

1:500 in blocking solution overnight at 4°C. The following morning, samples were

rinsed eight times for 30 min with PTW and subsequently bathed in a

diaminobenzidine (DAB) solution (Invitrogen). The reaction was stopped by two 5-

min washes with PTW and fixed in a formalin solution (3.7% formaldehyde in

0.7X PBS). Specirnens were cleared through a graded series ofethanol/glycerol and

stored in 100% glycerol. As a control for specificity, the same protocol was

folÏowed except the primary antibody xvas omitted (Fig. 7 F).

SkeÏetal staining ofembiyos and limbs

Staining was performed using the Victoria bÏue method to verify new

cartilage formation [45]. Lirnbs were fixed in alcoholic Bouin’s solution for 24

hours before being rinsed several times with 70% ethanol. Specimens were rinsed

regularly in 3.5% NH4OH for 2 days and subsequently treated with Acid alcohol

for 2 hours. Specimens were stained with 1% Victoria Blue for 2 hours and then

rinsed with 70% ethanol. Limbs were gradually dehydrated to 100% ethanol, then

cleared and stored in methyl salicylate.

Page 88: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

66

Western BÏot

Total proteins of axolotl blastemas and ernbryos were extracted by

sonification in sodium dodecyl suiphate (SDS) sample buffer. Proteins were

denatured in boiling water for 5 min and 50 ig per lane was loaded on 12%

polyacrylamide-SDS gels following the Laemmli method [46j. Transfer of proteins

onto polyvinylidene difluoride membranes (Imrnobilon-P. Millipore, Bedford, MA)

was donc by electrophoresis. Anti-Sox9 and Anti-SoxlO rabbit affinity isolated

antibodies (Sigrna-Aldrich), which speciflcally recognize their respectful proteins,

were used to detect axolotl Sox-9 and Sox-JO. Immunodetection of primary

antibodies was visualized using the ECL Western blotting kit (Amersham

Biosciences, Piscataway, NJ) following manufacturer’s guidelines. Coomasie blue

staining ofthe proteins on the membrane was used for a loading control.

Page 89: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

67

3.5 Results

Isolation and seqïtence analysis ofaxolotl Sox-9 and $ox-1O cDNA

A partial axolotl $ox-9 sequence was obtained by isolating a 458 bp cDNA

fragment ftom axolotl larvae total RNA by RT-PCR using degenerate primers.

Using the NCBI BLAST database for sequence analysis, the isolated fragment was

shown to contain a 171 bp sequence colTesponding to around 75% ofthe conserved

HMG domain (Fig. lA). Moreover, resuits reveal that the isolated sequence is

located towards the 5’ of the gene and contains the endmost region of the HMG

domain (Fig. lB). Nucleotide alignment with other species showed that the partial

axolotl $ox-9 sequence shared 82% homology with chicken [47] and 81% with

human [48], monkey [49] and frog [50]. A phylogenetic tree was created in order to

compare the evolutionary relationships of the $ox-9 gene between different species

(fig. 1 C). Results indicate that the axolotl sequence is conserved with other species

and is consistent with specie hierarchy.

A 1725 bp contig was also analyzed using the NCBI BLAST database

revealing the isolation of the axolotl Sox-]O gene. Results show a 1341 bp ORF

(Fig. 2A) which encodes a 447 aa protein containing an HMG domain of 79 aa

(Fig. 23). Analysis of the axolotl protein sequence indicates a high homology with

other species. Axolotl $ox-1O was shown to have a sequence of homology of 72%

with chicken [51], 70% with human and xenopus [30, 34] and 69% with mouse

[4$]. The HMG region has a 94% homology with the HMG region of compared

species. A phylogenetic tree is illustrated in figure 2C comparing the Sox-1O protein

between different species. The axolotl displays the closest relationships with

chicken and xenopus, ftirther substantiating the high homologies obtained for these

species when compared to the axolotl Sox-]O protein sequence.

Page 90: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

68

Fig. 1. Sequence analysis of a partial axolotl Sox-9 gene. (A) cDNA sequence.

Blue characters represent conserved HMG dornain. Character legend is as follows:

W=A+T, Y=C+T, M=A+C, K=G+T (B) Schernatic representation of the cloned

sequence. (C) Phylogenetic tree. Partial axolotl cDNA was cornpared to the $ox-9

complete cds sequences from other species. tGenBank accession number

DQ901548]

Page 91: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

A)GAGCAGTATCCCCACCTGCACAWYGCCGTTCTCAGCAAGACCCTGGGAAAGCTGTGGAGG

CTTCTGAATGAGAACGACAAGCGCCCCTTTATAGAGGAGGCCGAGCGCCTS CGTACTCGCCCACAAGAAGGACCACCCCGATTAMAAGTACCAGCCGCGCAGGCGCAAGAATGGCAAGGC

CACGACAGGAGAGGGAGAGGTGCCGGGCGAAGGCGACACGGTGCAGGGACACTACAAGAA

CACACACCTGGACCTGCGGCGTGCCGGCGACCGGTCACCCATGTCTGATGGGGCGTCAGA

ACACGGGGCAGGTCAGAGTCACGGGCCCCCTACGCCACCCACCACGCCCAAGACGGAGCT

GCAAAACGGCAAGGACCCCAAACGCGATGGCCGCYTACTKTTMGASAGCAGCAAACCACC

CATTGACTTCGGCAACGTGGACATCGGTGAGCTCAGCA

B)ATG STOP

HMG

5’ UTR

458nf

C)

3’ UTR

[cl

Axolotl SOX-9 protein

Homo sapiensMus musculusSus scrofaCanis familiarisGallus gallusXenopeDanio rerioAmbystoma mexicanum

Page 92: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

69

Fig. 2. Sequence analysïs of the axolotl Sox-lO gene. (A) cDNA sequence

containing a 1341 bp ORF. Red characters indicate start and stop codons. Blue

characters indicate conserved HMG dornain. (B) Protein sequence of 447 aa

containing a HMG dornain of 79 aa. (C) Phylogenetic tree showing specie

comparison of Sox-1O protein sequence. tGenBank accession number DQ901549]

Page 93: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

B)

C)

5’ UTR

I

3’ UTR

A) ATG STOP

I HMG IAxolotl SOX-lO 1341 nt

GGAGGACCCCCTGTGCCCACACCCCTGACGCGGTTAGCCGAGAGAGAGAGGGGGACCGGTCAGTCGAAT

TAGAAGTGGGGCAGTGCAAGCAAGACCAGCTGTGAGGGGCAGGCCGTGTGCCCACCAGCAAGATCCAGG

AGGGGTCCCTGTGCCCACGCCGGAGCGAGCTGTCACAGGAGGGAGCCGATGAGAGCCAAGGCTGCATTC

CAATAGAAAGTGAACCAGACCACAACACTTTCAAGAAGACCACAGAGACAAAATGGCGGATGAGCAGAG

CCTTTCTGAGGTCGAGATGAGCCCGACGGGGTCCGAGGAGGAGCAGTGCCTGTCGCCAGGCACTTCJc

GGCCTCGGATGGCCTGCGGCCTGGCAGCCCGAGTGACAATGACATGGCCAAGGTGAAGAAGGAGCTGGA

CTCAGAGACTGAGGACGAGAAGTTCCCCATTTGCATCCGCGAGGCCGTCAGCCAGGTGCTGAGTGGCTA

TGACTGGACGCTGGTGCCCATGCCCGTCCGCGTCAACGGCAGCAGCAAGTCCAAACCACACGTGAAGCG

GCCCATGAATGCCTTCATGGTCTGGGCGCAGGCGGCGCGCCGAAAACTGGCTGACCAGTACCCGCACCT

GCACAACGCCGAGCTCAGCAGACCCTGGGAAAGCTGTGGAGGCTTCTGAATGAGAACGACAAGCGCCC

CTTTATAGAGGAGGCCGAGCGCCTGCGTATGCAGCACAAGAAGGACCACCCCGATTACAAGTACCAGCC

GCGCAGGCGCAZGAATGGCAAGGCCACGACAGGAGAGGGAGAGGTGCCGGGCGAAGGCGACACGGTGCA

GGGACACTACAAGAACACACACCTGGACCTGCGGCGTGCCGGCGACCGGTCACCCATGTCTGATGGGGC

GTCAGAACACGGGGCAGGTCAGAGTCACGGGCCCCCTACGCCACCCACCACGCCCAAGACGGAGCTGCA

AAJCGGCAAGGACCCCAAACGCGATGGCCGCCCACTGGGAGAGAGCAGCCCACCCATTGACTTCGG

CAACGTGGACATCGGTGAGATCAGCCATGATGTCATGTCCAACATGGAGCCCTTTGATGTCAZCGAGTT

CGACCAGTACCTGCCACCTAATGGCCACGGGGGCCATGCCAGCCACGTAGCTGGGAGCTACACCGGCGG

ATATGGCCTAGGCAGTGCCCTGGCAGCTGCCGCCAGCAGTGGAAGTCACTCTGCTTGGATTTCCAAGCC

GCATGGCGCTGCCTCACTAGCTGAATCAAAGGCCCAGGTTAAGACGGAGAGCTCCGGTGCCGGCCATTA

CCCGGAACAGTCTTCAGCCTCTCAGATCACCTATGCCTCACTTGGCCTGCCACATTATGGCTCAGCCTT

TCCTGCCATTCCCCGGCCACAGTTTGACTACTCAGATCATCAGCCATCTGGATCCTACTATAGCCACGG

CGGTCAGACCTCTGGCCTCTATTCTGCGTTCTCCTACATGGGACCATCCCAGCGCCCACTTTATACAGC

CCTCACTGAATCCAGTAGTGTGGCCCAGTCCCACAGCCCTACCCACTGGGAACAGCCTGTCTACACAAC

TCTGTCTAGGCCATGAAGGTGATGGGGAGCTGAGGGAAAGACGGAGAGCAATAGCCGTCTGAAGACTAA

GGAGTCTTCTTTCTGCGTAGACAATGGACATTGCGCGCTCCATCTAAACTCTACCACGTCTTCCTGTTC

MADEQSLSEVEMS PTGSEEEQCLSPGTSTASDGLRPGSPSDNDMAKVKKELDSETEDEKFPICIREAVSQ

VLSGYDWTLVPNPVRVNGSSKSKPHVKRPP1NAFMVWAQAARRKLADQYPHLHNAELSKTLGKLWRLLNEND}ŒPF IEEAERLRMQHKKDHPDyKyQpRRR}c1GKATTGEGEvpGEGDTvQGHyTHLDLRpJGDR5pM5

DGASEHGAGQSHGPPTPPTTPKTELQNGKDPKRDGRPLGESSKPPIDFGNVDIGEISHDVMSNMEPFDvN

EFDQYLPPNGHGGHASHVAGSYTGGYGLGSALAAAASSGSHSAWI SKPHGAASLAESKAQVKTESSGAGH

YPEQSSASQITYASLGLPHYGSAFPAIPRPQFDYSDHQPSGSYYSHGGQTSGLYSAFSYMGPSQRPLYTA

LTESSSVAQSHS PTHWEQPVYTTLSRP

rE Homo sapiens

________________

[j Mus musculusBos taurusGallus gallus

— Ambystoma mexicanumXenopus IaevisDanio rerio

V96 P161

447 aa

Page 94: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

70

AnaÏysis ofSox-9 and $ox-] O expression during embryonic deveÏopment

Whole mount in situ hybridization was used to characterise the gene

expression of Sox-9 and $ox-] O in the axolotl during embryonic development using

RNA anti-sense probes (Figs. 3 and 4). Results indicate that Sox-9 expression is

absent in the most precocious stages of embryogenesis, showing no expression

during the gastrula stage (Fig. 3A). The signal was first detected at mid-neurulation

on the neural folds of the neural crest forming region (Fig. 3B). This signal

intensifled with neural crest formation showing expression along the neural tube

and in the anterior region of the ernbryo, corresponding to the prospective cephalic

and trunk regions (Fig. 3C). At stage 26, Sox-9 expression is maintained in the

anterior region of the embryo (Fig. 3D), corresponding to the areas in which neural

crest celis migrate in order to participate in the formation of various structures such

as the otic placodes, branchial arches and craniofacial skeletal element [26, 2$, 52].

Effectively, as the embryo develops, expression is detected in these structures.

Figure 3E shows a stage 33 embryo with specffic expression in the otic placodes.

By stage 36, additional expression is observed along the spinal cord in regions

corresponding to somites, in the orbital cavities, branchial arches and the

developing mandible (Fig. 3F,G). At later stages of embryogenesis, $ox-9

expression is concentrated to skeletal elernents, showing a particularly strong signal

in the cranial bone ridge and in the lower jaw (Fig. 3H). Finally, besides the weak

expression remaining in the cranial region at stage 46 (Fig. 31), expression is also

detected in the limb, where skeletal formation is just begiiming.

Sox-lO expression during embryogenesis exhibited a similar pattern to Sox

9 with a few differences (Fig 4). Sox-lO expression is detected during the mid

neurulation stage, having a signal confined to neural folds of the neural crest

forming region (Fig. 4A). This expression is analogous to that observed for Sox-9 at

this stage, though the Sox-lO signal seems to be more widespread. At the late

neurula stage, expression is observed in the prospective trunk and cephalic regions,

again showing similar expression to $ox-9 (Fig 4B,C). By stage 25, specific

expression is present in the otic placodes and weak expression along the spinal cord

Page 95: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

71

Fig. 3. Whole-mount in situ hybridization of Sox-9 expression during

embryonic development. (A) Stage 11 embryo. (B) Dorsal view of a stage 16

embryo. (C) Dorsal view of a stage 22 ernbryo. (D) Lateral view of a stage 26

embryo. (E) Lateral view of a stage 33 ernbryo. Lateral (f) and lateral rostral (G)

view of a stage 39 embryo. (H) Stage 43 ernbryo. (I) Dorsal view of a stage 46

ernbryo. Stages were characterised according to Armstrong et aï. [53].

Page 96: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

A B C

D

H

E

G I

Page 97: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

72

Fig. 4. Wliole-mount in situ hybridization of Sox-lO expression during

embryonic development. (A) Dorsal view of a stage 16 ernbryo. Lateral (B) and

dorsal (C) view of an ernbryo at stage 22. Lateral (D) and dorsal (E) view of a stage

25 ernbryo. (F) Dorsal view of a stage 31 embryo. Lateral view of a stage 36

embryo (G) and a lateral rostral view at stage 41 (H). Stage 47 embryo (I). Note

that axolotl ernbryos were photographed anterior to the lefi and posterior to the

right. Stages were characterised according to Arrnstrong et aï. [53].

Page 98: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

A CB

E

4,’ F

D

F

H

G

I

Page 99: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

73

can be observed (fig 4D,E). At stage 31, expression is rnaintained in the otic

placodes in addition to having expression in the sornites along the neural tube (Fig.

4F). Contrary to Sox-9, Sox-JO signal dirninished significantly in the later stages of

development becorning restricted to the otic placodes (Fig 4G,H). By stage 49,

there was no Sox-lO signal detected (fig. 41).

To further conoborate our results, we verified Sox-9 and Sox-JO protein

expression in the axolotl during embryonic development. Using antibodies raised

against the human $ox-9 and Sox-JO proteins, we were able to detect a band of

approximately 56 kDa and 50 kDa respectively (Fig. 5). $ox-9 protein expression

increased throughout developrnent (Fig 5A). Sox-]O protein expression was strong

during early embryogenesis and decreased gradually in the final stages until no

expression was observed (fig. 5B).

Analysis ofSox-9 expression during 11mb development and regeneration

In the final stages of the ernbryogenesis, we also looked at lirnb

development. Whole mount in situ hybridization was used to characterise the

expression of Sox-9 RNA in the developing limb (Fig. 6A-C). In order to directly

correlate the expression of Sox-9 with chondrogenesis, type II collagen protein

expression was deterrnined by whole-rnount in situ irnmunohistochernistry to

dernarcate the skeleton in developing lirnbs (fig. 6D-F). A Victoria blue staining

technique was also used to stain cartilage at different developmental stages of the

limb (f ig. G-I). Results demonstrate that at stage 44, when the limb bud is only

beginning to appear, there was no expression of Sox-9 (data not shown). By stage

46, a strong signal in the whole limb bud can be observed and it is possible to

distinguish initial cartilage formation in the limb bud (data flot shown). At stage 47,

the lirnb starts to take shape and flattens out in the distal region where Sox-9

expression is particularly intense (f ig. 6A). Cartilage staining reveals a budding

radius at the tip of a completely formed humerus (Fig. 6G) while type II collagen

protein expression is restricted to the humerus (Fig. 6D). Sox-9 expression

conelates with skeletal elements, having a stronger expression in the regions stiil in

Page 100: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

74

Fig. 5. Western blot analysis ofSox-9 and Sox-lO expression during embryonic

development. Western blot analysis from ernbryonic stages 22 to 52 for Sox-9 (A)

Sox-lO (B) protein expression. Coomasie blue staining of total axolotl proteins on

the membrane was used for a loading control.

Page 101: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

A)Stage 22 27 30 32 36 40 43 47 52

LoadingControl

B)Stage 22 27 30 32 36 40 43 47 52

Sox-lo5OkDa

. -——‘

Page 102: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

75

Fig. 6. Whole-mount in situ hybridization, immunohistochemistry and

cartilage staining in developing limbs for Sox-9, type II collagen and cartilage.

Sox-9 expression (A-C) type II collagen protein expression (D-F) and cartilage

staining with Victoria blue (G-I) in developing limbs at stage 47 (A,D,G), stage 50

(B,E,H) and stage 53 (C,F,I). Black arrow indicates hurnerus. Note that axolotl

embryos were photographed anterior to the top and posterior to the bottom. Stages

were characterised according to Nye et aÏ. [2].

Page 103: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

H ‘r- I

CA E

D E

G

F

4

d

Page 104: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

76

formation. With the extension of the radius and ulna, by stage 50, carpal skeletal

structures within the hand and the phalanges of the first two digits are in formation

(Fig. 6E.H). Again, the signal is more intense in the distal end of the limb,

corresponding to the digit forming area (Fig. 6B). Nearing the final stages of limb

development, Sox-9 is expressed in the tip of the developing digits and in the

metacarpal region (Fig 6C). Type II collagen expression and cartilage staining

shows that by this stage, the first two digits are complete and there is evidence for

the formation of digit III (Fig. 6F,I). As expected, the more developed digits (I and

II) have a weaker signal than the one in development (III). At this stage the

phalangial region is still in formation, thereby substantiating the Sox-9 signal in this

area.

Using the same techniques described for lirnb development, we

characterised Sox-9 expression and chondrogenesis during limb regeneration.

Resuits show that there is no $ox-9 expression detected during the first few days

following amputation, specifically 6h, 24h. and 48h after amputation (data flot

shown). The absence of expression at these stages is flot surprising since the

process of chondrogenesis has flot yet begun [3]. At the early bud stage, there is

still no signal (Fig. 7A). At this stage, the humerus is stained blue and denotes the

initial amputation site underlying the blastema (Fig. 7K). It is not until reaching the

medium bud stage, approxirnately 12 days afier the amputation, that we detect a

strong Sox-9 signal in the regenerating blastema (Fig. 7B). Both type II collagen

expression and cartilage staining still show no signs of cartilaginous structures in

the blasterna (Fig. 7G,L), however the number of osteoclasts undergo a definite

decline and the deposition ofperiosteal cartilage is initiated [3]. By the end ofthis

stage, occasional small areas of ceils alongside the bone have begun to produce a

distinct cartilage matrix [3], thus providing a rationale for the $ox-9 signal. The

sarne expression pattern for Sox-9 was present at the late bud stage which is

characterised by the lengthening of the blastema (Fig. 7C). It is at the late bud stage

that we are able to observe new cartilage formation at the distal tip of the amputated

bone (Fig. 7H,M). Accordingly, this is the stage when cartilage differentiation

begins in the periosteum of the arnputated bone [3]. As the lirnb continues to

Page 105: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

77

Fig. 7. Whole-mount in situ hybridization, immunohistochemistry and

cartilage staining of regenerating limbs for Sox-9, type II collagen and

cartilage. Sox-9 expression (A-E) type II collagen protein expression (F-J) and

cartilage staining with Victoria blue (K-O) at different stages of the regenerating

forelimb afier proximal amputation. Regeneration stages are: (A,K) Early bud

stage. (B,G,L) Medium bud stage. (C,H,M) Late bud stage. (D,I,N) Palette stage.

