27
C4 – Mesures pour les micro ondes et l’optique présenté par NICOLAS RIVIERE DEA MICRO ONDES & TRANSMISSIONS OPTIQUES – © 2001-02 LA MESURE A MESURE TEMP TEMPS FR FREQUENCE EQUENCE sujet numéro 49

LA MESURE - webriviere.free.fr

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: LA MESURE - webriviere.free.fr

C4 – Mesures pour les micro ondes et l’optique

présenté par

NICOLAS RIVIERE

DEA MICRO ONDES & TRANSMISSIONS OPTIQUES – © 2001-02

LLA MESUREA MESURE

TEMP TEMPSS

FR FREQUENCEEQUENCE

sujet numéro

49

Page 2: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr

SOMMAIRE

Introduction ................................ ................................ ................................ ................................ ............. 1

I. Mesure du temps ................................ ................................ ................................ ................................ .. 1

1. Les quantités liées au temps ................................ ................................ ................................ .... 1

2. Unités de mesure et systèmes de référence ................................ ................................ ............. 2

3. Techniques de mesure ................................ ................................ ................................ ............. 5

II. Avancées des techniques de mesure du temps ................................ ................................ ................. 6

1. Dernière génération d’horloges atomiques ................................ ................................ ............. 6

2. Temps des pulsars ................................ ................................ ................................ ................... 7

III. Les systèmes de distribution ................................ ................................ ................................ ............ 8

1. Problème du transfert des données liées au temps ................................ ................................ .. 8

2.Exemple – Le système GPS ................................ ................................ ................................ ..... 9

Conclusion ................................ ................................ ................................ ................................ ............. 12

Bibliographie ................................ ................................ ................................ ................................ ......... 13

Annexes ................................ ................................ ................................ ................................ .................. 14

1. Le temps universel – Variation du jour solaire ................................ ................................ ..... 14

2. Les signaux émis par les satellites GPS ................................ ................................ ................ 16

3. Sujet initial ................................ ................................ ................................ ............................ 18

Page 3: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 1

Depuis le début de l’humanité, la compréhension de son environnement a toujours été le principal but de

l’Homme. Mais la compréhension du temps provient de la socialisation de l’Homme. En effet, la communication

nécessite des repères communs, notamment d’e space et de temps. Ces deux quantités sont intimement liées, et

dans notre société actuelle où la communication ne connaît (presque) plus de frontières, leur détermination se

doit d’être la plus précise possible.

La mesure du temps et de ses quantités associées a commencé très tôt avec l’utilisation de clepsydres, de

pendules et de cadran solaires, mais elle n’a pu être vraiment précise qu’à partir du vingtième siècle, grâce à

l’avènement de nouvelles sciences comme la physique atomique (bien que les grecs soupçonnaient l’existence

d’atomes).

Nous nous attacherons donc à expliquer dans une première partie les quantités liées au temps et les instruments

de mesure concernés. Puis, dans une deuxième partie, nous parlerons des avancées technologiques des

instruments de mesure de temps strict. Enfin, dans une troisième partie, nous traiterons le temps de transfert et

une de ses principales applications : le système GPS.

I. MESURE DU TEMPS

1. LES QUANTITES LIEES AU TEMPS

La plupart des quantités physiques sont liées entre elles, et le temps n’échappe pas à cette règle. La principale

grandeur associée au temps est la fréquence. En effet, la fréquence notée f ou ν et exprimée en Hertz (Hz en

unité du système international) est l’inverse d’un temps : la période T exprimée en secondes (s en usi) est telle

que f=T-1. La variable T n’est pas à proprement parler un temps, mais plutôt un intervalle de temps. Il est vrai

que la langue française ne fait pas de distinction entre temps et intervalle de temps, contrairemen t à l’anglais ou à

l’allemand. Cette lacune ne doit pourtant pas nous faire penser que ce sont des quantités identiques. En effet, s’il

est facile de mesurer une durée, suivant une échelle de temps choisie, il est bien plus difficile de mesurer le

temps lui-même, car notre échelle de temps n’a pas de début bien défini, tant que nous ne saurons pas établir

avec précision l’âge de l’Univers.