(E,J,O) Early differentiation stage. A negative control limb for type II collagen

expression is illustrated in panel F. Note that axolotl regeneration stages are

characterised according to Tank et aÏ. [3]. Sirnilar expression was observed in distal

amputations for these stages.

Page 106: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

A B C D E

F G H I j,

K L M N O

Ï L

Page 107: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

7$

regenerate, a different pattern in Sox-9 expression was observed at the palette stage

(Fig 7D). The palette stage designates the beginning of cartilage differentiation in

the zeugopod of the limb and in bones of the forelimb [3]. This is illustrated in

figures 71&N where type II collagen expression and cartilage staining reveals a

rough outiine of the radius, ulna and some metacarpals. Interestingly, while

maintaining expression throughout the entire blasterna, the Sox-9 signal is more

intense at the outer extrernities of the blastema, corresponding to areas of

developing digits and elernents of zeugopodial nature (Fig. 7D). The last stage of

regeneration studied was the digit differentiation stage in which the first digits have

formed and the third digit already has two phalanges formed (Fig 7J,O).

Comparatively, at this stage the expression of Sox-9 is restricted to the ridge of the

growing digits and more intensely at the bottom of the interdigital space (Fig. 7E).

To further characterise the expression of Sox-9 during limb regeneration, we

verified protein expression by Western blot analysis. Figure $ shows the detection

of a 56 kDa protein conesponding to Sox-9. Results show that in the initial stages

of regeneration, Sox-9 protein expression is comparable to that of a mature limb

(Oh) whereas in final stages of regeneration the signal intensifies considerably. Tl;is

is in accordance with RNA expression pattern observed during these stages of

regeneration.

Page 108: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

79

Fig. 8. Western blot analysis of Sox-9 expression during 11mb regeneration.

Western blot analysis showing the temporal expression and regulation of $ox-9

protein during forelimb regeneration. The Oh represents mature non

regenerating limb tissue. Coomasie blue staining of total axolotl proteins on the

membrane was used for a loading control.

Page 109: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

Oh 6h 24h 48h EE MB LB PAL ED

sox-956kDa

LoadingControl

Page 110: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

$0

2.5 Discussion

CÏoning of$ox genes and their expression during embiyogenesis

In this study, we describe the cloning, analysis and expression of axolotl

Sox-9 and Sox-JO genes and their regulation during ernbryogenesis. Sequence

analyses of the cloned sequences show; j) conserved HMG domains; and ii) high

homologies with other species, thus validating their identities. Whole-mount in situ

hybridization resuits reveal that during the early stages of embryogenesis, Sox-9 is

expressed in the anterior region of the neural folds and in the spinal chord. This is

in accordance with the expression patterns detected by whole mount in situ

hybridization performed in Xenopus [26, 54] and chick [52]. Furthermore, previous

studies in other species have demonstrated that Sox-9 is in fact required for neural

crest development and differentiation t26, 40, 52, 55]. Eventually, $ox-9 expression

becomes more localized to specific regions such as the otic placodes. Saint-

Germain et al. have proposed that Sox-9 is one of the key regulators of inner ear

specification, demonstrating that $ox-9 function is required for otic placode

specification [54]. In the later stages of development, $ox-9 expression is detected

in cartilaginous structures in the head such as the mandible and other cranial bones

(occipital, synotic). This expression is expected in cranial skeletal formation since

$ox-9 is prirnarily known for its extensive role throughout chondrogenesis,

particularly during mesenchymal condensation and the regulation of chondrocyte

differentiation [56-59]. Moreover, $ox-9 nuli embryos have been shown to display

multiple skeletal abnormalities including cranial defects, consistent with an

important role in normal cranial developrnent [26-2$, 39].

The Sox-JO expression detected during the early stages of embryogenesis is

sirnilar to that observed for Sox-9 and is comparable with the expression pattems

observed in Xenopus, chick and zebrafish [30, 33, 40, 41]. Expression detected in

the neural and spinal regions is flot surprising since: i) Sox-lO has been previously

shown to play a role in late neural crest development [32, 37, 3$, 40] and ii) Sox-JO

mutant models suffer from defects in the vagal and trunk neural crest derivatives,

Page 111: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

$1

suggesting a strict requirement for this gene in the vagai and trunk neural crest [31-

34]. In more advanced stages of deveiopment, $ox-]O expression dirninishes and is

restricted to the otic piacodes. Sox-lO has been shown to be expressed in the otic

placodes of multiple species [40, 42, 52, 60, 61] and bas been proposed to play a

particuiariy important foie in inner ear development [61]. Ail together, the resuits

observed for axolotl Sox-9 and Sox-lO gene expression during embryogenesis are

sirnilar to the expression found in other species and are in accordance with their

respective roles during embryonic development.

Western biot analysis was performed to characterize Sox-9 and Sox-] O

protein expression during embryogenesis. Resuits show that Sox-9 protein

expression increases throughout development. The augmented protein expression

seen in the later stages of axolotl deveiopment can be attributed to the beginning of

skeletal formation. The $ox-9 RNA signai detected by whole-rnount in situ

hybridization is increasingly strong up until embryonic stage 43 (Fig. 3).

Interestingiy, forelimb deveiopment in the axolotl begins at stages 44-45 and is

concurrent with initiai cartilage formation of the iimb [2]. As the lirnb continues to

develop, new cartilage is formed (Fig. 4E-H) thus justifying the observed increase

in Sox-9 protein expression through to stage 52. Contrary to Sox-9, Sox-JO protein

expression is more pronounced early in embryogenesis. These resuits are consistent

with the RNA expression detected during the same stages by whole-mount in situ

hybridization. These results demonstrate that Sox-9 and Sox-JO proteins are

expressed and regulated during axolotl embryonic development. Additionally, the

protein expression detected for both genes during this process correlate with their

respective RNA expressions.

Sox-9 expression during lirnb deveÏoprnent and regeneration

Whole-mount in situ bybridization resuits confirmed that Sox-9 is expressed

during limb deveiopment and iimb regeneration in the axolotl. During early lirnb

deveiopment, expression is dispersed throughout the entire limb despite the fact

that cartilage staining reveais the appearance of only a srnail bud of cartilage within

Page 112: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

$2

the limb. This expression pattern suggests that $ox-9 is expressed in

prechondrogenic mesoderm [62] and supports the role for this gene in the

differentiation and aggregation of prechondrogenic precursors [5$, 62]. Later

during limb development, a stronger signal is detected in the distal region of the

limb although the signal remains present in the whole limb bud. Skeletal staining

resuits confirm that the more pronounced signal corresponds with the skeletal

setting of limb bone (hurnerus, ulnalradius) [2]. Finally, towards the end of

development, the Sox-9 signal is present in regions corresponding to developing

digits. A recent study by Franssen et al. investigated the expression of type II

collagen protein and chondrogenesis during axolotl lirnb development. Results

were similar to our own, revealing that type II collagen is expressed concomitantly

with cartilage formation throughout limb development. Given that during

chondrogenesis Sox-9 is co-expressed with CoÏ2al, the gene encoding for type II

collagen [23], our results together with the results obtained by franssen et al.

further supports the idea that Sox-9 is in fact a precursor of cartilage formation in

the developing axolotl lirnb.

Unlike ernbryonic and limb development, the regeneration process is not as

well-studied; little is known regarding gene expression and function. Here, we

report the expression pattern of Sox-9 during axolotl Iimb regeneration. Results

show that during the early phases of the regeneration process, there is no $ox-9

expression detected. The lack of expression during these first days following

amputation may be justified by the fact that Sox-9 has no known function in the

inflarnrnatory or healing processes triggered following amputation [20]. Sox-9

expression first appears at the medium bud stage. Tank et al. have reported this

stage demarks beginning of cartilage deposition around the amputated bone which

may explain the $ox-9 expression detected. Accordingly, $ox-9 has previously been

shown to be essential for chondrocyte proliferation and maintenance during the

entire chondrogenesis process in mice [56, 63]. At the late bud stage, a strong

signal detected in the anterior region of the blastema can be explained by intense

chondrocyte proliferation that occurs around the amputated bone [3]. During the

palette stage, precursor celis differentiate into chondrocytes and it is likely that Sox

Page 113: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

‘V,Ô-,

9 is responsible for the differentiation and proliferation of prechondrocytic ceils

[58, 62, 63]. An interesting expression pattern for Sox-9 is observed during the digit

differentiation stage, particularly in the first interdigital space and at the tips of the

developing digits. The same expression pattern is also observed in the developing

lirnb of mouse and chick embryos [27, 56, 57, 62]. In these species, Sox-9

expression at the end of the digits corresponds to zones where chondrogenesis is

stili active, an event required for the formation of normal-sized digits [57]. The

$ox-9 expression detected in the interdigital spaces may be due to Bone

moîphogenetic prote in-2 (BMF-2) signaling. BMF-2 belongs to the TGF-fl

superfamily and is widely recognized for its ability to stimulate bone formation and

osteoblast differentiation [64]. Furthermore, Sox-9 has been shown to be an

important downstream mediator of the BMP-2 signaling pathway in osteogenic

cells [65]. Finally, it can be noted that the Sox-9 expression is significantly less

intense in the more mature digit. This may indicate that chondrogenesis is finished

and that the chondrocytes in this digit have hypertrophied. Mg et al. have

demonstrated that hypertrophic chondrocytes no longer express Sox-9 [23]. Our

Western blot confirrns that Sox-9 protein expression is weak in normal Ïimbs and

increases in the tater stages of regeneration.

Tt is worth mentioning that we did not detect any Sox-JO expression during

limb development or during limb regeneration. This is not surprising since Sox-1O

is not recognized to have a role in skeletal formation or limb patterning. Current

literature supports the concept that Sox-JO expression is detected primarily in the

peripheral nervous system and neural crest derived cells [30, 32, 33, 41, 42, 60] and

shows no expression in developing limbs.

Ail together, our resuits suggest that Sox-9 expression precedes the

appearance of skeletal structures during axolotl liinb development and regeneration.

During limb regeneration, Sox-9 is expressed in the last stage of the preparation

phase, a process unique to the regeneration process that includes events such as

wound healing and cellular dedifferentiation. Tnterestingly, Sox-9 expression is

predominantly detected in the late stages of limb regeneration (i.e. r-deve1opment

phase). It has been reported that the molecular mechanisms of this phase are a

Page 114: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

$4

recapitulation of those used in developing limbs. Thus, this suggests a possible

conserved mechanisrn for this gene in osteogenesis during lirnb developrnent and

late limb regeneration. Further studies will be needed for the characterization of the

genes involved in bone regeneration during axolotl lirnb regeneration in order to

establish their requirernents during this process.

Acknowledgements

This work was funded by a grant from the National Sciences and

Engineering Research Council of Canada. S. R. is a Chercheur Boursier Junior 1

from the Fond de Recherche en Santé du Québec. I would also like to thank the

members ofthe S. Roy laboratory for the critical review ofthis manuscript.

Page 115: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

85

3.7 References

1. Brockes, J.P., Amphibian 11mb regeneration: rebuilding a complex

structure. Science, 1997. 276(5309): p. $1-7.

2. Nye, H.L., et al., Extending the table of stages of normal development of

the axolotl: Limb development. Dey Dyn, 2003. 226(3): p. 555-60.

3. Tank, P.W., B.M. Canson, and T.G. Coirnelly, A staging system for

forelimb regeneration in the axolotl Ambystoma mexicanum. J Morpho!,

1976. 150(1): p. 117-2$.

4. Bryant, S.V., T. Endo, and D.M. Gardiner, Vertebrate 11mb regeneration

and the origin ofliinb stem celis. Int J Dey Bio!, 2002. 46(7): p. 887-96.

5. Gardiner, D.M., T. Endo, and S.V. Bryant, The molecular basis of

amphibian 11mb regeneration: integrating the oÏd with the new. Semin

Celi Dey Bio!, 2002. 13(5): p. 345-52.

6. Gardiner, D.M., M.R. Canson, and S. Roy, Towards afunctional analysis

of11mb regeneration. $emin Ce!! Dey Bio!, 1999. 10(4): p. 385-93.

7. Roy, S. and M. Lévesque, Limb Regeneration in Axolotl: Is It

$uperhealing? TSW Deve!opment & Ernbryo!ogy, 2006. 1((S1)): p. 12-

25.

8. Muneoka, K. and S.V. Bryant, Evidence that patterning mechanisms in

developing and regenerating limbs are the same. Nature, 1982. 298(5872):

p. 369-71.

9. Roy, S. and D.M. Gardiner, Cyclopamine induces digit loss in

regenerating axolotl limbs. J Exp Zool, 2002. 293(2): p. 186-90.

10. Roy, S., D.M. Gardiner, and S.V. Bryant, Vaccinia as a tool forfunctional

analysis in regenerating limbs: ectopic expression ofShh. Dey Bio!, 2000.

218(2): p. 199-205.

11. Torok, M.A., et al., Expression of HoxD genes in developing and

regenerating axolotl limbs. Dcv Bio!, 1998. 200(2): p. 225-33.

12. Nye, H.L., et al., Regeneration ofthe urodele limb: a review. Dey Dyn,

2003. 226(2): p. 280-94.

Page 116: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

$6

13. Maden, M. and H. Wallace, The origin of 11mb regeneratesfrom cartilage

grqfls. Acta Ernbryol Exp (Palermo), 1 975(2): p. 77-$6.

14. Wallace, H., M. Maden. and B.M. Wallace. Participation of cartilage

grafis in amphibian 11mb regeneration. J Ernbryol Exp Morphol, 1974.

32(2): p. 39 1-404.

15. Horton, W.A., The biology of bone growth. Growth Genet. Horrn., 1990.

6(2): p. 1-3.

16. Ikeda, T., et al., Distinct roÏes of Sox5, Sox6, and $ox9 in dfferent stages

ofchondrogenic differentiation. J Bone Miner Metab, 2005. 23(5): p. 337-

40.

17. Gubbay, J., et al., A gene mapping to the sex-determining region ofthe

mouse Y chromosome is a member of a novel family of embryonicaliy

expressedgenes. Nature, 1990. 346(628 1): p. 245-50.

18. Bowies, J., G. Schepers, and P. Koopman, Phylogeny ofthe $OXfamily of

deveÏopmental transcription factors based on sequence and structural

indicators. Dey Bio!. 2000. 227(2): p. 239-55.

19. Kamachi, Y., M. Uchikawa, and H. Kondoh. Pairing $OX off with

partners in the regttÏation ofemb,yonic deveÏopment. Trends Genet, 2000.

16(4): p. 182-7.

20. Wegner, M., From head to toes: the multtle facets of Sox proteins.

Nucleic Acids Res, 1999. 27(6): p. 1409-20.

21. de Crombrugghe, B., et al., TranscrïtionaÏ nzechanisms of chondrocyte

dfferentiation. Matrix Bio!, 2000. 19(5): p. 3 89-94.

22. Lefebvre, V., et al., $0X9 is a potent activator ofthe chondrocyte-specflc

enhancer ofthe pro aÏphal(Jj) collagen gene. Mol Celi Biol, 1997. 17(4):

p. 2336-46.

23. Ng, U., et al., 80X9 binds DNA, activates transcription, and coexpresses

with type Ilcollagen during chondrogenesis in the mouse. Dey Biol, 1997.

183(1): p. 10$-21.

Page 117: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

$7

24. Wagner, T., et al., Autosomal sex reversai and campomeiic dyspiasia are

caused by mutations in and around the 8RY-related gene 80X9. Ce!!,

1994. 79(6): p. 1111-20.

25. Foster, J.W., et al., Campomelic dyspiasia and autosomai sex reversai

caused by mutations in an 8RY-reÏated gene. Nature, 1994. 372(6506): p.

525-30.

26. Spokony, R.f., et al., The transcriptioizfactor Sox9 is required for cranial

neurat ci-est deveÏopment in Xenopus. Development, 2002. 129(2): p. 421-

32.

27. Wright, E., et al., The Sty-related gene 8ox9 is expressed during

chondrogenesis in mouse einbryos. Nat Genet, 1995. 9(1): p. 15-20.

2$. Mori-Akiyama, Y., et al., $ox9 is required for determination of the

chondrogenic celi iineage in the craniai neurai crest. Proc Natl Acad Sci

U $ A, 2003. 100(16): p. 9360-5.

29. Hong, C.S. and J.P. Saint-Jeaimet, Sox proteins and neural crest

developnzent. Sernin Ceil Dey Bio!, 2005.

30. Aoki, Y., et al., SoxlO reguÏates the development o/neural crest-derived

meÏanocytes inXenopus. Dcv Biol, 2003. 259(1): p. 19-33.

31. Herbarth, B., et al., Mutation ofthe Sry-reiated Sox]0 gene in Dominant

megacolon, a mouse model for human Hirschsprung disease. Proc Natl

Acad Sci U S A, 199$. 95(9): p. 5 161-5.

32. Southard-Smith, E.M., L. Kos. and W.J. Pavan, SoxlO mutation disrupts

ne tirai crest deveÏopment in Dom Hirschsprung mouse mode Ï. Nat Genet.

199$. 18(1): p. 60-4.

33. Dutton, K.A., et al., Zebraflsh coÏourÏess encodes sox]0 and specfies non

ectomesenchymal neurai crest fates. Developrnent, 2001. 128(21): p.

4113-25.

34. Pingault, V., et al., 80X10 mutations in patients with Waardenburg

Hirschsprung disease. Nat Genet, 199$. 18(2): p. 171-3.

35. Britsch, S., et al., The transcription factor SoxlO is a key regiilator of

perpheralgiiai deveiopment. Genes Dcv, 2001. 15(1): p. 66-7$.

Page 118: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

8$

36. Paratore, C., et al., $oxIO hapÏoinszifficiency affects maintenance of

progenhtor ceÏÏs in a motise model of Hirschsprung disease. Hum Mol

Genet, 2002. 11(24): p. 3075-85.

37. Kapur, R.P., Early death of neural crest celÏs is responsible for total

enteric aganglionosis in Soxi O (Dom)/Soxl O (Dom) mû use embiyos.

Pediatr Dey Pathol, 1999. 2(6): p. 559-69.

3$. Soimenberg-Riethrnacher, E., et al., DeveÏopment and degeneration of

dorsal root ganglia in the absence of the HMG-domain transcription

factorSoxlO. MechDev, 2001. 109(2): p. 253-65.

39. Yan, Y.L., et al., A pair of Sox: distinct and overlapping functions of

zebrafish sox9 co-orthologs in craniofacial and pectoral fin development.

Development, 2005. 132(5): p. 1069-83.

40. Honore, S.M., M.J. Aybar, and R. Mayor, SoxlO is requiredfor the earÏy

development of the prospective neural crest in Xenopzis embryos. Dey

Bio!, 2003. 260(1): p. 79-96.

41. Cheng, Y., et al.. Chick soxl0, a transcription factor expressed in both

early ne tirai crest celis and central nervous system. Brain Res Dey Brain

Res, 2000. 121(2): p. 233-41.

42. Bondurand, N., et al., Expression of the 80X10 gene dttring human

development. FEBS Lett, 1998. 432(3): p. 168-72.

43. Schnapp, E., et al., Hedgehog signaling controls dorsoventral patterning,

biastema ceil proiferation and cartilage induction during axolotl tail

regeneration. Development. 2005. 132(14): p. 3243-53.

44. Gardiner, D.M., et al., ReguÏation of HoxA expression in developing and

regenerating axolotl limbs. Developrnent, 1995. 121(6): p. 1731-41.

45. Bryant, S.V. and L. Iten, The regulative ability of the limb regeneration

blastema of Notophthalmus viridescens: Experiments in situ. Wilhelrn

Roux Arch, 1974. 174: p. 90-101.

46. Laemrnli, U.K., Cleavage ofstructuraÏproteins during the assembÏy ofthe

head ofbacteriophage T-l. Nature, 1970. 227(5259): p. 680-5.

Page 119: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

89

47. Zakany. R., et al., Hydrogen peroxide inhibits formation of cartilage in

chicken micromass cultures and decreases the activity of calcineurin:

implication ofERK]/2 and Sox9 pathways. Exp Ceil Res, 2005. 305(1): p.

190-9.

4$. Strausberg, R.L., et al., Generation and initial analysis of more than

]5,000fiill-length httman andmouse cDNA sequences. Proc Nati Acad Sci

U S A, 2002. 99(26): p. 16899-903.

49. Patel, M., et al., Primate DAX], SRY, and 30X9. evoÏutionary

stratification of sex-determination pathway. Am J Hum Genet, 2001.

68(1): p. 275-$0.

50. Nakamura, M., Sox9. Published Only in NCBT BLAST DataBase, 2000.

51. McKeown, S.J., et al., Sox]O overexpression induces neural crest-like

ceÏls fro,z all dorsoventral levels of the neural tube but inhibits

differentiation. Dey Dyn, 2005. 233(2): p. 430-44.

52. Cheung, M. and J. Briscoe, Neural crest development is regulated by the

transcriptionfactor Sox9. Development, 2003. 130(23): p. 56$ 1-93.

53. Armstrong, J.B. and G.M. Malacinski, Developmental biology of the

axolotl. 1989, New York: Oxford University Press. xi, 320.

54. Saint-Germain, N., et al., Specfication of the otic placode depends on

Sox9fitnction in Xenopus. Development, 2004. 131(8): p. 1755-63.

55. Lee, Y.H., et al., Early requireinent ofthe transcrtptional activator $ox9

for neural crest specfication in Xenopus. Dey Biol, 2004. 275(1): p. 93-

103.

56. Akiyarna, H., et al., The transcription factor Sox9 has essential roles in

successive steps of the chondrocyte dfferentiation pathway and is

required for expression of$ox5 and Sox6. Genes Dcv, 2002. 16(21): p.

2213-2$.

57. Bi, W., et al., Sox9 is reqnired for cartilage formation. Nat Genet, 1999.

22(1): p. $5-9.

58. Healy, C., D. Uwanogho, and P.T. Sharpe, Regulation and role of8ox9 in

cartilage formation. Dey Dyn, 1999. 215(1): p. 69-78.

Page 120: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

90

59. Yan, Y.L, et al., A zebrafish sox9 gene required for cartilage

morphogenesis. Developrnent, 2002. 129(21): p. 5065-79.

60. Kuhlbrodt, K., et al., SoxlO, a novel transcriptional modulator in guai

ceils. JNeurosci, 1998. 18(1): p. 237-50.

61. Watanabe, K., et al., Expression of the Sox]O gene during mouse inner ear

development. Brain Res Mol Brain Res, 2000. 84(1-2): p. 141-5.

62. Chimal-Monroy, J., et al., Analysis of the molecular cascade responsible

for mesodermal 11mb chondrogenesis: $ox genes and BMP signaling. Dey

Biol, 2003. 257(2): p. 292-301.

63. Tsuchiya, H., et al., Chondrogenesis enhanced by overexpression ofsox9

gene in mouse bone marrow-derived mesenchymal stem cells. Biochem

Biophys Res Commun, 2003. 301(2): p. 338-43.

64. Choi, K.Y., et al., Runx2 regulates fGF2-induced Bmp2 expression

during cranial bone development. Dey Dyn, 2005. 233(1): p. 115-2 1.

65. Zehentner, B.K., C. Dony, and H. Burtscher, The transcription factor Sox9

is involved in BMF-2 signaling. J Bone Miner Res, 1999. 14(10): p. 1734-

41.

Page 121: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

91

CHAPITRE 4

Discussion

L’étude du phénomène de la régénération a fleuri considérablement pendant

les deux derniers siècles. Présentement, la recherche sur la régénération tissulaire se

fait dans toute une gamme d’espèces, du protozoaire à l’humain, parmi lesquelles on

retrouve l’urodèle. Chez ce dernier, le membre est la structure la plus étudiée et en

conséquence, les mécanismes de la mise en place de différents tissus et cellules lors

du processus de développement et de la repousse du membre sont bien caractérisés.

Parmi ces tissus, nous nous intéressons particulièrement au développement des

structures squelettiques. L’étude des signaux qui régulent leur développement peut

donner un aperçu aux mécanismes moléculaires qui pourront potentiellement aussi

être impliqués dans la régénération des tissus squelettiques. Dans cette étude, nous

avons réussi à cloner et à caractériser les gènes Sox-9, Sox-lO, PTHrF et Cbfa-1 de

l’axolotl. Ces gènes sont tous reconnus pour leurs fonctions importantes lors du

développement, particulièrement au niveau de la formation du squelette, chez les

mammifères.

4.1 Expression de Sox-9 et Sox-lO durant l’embryogénèse

Les gènes Sox-9 et Sox-lO sont importants dans plusieurs processus

développementaux incluant le développement de la crête neurale et la régulation des

NCC chez plusieurs espèces. Pour notre étude, nous avons caractérisé l’expression

de Sox-9 et Sox-lO à plusieurs stades embryonnaire en utilisant la technique

d’hybridation in situ de type «whole-rnount» et d’imrnunobuvardage de type

«western». Nos résultats ont révélé que Sox-9 et Sox-JO ont un patron d’expression

similaire durant les stades précoces du développement tandis que lors de

l’embryogénèse, leurs patrons diffèrent. De manière générale, les patrons

d’expression de Sox-9 et Sox-JO chez l’axolotl sont comparables à ceux démontrés

parmi les autres espèces et sont en accordance avec leurs rôles respectifs durant

l’embryogenèse. De plus, l’expression protéinique durant le développement de

l’embryon démontre une régulation qui corrèle avec l’expression génique observée.

Page 122: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

92

4.2 Expression de Sox-9, Cbfa-1 et PTHrP durant te développement et tarégénération du membre

4.2.1 Sox-9

Durant le développement, Sox-9 est exprimé partout dans le membre lors des

stades précoces puis se concentre plus tard dans les régions qui correspondent aux

doigts en développement. Ce patron d’expression coïncide dans un premier temps

avec son rôle dans la différenciation et l’agrégation des précurseurs

préchondrocytaires ainsi qu’avec son rôle plus tardif dans la maturation et

prolifération des chondrocytes [95, 143-148]. Durant la régénération du membre,

$ox-9 est exprimé exclusivement à partir des stades tardifs, étant premièrement

détecté au stade du bourgeon intermédiaire, qui démarque le début de la déposition

du cartilage autour de l’os amputé [52]. Ultérieurement, l’expression de $ox-9 est

maintenue durant la totalité de la phase de redéveloppement, ce qui correspond avec

la mise en place de plusieurs structures squelettiques du membre. Nos résultats ont

démontré que l’expression de Sox-9 durant le développement et la régénération

précède la formation du cartilage. Encore plus, Sox-9 présente un patron

d’expression durant les stades avancés de développement du membre similaire à

celui observé durant la phase de redéveloppement de la régénération. Ces résultats

supportent le phénomène de régénération biphasique ainsi qu’un mécanisme

ostéogénique conservé pour ce gène lors des deux processus.

4.2.2 PTHrP

Pour ce qui concerne l’expression de FTHrF, elle n’est que faiblement

détectée aux derniers stades du développement du membre, particulièrement dans la

région carpienne et dans les doigts en développement. Cette expression peut être

attribuée à ses rôles régulateurs pour le maintient de la prolifération des

chondrocytes requise pour la formation des structures carpiennes et métacarpiennes

[116, 119]. Quant à l’expression de PTHrF durant la régénération du membre, il est

exprimé aussitôt que le blastème est visible, à l’étape du bourgeon primaire, et

continue d’être fortement exprimé jusqu’aux derniers stades de régénération.

L’intensité du signal observé pour FTHrF durant la régénération pourrait être

Page 123: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

93

justifiée par: i) son rôle dans la prolifération des chondrocytes [122] ii)

l’association de son expression avec les cellules mésenchymateuses non-

différenciées destinées à se transformer en chondrocytes [116, 119] et iii) son rôle

régulateur sur Ihh, une rnolécùle responsable pour la différenciation des cellules

mésenchymateuses en chondrocytes [149, 150].

L’expression de FTHrF est différente lors du développement et de la

régénération du membre, par la localisation du signal et aussi par l’intensité. Ceci

suggère qu’il aurait plus qu’une fonction lors de ces processus. L’expression

différentielle pourrait être attribuée aux divers rôles physiologiques de FTHrP en

plus de son rôle durant l’ostéogénèse. Par exemple, diverses études ont déjà

démontré que PTHrP est impliqué dans la régulation de la croissance et de la

différenciation des kératinocytes [151, 152]. FHTrP est aussi réputé d’avoir un rôle

dans l’établissement et l’accumulation des tissus musculaires [116] et de favoriser la

dédifférenciation des cellules de Schwann dans la régénération des nerfs [153].

D’ailleurs, il a déjà été démontré que FTHrP participe à la formation du blastème

durant la régénération des ramures du cerf [20]. Donc, il est plausible que

l’expression de PTHrP détectée durant le développement et la régénération du

membre correspond aux autres fonctions connues de ce gène.

4.2.3 Cbfa-1

Nous avons également vérifié l’expression de Cbfa-1 au cours du

développement du membre. Il est connu que Cbfa-] est exprimé durant la

condensation mésenchymateuse et qu’il participe à la différenciation des cellules

précurseurs de l’os et du cartilage. Il n’est donc pas surprenant qu’on détecte son

expression tôt durant le développement [129, 154, 155]. Cbfa-] est aussi réputé pour

être exprimé dans les chondrocytes hypertrophiques et les ostéoblastes pour réguler

leur maturation [127]. Ces cellules se retrouvent dans les diaphyses de l’os ainsi

corroborant l’expression détectée dans ces régions vers la fin du développement du

membre. Durant la régénération, Cbfa-J n’est que faiblement exprimé à l’étape de

bourgeon tardif et lors des derniers stades de régénération du membre, son

expression est limitée aux régions de la formation des doigts, particulièrement dans

Page 124: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

94

les diaphyses. Son patron d’expression durant ces stades coïncide avec des régions

squelettiques en formation, notamment à l’étape de différenciation chondrocytaires

[521, confirmant nos résultats avec l’implication de Cbfa-1 dans la différenciation

des chondrocytes.

De manière générale, le patron d’expression de ce gène corrèle avec la

formation des structures squelettiques du membre durant le développement et la

régénération. Les résultats obtenues pour Cbfa-1 supportant la régénération

biphasique du membre nous laissent croire que ces gènes sont autant impliqués

durant la régénération osseuse que durant le développement.

4.3 Guérison des fractures osseuses

Finalement, nous avons vérifié la capacité de l’axolotl de guérir des fractures

non-stabilisées j ointes et non-jointes afin d’établir les mécanismes de réparation mis

en place lors d’une blessure de ce type dans un organisme capable de régénérer des

membres en entier. Nos résultats démontrent que l’axolotl, tout comme les autres

vertébrés, guérit ses fractures non-stabilisées jointes par le processus de formation

d’un cale de cartilage qui sera ensuite remplacé par de la matrice osseuse [140].

Pour ce qui est des fractures non-jointes de dimension critique, on a remarqué que

l’axolotl est incapable de réparer l’espace laissé entre les deux bouts d’os et ce,

même après sept mois. L’axolotl n’utilise donc pas la régénération pour réparer ses

fractures. Étant donné que l’axolotl adulte possède la capacité exceptionnelle de

régénérer des membres complets, la raison pour laquelle il n’utilise pas la

régénération pour réparer ses fractures reste incomprise. Cependant, plusieurs

hypothèses peuvent être formulées afin de tenter d’expliquer cette énigme. Tout

d’abord, à la différence d’une amputation, après une fracture il y a absence d’une

plaie ouverte, ainsi inhibant les interactions épithélio-mésenchymateuses

importantes pour le processus de régénération [15, 37, 59]. Quoique ceci pourrait

être une explication plausible, cela est peu probable car l’axolotl est capable de

régénérer des parties manquantes du coeur et de la moelle épinière après résection en

l’absence de ces interactions [15]. Un autre évènement essentiel à la régénération du

membre est le trauma qui est infligé aux tissus avoisinants après amputation. Goss a

Page 125: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

95

démontré que si un membre d’axolotl est amputé directement à travers une section

où l’os aurait été préalablement extirpé, la partie qui va régénérer va contenir la

moitié de l’os correspondant à l’os extirpé. Par contre, il n’y aura pas de

régénération osseuse dans le moignon t35]. Cette expérience démontre non

seulement l’importance du facteur de trauma, mais aussi que les cellules qui

composent les structures squelettiques déjà mise en place dans le membre amputé

semblent avoir peu d’implication dans le processus de régénération. Cette notion a

été testé davantage par Lheureux qui a démontré qu’après avoir greffé un morceau

de peau (derme et épiderme) sur une patte irradiée, incapable de régénérer, il y a

régénération complète de toutes les structures sauf les muscles [49]. Ensemble, ces

expériences ont démontré que les matériaux présents dans le moignon ne sont pas

nécessaires pour la régénération des nouvelles structures squelettiques du membre

[49-51]. Un autre facteur auquel il faut penser lorsqu’on compare le processus de

guérison et de régénération est la présence de cellules dédifférenciées. La

dédifférenciation cellulaire est critique au processus de régénération, distinguant les

membres qui régénèrent de ceux qui ne régénèrent pas [156]. Ceci étant, la présence

des cellules dédifférenciées pourrait être un facteur déterminant pour la régénération

d’une fracture non-jointe de dimension critique.

Nos résultats obtenues pour les fractures osseuses (Chapitre 2, figure 5) sont

consistants avec le modèle de régénération par intercalation, ce qui requiert un

blastèrne en contact avec le moignon pour que la régénération épirnorphique ait lieu

[72, 73]. Il a été démontré que si une main mature est greffée sur un moignon

proximal, il n’y a rien qui se passe, c’est-à-dire pas d’intercalation. Au contraire, si

une blastème distale est greffée sur tin moignon proximal, un membre normal va

régénérer [37]. Un «gap» osseux de dimension critique ressemble à la greffe de la

main mature sur le moignon où il y aurait absence de régénération par intercalation.

Naturellement, ceci pourrait être attribué au fait que comme dans le cas d’une

fracture osseuse, la main mature ne contient pas une CAE, ce qui empêchera

I’ établissement des interactions épithélio-mésenchymateuses.

Malgré qu’il existe une ressemblance en termes d’expression génique et de

changements cellulaires entre les processus de la guérison des plaies et les étapes

Page 126: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

96

précoces de la régénération, basée sur nos résultats et ceux discutés antérieurement,

l’idée que la régénération soit simplement une guérison amélioré est peu probable.

Une étude réalisée par Mescher et aï. présente une analyse intéressante sur la

réponse immunitaire par rapport à la régénération épimorphique. L’étude révèle une

réponse immunologique diminuée, ou plutôt, une réponse d’immtinotolérance chez

les amphibiens à la suite d’une amputation [1571. Cette expérience supporte l’idée

que la régénération n’est pas une guérison améliorée mais plutôt une réponse

différente des urodèles aux blessures, reliée à I’immunotolérance, qui pourrait être

en partie responsable de permettre ou de diriger les cellules situées au plan

d’amputation vers le processus de régénération.

Bien que les études ci-dessus nous apportent quelques réponses sur les

mécanismes de guérison et de régénération des traumatismes osseux, il faut

impérativement continuer à étudier l’expression des gènes ostéogéniques qui

interviennent durant la formation, la régénération et la guérison osseuse afin de

tenter de mettre en évidence les différences moléculaires entre ces processus.

Page 127: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

97

CHAPITRE 5

Conclusions et perspectives

L’exploitation de l’axolotl pour étudier les mécanismes cellulaires et

moléculaires responsables de la régénération chez les vertébrés a contribué à

l’avancement des connaissances dans le domaine de la régénération. Ayant

maintenant les outils nécessaires, il est possible d’identifier les divers gènes qui

interviennent lors du processus de régénération. Actuellement, des projets de

séquençage EST [158, 159] ont réussi à cloner plus de 60 000 EST, ce qui a

contribuer à la réalisation des puces à ADN [160]. Avec cette technologie, il serait

possible d’identifier à grande échelle les gènes impliqués dans plusieurs processus

essentiels à la régénération, telle que la dédifférenciation cellulaire et la dépendance

des nerfs, afin de mieux comprendre leurs rôles durant la régénération. À l’instant,

nous nous fions sur les gènes essentiels lors des processus développementaux

puisqu’ils démontrent une conservation parmi un grand éventail d’espèces.

Pour notre étude, nous avons choisi d’étudier l’expression de $ox-9, $ox-]O,

PTHrP et Cbfa-], ces gènes étant déjà caractérisés durant le développement chez

plusieurs vertébrés. La caractérisation de ces gènes chez l’axolotl durant le

développement et la régénération du membre nous a permis d’éclaircir leurs

implications durant ces processus. Pour ce qui concerne Sox-9 et Sox-1O, comme

démontré chez d’autres espèces, leurs patrons d’expression durant l’embryogenèse

ont confirmé leur présence durant le développement de la crête neurale et dans les

structures qui en dérivent. Sox-9 joue aussi un rôle dans la chondrogenèse durant le

développement et la régénération de la patte, ayant une expression omniprésente qui

précède la formation de cartilage lors des deux processus. De l’autre côté,

l’expression différentielle du gène FTHrP lors du développement et de la

régénération peut être attribuée au fait que FTHrF est impliqué dans plusieurs

processus cellulaires. Quant à Cbfa-], le patron d’expression durant la régénération

ressemble beaucoup à celui obtenu lors du développement de la patte et correspond

avec la mise en place du cartilage. On peut alors penser que Cbfa-] possède un rôle

ostéogénique conservé durant les deux processus ainsi supportant l’hypothèse de la

Page 128: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

98

régénération biphasique du membre. Finalement, l’autre volet du projet visait à

caractériser le processus de guérison des fi-actures osseuses chez l’axolotl. Nos

expériences ont confirmé que l’axolotl n’utilise pas la régénération pour réparer des

fractures osseuses, soit jointes ou non-jointes.

La prochaine étape dans cette étude serait de caractériser la fonction de Sox

9, PTHrF et Cbfa-], à l’aide des vecteurs viraux fonctionnels chez l’axolotl, afin de

mieux comprendre leurs rôles durant le développement et la régénération de l’os.

Étant donné que les gènes et leurs fonctions sont conservés parmi différentes

espèces, il n’est pas déraisonnable de s’attendre à ce que les gènes impliqués dans la

régénération du membre chez les amphibiens urodèles soient conservés chez

l’humain. Une meilleure compréhension des mécanismes de régénération des

structures squelettiques chez l’axolotl pourrait bénéficier au développement de

nouveaux traitements des fractures et des maladies dégénératives et inflammatoires

de l’os comme l’arthrite et l’ostéoporose chez l’humain.

Page 129: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

99

CHAPITRE 6

Références

1. Wolpert, L., Frinctples of devetopment. 1998. London; New York,

Oxford; New York: Current Biology; Oxford University Press. xx, 484.

2. Tremblay, A., Mémoires pour servir à l’histoire d’un genre de polypes

d’eau douce à bras en forme de cornes. 1744. Leide, Verbeek.

3. Réaurnur, R.-A.F., Sur les diverses reproductions qui se font dans les

écrevisses, les omars, les crabes, etc. et entr’autres sur celles de leurs

jambes et de leurs écailles. Mém Acad Roy Sci, 1712: p. 223-245.

4. Spallanzani, L., Frodromo sa un Opera da Imprimersi sopra le

RQroduzioni animali. Modena, 1768. 7.

5. Lenhoff, S.G., H.M. Lenhoff, and A. Trembley, Hydra and the birth of

experimental biology, 1744: Abraham Trembley’s Môemoires concerning

thepoÏyps. 1986, Pacific Grove. CA: Boxwood Press. xvi, 60, x, 192 p.

6. Morgan, T.H., Regeneration. Vol. xii p., 1 1. 1901, New York, London:

The Macmillan Company; Macmillan & Co., ltd. 316 p.

7. Gierer. A., et al.. Regeneration ofhydrafrom reaggregated cells. Nat New

Bio!, 1972. 239(91): p. 98-101.

8. Morgan, T.H., Experimental studies of the regeneration of planaria

macttlata. Arch. Entwrn Org., 1898. 7: p. 364-397.

9. Morgan, T.H., Regeneration in planarian. Arch. Entwm. Org., 1900. 10:

p. 58-117.

10. Morgan, T.H., The control ofheteromoiphisis in planaria maculata. Arch.

Entwm. Org., 1903. 14: p. 683-695.

11. Newrnark, P.A. and A. Sanchez Alvarado, Notyourfather’splanarian: a

classic model enters the era ofjiinctionaÏ genomics. Nat Rev Genet. 2002.

3(3): p. 2 10-9.

12. Wollf E., D.f., Suy la migration des cellttles de regeneration chez les

planaries. Rev. Suisse Zool., 1948. 55: p. 218-227.

Page 130: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

100

13. Higgins, G.M., Anderson, R.M., Experimental pathology of the liver.L

Restoration ofthe liver ofthe white ratfoÏÏowing partial surgical rernoval.

Arch. Pathol., 1931. 12: p. 186-202.

14. Michalopoulos, O.K., Liver regeneration: molecular mecÏianisrns of

growth control. Faseb J, 1990. 4(2): p. 176-$7.