Nous distinguerons donc le temps, l’intervalle de temps, la fréquence et la variation de fréquence. Si on suppose

que le symbole « ← » représente les mots « déduit de », on a les relations suivantes (par exemple, la fréquence

est déduite de l’intervalle de temps) :

Temps ← intervalle de temps ← fréquence ← variation de fréquence

Il y a de plus 4 éléments fondamentaux da ns la mesure précise du temps et de la fréquence :

- l’unité de mesure - les systèmes de référence

- les techniques de mesure - les systèmes de distribution

Page 4: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 2

L’unité de mesure et les systèmes de référence seront explicités dans la partie suivante. Certaines

techniques de mesure sont décrites dans le troisième paragraphe, et nous parlerons des systèmes de

distribution dans la dernière partie (notamment le GPS).

2. UNITES DE MESURE ET SYSTEMES DE REFERENCE

Ici, nous allons parler exclusivement de la notion de temps. Nous distinguerons le temps de la notion de durée.

Le temps a pour unité de temps-durée la seconde (usi), tandis que la durée va être définie selon une échelle de

temps, on parle de temps-date. Cette échelle de temps sera définie grâce à une hor loge qui compte les unités de

temps. Nous associerons une échelle à chaque temps -durée que nous définirons. De plus, nous nous restreindrons

aux dernières définitions de la seconde, c’est -à-dire celles du 20ème siècle.

Mais avant tout, caractérisons la conformité d’une échelle de temps. En effet, la seconde sera caractérisée

uniquement par sa « précision » et une échelle de temps devra répondre à quatre critères de qualité :

La pérennité - Une échelle de temps doit pouvoir continuer à dater tous les événeme nts futurs.

Accessibilité / Universalité - Une échelle de temps doit être accessible à tous les utilisateurs potentiels.

Stabilité - La durée de l'unité d'une échelle de temps doit être constante dans le temps.

Exactitude - La durée de l'unité d'une échelle de temps doit être égale à la définition de l'unité.

Il peut arriver que l’un des quatre critères ne soit pas respecté. Par exemple, une horloge dont l’unité de temps

reste à 1,1 s sera parfaitement stable, mais inexacte. Il faudra choisir le critèr e à privilégier selon l’expérience ou

selon le domaine auquel participera l’horloge. Si on s’intéresse, comme nous le verrons dans la dernière partie,

au positionnement par satellite, la stabilité à court terme sera privilégiée ( i.e. peu de variations sur des temps

courts, mais évolution lente des variations). En revanche, en astronomie où les temps se mesurent en centaines

d’années au minimum, on recherchera une stabilité à long terme : même si les variations sont fortes sur des

temps courts, la valeur moyenne évoluera peu. Revenons à présent sur les différentes définitions de la seconde. Il

y en a eu trois au cours du siècle précédent.

Première définition de la seconde (définition officielle de la seconde du Système International d'Unité jusqu'en 1960)

La seconde est la 1/86400ème partie du jour solaire moyen

L'échelle de temps qui lui correspond est le Temps Universel (UT).

Le Temps Universel UT est le temps solaire moyen pour

le méridien origine augmenté de 12 heures

Il faut toutefois apporter quelques corrections à cette définition. D’une part, ce « temps solaire » défini pour un

lieu et à un instant donné est l’angle horaire du soleil en ce lieu et à cet instant. Le terme temps est utilisé car cet

angle augmente quasi-proportionnellement au temps. D’autre part, cette définition de l’UT fait intervenir le

temps solaire moyen, et non le temps vrai définit plus haut. Ce dernier fluctue au cours du temps à cause

principalement de l’orbite ellipsoïdale de la Terre et de la projection du mouvement du soleil sur l’équateur

céleste (cf. annexe).

Page 5: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 3

Le temps solaire moyen correspond au temps solaire vrai débarrassé de ses fluctuations. Ces dernières qui,

cumulées sur une année, atteignent une amplitude d'une vingtaine de minutes peuvent être calculées et donc

corrigées facilement : c'est l'équation du temps que l’on peut voir sur la figure 01.