15. Brockes. J.P., Amphibian li,nb regeneration: rebuilding a coinplex

structure. Science, 1997. 276(5309): p. 8 1-7.

1 6. Marsh, J.L. and H. Theisen, Regeneration in insects. Sernin Ceil Dey Bio!,

1999. 10(4): p. 365-75.

17. $lack, J.M., Regeneration research today. Dey Dyn, 2003. 226(2): p. 162-

6.

18. Bryant, P.J., Regeneration and duplication in irnaginal dises. Ciba Found

Symp, 1975. 0(29): p. 71-93.

19. Suttie, J.M. and P.f. fennessy, Regrowth ofampttated veÏvet antÏers with

andwithout innervation. J Exp Zoo!, 1985:234(3): p. 359-66.

20. Price, J. and S. Allen, Exploring the mechanisms regziÏating regeneration

ofdeer antters. Philos Trans R Soc Lond 3 Bio! Sci, 2004. 359(1445): p.

$09-22.

21. faucheux, C., et al., Ceils in regenerating deer antler cartilage provide a

rnicroenvironrnent that sipports osteoclast dfferentiation. J Exp Bio!,

2001. 204(Pt 3): p. 443-5 5.

22. Ro!f H.J. and A. Enderle, Hardfallow deer antler: a living bone tiÏl antler

casting? Anat Rec, 1999. 255(1): p. 69-77.

23. Borgens, R.B., Mice regrow the tips of their foretoes. Science, 1982.

217(456 1): p. 747-50.

24. Han, M., et al., Digit regeneration is reguÏated by Msxl and BMP4 infetal

mice. Deve!opment, 2003. 130(21): p. 5123-32.

25. Odelberg, S.J., A. Ko!!hoff, and M.T. Keating, Dedfferentiation of

mammalian myotubes inducedbv msx]. Ce!!, 2000. 103(7): p. 1099-109.

26. Illingworth, C.M.. Trapped lingers and anuputatedfinger tips in chiÏdren.

J Pediatr Surg, 1974. 9(6): p. 853-5$.

Page 131: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

101

27. Broussonet, M., Observations sur ta regeneration de quelques parties du

corps des poissons. In: Hist d. I’Acad Roy des Sciences. 1786.

2$. Morgan, T.H., Regeneration in teÏeosts. Arch Entwickslungsmech Org.,

1901. 10: p. 120-131.

29. Bereiter-NaIm, J., Zylberberg, L., Regeneratiol? ofteleostfish scale. Cornp

Biochem Physiol, 1993. 105A: p. 625-64 1.

30. Bernhardt, R.R., et al., h2creased expression of specific recognition

moÏecuÏes by retinaÏ ganglion ceÏÏs and bv optic patÏni’ay glia

accompanies the success/id regeneration of retinal axons in aduÏt

zebrafish. J Comp Neurol, 1996. 376(2): p. 253-64.

31. Becker, T., et al., Axonal regrowth after spinal cord transection in aduÏt

zebrafish. J Comp Neurol, 1997. 377(4): p. 577-95.

32. Poss, K.D., L.G. Wilson, and M.T. Keating, Heart regeneration in

zebrafish. Science, 2002. 298(5601): p. 2 188-90.

33. Slack, J.M., et al., Cellular and molecular mechanisms ofregeneration in

Xenopzts. Philos Trans R Soc Lond B Biol Sci. 2004. 359(1445): p. 745-

51.

34. Srnith, H.M., DevelopmentaÏ Biology of the Axolotl, ed. J.B.M.

Armstrong, G.M. 1989, New York: Oxford University Press. 3-12.

35. Goss, R.J., Frinctales of Regeneration. 1969, New York: Acadernic

Press.

36. Slack, J.M.. A seriaÏ threshold theoiy ofregeneration. J Theor Biol, 1980.

82(1): p. 105-40.

37. Wallace, H., Vertebrate limb regeneration. 1981, Chichester Eng.; New

York: Wiley. xii, 276.

38. Gardiner, D.M., T. Endo, and S.V. Bryant, The molecutar basis of

amphibian limb regeneration: integrating the old with the new. Semin

Celi Dey Bio!, 2002. 13(5): p. 345-52.

39. Carlson, M.R., S.V. Bryant, and D.M. Gardiner, Expression of Msx-2

during deveÏopment, regeneration, and ii’ound heaÏing in axolotl limbs. J

Exp Zoo!, 1998. 282(6): p. 7 15-23.

Page 132: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

102

40. Goss, R.J., The regenerative responses of amputated limbs to delayed

insertion into the body cavity. Anat Rec, 1956. 126(3): P. 283-97.

41. Tornier, G., Kampf der Gewebe mi Regenerat bei Begunstigung der

Hautregeneration. RA, 1906. 22(149): p. 34$-369.

42. Saunders, J.W., Jr., The proximal-distal sequence oforigin ofthe parts of

the chick wing and the role of the ectoderm. J Exp Zool, 1948. 108: p.

3 63-404.

43. Saunders, J.W., Jr. and C. Reuss, Inductive and axial properties of

prospective wing-bud mesoderm in the chick embryo. Dey Bio!, 1974.

38(1): p. 41-50.

44. Kieny, M., [Inductive roÏe ofthe mesoderm in the earÏy dfferentiation of

the Ïimb bud in the chick embryo.]. J Embryol Exp Morphol, 1960. 8: p.

457-67.

45. Armstrong, J.B. and G.M. Malacinski, Developmental bioÏogy of the

axolotl. 1989, New York: Oxford University Press. xi, 320.

46. Bryant, $.V., T. Endo, and D.M. Gardiner, Vertebrate limb regeneration

and the origin oflmnzb stem ceÏÏs. Int J Dey Biol, 2002. 46(7): p. $87-96.

47. Gardiner D., M., Bryant S.V., The tetrapod limb in Cellïtlar and

Molecular Basis ofRegeneration. from Invertebrates to Hwnans, ed. G.J.

Ferretti P, eds. 199$, New York: Wiley. 187-206.

4$. Mescher, A.L., The cellular basis of limb regeneration in urodeles. Int J

Dey Biol, 1996. 40(4): p. 785-95.

49. Lheureux, E., Replacement of irradiated epidermis by migration of non

irradiated epidermis in the newt limb: the necessity of healthy epidermis

for regeneration. J Embiyol Exp Morphol, 1983. 76: p. 2 17-34.

50. Dunis, D.A. and M. Narnenwirth, The role of grafied skin in the

regeneration of x-irradiated axolotl Ïimbs. Dey Bio!, 1977. 56(1): p. 97-

109.

51. Holder, N., Organization of connective tissue patterns by derinal

fibroblasts in the regenerating axolotl limb. Development, 1989. 105(3):

p. 585-93.

Page 133: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

103

52. Tank, P.W., B.M. Canson, and T.G. Conne!ly, A staging system for

forelimb regeneration in the axolotl Ambystoma mexicanum. J Morphol,

1976. 150(1): p. 117-28.

53. Tanaka, E.M., Ccli differentiation and ccii fate during urodele tau and

11mb regeneration. Cunent Opinion in Genetics & Deve!oprnent, 2003. 13:

p. 497-501.

54. Tsonis, P.A., C.H. Washabaugh, and K. De! Rio-Tsonis,

Transdfferentiation as ci basis for amphibian iimb regeneration. Sernin

Ce!! Bio!, 1995. 6(3): p. 127-3 5.

55. Roy, S. and M. Lévesque, Limb Regeneration in Axolotl: Is It

$uperheaiing? TSW Deve!opment & Embryology, 2006. 1((S1)): p. 12-

25.

56. Gardiner, D.M., B. Blurnberg, and S.V. Bryant, Expression ofhomeobox

genes in 11mb regeneration. Prog C!in Biol Res, 1993. 383A: p. 3 1-40.

57. Gardiner, D.M., et al., Regulation ofHoxA expression in deveioping and

regenerating axolotl linzbs. Deve!oprnent, 1995. 121(6): p. 173 1-41.

58. Gardiner, D.M. and S.V. Bryant, Moiecuiar mechanisms in the controi of

Ïimb regeneration: the roie of homeobox genes. Int J Dey Bio!, 1996.

40(4): p. 797-805.

59. Gardiner, D.M., M.R. Car!son, and S. Roy, Towards afunctionai analysis

of11mb regeneration. Sernin Ceil Dey Bio!, 1999. 10(4): p. 3 85-93.

60. Muneoka, K. and S.V. Bryant, Evidence that patterning mechanisms in

deveioping and regenerating linzbs are the same. Nature, 1982. 298(5 $72):

p. 369-7 1.

61. Roy, S. and D.M. Gardiner, Cyclopamine induces digit ioss in

regenerating axolotl limbs. J Exp Zool, 2002. 293(2): p. 186-90.

62. Roy, S., D.M. Gardiner, and S.V. Bryant, Vaccinia as a tooi for fiinctional

analysis in regenerating iimbs: ectopic expression ofShh. Dey Biol, 2000.

218(2): p. 199-205.

63. Torok, M.A., et a!., Sonic hedgehog (shh) expression in deveioping and

regenerating axolotl limbs. J Exp Zool, 1999. 284(2): p. 197-206.

Page 134: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

104

64. Mullen, L.M., et aï., Nerve dependency ofregeneration: the role ofDistaÏ

less and fGf signaling in amphib jan Ïimb regeneration. Development,

1996. 122(11): p. 3487-97.

65. Tassava, R.A., L.L. Bennett, and G.D. Zitnik, DNA synthesis withottt

mitosis in amputated denervatedforetimbs oflarval axolotls. J Exp Zool,

1974. 190(1): p. 111-6.

66. Tassava, RA., D.J. Goldhamer. and B.L. Tomiinson, Ccli cycle controïs

and the role of nerves and the regenerate epitheÏium in urodele forelimb

regeneration: possible modifications of basic concepts. Biochem Celi

Bio!, 1987. 65(8): p. 739-49.

67. Tassava, R.A. and A.L. Mescher, The roles of injwy, nerves, and the

wound epidermis during the initiation of amphibian limb regeneration.

Differentiation, 1975. 4(1): p. 23-4.

68. Stocum, D., Wozind repair, Regeneration, and ArqficiaÏ Tissues. 1995,

New York: Springer-Verlag.

69. Yang, E.V., et a!., Expression of Mmp-9 and related matrix

metaïloproteinase genes during axolotl limb regeneration. Dey Dyn,

1999. 216(1): p. 2-9.

70. Canson, M.R., et al., Expression of Hoxbl3 and Hoxc]O in developing

and regenerating Axolotl Ïimbs and tails. Dey Bio!, 2001. 229(2): p. 396-

406.

71. Kesse!, M., Molecular coding ofaxial positions by Hox genes. Sernin Dey

Bio!, 1991. 2: p. 367-373.

72. Maden, M., IntercaÏary regeneration in the amphibian flmb and the ritie of

distal transformation. J Ernbryol Exp Morphol, 1980. 56: p. 201-9.

73. Muneoka, K., G.V. Ho!ler-Dinsrnore, and S.V. Bryant, Pattern

discontinïtity, polarity and directional intercaicttion in axolotl Ïimbs. J

Embryo! Exp Morphol, 1986. 93: p. 5 l-72.

74. Cohen, S.M. and G. Jurgens, Froximal-distal pattern formation in

Drosophila: cell autonomous requirement for Distal-less gene activity in

limb deveÏopment. Embo J, 1989. 8(7): p. 2045-2055.

Page 135: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

105

75. Panganiban, G., et al., The origin and evolution of animal appendages.

Proc Nati Acad Sci U $ A, 1997. 94(10): p. 5 162-6.

76. Cutier, L.S. and W. Gremski, EpitheliaÏ-mesenchyinal interactions in the

devetopment ofsalivaiy glands. Crit Rev Oral Bio! Med, 1991. 2(1): p. 1-

12.

77. Lonai, P., Epithelial mesenchynial interactions, the ECIvI and Ïimb

devetopment. J Anat, 2003. 202(1): p. 43-50.

78. Sanders, E.J., The roles of epithelial-mesenchymal ceÏt interactions in

deveÏopmentalprocesses. Biochem Ce!! Bio!, 198$. 66(6): p. 530-40.

79. Shannon, J.M. and B.A. Hyatt, EpitheliaÏ-mesencÏzymal interactions in the

developing lung. Annu Rev Physiol, 2004. 66: p. 625-45.

80. Slavkin, H.C., et al., Concepts of epithelial-mesenchymal interactions

during development: tooth and lung organogenesis. J Ce!l Biochem, 1984.

26(2):p. 117-25.

$1. Riddle, R.D., et al.. Sonic hedgehog mediates the polarizing activity ofthe

ZPA. Cet!, 1993. 75(7): p. 1401-16.

$2. Johnson, R.L. and C.J. Tabin, Ivlolecular models for vertebrate li,nb

devetopment. Ce!!, 1997. 90(6): p. 979-90.

83. Ng, L.J., et al., 80X9 binds DIVA, activates transcrlption, and coexpresses

with type II collagen during chondrogenesis in the mouse. Dey Bio!, 1997.

183(1): p. 10$-21.

$4. Imokawa, Y. and K. Yoshizato, Expression of sonic hedgehog gene in

regenerating newt limbs. Wound Repair Regen, 199$. 6(4): p. 366-70.

$5. Torok, M.A., et al., Expression of HoxD genes in developing and

regenerating axolotl limbs. Dey Biol, 199$. 200(2): p. 225-33.

$6. Olsen, B.R., A.M. Reginato, and W. Wang, Bone development. Annu Rev

Ccli Dey Bio!, 2000. 16: p. 19 1-220.

$7. Erlebacher, A.. et a!., Toward a nioÏecztÏar understanding of skeÏetal

development. Cel!, 1995. 80(3): p. 37 1-8.

88. Horton, W.A., The bioÏogy ofbone growth. Growth Genet. Horrn., 1990.

6(2): p. 1-3.

Page 136: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

106

$9. Hong, C.S. and J.P. Saint-Jeannet, Sox proteins and neurat crest

development. Semin Celi Dey Biol, 2005.

90. Aoki, Y., et al., $ox]O regulates the development ofneïtral crest-derived

meÏanocytes inXenopzts. Dey Bio!, 2003. 259(1): p. 19-33.

91. Spokony, R.F., et al., The transcrttionfactor $ox9 is required for craniaÏ

neuraÏ crest deveiopment in Xenopus. Development. 2002. 129(2): p. 421-

32.

92. Pingault, V., et al., 80X10 mutations in patients with Waardenburg

Hirschsprung disease. Nat Genet, 199$. 18(2): p. 171-3.

93. Herbarth, B., et al., Mutation of the $iy-reÏated $ox]0 gene in Dominant

megacoÏon, a mouse mode t for human Hirschsprung disease. Proc Nati

Acad Sci U S A, 1998. 95(9): p. 5161-5.

94. Kuhlbrodt, K., et al., Sox]0, a noveÏ transcriptionai modziÏator in guai

ceits. J Neurosci, 199$. 18(1): p. 237-50.

95. Wright, E., et al., The Siy-reÏated gene $ox9 is expressed during

chondrogenesis in mouse eïnbiyos. Nat Genet, 1995. 9(1): p. 15-20.

96. Mori-Akiyarna, Y., et al., $ox9 is reqzdred for determination of the

chondrogenic ccli iineage in the craniai neurai crest. Proc Nati Acad Sci

U S A, 2003. 100(16): p. 9360-5.

97. de Crombrugghe, B., et al., TranscrttionaÏ mechanisms of chondrocyte

dfferentiation. Matrix Biol, 2000. 19(5): p. 389-94.

9$. Lefebvre, V., et al.. $0X9 is a potent activator ofthe chondrocyte-specfic

enhancer ofthe pro aÏphal(ID coïlagen gene. Mol Celi Bio!, 1997. 17(4):

p. 2336-46.

99. Wagner, T., et aï., Autosomat sex reversai and cctinpomeÏic dyspiasia cire

caused by mutations in and around the $RY-reÏated gene $0X9. Ceil,

1994. 79(6): p. 1111-20.

100. Foster, J.W., et al., Campomelic dyspiasia and autosomaÏ sex reversai

caused by mutations in an $RY-reÏated gene. Nature, 1994. 372(6506): p.

525-30.

Page 137: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

107

101. Geïse, K., E. Poschl, and T. Aigner, Coiiagens--strtcture, fitnction, and

biosynthesis. Adv Drug Deliv Rev, 2003. 55(12): p. Ï 531-46.

102. Ryan, M.C. and L.J. Sandeli, DfferentiaÏ expression of a cysteine-rich

domain in the amino-terminal propeptide of type II (‘cartilage,)

procollagen by alternative spiicing ofmRNA. J Biol Chem, 1990. 265(18):

p. 10334-9.

103. Sandell, U., et al., AÏternatively spliced type II procoïlagen mRNAs

define distinct populations of celis during vertebrai development:

differential expression of the amino-propeptide. J Ceil Biol, 1991. 114(6):

p. 1307-19.

104. Kravis, D. and W.B. Uphoit, Quantitation of type Jlprocollagen mRNA

levels during chick limb cartilage differentiation. Dey Biol, 1985. 108(1):

p. 164-72.

105. Kosher, RA., W.M. Kulyk, and S.W. Gay, Collagen gene expression

dtiring limb cartilage dîjferentiation. J Ccli Biol, 1986. 102(4): p. 1151-6.

106. Swalla, B.J., W.B. Uphoit, and M. Solursh, Analysis of type II collagen

RNA localization in chick wing buds by in situ hybridizat ion. Dcv Bio!,

1988. l25(l):p. 5 1-8.

107. Cheah, K.S., et al.. Expression ofthe mouse alpha 1(11) coÏlagen gene is

not restricted to cartilage during developinent. Developrnent, 1991.

111(4): p. 945-53.

108. International nomenclature and classUication of the

osteochondrodyspiasias (1997). International Working Group on

Constitutional Diseases of3one. Am J Med Genet, 1998. 79(5): p. 376-82.

109. Finidori, G. and V. Cormier-Daire. C’hondrodyspÏasies: aspects

orthopédiques et cliniques, in 7e Congrès de médecine foetale. 2005.

Hôpital Necker-Enfants Malades, PARIS.

110. Garofalo, S., et al., Reduced amounts of cartilage collagen fibrils and

growth plate anomalies in transgenic mice harboring a glycine-to-cysteine

mutation in the mouse type II procollagen alpha 1-chain gene. Proc Nat!

Acad Sci U S A, 1991. 88(21): p. 9648-52.

Page 138: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

10$

111. Vandenberg, P., et al., Expression of a partially deleted gene of human

type II procollagen (‘COL2AJ) in transgenic i;iice produces a

chondrodysplasia. Proc Nati Acad Sci USA, 1991. 88(17): p. 7640-4.

1 12. Metsaranta, M., et al., Chondrodysplasia in transgenic i;iice harboring a

15-amino acid deletion in the triple helical domain of pro alpha 1(11)

coïlagen chain. J Ceil Biol, 1992. 118(1): p. 203-12.

113. Li, S.W., et al., Transgenic mice with targeted inactivation of the CoÏ2

alpha J gene for coïlagen II deveÏop ci skeleton with tnembranous ana’

periosteal bone but no endochondral bone. Genes Dey, 1995. 9(22): p.

2821-30.

114. Moseley, J.M., et al., Farathyroid honnone-reiatedproteinpurfledfrom a

hunian lung cancer ccli une. Proc Nati Acad Sci U S A, 1987. 84(14): p.

5048-52.

115. Strewier, G.J., et al., Farathyroid hormonelike protein from Ïniman renal

carcinoma ceils. Structural ana’ fimctionat homology with parathyroid

hormone. J Clin Invest, 1987. 80(6): p. 1803-7.

116. Philbrick, W.M., et al., Defining the roles ofparathyroid hormone-reiated

protein in normal physiology Physiol Rev, 1996. 76(1): p. 127-73.

117. Chung. U.I., et al., The parathyroid Ïiormone/parathyroid hormone

reÏated peptide receptor coordinates endochondral bone deveÏopment by

directly controlling chondrocyte dfferentiation. Proc Nati Acad Sci U S

A, 1998. 95(22): p. 13030-5.

11$. Swarthout, J.T., et al., Parathyroid hornione-dependent signaling

pathways regtdatinggenes in bone ceÏls. Gene, 2002. 282(1-2): p. 1-17.

119. Lee, K., J.D. Deeds, and G.V. Segre, Expression ofparathyroid hormone

reiated peptide ana’ its receptor messenger ribonucleic acids during Jetai

development ofrats. Endocrinology, 1995. 136(2): p. 453-63.

120. Amizuka, N., et al., Parathyroid hormone-related peptide-depleted i;iice

show abl7ormal epiphyseal cartilage development ana’ altered

endochondral bone formation. J Ceil Bio!, 1994. 126(6): p. 1611-23.

Page 139: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

109

121. Karaplis, A.C., et al., Lethal skeleiaÏ dyspÏasiafrom targeted disruption of

the parathyroid hormone-reÏatedpeptide gene. Genes Dey, 1994. 8(3): p.

277-89.

122. Lanske, B., et al.. Ablation of tue PTHrP gene or the PTH/PTHrP

receptor gene leads to distinct abnormalities in bone development. J Clin

Invest. 1999. 104(4): p. 399-407.

123. Bae, S.C., et al., Cloning, mapping and expression ofFEBP2 alpha C’, a

third gene encoding the mammatian Runt domain. Gene, 1995. 159(2): p.

245-8.

124. Bae, S.C., et al., Isolation of FEBP2 alpha B cDNA representing the

mouse honzoÏog ofhuman acute myeloid leukemia gene, AML]. Oncogene,

1993. $(3): p. 809-14.

125. Ogawa, E., et al., FEBP2/PEA2 represents a famiÏy of transcrztion

factors homologous to the producis of the Drosophila mut gene and the

hiiman AMLJ gene. Proc Nati Acad Sel U S A, 1993. 90(14): p. 6859-63.

126. Kornori, T., et al., Targeted disruption ofCbfa] results in a complete lack

of bone formation owing to maturational arrest ofosteoblasts. Ceil, 1997.

89(5): p. 75 5-64.

127. Kim, I.S., et al.. Regulation ofchondrocyte differentiation by Cbfal. Mech

Dey, 1999. 80(2): p. 159-70.

12$. Mundios, S., et al., Mutations involving the transcription factor CBFA]

cause cleidocranial dyspiasia. CelI, 1997. 89(5): p. 773-9.

129. Otto, F., et al., Cbfa], a candidate gene for cleidocranial dysplasia

syndrome, is essentialfor osteoblast differentiation and boue deveÏopment.

Ccli, 1997. 89(5): p. 765-71.

130. Maden, M. and H. Wallace, The origin of 11mb regeneratesfrom cartilage

grafis. Acta Ernbryol Exp (Palermo), 1975(2): p. 77-86.

131. Wallace, H., M. Maden, and B.M. Wallace, Fctrtictpation of cartilage

grafis in amphibian 11mb regeneration. J Ernbryol Exp Morphol, 1974.

32(2): p. 391-404.

Page 140: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

110

132. Hall, B.K. and T. Miyake, Ail for one and onefor ail: condensations and

the initiation ofskeletal development. Bioessays, 2000. 22(2): p. 138-47.

133. Enornoto. H., et al., Cbfal is a positive regulatoryfactor in chondrocyte

maturation. J Bio! Chem, 2000. 275(12): p. $695-702.

134. Goss, R.J., The relation of bone to 112e histogenesis of cartilage in

regenerating forelimbs and tails of adult Trituris virdenscens. J. Morph,

1956. 98: p. $9-123.

135. Le, A.X., et al., Molecular aspects of healing in stabilized and non

stabilizedfractures. J Orthop Res, 2001. 19(1): p. 78-$4.

136. Beck, L.S., et al., Combination of boue marrow and TGf-betal augment

the healing of critical-sized bone defects. J Pharrn Sci, 1998. 87(11): p.

1379-86.

137. Bolander. M.E., Regulation offracture repair by growthfactors. Proc Soc

Exp Bio! Med, 1992. 200(2): p. 165-70.

13$. Ferguson, C.M., et al., Common moÏecular pathways in skeletai

rnorphogenesis andrepair. AnnN Y Acad Sci, 1998. 857: p. 33-42.

139. Stone, C.A., Unravelling the secrets offoetal wound healing: an insight

mb fracture repair in Hie motise foetus and perspectives for clinicai

application. Br J Plast Surg, 2000. 53(4): p. 337-4 1.

140. Vortkamp, A., et al., Recapitulation ofsignals regulating embiyonic bone

formation during postnatal growth and in fracture repair. Mech Dey,

1998. 71(1-2): p. 65-76.

141. Sandberg, M.M., H.T. Aro, and E.I. Vuorio, Gene expression during bone

repair. Clin Orthop, 1993(289): p. 292-3 12.

142. Schmitz, J.P. and J.O. Hollinger, The critical size defect as an

experimental model for craniomandibulofacial nonun ions. Clin Orthop

Relat Res, 1986(205): p. 299-30$.

143. Akiyama, H., et al., The transcription factor Sox9 has essential roies in

successive steps of tue cÏzondrocyte differentiat ion pathway and is

reqttired for expression of$ox5 and Sox6. Genes Dey, 2002. 16(21): p.

2813-2$.

Page 141: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

Hi

144. Bi, W., et al., Sox9 is required for cartilage formation. Nat Genet, 1999.

22(1): p. $5-9.

145. Chimal-Moiwoy, J., et aï., Anaiysis ofthe molecular cascade responsible

for mesodermal limb chondrogenesis: Soi genes and BivIF signaling. Dey

Biol, 2003. 257(2): p. 292-301.

146. Healy, C., D. Uwanogho, and P.T. Sharpe, Regulation and role ofSox9 in

cartilage formation. Dey Dyn, 1999. 215(1): P. 69-7$.

147. Tsuchiya, H., et al., Chondrogenesis enhanced by overexpression ofsox9

gene in mouse bone marrow—derived mesenchymcil stem cells. Biochem

Biophys Res Commun, 2003. 301(2): p. 33$-43.

14$. Wegner, M., from head to tocs. the nmltzple facets of Soi proteins.

Nucleic Acids Res, 1999. 27(6): p. 1409-20.

149. Minina, E., et al., BMF and Ihh/PTHrF signaling interact to coordinate

chondrocyte proflferation and dilferentiation. Development, 2001.

128(22): p. 4523-34.

150. Vortkamp, A., Defining the skeletal elements. Curr Biol, 1997. 7(2): p.

R104-7.

151. Blomme, E.A., et al., Parathyroid hormone-related protein is a positive

regulator of keratinocyte groi’th factor expression by normal dermal

fibroblasts. Mol Ceil Endocrinol, 1999. 152(1-2): p. 189-97.

152. Henderson, I.E., et al., Identflcation and fainctional characterization of

adenylate cyclase-linked receptors for parathyroid hormone-like peptides

on immortaÏized hmnan keratinocytes. Endocrinology, 1992. 130(1): p.

449-57.

153. Macica, C.M., et al., Induction of parathyroid hornzone-related peptide

following peripheral nerve injury: Role as a modulator of Schwann cdl

phenotype. Glia, 2006. 53(6): p. 637-64$.

154. Ducy, P., Cbfal: a molecztlar switch in osteobtast biology. Dey Dyn,

2000. 219(4): p. 461-71.

155. Stricker, S., et al., Role ofRunx genes in chondrocyte dfferentiation. Dey

Biol, 2002. 245(1): p. 95-108.

Page 142: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

112

156. Han, M., et al., Limb regeneration in higher vertebrates: devetoping a

roadmap. Anat Rec B New Anat, 2005. 287(1): p. 14-24.

157. Mescher, A.L. and A.W. Neff, Regenerative capacity and the deveÏoping

immune system. Adv Biochem Eng Biotecimol, 2005. 93: p. 39-66.

158. Haberrnann, B., et al., An Ambystoma mexicanum EST sequencingproject.

analysis of 17,352 expressed sequence tags from enzbiyonic and

regenerating blastema cDNA Ïibraries. Genorne Biol, 2004. 5(9): p. R67.

159. Putta, S., et al., From biomedicine to naturaÏ histoiy research: EST

resources for ainbystomatid saÏamanders. BMC Genornics, 2004. 5(1): p.

54.

160. Page, R.B., et al., Microarray anatysis idenqfies keratin loci as sensitive

biomarkers for thyroid hormone disruption in the salamander Ambystoma

inexicanum. Comp Biochem Physiol C Toxicol Pharmacol, 2006.

Page 143: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

113

Annexe 1: Article in press

«The axolotl lirnb: a model for bone developmcnt, regeneration and

fracture healing»

Page 144: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

Bone xx (2006) xxx—xxx

BONEwww.clsevier.corndlocate’bone

Abstract

The axolotl limb: A model for bone development, regenerationand fracture healing

Cara Hutchison a Mireille Pilote a Stéphane Roy a,b,*

Depattm eut oJ Biochemistrs: Université de Mon tréal, Québec, Caucida

Facultv ofDentistri; fJniversité de 4fontréal, Québec, Canada

Received 24 ApHI 2006; revised 30 Junc 2006; accepted 4 July 2006

Among vertebrates, urodele amphibians (e.g., axolotls) have the unique abi]ity to perfectly regenerate complex body parts after amputation.

The limb lias been the most widely studied due to the presence ofthree defined axes and its ease of manipulation. Ilence, the limb lias been chosen

as a mode] to study the process of skeletogenesis during axolotl developmcnt, regeneration and to analyze ibis animal’s ability to heal bone

fractures. Extensive studies have allowed researchers to gain some knowledge of the mechanisms controiling growth and pattern formation in

regencrating and developing timbs, offering an insight into how vertebrates are able to regenerate tissues. In this study. s’,’e report tise cloning and

characterization oftsvo axolotl genes; Cb/i-1, a transcription factor that contrais the remodeling of cartilage into bone and PTHrP known for its

involvemcnt in the dilTerentiation and maturation of chondrocytes. Whole-mount in situ hybridization and immunohistochemistry resuits show

that Cbfli-1, PTHrP and type II coliagen are expressed during limb deveiopmcnt and regeneration. These genes are expressed during specific

stages of limb development and regeneration which are consistent wiih thc appearance of skeletal clements. The expression pauem for Cbf-1 in

late limb development tuas similar to the expression pattem found in the late stages ofhmb regeneration (i.e. re-deveiopment phase) and it did not

overlap with tise expression of type Il collagen. Tt lias been reported that the molecular mechanisms involvcd in the re-deveiopment phase of limb

regeneration are a recapitulation of tlsose used in developing limbs; iherefore the detection of Cbfa-1 expression dunng regeneration supports this

assertion. Conversely, PTHrP expression pattem xvas different during limb dcvelopment and regeneration, by its intensity and by tise iocalization

ofthe signal. Finally, despite its unsurpassed abilities to regenerate, tue tested whether the axolotl tvas able to rcgeneratc non-union bone fractures.

We show that tvhile the axolotl is abic to heal a non-stabiiizcd union fracture, like other vertebrates, it is incapable ofhcaling a banc gap ofcritical

dimension. These results suggest that Use axolotl does not use tise regeneration process to rcpair bone fractures.

© 2006 Elsevier Inc. Ail rights reserved.

Keuwords: Urodelelaxolotl; Fracture healing; Limb regeneration; Osteogenesis; Cbfà-IIPTHrP!coliagen

Introduction

Tise abiliiy of an aduit vertebratc to regenerate lost body partsis very linsited; however, urodele amphibians such as the axolotl(Anibvsto,na mexicanum) are known to have exceptionalahulities to regenerate multiple body parts throughout theirlife. The axolotl’s capacity to regenerate its lirnbs as an adult

* Corrcsponding author. Departnsent of Stomatology. Université de Montréal,

CP. 6128, succursale Centre-Ville. Montréal. QC, Canada H3C 3J7. Fax: —l

514 343 2233.

E-nia il address: (S. Roy).

8756-3282/$ - sec front matter © 2006 Elsevier Inc. Ail Hhts rescveed.doj: 10. loi 6/j.bone.2006.07.005

offers tise opportunity to conduct comparative studies of thegenes expressed during development and regeneration in anidenticai genetic background. Arnong the complex structuresabie to regenerate, the linsb bas been tise nsost wide]y studied ducto tise presence of three deflned axes and its case ofmanipulation. During timb development, the ceils that formIimb tissues are derived from undiffcrentiated progenitor celis[50]. This process is paraileled in the case of the regeneratingiimb. with tise exception tisat differentiated cells becomeundifferentiated before subsequentiy reforming the missingparts after amputation [7,50]. It bas been isypothesized that tiseprocess of limb regencration is biphasic [8,24,60]. The firstphase. known as thc preparation phase, involves the events

ELSEVIER

Please cite this article as: Cara Hutchison, et al., The axolotl limb: A model for bone development, regeneration and fracture healing, Banc (2006), doi:10.l0 16).

bone,2006,07,005.

Page 145: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

C. Hutchison et al. / Bone xx (2006) xxx—xxx

spanning from amputation to blasterna formation whereas thesecond phase, known as the re-development phase, is characterized by the controt of growth and pattem formation within theblastema and finally the re-differentiation of ceils to reform themissing 11mb. Experimental data collected to date support theconcept that the molecular mechanisms invotved in 11mbdevelopment are recapitulated during the re-developmentphase of limb regeneration [48,58,59,71]. In addition to theaforementioned advantages, the complexity ofthe limb providesan excellent opportunity for studying many different tissue typesincluding bone and cartilage. Bone represents approximately50% of thc exposed surface following timb amputation;however, as little as 2% of cells in a rcgenerated 11mb arederivcd from bone [48]. Previous limb regeneration studies alsosuggest that new bone is generated from dediffercntiated ceils ofthe blastema and flot derived from pre-existing bone [41,74].Most skcletal bones, including those ofthe appendagc, developvia an endochondral ossification process which involves thereplacement of cartilage tissue by bone. This process can bedivided into five stages: (1) the commitment of mesenchymalcelis to cartilage celis; (ii) the subsequent condensation oftheseceils and thcir differentiation into chondrocytes; (iii) chondrocyte proliferation; (iv) chondrocyte hypertrophy and (y)

chondrocyte apoptosis and replacernent by osteoblasts [30].Among the numerous genes potentially involved in thcformation of skeletal elements during limb regeneration, twoofthem are ofparticular interest; Core-bindingfiietor o-] (Cbfi1), a transcription factor required for mesenchymal condensation, chondrocyte hypertruphy and osteoblast differentiation[34,53] and Farathvroid hormone related peptide (PTHrP),involved in the differentiation and maturation of chundrocytes[37]. Thc Cbfa-1 gene, also kiiown as Runx2/PE3P2cA/AML3/Osf2, is characterized by a Runt domain that binds DNAand heterodimerizes with Core-binding factor [ (Cbff) [4,5 Il.Studies have shown Cbfa-1 to be an essential factor forosteoblast maturation and normal ossification [34]. However,additional research has revealed a dual action for CbJi-I: first asan osteoblast differentiation factor and also as a regulatur ofchondrocyte maturation and differentiation. Hurnozygousmutations in this gene are responsible for the skeletalmalformation syndrome: cleidocranial dyspiasia (CCD) [46].This dysplasia is characterized by multiple skeletal malformations and the absence of ossification [46,53]. In fact, withoutChfa-1, osteoblasts are unable to differentiate and thereforeabulish bone matrix deposition [46]. A more recent study byKim et al. has revealed yet another function for Cbfa-1 as aregulator of chondrocyte hypertrophy [33]. PTHrP is anotherimportant player to consider when characterizing skeletogenesisduring the regeneration process. fTHrP is a srnall peptide firstidentified as the causative agent for humoral hypercalcemiamalignancy [43,67]. This peptide uses the same transmembranereceptor as paratÏivroid hormone (fTif); consequently theyshare a well conserved PTH-like dumain [54]. In addition tocausing hypercalcemia, PTHrP is a major regulator ofchondrocyte maturation, differentiatiun and pruliferation [37].PTHrP is known tu be expressed in chondrocytes throughoutthe developing epiphyses, and in usteoblasts in metaphyseal

bone [2]. PTHrP-deficient knockout mice die prematurely dueto severe osteuchondrodysplasia, characterized by shorter bonesdue tu an early ossification. This can be explained primarily byreduced proliferation and increased apoptosis of immaturechondrocvtes as ve1l as the precocious hypertrophy ofchondrocytes [3,32,36].

Numerous studies have demonstrated the axolutl’s ability tocompletely regenerate lust appendages in which every tissueincluding bune is regenerated, yet very few have concentratedon whcther the axolotl can regenerate bone in a gap or how welIthey can heal a fracture [25]. The bone healing process has beenwell charactcrized in numerous vertebrates [6,19,61,65,72].Must vertebrates are capable ofhealing a bone fracture througha callus formation proccss; however, aIl vertebrates studied todate are tmable to heal bone defects of critical dimension [62].These defects are gaps within which bone repair does not takeplace. The critical dimensions are dependent on the size of theanimal. For example, the critical dimension in a rabbit ulna is15 mm, comparatively; in a rat it is 4—5 mm [11,29]. Underthis circumstance, bone formation must be assisted byinductive substances [57]. We are particularly interested inthe axolotl’s abilities tu heal and repair bone since they canregenerate entire limbs including the skelctal elements. Duestheir unique ability tu regenerate complex tissues also apply tubone defccts or fractures uf critical dimension? In this article.we describe the molecular cloning, sequence analysis andexpression uf Cbfrt-] as well as PTHrP during limbdeveloprnent and regeneratiun in the axolotl. We alsocharacterized the expression uf type II collagen, a cartilagespecific protein, during limb regeneration. Cbfa-1 is aninhibitur of type II cullagen and their expression shuuld notuverlap [20]. luth Cbfa-1 and PTHrP regulate essentialaspects of chundrogenesis and osteugenesis in vertebratedevetopment (e.g. mammals and birds). Given that part ufthe regeneration prucess is a recapitulation uf the devclopmental process, the regenerating axolotl lirnb offers anexcellent model to analyze whether or not these genes arealso required fur bone regeneratiun. Our results show thatChfa-] and PTHrP as well as type II cullagen are expressedduring limb develupment and regeneration. Additiunally, wefound that particular gene expression pattems during axolotllimb dcvelopment are similar tu thuse during regeneratiun.Finally, we show that while the axolotl is able tu heal a nonstabilized fracture. like uther vertebrates. the axolotl isincapable of healing or regenerating a bone gap uf criticaldimension.

Materials and methods

Cloning axolotl Cbfli-1 and PTIIrP cDNA

Partial axolotl Cbflz-l and PTHrP cDNA sequences were cloned (5 and 3clones for each gcne, respectively) by RT-PCR using degenerate pnmers (secbclow). b obtain tise fttli-length Cbfa-1 gene. the SMART RACE cDNA

Amplification kit (BD Biosciences, Clontech, USA) svas uscd to constntct 5’-

and 3’-RACE ready cDNA from total RNA extractcd from die axolotl hind 11mb

durin the medium bud regeneration stage using T#zol reagent (Invitrogen).

Following the manufaewrer’s instructions, PCR products were obtained using 5’-

and 3’-gene specific prirners (GSPs) and nested gene specific primers (NGSPs)

Pleasecite this articleas: Cara Hutchison, etai., The axolotl 11mb: A model forbone development, regeneration and fracturehealing, Bone(2006), doi:lO.1016,).

bone.2000,07.005,

Page 146: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

C. Hutchisou et al. / 8077e xx (2006) etr—stc 3

designed from the partial sequence cloned in the mb. The designs of ail pdmers

were as follows:

dFPTHrP:5’-CAGCT(G!A’C)(A/C)T(G/TJC)CA(C’T)GACAAGGG-3dRPTHrP: 5’-GTF(AIi’C1G)Gl(C!l)TCCTG(A/G)G(GiT)(CiT)AGGT-3’dFCbfa-l: 5’-ACAG(C[f)CC(G/C)AACIT(C/T)CT(G/C)IGCT-3’dRCbfa-l: 5’-GGIAfA/C)G(A[F)CTG(A’G)TCATA(G/C)GAC-3’5 ‘GSP: 5 ‘-TGGAGGAGATGACTGTGCTT -3’5’NGSP: 5’-CGTGAAGACAGTTATACTCA -3’3’GSP: 5’-TGACTATAACTGTCTTCACG-3’3’NGSP: 5’-AAGCACAGTCATCTCCTCCA-3’.

Ail PCR products were purified by gel extraction. eioned imo the pCR ii-TOPO sequencing vector (ineitrogen) and sequenced by the McGili UniversityGenome Quebec Sequencing Centre (Montreai. Canada) with M 13 R and M 13Fprimera. Resuiting sequences were assernblcd using ScqManil (DNASTAR inc..USA). FulI-Iength Cbfd-1 cDNA was subsequcntly amplified by PCR using[Axolotl forward CbFl] 5’-ATGGCATCCAACAGCCTGTTCA -3’ and[Axolotl reverse CbR1426] 5’-AAAACAGGCACTTTGGCATT-3’ primers

dcsigncd from the sequencing data, lite PCR reaction was performed ustnglaq DNA polymerase (invitrogen) and the conditions were 35 cycles of 95CC,

30 s; 63.552.5°C, 20 s; 72°C, 1 mm; foilowed by 15 min at 72°C. Note that sixfluii-iength CbJh-J clones were isoiated from the 5 independent RT-PCR

reactions and aligned using MegAiign (DNASTAR Inc.. USA).

Animal maintenance and surgerv

Axolotl embtyos and larvae were purchascd from the Ambystorna Genetic

Stock Center (Lcxington, KY). Animais are kept in a 20% Holtfreter’s solution at a

mont temperature varying front 19—22°C and a photopcriod cycle of 12 h of lightand 12 h of darkness. For atnputations. animais were anaesthetized in 0.1%

MS222 solution (ethyl 3-aminobenzoate methanesuifonate saIt. Sigrna-Aldrich.St. Louis. MO). Proximal (through humems or fernur) and distal (through radius.’ulna or tibia/flbuia) amputations were perfonried with miero-surgical toois (Fine

Science bols, B.C.. Canada) on axolotls ftom 3 to 5 cm in length. For fixation.

animais are euthanized and fixed in IXMEMFA (IOX MEM sait (I M MOPS pH

7.4,20 mM EGTA. 10 mM MgSO4). 3.7% fomiaidehyde and DPEC treated H20

then gmdually transferred to a methanoi solution and stored at —20°C until needed.

Bone defccts of eriticai dimension were generated by first making anincision in the skin along the longitudinal axe of the distal pan of the lintb.

foilowed by eareftil displaecinent of soft tissues to expose the radius or tibia. Tue

distal bancs in axolotl limb (radius/eubitus and tibia/fibula) arc nearly identical

itt size and shape, therefore either one ofthe twa long bones svas eut. A section

ofthe radius or tibia svas extirpated to generate a gap of4 mm, titis being larger

than the critical dimension for this type of banc in the axolotl. The remaining

banc svas lefi intact ta prevent the lirnb from collapsing and to preserve the

distance between the discngaged banc extrcmities. it aiso seiwed as an intemal

contrai for intact banc. in order ta generate bone fractures, surgeries were

pcrforrned identieally exeept the radius or tibia svas simpiy eut with surgieal

scissors. Following surgicai intervention, limbs were flxed at different periads

and the double staining technique was used ta vcdfy new cartilage and bone

fomiat ion, Ail animal care and experintents were donc in aceordanee with the

Université de Montréal animai care commillee’s guideiines.

Whole—uiotmt itt SitU hbndizatio,t

Wholc-mount in situ hybridization was perfomted as deseribed in Gardiner

et al. with a few modifications [22J. Digoxigenin (D1G)-labeled antisense RNA

probes wcre created using 17 RNA polymerase (invitrogen) and D1G RXA

labeling mix (Roche Diagnostics. LavaI. Quebec, Canada). Sensc probes were

generatcd with SP6 RNA poiymcrase (mnvitrogen). For probe synthesis, a 400 bp

Chia-! and a 230 bp PTHrP fragment were cioned into the pCR li-TOPO

plasmid which svas then lincadzcd using the appropdate restriction enzymes. For

tissue permeabilization. developing embryos and amputated limbs werc

ineubated with 20 mg/ml and 30 ig/mi proteinasc K rcspectiveiy for 15 non

on ce and tlten at 37°C for 5 min or for I h on iee then I h at 37°C. Probe

hybridization was 24 h for embtyos and 72 h for limbs. Prehybridization sud

hybridization temperatures were donc between 55°C and 65°C. Fmnaliy, BM

pttrpie (Roche) svas used as the enzyme substrate for the colorintetric reaction for0w aikahne phosphatasc reaction.

71’pe II c-ollagen mm’hole—umount ît situ iinnmunohistochentistn’

Samples were rehydratcd front methanai and rinsed three tintes in aphosphate-buffered saline solution with 0.1% Tween-20 (PTW). Limbs sverethen bathed in 2.5% trypsin for cither 15 min (deveioping limbs) or 40 min(regenerating lintbs) followcd by three 5-min rinses in water. After 10 min in

—20°C acetone, spccimcns wcre rinsed in water for 10 min and then washcdthrcc timcs for 5 ntin with PTW. Santplcs werc then transferred to a biockingsolution (phosphate-buffer soltttion (0.7 x PBS)± 1% DMSO÷5% sheepsemitt”-O.l% Twcen) far 1 h and inctthated in a mouse monoclonal antihodyagainsu Type Ii collagen (fl-ii6B3, Lab Vision Corpomtion. Fremont. CA)dilutcd 1:100 in bloeking solution ovcmight at 4°C. lIte next day, limbssverc dnscd eight times for 15 min in a PTW+ 1% DMSO solution beforebeing plaeed tn an antl-ntotlsc horseradmsh peroxidase labeled secandamyantibody (Amersham Biosciences, Piscataway, NJ) diluted 1:500 in blocking

solution ovemight at 4°C. lIte foliosving moming, sampies wcre nnscd eight

tintes for 30 min svith PTW attd subsequcntly hathed in a diaminobenzidine(DAB) solution (invitragen). lite reactian svas stappcd by two 5-min washes

with PTW and fixed in a fonnaiin soltition (3.7% fomiaidehyde in 0.7x PBS).Specimens were cleared thraugh a graded series ofethanol/giyceral and stored

A ATG STOP

RUNT325aa

uA5NS’ssvÀpçQQtIw.[1Tv-’:..

ms::,sesLaecGmsl pseSMsGverCSp’Ssa3A1sP5NlQCOSQ1’AcisOAO2SI’I’sSse

csYFaY1.sctTSPSIHSTTPLSSSAGTGLPAtT)VPRRt,3GASELG sues

IC1JÇiU”.rtt’TsosYptpgGrSsPSRMLPPCTTTSNGGTtNtNLS!tQNDGVDArGsHSSSP2’ILNSSZ

Fig 1. Analysis afthc axolotl (‘bjd-I sequence. (A) cDNA sequence. (B) Amina

acid seqttcncc. Red eharacters indicate stan and stop codons. Blue eharactcrs

indicate conserved partial Runt domain. Green charaeters indicate Runx eanserved

carboxytcmtmnal petttapeptide. (C) Aniino acid alignment of Cbfti-1 fram multiple

ntodel organisms used far develapittental and biomedicai research (miec, httman.

chicken and axolotl). Bine box contains the flint domain and tlte green box

indicates Runx conserved carboxylenninal pentapeptidc. (D) Phylogenetic tree.

Species cvolutianaty coniparisan of Chfii-l ORF scquenees. GenBank accession

number 828471. (Far interpretation af thc references ta ealaur in tItis figure

legend. the reader is rcfcrrcd to tlte web version ofthis article.)

RUNT

Axolotl Cbfa-1 975 nt5’UTR tUTR

:GtAçrAcctiCCrGGçIr.’,»’A:GIr’Iccs’tcGC,vs’!A°.s’cI’ristAccAAAs_Att

GAt,5tC.sCtCAGTA5.sAC’TT:TGAtAArAAG:’TtAsÀ’:’CrAAAAcA5ACAT0GÎC

ta’.sÏ’tc./si,’ t GA_’.’GCAttAtl srAcoc.°araGcAirt,ccef,c’aOGAAA°ACAACAAGj,GAACAt?,ACC . -cATccsscAocCT’T’rct,•tCTcA3Tscc’:cTT

SCC2AATA5CCtrtCTt,CÇACTet,t”CT?sTTAAA’TÇA,tO.ATOGADCSAGCCC

50Es SOAEACAEAASCZ-t’G rGACICI’AAACCCAG’iTVGi’TçrCFGAACtcCrcAGrE

s». rt,GGGCG:’xtCÇTCsCCCA’,c,AsGA3’GatrGicCCAACrCA0AGCcCGGEE

TTCCCTAAACTCTSCACEAAGTECTTTTt,AT.CCACAAGGACAGASTCASACTECAGATCCT

,;6scAAGcACAOtCA’rciDcTcCAT6•ticcTsrGAccAo’icc’EAC•A’tCAt’ACrGAECCA0A.tA.CTCCEtTECATCACTC0ACAAçCCCTTTCAT.XTC0E0A5.tTACA00AET

Gsrcccsso:ETTTACACArTTCETCECTCAECSAAAGTCGTTTTTCçAATCAACGAAcACrArcCA.400sC.sI1.Açj’rAtADACCGçc’iGI’CATt’;c’CGCCAtGlCtCtGGGAAr

0TC5’3CiCt,CCEt,TTCACACCTATTT5ÇCACCt.CCCTATÇCTGGATCTTC!C!’jAAC

0555G tGGscAc’:l’ccAAscAAGcAGCsCCccG:’AccrATAE’.’ArGG’rACATCAI’CAGGAr

CAÀtCAGÏi’CCCCAt’GGiGCCCGG’2G0AGACCG’, :‘Ct’CCCiCt’AGGA’ttC’!’ACCACCAVE

CACCACCAÇATCAAACSGAGGGACGECGATCAACCÇAAACCTGTCAAACCAAAATGAT’tECE’iGEATGCCEA’i’G,tAAGCCA’t’.AGCAGC FCC000ACAA “f01055 ï ‘CASE FGGCAGAA,GG

GTC.AGTCGGTTTGGASACDTTAT -• - - AATATTTATTCGGTGGCCTAACTTDOTTTG’SCCCt,

Acci:sTcAsi’GAAl’GCc.AGrGCçI-tï’rTicAiAACGTrEACrGr’ïAAÏATÀCI’GAAtA

TATGCAAAATCAGATGGCTGTATGG’CCATAAGCAGACAATTOCATTt,TGTTTTCAAAGCMA

ACGCIGACAcG’rt’rAi’GCtG’ïTPACTIrG

B G20 1(59

Picase cite this article as: Cara Hutehison, et ai., The axolotl limb: A madel for banc developntent, regeneration and fracture heahng, Banc (2006), doi: 10.1016.).

bone.2006.07.005.

Page 147: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

4 C. Hutchison et aL / Boue es- (2006) .ett—.ter

20174

147

lai

216 AXTHYHT414 ATTHYHT

AIT HYHT421 ATIHYHT

V L P S H WR CV L P S H ARCV L P S H ARC

N K I L P V A F

N K T L P V A FNKT LEVA F

Y L P P P Y P G S S Q N O S G H F O T S S

Y L P P P YP G S S OS OS GPF OTS S

YL P P P YP OS SONOS GPF GIS S

‘(L PPP ‘(POT TOTOS GPF QT OS

S P P S SOL OP G K MS

S P P S SOL OP G K USS P P S S S L O P G K M S

I PYLTPYLT P Y LTPYL

DV S P VVA AEVS P VVVAOVO P VVAA

An

O O Q Q O O O O O O O O HooAaçonS

O O Q O O O O O O O O C GaAosgatus

O O O O O O O O O O O O Uusnijscjus

A6bxrn4A

A O H P A £ L HŒnosapesssA O H P A E L GAIhgaIlusAOHPAEL Musnnius

E I R N A S A HomosaResssE t R N A S A GaEsgalks

E I R N A S A Ursius

O Armn,enAn4,

C Homo sapwnoC Galkrn galius

C Msoom1ss

MbWm moKan

Hmno SOO11S

GaNsa gatus

M5O muSO.105

in 100% glycerol. As a control for speciflcity. the same protocol vas followedcxcept the primaty antibody vas ornittcd (Fig. 4F).

Skeletal staining cf embrvos anci li,nbs

Developing and rcueneratinV lirnbs wcrc stained using tise Victoria bluemethod to vcrify new cartilage fomiation [9]. Limbs were fixcd in aicoholic

Bouin’s solution for 24 h before bein rinscd sevemi times with 70% ethanol.

Spccimens were dnsed reuularly in 3.5% NH4OH for 2 days and subscquentlytreated with Acid alcohol for 2 h. Specimens weie staincd with 1% Victoria Bluefor 2 h and then rinsed with 70% ethanol. Linsbs were gradually dehydrated to100% ethanol. then clcared and stored in incthyl salicylate.

A dotiblc staining technique of Alizarin Red and Aician Blue tvas used to c-DIVAstain cartilage blue and calcitied matrix red for bone fracture expenments [12].

Fixcd specimcns were dnsed regtilarly with distilled water for I h. .Specimens

were placed in an alcian bluc staining solution (20 mg ofalcian blue powder and

a 7:3 EtOH/glacial acetic acid solution (EtOH/Hac)) for I day, and thcn were

transferred tu an EtOH/Hac solution frir I h. After being placcd in 100% EtOH

for 24 h. the sample ;vas Hnscd with tap water frequently for 2 days bcforc beingtransferred to a 1% trypsin solution diluted in a 30% saturated sodium boratesolution. The specinscn is trypsinized fora period of about 24 h, depending on

the size. and then transferred for 24 h to an alizarin red solution (saturatcd

alizarin red in water added to a 0.5% KOH solution until il takcs on a dark puiplc

color). Ibis step was followed by scvcral changes of a 0.5% KOH solutionwithin a 24 h pedod bcforc specimens wcrc finally trcatcd ;vid; 0.5% KOH/glycerol solutions: 2:1. 1:1. 1:2 and preserved in 100% glyccrol.

Resutts

Isolation cinci sequence ana/vsis of axolotl Cbfa-] and PTHrP

A partial axolotl Cbfa-] sequence tvas obtained by firstisolating a 400 bp cDNA fragment from axolotl larvae totalRNA by RT-PCR using degenerate primers. After using the

CI MASNSLFSSVAP000NFFW

I UASNSIFSTVTPCOONFFWDPSTSRRFI MA5NSLFSSVTPcOONFFWDPSTSRRF

t MASNSLFSAVTPC000FFWDPSTSRRF

20

SI 00000000000561 E61 00000000000000000EA

20

114 4 R t o S P N F L C O67 ‘7 R T D S P N F L C S121 ‘IRTDSPNFL CS

AS AA AAA A A AA AAA AAA V P RLAAVPRL

A AAAAAA A AAAAAA AAA V PRL

RPP HONRI

R- P HONRT

R P P H D N R I

V 14K NOV A R

V MK NOV A R

V MKNOVA R

UVE I IMV E I I

M V E I I

FNOL R

FNOL R

F NOL R

1< V V A L Q E V P O G T V V T V

KVVAL QEvP DOT VVT V

KVVAC GEVP DOT V VT Y

GKSFTIII TVFTNPPQV

F V GRO GRGRS FIL T F VF T NPPOV

F V GRS GR 01<5 FI LII T VIT N P P 0V

F4 GRS OR 0150F T LII TV F T N P P 0V

M A G N O E N Y S A

MAONDE NYS AMA ONDE NY SA

SOL ORSOL OR I

S D L OR ISOL OR I

AI Y HP

ATYHRAI YHR

AIYHR

AI 5V T V 00E R E P RAI K VIVO OR R E P R

AI KV I VOGP R E PR

AI K VI VDGP R SE R

R H R O K msan.molsaoR H R O K HonsosapensR H R O K GaKusgailusR H R O K Musmuscuks

60 LODSKPOLFSERL PHPSMRVGVPTOSPRPSLNSAPSPFNPQGOSQtAOPROAOSAn4,yoIomaosasamaol

234 LDDSKPSLFSORL PHPSMRVGVPPONPRFSLNSAPSPFNP000SOITOPROAQS HomosaR000

237 L D D S K P S C F P E R L P H P S M R V G V P T O S P R P S L N S A P S P F N P O G O S Q I T O P R O A O S GaNusgallus

241 L D D O K P S L F S O R L P H P S M R V G V P P O N P R P S L N S A P S P F N P O G O S O I T O P R O A O S Musn,usailus

120 SPPWSYDOSYPAYLSOMISPSI NSITPLSSSROTGL’PAI TDVPRRLS Ambyokaoaoosloarnm5

294 5 P P W O Y D Q S Y P S Y L S Q MI S P S I H S I T P L S S I R O T O L P A I I D V P R R I S D O O T A T S O F C L W P I4mnosapis -

267 5 P P W S Y D Q S Y P S Y L S Q M T S P S I H S I T P L S S I R O T G L P A I T D V P R P L S GaNusgallus

251 SPPWSVDOSYPSYLSOMTSPSIHSITPLSSIRGIGLPAI IDVPRRI5000TAISDFCLWP Uusmuaculus

157 O A S E L G P F S D P R O F T S I S S L I E 5 R F S N Q R M H Y P T T F T Y I P P V I S A M S L G M S Aoyman,aaaflUol

204 STLSI(KSOAOASELGPFSDPROFPSI SSLTESRFSNPRMHYPATFTYTPPVISGMSLOMS Homaaapians

314 OASELOPFSDPROFTSI SSLIESRFSNPRMHYPATFTYTPEVIOGMSLGMS GaNusgalIus

261 SOL SKK$QAGASELGPFSDPRQFPSI SSLEESRFSNPRMHYPATFTYTPPVTSGMSLGMS Musmosculus

276 EIISNOGTLI NPNLSNONDOVDA005HSSS

474 ITT5NG5ICLNPNLPNONDGVDADGSHSSS

425 ITT SNGS T L L NPNC ENOS DOVEADGS H550461 ITTSI4GSTLLNPNLPNONDOVOADGSHSES

D

‘(‘(01 SS(ISY 0F P MV P00095 PSR ML P P

Y Y O T S S G S V O F P M V P G G D R S P S R M L P P

Y VO; 0505 Y 0F P MV P00 G R SF0 R ML P P

Y Y 0155 AS Y O FP MV P000 R SES R MV P P

P I I L N5 5 OR MG E 5V W R P Y

ET V L N 55G R MD E SV ARE Y

P TV L NO S OR M DES V WR P Y

ET V t NT S OR M DE SV OR P Y

Mus musculus

Rattus norvegicus

Boa taurus

Fig. I (L-outiuucd).

Takifugu rubripes

XenOpuS

PJcae cite this article as: Cari Hutchison, et al., The axolotl limb: A model for bone dcvelopment, regeneration and fracture healing, Bone (2006), doi: 10.1016].

bone.2006.07.005.

Page 148: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

C. Hutchison et ctl. / Bouc xx 2OO6) xxx—xxx

RACE-nested PCR strategy [21], a 1371 bp contig vas analyzed

using the NCBI BIAST database. Resuits show a 975 bp ORF

(Fig. lA) which encodes a 325 aa protein containing a partial

Runt domain of 40 aa (Fig. lB). Cbfa-1 is known to belong to

the Runt domain gene family which is characterized by a

conserved Runt domain [51]. Axolotl protein analysis using

BLAST showcd a 94% sequence homology with chicken [39],93% with human [51] and 86% with mouse [56] (Fig. 1C). A

phylogenetic tree was created by comparing full-length CbIi-1

cDNA sequences from different species and placcd the axolotl

sequence doser to that of birds than to humans which is

consistent with the phylogeny ofthis specie (Fig. ID).

The same stratcgy xvas used to isolatc a 225 bp fragment of

axolotl PTHrP cDNA. The results show a corresponding 75 aa

partial PTHrF sequence located towards the 5’ of the gene

(Fig. 2A). Protein alignment analysis demonstrates that our

partial sequence shares a 77%, 65% and 64% hornology with

chicken [52], human [26] antI mouse [66] FTHrP, respectively

(Fig. 2B). High hornology is expected between species since

the cloned sequence contains a partial Parathyroid domain

A

characteristic to the parathyroid hormone family. Integrated in

this sequence, is a partial PTK-like domain, unique to the

parathyroid hormone, this sequence is required for tigand—

receptor interactions [63]. Protein alignmcnt of the partial

PTH-like domain shows even higher conservation having

90% chicken and 69% mouse and human homology (fig.

2B). Analysis of the cloned 225 nt sequence with PTHrP

cDNA from other species was performed using MegAlign

(DNASTAR Inc., USA). The resulting phylogenetic tree is

consistent with the sequence homology data and evotutionary

relationships are conscrved (Fig. 2C). This resuit shows a

similar evolutionary relationship for PTHrP as that of Cbfa-I,

wherc the axolotl sequences are closest to the chicken.

Whole-mottnt in situ analysis ofChfrz-1 anci PTHrP expression

during 11mb development

Whole-rnount in situ hybridization was used to determine

the expression pattem of Cbfit-1 and PTHrP at different de

vclopmental stages of the limb in axolotl embryos using RNA

23

wBI

w

75110 PL KT PGKI(KKGKPGKR

IlS PLKVSGKKKKAKPGI<N

118 PLKTPGKKKKGKPGKR

y S E H Q L M H D K G R S I Q E L R R R

RL KF AVS E HOC L HOKGKS I DOC RRRF F1Kooop.n,

R L K R AV SE H DCL HO K GK SI DOL R R RI FQ.IiuIIh,.

R L K R AV S E H Q L L H D K G K S I Q D L R R R F F

N N V R Y G P E D E G K Y L P Q E T N K A

VRGSODEGRYLTQEINKVETYKEOuomos.pIon

- VRGSEDEGRVCTQSTNKSQTYKSQGIuuII.

VRGSDDEGRYLTQETNKVETYKEQu,,u,,,

C

rBos taurus

Homo saplens

Rattus norvegicusMus musculus

- Ambystoma mexicanum

- Takifugu wbripes

- Dan;o retlO

Fig 2. Analysis ofthe axolotl PTHrP sequence. (A) cDNA and corresponding amino acid sequence with respect to the fttll-length sequence. Red charactert indicate

partial PTH-like domain. Amalgamation ofbhte and red characters indicates partial Parathyroid dornain. (B) Amino acid alignment of PTHrP from multiple model

organisms used for devclopmcntal and biomedical research (mice. human, chicken and axolotl). Red box shows the PTH-like domain and the combined red and bloc

boxes the Parathyroid domain. (C) Phylogenetic tree. Partial axolotl eDNA was compared to PTH,P ORF sequences from other species. GenBank accession number

835466. (For interpretation of the references to colour in this figure legend. the reader is referred to flic web version of this article.)

GTGTCGGAGCATCAGCTGATGCACGACAAGGGAAGGICGATTCAGGAG TCCGAA

GAAGMTAUCCTCCAGAACCTGATCGAGGGGGTGAACACGGCTGAACGflCAGTGCCGGAAGTGTCACCAGACCCCAAGCCCTcCACCACACCAAGAAcTAcAACAAçAATGTCCGCERCGGCCCTGAGGACGAGGGTWTtCÇTA

225 nt

75 aa

VSEHQLMHDKGRSIQELRRRIFLdINLIEGVNTAERSVPEVSPDPKPSTNTKNYNNNVRYGPEOEGKYLPQErNKA

B

1 . UQRRLVOQWSVA

1 MUFTKLFQGWSFA

MLRRCVQQWSVC

VF CL S Y A V P S CGR 5V E GL S R

V F CL S Y S V PSY GR S VS 01 SR

V F CL S Y CV PC R DR 5V SQL GR

t QNL I E GV NT AS. RSVP EV S P0 P K PST NT K NYN

L H H C I A E I H T A E I R A T S E V S P N S KF S P N T K N HP

L Q N t I E G V N T A E I RATS EV S P N P K P A T NT K N Y P

L H H L I A E I HT A E I RATS E VS P N t K P A P NT K N HP

*,.y.IoI .ka.um

K E Q L K K K R R I R S A W L O S G V G t G L E G D H L S D T S T T S L E L D S R Ho,pen,

K E Q E K K K R R A R S A W L N S G U Y G S N V T E S P V L D N S V I S H N H I L R GIIuIMS

REQEKKKRRTRSAWPST- AASGLLEDPLPHT$RTSLEPSLRTHMusuIo

Please cite this article as: Cura Hutchison, et al.. Thc axolotl limb: A model for bone development, regeneration and fracture healing, Hone (2006), doi: 10. lOl6Jj.

bone.2006.07.005.

Page 149: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

6 C. Hukhison et al. / Bone xx (2006) .trx—.tu

anti-sense probes (Fig. 3). Victoria bluc was used to stain

skcletal elements at different developmentat stages ofthe lirnb inorder to compare Cbfa-1 and PTHrP expression with the

appearance of skeletal elcments. Type II collagen proteinexpression was deteniiined by whole-mount in situ immunohistochemistiy to further demarcate the skeleton in developing

limbs. Celis in permanent cartilage express type II collagen in

prehypertropic chondrocytes [40,44] but do not express Cbfa-1[10,17,3 1,33, 35,69]. The type II collagen resuits provide

confirmation that the Cbfa-] expression observcd is specific as

thcy do not overlap. Cbfrt-1 expression is observed throughout

the developmental process of the axolotl limb (Figs. 3A—C).Forelimb developmcnt in the axolotl begins at stages 44—45 [49]

where it is possible to distinguish prominent budding containing

sorne Chfii-1 expression (data not shown). At stage 48, weak

expression is observed at the base of the limb and in the midregion of the extremity. In the distal region, two strongexpression points are noticeable (Fig. 3A). Comparatively. it ispossible to distinguish a completely formed humerus and abudding radius at the tip of the same stage (Fig. 3G). With theextension of the radius and the ulna in place, by stage 50,

carpa] skeletal structures within the hand and the metacarpals

of the first txvo digits are in formation (Fig. 3H). Two ChJèi-1expression regions cotTesponding to the earliest forming digits

can be observed as well as expression points in the carpal

region and weak expression in the rnid limb region (fig. 3B).Reaching stage 52, Cbfa-] expression is restricted solely

within the diaphysis of the phalanges showing a particularly

Fig 3. Whole-rnount in situ hybridization. immunohistochemistty and cartilage staining in developing limbs for Chfh-l , type Il collagen, cartilage anti PTHrP (A—C)

Cb/ii-1 expression, (D—f) Type Il collagen protein expression, (G—t) Cartilage staining with Victoria blue anti (J—L) PTHiP expression. Developing limbs at stage 48

(A, D, G), Stage 50 (B, E, H, K) anti Stage 52 (C, F, I, L). PTHrP control limb using a sense probe (J). Black arrow indicates humems. Note that axolotl embryos were

photographed antedor to the top anti postcrior to the bottom. (For interpretation ofthe references to colour in this figure legend. the reader is rcferred to the web version

of tIns article.)

BA

D

C

‘w

E F

G H

J K L

f Please cite this article as: Cara Hutchison, et al., The axolotl limb: A moUd for bone development, regencration anti fracture healing, Bone (2006), tioi: 10.1016).

bone.2006.07.005.

Page 150: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

C. Hurchison et o!. / Bone xx (2006) xxx—ter 7

strong signal in the digit stili in fornution (Fig. 3C). At thesame time, cartilage staining shows that by this stage, the flrstrtvo digits are complete and there is evidence for the formationof digit 111 (Fig. 31). Also, type II eollagen staining in the laterstages of Iimb development displays differential expression toCbfa-I, further substantiating our whole-mount resuits (Figs.3D—F). PTHrP expression was also verified during limb de

B

velopment (Figs. 3J—L). Expression remained undeteeted untilstage 50, where expression is observed in the tips of the nioredeveloped digits and in the earpal region (Fig. 3K). Stage 52shows a similar expression pattem, though a little more pronounced (Fig. 3L). Sinee the PTHrP expression detectionduring these stages is weak, a sense probe was used as a eontrol(Fig. 3J) to contirm that the signal detected xvas specific.

4

C D E

ttLz $4

H I J

p

G

A

F

K L

p

M N o

a n I :1 tQ

VR s T

9

Fig 4. Whole-mount in situ hybridization, immunohtstochemistry and cartilage staining ofregeneranng lunbs for Cbfo-I , type II collagen. cartilage and PTHrP. (A—E)

Cbfh-) expression, (F—J) type il collagen staining, (K—O) cartilage staining with Victoria blue and (P—T) PTHiP expression in proximal amputations during forelimb

regencmtion. Rcgeoemtion stages are: (A, K, P) Early bud stage. (B, G. L. Q) Medium bud stage. (C, H. M. R) Late bud stage. (D, I, N. S) Palette stage and(E, J, O. T)

Early diffcrcntiation stage. A negative control limb for type II coilagen expression is illustrated in panel F. Note that axolotl regeneration stages are charactedzed

according to Tank et al. [70). (For interpretation oftltc references to colour in ibis figure legend. the reader (s referred to tite web version of ibis article.)

cite titis article as: Gara Hutchisoti. et al., The axolotl limb: A inodel for bone development, regeneration and fracture bcaling, Bone (2006), doi:l0.10i6/j.

bone.2006.07.005.

Page 151: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

C, Huwhison et u!. / Boue xx (2006) .tx—xxv

Whole-mount in situ analvsis ofCbfri-] and fTHrP expressiondttring lin,h regeneratiol?

Limbs were arnputated proximally (mid-humerus) andwhole-mount in situ hybridization vas used to detect Cbfa-1and PTHrF expression at different stages of regeneration. Weused the Victoria blue staining technique for cartilage and typeil collagen immunohistochemistry to characterize the developing skeleton during limb regeneration in order to compare thisproccss with Cbfa-l and PTHrP expression. There was novisible Chfa-1 signal in the flrst stages of regeneration, specifically 6 h, 24 h and 48 h after amputation (data flot shown). Theabsence of expression is not surprising sïnce at these stages theprocess of chondrogenesis bas flot yet begun [70]. At the earlybud and medium bud stages, Victoria blue staining shows nosign ofcartilaginous structures in the blastema, only the skeletalelement in the sturnp is detected (f igs. 4K, L). The first appearance of Ct?fa-] expression in the blastema ocdurs at medium bud(Fig. 4B). At the late bud stage, new cartilage is formed at theend ofthe amputated bone (proximal portion ofthe blasterna) asresolved by both Victoria blue staining and type II collagenexpression (Figs. 4H, M) and a Cbfii-J signal is detected in thedistal region ofthe blastema (Fig. 4C). Accordingly, this is thestage when cartilage differentiation begins in the periosteum ofthe amputated bonc [70]. Kim et al. have previously shown thatCbfii-1 is Iocalïzed in the growth plates of long bones duringdevelopment [33]. Interestingly, a growth plate is also formedduring regeneration [70]. As the limb continues to regenerate,the Cbfa-] signal becomes more restricted to the distal part ofthe regenerating blastema at the palette stage (f ig. 4D) and isconcentrated in areas of future developing digits similar to theexpression pattem obscrved during limb development (f igs.3A—C). Type II collagen expression at this stage shows a

differential expression pattem to that of Cbfa-] (Fig. 41). Thepalette stage designates the beginning of cartilage differentiationin the zeugopod of the limb and in bones of the forelimb [70].This is iltustrated in Fig. 4N where cartilage staining allows us tosec a rough outiine of the radius and ulna. At the earlydifferentiation stage, the first digits have cornpletely formed andthe third digit alrcady has two metacarpals (Fig. 40). At thisstage, the Ch/t-] signal shows specitic expression points in thediaphysis ofthe phalanges and a particularly strong signal in thedigit stili in formation (Fig. 4E). As was observed indevelopment, type II collagen expression at the early differentiation stage of regeneration corresponded to the appearanceof cartilage (f ig. 40) and did flot overlap with the domains ofCbfii-1 expression (Figs. 4E, J).

PTHrP expression vas also characterized during axolotlIimb rcgcneration (Figs. 4P—T). In the early stages ofregeneration (6 h, 24 h and 48 h afier amputation), PTHrf showed novisible signal of expression (data flot shown). However, fromthe early bud to the late bud stage, strong expression is detectedin the regenerating blastema (f igs. 4P—R). At the palette stage,expression is localized to the digit forming region (Fig. 4S)corresponding to formation of the flrst rtvo digits. Cartilagestaining at the early differentiation stage is characterized by thedifferentiation of the digits (Fig. 40) where PTHrP expressioncan be detectcd around the contours of the future digits of thelirnb (Fig. 4T).

Bone fracture and critical gap healing in axolotl limbs

A B

As previously mentioned. most vertebrates are able to healbone fractures [6,19.61.65,72] yet ail vertebrates studied to dateare incapable ofhealing bone defects ofcritical dimension [62].Therefore. since axolotls are capable ofregencrating entire limb

Fig 5. Double staining of non-stabilized union fractures (A—C) and non-stahilized non-union fracWres (D. E) on axolotl forclimbs. (A, D) 5 days after surgery.

(B) 1 1/2 rnonths post-fracnire, (C. E) 7 months post-surgery and (F) sham operated forelimb.

Please cite this artïcle as: Cara Hutchison. et al., The axolotl limb: A model for bone devcloprnent, regeneration and fracture heabng. Bone (2006), doi:10.l0 16.).

bonc.2006.07.005.

Page 152: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

C. Hutehison et l. / Boue xx (2006) xxc—xxx 9

structures including the skeletal elements without any resultingscar or demarcation unes between the stump and the regeneratedtissues, we questioned whether the axolotl is also able to healbone defects of critical dimension. The resutts for the nonstabilizcd union and non-union fractures of critical dimensionare shown in Fig. 5. A clear-cut union fracture is shown for thelimb 15 days afler fracturing (fig. SA) with no visible sigtis ofhealing. At 45 days post-fracture, the two extrernities of thefractured bone are unhinged and a blue halo around the fracturesite is noticeable (Fig. 5B). This indicates that cartilaginous ceilshave migrated to the fracture site and that the healing process hasbeen initiated. Afier 2 months, the extremities of the fracturedbones are joined together by a cartilaginous matrix which willeventually forrn a soft callus around the fracture site (resuits flotshown). Five months post-fracture. the soft callus is cornpletelyreplaced by an envetope of calcifled matrix that permanentlyjoins the two bone extremities, otherwise known as a hard callus(Fig. 5C shows a completely healed bone fracture after sevenmonths). Fig. 5D shows a non-union fracture 15 days after fracturing. Unlike the non-stabilized union fractures, staining resultsin the following months show no sign of cartilage at the fracturesite (resuits not shown). furthenuore, during this period there isno evidence that a healing process via a cartilaginous phase hasbeen triggcred at the fracture site. Finaliy, 7 months post-surgery,the bone extremities are slightly rounded and there are stiil nosigns of a healing process or bone regeneration (Fig. 5E).

Discussion

Cbfa-1 and PTHrF expression during limb deve/opnient andregeneration

In this study, we describe for the flrst time the cloning,analysis and expression of axolotl Cbfi-l and PTHrP genesduring limb development and regeneration. We aiso describe theexpression of the type II collagen during limb regeneration.Sequence analyses of both Cbfa-] and PTHrP show highhomologies between the axolotl and other species. Cbfii-1 isknown to be expressed during mesenchymai ccli condensationand to participate in the remodeling of cartilage and boneprecursor cells [13,53,68], which could explain its expressionduring the cariy stages of limb development. In addition to itsrole in osteoblast differentiation, a function in limb patteminghas been proposed to explain early Chfii-] expression duHngdeveloprnent [14,45,53]. In fact, nuil-mutant mice for Cbfa-1show structural defects of the skeleton and, in some cases,lacked scapulae and clavicle bones [46]. It has been shown thatcbfa-l is expressed in hypertrophic chondrocytes and matureosteoblasts to regulate their maturation. These celis are mostlyconcentrated in the diaphysis ofthe bone [33] which correlatesto Cbfa-1 expression. To corroborate the Cbfit-] expressiondetected, type II collagen protein expression was characterizedin the developing lirnb. Our results were comparable to thosereported by franssen et al. where they dernonstrated that type IIcollagen expression is exclusive to condensing chondrocytes[20] and, more irnportantly for the present study, is absent inregions expressing Cbfa-1 which confirms the expression data.

Unlike Cbfa-], PTH,P expression tvas not detected untilreaching the more advanced stages of limb deveiopment. It wasnot until stages 50 and 52 that a weak PTHrP signal wasobserved at the distal end of the developing digits and in thecarpal region. Similar resuits were found in developing ratfetuses, the presence of detectable PTHrP mRNA beingattributed to the proliferative activity of chondrocytes requiredfor proper carpal and metacarpal formation [37,54].

Cbfa-1 and PTHrF are also expressed dtiring axolotl limbregeneration. During the first 2-days foliowing amputation,there is no detectable Cb/ii-1 or PTHrP signai. The lackingexpression may be due to the absence of cdl segregation anddifferentiation in the blastema during these stages [70]. The firstnoticeable Cbfa-1 expression is near the amputation site of theblastema at the medium stage. Interestingly, Cbfa-] action is notrcquired untit the reptacement of chondrocytes by osteobiasts[46], events that do not occur until the late bud stage [70]. Tanket ai. described the differentiation of the cuff of periostealcartilage at the amputation site around the time the medium budstage occurs; these cvcnts take place before cartilage differentiation occurs within the blasterna and could explain theexpression resuits for of Cbfa-1 at this stage of regeneration[70]. Tank et al. also reported that during the palette stage ofregeneration, there is ovcrt differentiation ofchondrocytes at thedigital primordial; these flndings correlate with the expressionof CMi-] as a regulator of chondrocyte replacement byosteblasts [14].

Despite the weak expression of PTHrP found in developingaxolotl Iimbs, expression during limb regeneration was strong.During regeneration, the blastema is subject to intense mitoticactivity and total RNA quantities become significantly moreimportant [73] thereby possibly explaining increased PTHrPlevels. However, there are severai alternative reasons to explainthe increased fTHrP expression at the early bud stage. First, theperichondrium at the bone amputation site produces chondrocytes that accumulate around the existing bone, and PTHrP isknown to play a mIe in chondrocyte proliferation [1,36].Second, it has been proposed that during this stage, the blastemacontains exclusively undifferentiated cetls [70], interestingly,PTHrP expression has been associated with non-differentiatedmesenchymal cells destined to become chondrocytes [37,54].Third, PTHrP has been proposed to regulate Ihh, one of themolecules responsible for the diffcrentiation of mcsenchymalcells into chondrocytcs [42,72]. Stark et al. reported that thenewt handed hedgehog (bhh) (homologue of mammalian andavian 1h!, [16]) xvas uniformly expressed in the blastema fromthe initial stages of regeneration. Interestingly, N-hi,!, expression was also dramaticatty reduced at the palette and earÏydifferentiation stages of regeneration [64] as is fTHrP. Apartfrom the absence of PTHrP expression prior to blastemaformation, N-bi,!, expression pattem correlates with that ofFTHrP observed during axolotl limb regeneration [64]. Studieson the regenerating deer antler have also shown PTHrfexpression in the regenerating blastema, particularly in thedermis of the skin, perichondrium, underlying proliferatingundiffèrentiated mesenchymal cells as well as in recentlydifferentiated. non-proliferating chondroeytes [1$], ail ofwhich

Please cite this article as: Cara Hutchison, et al., The axolotl lirnb: A moUd for bone developtuent. regeneration and fracture healing, Bone (2006), dot: 10.101 6:j.

bone.2006.07.005.

Page 153: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

‘o C. Hutchisou et u!. / Boue xx (2006) xxx—xxx

support the expanded expression found throughout the axolotl

blastema.In general, both Chfri-] and Pli-Ii F exhibited different

expression patterns during limb development and regeneration

which correlated with their own functions in other species.Cbfi,-J expression pattern in late limb development isconserved with the late regeneration stages, supporting the

hypothesis of a biphasic process consisting of an initialpreparation phase that is foilowed by a re-development phase[23]. It was aiso noted that Cbfii-1 expression during limbregeneration is weaker than during iimb development despitehaving a conserved expression pattem between both processes.The presence of more mature tissues and extracellular matrixcould be an explanation for the difference in the intcnsity ofCbfa..1 signal. On the other hand, the expression pattem ofPTHrP was different between limb development and rcgeneration, by its intensity but also by the localization of the signal,

thus suggesting a possible dual function of this gene duringthese processes [23]. Overall, the data for these 2 genes support

the hypothesis that limb regeneration is a biphasic process.Recent rcsearch has shown that there are corresponding sets ofearly and late genes associated with each phase [23]. 0f

particular intercst, events during the preparation phase of

regeneration differ signiflcantly from what is observed during

limb development [23,47,48,60] whereas the mechanisrns forcontrolling growth and pattem formation in the blastema arerecapitulated during development [23,48,58,59,71]. Theseflndings are supported by the expression pattems obscrvedfor Cbfa-] during regeneration and development, beingdifferentially expresscd throughout the early stages and havingnearly identical expression pattcms in the later stages. Thedifferent FTHrP expression obscrved duHng the early stages ofdevciopment and regeneration can also be rationaiized according to Muneoka’s findings [48]; however, to support the notionof biphasic process, sirnilar expression patterns in the laterstages would be expected, as observed for Cbfli-1. Thedifferent PTHrP expression between development and regeneration can be attributed to its many physiological roles.FTHrP has been reported to regulate keratinocyte growth anddifferentiation [5,28] suggesting that it could be an importantmediator for skin growth and wound healing. In fact, the wound

healing process shares numerous rnechanisms with thepreparation phase of regeneration [60]. Pli-hP bas also beenshown to participate in blastema formation during deer antlerregcneration, particulariy in the regenerating epithelium and inthe mesenchymal celis ofthe blastema [55]. These observationsprovide a plausible expianation for the pronounced expression

ofPTHrP during the preparation phase ofregeneration and thcdiffering expression pattems observed during the re-development phase of regeneration and the late stages of Iimb

development.

Fractttre healing of ,ion—stabilized union ana’ non—tniion

fracture in the axolotl 11mb

Finally, we verified the axoioti’s ability to heal union and

non-union bone fractures in order to estabtish whether these

animais eau speciflcaliy or directly regenerate their bones. The

resuits from this study demonstrate that the axolotl heals union

fractures like any other vertebrates [72]. Surprisingiy. based onthe regcnerative capacity of thcse animais, no healing in theaxolotls subjected to non-union fractures of critical dimension

was abserved, the gap length had not changed 7 months afterinjury (fig. 5E). This leads us to conclude that the axolotl doesnot use the regeneration process to heai fractures. Previous

experiments had shown that the adult axolotl is incapable ofreplacing a missing bone when this one was cornpletelyextirpated which is quite different than fracture healing [73].Studics pertaining to the heahng mechanisms uscd by theaxolotl to heal bone fractures are rare; though numeroushypotheses can be formulated to explain the reason why thisorganism is unable to regenerate banc fractures. First, afterfracturing. unlike lirnb amputation, there is no open wound,thereby inhibiting important epithiai—mesenchymal interactians essential for the regeneration proccss [7.23,73]. Althotighthis is n plausible explanation, it is not likely since the axolotl

is able ta regenerate missing parts of the heart after ablation

[7]. Another important event, essential for limb regeneration, isthe large trauma ta surrounding tissues that occurs afteramputation. Goss (1969) dcmonstrated that if an axolotl limb isamputated directly thraugh the plane where bone haspreviously been extirpatcd, the re-developed section willcontain half of the extracted banc, without thc base of thebanc being present [73]. This experirnent not only reveals theimportance ofa trauma factar, but also that ceiis composing theskeletal structures already in place in the amputated limb secmto have littie implication in the regeneration process [48]. Thisnotion was further tested by Lheureux who demonstrated that

after grafting a piece of skin (dcrmis and epidemiis) on anirradiated limb, incapable of regeneration, there is completeregeneration af ail structures aside muscle [381. Theseexperiments demonstrate that the skin cantains ail thenecessaiy components, exciuding celis capable of formingmuscles, ta assure perfect limb regeneratian [15,38]. Another

important factor ta consider when camparing banc healing and

banc regeneration is the presence of dedifferentiated ceilsduring the regeneration process. Cellular dedifferentiation iscrucial ta the regeneration process, distinguishing regenerating

limbs fram nonregenerating limbs [27], therefore the presenceofdedifferentiated cells rnay 5e a determining factor in order taregenerate a banc fracture ofcritical dimension. further studiesxviii be needed far a better understanding afthe genes invaived

in banc formation and fracture healing during axolotl limbregeneration in order ta establish their requirements during thisprocess.

Acknowiedgments

This work was funded by a grant fram the National

Sciences and Engineering Research Council of Canada. S.R.

is a Chercheur Boursier Junior 1 fram the Fond de Recherche

en Santé du Québec. We wouid like ta thank the members

of the S. Roy iaboratory far their critical reviews of themanuscript.

Picase cite this article as: Cara Hutchison, et al.. flic axolotl limb: A model forbone developinent, reCencration and fracture healing, Bone (2006), doi:lOElOlôj.

bone.2006.07.005.

Page 154: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

C. Hutchiwn et al./ Rune xx (2006) .v.cv—tcr Il

References

[I] Amizuka N. Davidson D, Liu H, Valverde-Franco G, Chai S, Maeda T,

et ai. Signalling by fibrobiust growth factor receptor 3 and parathyroid

hormone-reiated peptide coordinate cartilage and bone developmcnt.

Bone 2004:34:13—25.[2] Amizuka N, Karapiis AC, Henderson JE. \Varshawsky H, Liprnan ML.

Matsuki Y, et al. Hapioinsufficiency of parathyroid hormonc-rclated

peptide (PTHrP) resuits in abnormal postnatal bone devclopment. Dcv

Biol 1996;175:i66—76.

[3] Amizuka N, Warshawsky H, Henderson JE, Goltzman D, Karaplis AC.

Parathyroid hormoisc-related pcptide-depleted mice show abnomsal

epiphyseal cartilage deveiopment and aitered endochondrai bone forma

tion. J Ccli Bioi i994;126:161 i—23,

[4] Bac SC, Takahashi E, Zhang YW. Ogasva E, Shigesada K. Namba Y, et ai.

Cloning, mapping and expression of PEBP2 alpha C, a third gene encoding

the mammalian Runt domain. Gene 1995;159:245—8.

[5] Blonsme EA, Sugimoto Y. Lin YC, Capen CC. Rosol Ii. Parathyroid

homsone-rciated prutein is a positive regulator of keratinocyte growlh

factor expression by nonnai derniai fibrobiasts. Moi Ccii Endochnol

1999:152:189—97.[6] Boiander ME. Reguiation of fracture repair by growth factors. Proc Soc

Exp Biol Mcd 1992;200:165—70.

[7] Brockes JP. Amphibian limb regeneration: rebuiiding a complex structure.

Science 1997;276:$l—7.

[g] Btyant SV. Endo T. Gardiner DM. Vcrtebrate 11mb regencration and the

origin of 0mb stem ceils. Int J Dcv Biol 2002:46:887—96.

[9] Biyant SV. iten L. The regulative abiiitv ofthe 11mb regencration biasteina

of Nutophrhubnus viridescens: cxpenlncnts in alOi. Wilhcim Roux’ Arch

1974;174:90—lOi.

[10] Choi KY, Lee SW. Park MH, Bac YC, Shin Hi, Nam S, et al. Spatio

temporal expression pattems of Runx2 isofonas in eariy skeietogenesis.

Exp Moi Mcd 2002:34:426—33.[il] Cook SD. Baffes GC. Woifè MW. Sampath TK, Rueger DC. Whitecloud

TS. 3rd The cffect of recombinant human osteogenic protein-l on heahng

of large segmental bone dcfccts. J Bone Jt Surg, Am 1994:76:827—3g.

1121 Dingerkus G, Uhier LD. Enzyme clearing of alcian biuc stained whoie

srnali vertebrates for demonstration of cartilage. Stain Technol 1977;

52:229—32.[13] Ducy P. Cbfa I: a moiccuiar switch in osteobiast biology. Dcv Dyn

2000:219:461—71.[14] Ducy P, Zhang R, Gcoftoy V. Ridail AL. Karsenty G. Osf2/Cbfal: a

transcnptionai activator of ostcoblast differentiation. Ccli 1997:89:

747—54.[15] Dunis DA. Naincnwirth M. Tise role of graftcd skin in tise regeneration of

x-irradiated axolotl iimbs, Dcv Biol i977;56:97—i09.

[16] Ekker SC, McGrew LL, Lai Ci, Lce ii. von Kessier DP, Moon RT, et al.

Distinct expression and sharcd activities ofmernbcrs of tOc hedgehog gene

family ofXenopu.v Iaevïs. Development 1995:121:2337—47.

[17] Enonioto H, Enomoto-iwamoto M. isvamoto M. Nomura S, Himeno M.

Kitamura Y. et al. Cbfai is a positive reguiatory factor in chondrocyte

maturation. J Bioi Chem 2000;275:8695—702.

[18] Faucheux C. Nichoils BM, Alien S, Danks JA, Horton MA, Price JS.

Recapitulation of tOc parathyroid hormonc-relatcd peptide-indian hedge

00g pathway in tOc regenerating dcer antler. Dcv Dyn 200i; 231:88—97.

[19] Ferguson CM, Miciau T. Hu D. Aipem E. Heims JA. Commun moiecular

pathways in skcictai morphogencsis and repair. Ann N Y Acad Sel 998;

857:33—42.[20] Franssen RA, Marks S, Wake D, Shubin N. Limb chondrogcncsis of the

scepage salamander. Desinognathus aeneus (amphibic: picthodontidae).

J Morphoi 2005:265:87—lOI.

[211 Frohman MA, Dush MK, Martin GR. Rapid production of fuii-length

cDNAs from turc transcripts: ainphflcation using a single gene

spccilic ohgonucleotidc primer. Proc Nati Aead Sci C’ S A 1988:85:

8998—9002.[22] Gardincr DM. Blumbcrg B, Komine Y, Btyant SV. Reguiation of HoxA

expression in developing and regenerating axolotl limbs. Development

1995:121:1731—41.

[23] Gardiner DM, Canson MR, Roy S. Towards a functionai anaiysis of 11mb

regeneration. Scmin Ccii Dcv Bio! 1999:10:385—93.

[24] Gardincr DM. Endo T, Bsyant SV. Tise moiecuiar basis ofaniphibian limb

regeneration: integrating tOc oid with the ncw. Semin Ccii Dcv Biol 2002;

13:345—52.[25] Goss RJ. The relation of boue to tise histogenesis ot’ cartilage in re

gcnerattng forelirnbs and tails of aduit 7i’ituris s’i,’denscens. J Morph

1956:98:89—123.[26] Gt’zesiak ii, Smith KC, Chalherg C, Tntong C, Burton DW, Dcflos Li,

et al. Heat shock protein-70 expressed on the surface of cancer ceils

binds parathyroid hormone-relatcd protein in vitro. Endocrinology 2005:

46:3567—76.[27] Han M. Yang X. TayiorG, Burdsai CA, Anderson RA. Muneoka K. Limb

rcgencrurion in highcr vertcbrates: dcveioping a roadniap. Anat Rcc B New

Anat 2005:287:14—24.[28] Henderson JE, Kremer R, Rhim JS, Goitzman D. identification and

ftnctionai charactcnization of adenylate cyciase-linked receptors for

pamthyroid hormone-like peptides on irnmortahzed human keratinocytes.

Endoctinoiogy 1992:130:449—57.[29] Hietaniemi K. Peitonen J. Paavolatnen P. An experimentai model for non

union in rats. injury 1995:26:68 l—6.

[30] Horion \VA. Tise bioiogy of bonc growth. Growth Genct Homs 1990:

6:1—3.[31] inada M, Yasui T, Nomura S, Miyake S. Deguchi K, Himeno M, et ai.

Maturationai disturbance of chondrocytes in Chfai-defieient nsice. Dey

Dyn 1999:214:279—90.[32] Karaplis AC. Luz A. Giowacki J, Bronson RT. Tybuiewicz VL,

Kroncnberg HM. et al. Lethai skcletal dysplasia from targeted dismption

of the paratisyroid hormone-rciatcd peptidc gene. Gencs Dcv 1994:

8:277—89.[33] Kim iS, Otto F, Zabcl B, Mundlos S. Regulation of chondrocyte

differentiation by Cbfal. Mccli Dcv 1999:80:159—70.[34] Komori T. Yagi H. Nomura S. Yamaguchi A. Sasaki K. Deguchi K. et al.

Targeted disruption ofCbfai t’esuits in s compiete lack ofbonc formation

owing to maturational arrest ofosteoblasts. Ccii 1997:89:755—64.

[35] Kuboki T, Kanyama M. Nakanisisi T, Akiyansa K, Nawachi K. Yatani H.

et ai. Cbfai/Runx2 gene expression in articular ehondrocytes of tise niice

tcmporomandibular and knee joints in vivo. Arch Oral Biol 2003;48:

519—25.[36] Lanskc B, Amiing M. Nerf L. Guiducci J. Baron R. Kroncnberg HM.

Ablation of tise PTHrP gene or tise PTH/PTHrP receptor genc ieads tu

distinct abnormaiities in bone development. J Clin invest 1999:104:

399—407.[37] Lec K, Dceds JD, Segrc GV. Expression ofparathyroid hormone-reiatcd

pcptide and its receptor messenger ribonucicic acids dtining fetal

development of rats. Endocrinology 1995; 136:453—63.

[38] Lheurcux E. Rcplacemcnt of irradiated cpidernsis by migration of non

irradiated epidennis in tise newt 0mb: tise neccssity of healthy cpidermis

for rcgeneration. J Embryoi Exp Morphol l983;76:2l7—34.

[39] Li TF, Dong Y. ionescu AM, Rosier RN, Zuscik MJ. Schwarz EM. et al.

Parathyroid homsone-reiatcd pcptide (P’FHrP) inhibits Runx2 expression

through tise PKA signaling pathway. Exp Ccii Res 2004:299:128—36.

[40] Linsenmayer TE, Clsen QA, Gibney E, Gordon MK. Marchant JK.

Mayne R. et al. Coiiagcn types IX and X in the developing chick

tibiotarsus: analyses of mRNAs and proteins. Deveiopmcnt I 99 I :111:

191—6.[41] Maden M. Waiiace H. TOc orïgin of 0mb regcnerates ftom cartilage grafts.

Acta Embryoi Exp (Paienno) 1975:77—86.[42] Minina E, Wenzel HM, Kreschei C, Karp S, Gaffield W, McMalson AP,

et ai. BMP and lhh/PTHrP signaling intcract to coordinate clsondrocyte

proliferation and diffcrcntiation. Deveiopment 2001:128:4523—34.

[43] Moseiey JM. Kubota M. Dicfenbach-Jagger H, tVericnhaii RE. Kemp

BE. Suva U. et ai. Parathyroid hormone-related protein purified from a

human long cancer ccli One. Proc Nati Acad Sci U S A 1987:84:

5048—5 2.[44] Mundios S. Expression pattems of matnix genes duning hunsan skcietai

deveiopment. Prog Histochem Cytochens i994;2$:i—47.

[45j Mundios S, Olsen BR. Heritabic diseases ofthc skeleton: Parti. Molecular

Jeasc cite this article as: Cana Hutchison, et ai.. The axolotl iinsb: A nsodei for hune deveiopmnent. regeneration and fracture heaiing, Bone (2006). doi: 10. iOi6ij.

hone.2006.07.005.

Page 155: j - core.ac.uk · MEM solution saline composée de MOPS, EGTA et MgSO4. viii MEMFA fixatif contenant une solution de sel MEM et du formaldéhyde mg milligramme min minutes mL millilitre

12 C. liitchisa,, et al. / Banc xx (2006) xxx—ver

insights into skeletal deveiopment-transcription factors and signaling

pathways. FASEB J 1997:11:125—32.[46] Mundios S, Otto F, Mundlos C, Muiliken JB, Ayisworth AS. Albright S,

et al. Mutations invoiving the transcription factor CBFA1 cause cleido

cranial dyspiasia. Ccli 1997:89:773—9.[47] Muneoka K. Bryant SV. Celiular contribution to supemumeraiy lirnbs

resulting from 16e interaction bettveen developing and regenerating tissues

in the axolotl. Dcv Biol l984;i05:l79—87.[48j Muneoka K, Bryant SV. Evidence that patteming mechanisms in

developing and regenerating limbs are the same. Nature 1982:298:369—71.

[49] Nye HL, Carneron JA. Chemoif EA, Stocum DL. Extendinn the table of

stages ofnonsial dcvelapment ofthe axolotl: 6mb development. Dcv Dyn

2003:226:555—60.[50] Nye HL, Cameron JA. Chemoif EA, Stocum DL. Regeneration of the

urodele limb: a review. Dcv Dyn 2003:226:280—94.[51] Ogawa E, Maruyama M, Kagoshima H, Inuzuka M. Lu J. Satake M, et al.

PEBP2/PEA2 represents u family of transcnption factors homologous to

tue products ofthc Drosophilu runt gene and thc human AML1 genc. Proc

Nati Acad Sci U S A 1993:90:6859—63.[52] Okabe M, Graham A. 16e origin ofthe parathyroid gland. Proc Natl Acad

Sci U SA 2004:101:17716—9.[53] Otto F, Thomeli AP, Crampton T, Denzel A, Gilmour KC, Roseweil IR,

et al. Cbfal, s candidate gcne for cleidocranial dysplasia syndrome, is

essential for ostcobiust differentiation and bone deveiopment. Ccli 1997;

89:765—71.[54] Phiibrick WM, Wysolmerski JJ, Gaibraith S, Hait E. OrloffJJ, Yang KH,

cl al. Defining the raies ofparathyroid hormone-related protein in normal

physialogy. Physiol Rev 1996:76:127—73.[55] Price J. Ailen S. Explodng the mechanisms regulating regeneration ofdeer

antlcrs. Philos Trans R Soc Land. B Bial Sci 2004:359:809—22.[56] Razzaque MS, Soegiarto DW. Chang D, Long F. Lanske B. Conditional

deletion of Indian hedgchog from collagen 2alphal-expressing cells

resuits in abnomiai endachondmi bone fonnation. J Pathol 2005:207:453—61.

[57] Ripamonti U, Heliatis M, Rtieger DC. Sampath 1K. Induction ofcementogenesis by recombinant human osteogcnic protein-l (hop-l/

bmp-7) in tise baboon (Papia ursinus). Arch Oral Bial l996;4l:i2l—6.

[58] Roy S. Gardiner DM. Cyclopamine induccs digit lass in regenerating

axolotl limbs. J Exp Zaol 2002;293:i86—90.[59] Roy S, Gardiner DM. Bryant SV. Vaccinia as a tool for functionai analysis

in regenerating limbs: ectopic expression of Shh. Dcv Biol 2000:218:199—205.

[60] Ray S, Lévesque M. Liinh rcgeneration in axolotl: is it superhcaling? TSW

Dcv Embiyol 2006:1:12—25.[61] Sandberg MM, Ara HT. Vuodo El. Gene expression during banc repair.

Clin Orthop 1993:292—3 12.[62] Schmitz JP, Hollinger JO. 16e critical size defect as an cxperimental modei

for craniomandibulofaeial nonunions. Clin Orthop Relut Rcs 1986:

299—308.[63] Segre GViB, JP. Raisz LG, Rodan GA, editors. New York pdnciples in

banc bialagy. New York: Academic Press; 1996. p. 377—403.

[64] Stark DR. Gates PB. Brockes JP. Fcrrctti P. Hcdgehag family member is

exprcsscd thraughotit rcacnerating and devcloping limbs. Dcv Dyn 199$:

212:352—63.[65] Stonc CA. Unravciling the secrets oftbetal waund heahng: an insight Inta

fracture repair in the mause foetus and perspectives for ciinicai application.

Br J Plast Surg 2000:53:337—41.[66] Strausberg RL, Feingald EA. Grouse LH. Derge JG. Klausner RD, Collins

FS. et al. Generation und initial analysis af mare than 15,000 ftuIl-lcngth

human and manse cDNA sequenccs. Proc NatI Acad Sci U S A 2002:99:16899—903,

[67] Strewlcr GJ, Stem PH, iacabs JW. Evelaif J, Klein RF, Leung SC. et al.Parathyroid hamianelike pratein from human renal carcinama ceils.

Structural and functianal hamalagy with parathyraid hormone. J Clinlnvest l9$7;80:l803—7.

[6$] Stricker S, Fundele R, \rtkamp A. Mundlas S. Raie of Runx gcnes inchandrocvtc differentiation. Dcv Biai 201)2:245:95—108.

[69] Takcda S, Bonnumy JP. Owcn MJ, Ducy P. Karscnty G. Cantinttausexpression ofCbfal in nonhypertrophic chandracytes tincovers its ability

ta induce hypertrophie chondrocvte differentiatian and partiaily rescuesCbfai -deficient mice. Genes Dcv 20t) 1:15:467—81.

[70] Tank PW, Canson 0M. Conneily 1G. A staging system for forelimbregenemnon in the axolotl. ,4,fl63’sto,ffii ,nexicanu,n. J Moiphai 1976:150:117—28.

[71] Torak MA. Gardiner DM. Shubin NO. Bryant SV. Expression af HoxDgenes in devcloping and regenerating axolati limhs. Dcv Biol 1998:200:225—33.

[72] Vartkamp A, Pathi S, Peretti GM, Camsa EM. Zaleske Di. Tabin CJ.Recapitulation of signais regulating embryanic banc formation duringpostnatal growth and in fracture repair. Mccli Dcv 1998:71:65—76.

[73] Waliace H. Vertebrate limb regenemtion. Chichester Eng.: Nesv York:Wiley: 1981.

[74] Wallace H, Maden M, Wallace BM. Participation af cartilage grafis inamphibian limb regeneration. J Embiyol Exp Marphol 1974;32:39 l—404.

Please cite this article as: Cars Hutchison, et ai,, The axolotl limb: A model for banc develapmcnt, regcneration and fracture hcaling, Bone (2006), dai: 10. IOlôj.

bone.2006.07.005.