On détermine le temps sidéral en notant l’instant de passage au méridien (plan Nord -Sud) d’étoiles de

coordonnées connues. On le convertit en une première échelle de temps U T0, puis on calcule la position de l’axe

de rotation instantané de la Terre et le temps universel rapporté à cet axe de rotation instantané : c’est lUT1 qui

est plus précis puisqu’il affiche une incertitude de 1 ms au lieu de 0,1 s.

Figure 01 – Equation du temps.

Toutefois, il remarqua rapidement que la durée du jour moyen évoluait au cours des siècles et qu’elle constituait

un obstacle à la pérennité de cette échelle. Ce phénomène est essentiellement dû au ralentissement de la rotation

de la Terre par l’attraction lunaire et aux pertes énergétiques dues aux marées. Un exemple marquant peut être

cité à titre de comparaison : le jour à l’époque des dinosaures est estimé à ~ 20 heures. Une nouvelle échelle a

donc été définie par le Comité International des Poids et Mesures en 1960.

Deuxième définition de la seconde 1960-1967 (par le Comité International des Poids et Mesures)

La seconde est la fraction 1/31.556.925,9747 de l'année tropique pour le 0 janvier

1900 à 12 heures de temps des éphémérides

L'échelle de temps qui lui correspond est le Temps des Éphémérides (TE) :

Le Temps des Éphémérides TE est obtenu comme solution de l'équation qui donne la

longitude moyenne géométrique du Soleil :

L = 279°41'48,04" + 129.602.768,13" T + 1,089" T2

… où T est compté en siècles juliens de 36525 jours des éphémérides. L'origine de T est datée le 0 janvier 1900

à 12h TE, à l'instant où la longitude moyenne du Soleil a pris la valeur 279°41'48,04".

En fonction du temps idéal T de la mécanique, la longitude moyenne géomé trique du Soleil est donc exprimée

par une équation du second degré : il y a identification entre ce paramètre T de l'équation et TE. On détermine

TE en mesurant la position de la lune par rapport à des étoiles de coordonnées connues, après étalonnage de c ette

horloge secondaire par rapport au mouvement en longitude du soleil. Elle offre une très bonne stabilité à long

terme, 1 s en 10 ans, mais pas à court terme. De plus, elle fait intervenir l’année tropique 1900, et la condition de

pérennité n’est pas respectée. Cette horloge n’a été, de surcroît, utilisée que par les astronomes.

Page 6: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 4

Troisième définition de la seconde depuis 1967 Le temps atomique

La seconde est la durée de 9.192.631.770 périodes de la radiation correspondant à

la transition entre les deux niveaux hyperfins de l'état fondamental de l'atome de

Césium 133.

L'échelle de temps qui en découle est le Temps Atomique International (TAI). Le TAI est maintenant la

référence officielle pour dater les événements.

Le Temps Atomique International TAI est la coordonnée de repérage temporel établie

par le Bureau International de l'Heure (remplacé maintenant par le Bureau

International des Poids et Mesures) sur la base des indications d'horloges

atomiques fonctionnant dans divers établissements conformément à la définition de

la seconde, unité de temps du Système International d'unités.

Détermination du TAI

1. Chaque laboratoire concerné doit réaliser une échelle de temps atomique locale (accessibilité) : il doit

disposer de plusieurs étalons atomiques (pérennité) .

2. Les échelles de temps atomique local doivent être intercomparées : chaque laboratoire doit connaître

l'avance ou le retard de son échelle locale par rapport à celles d'autres laboratoires.

3. Le TAI est calculé par une moyenne pondérée des diverses échell es de temps atomique locales : le

coefficient de pondération est déterminé par les performances (stabilité, exactitude) de chaque échelle

locale.

4. Chaque laboratoire reçoit la correspondance entre son échelle locale et le TAI pour la période écoulée

(universalité) : tous les événements le concernant peuvent être « redatés » par rapport au TAI.

C’est une échelle très stable, les horloges atomiques en 1967 atteignaient déjà une exactitude de 10 -12 s soit 1 s

en 30 000 ans. De plus, les intercomparaisons entre échelles de temps locales sont réalisées grâce au GPS, et

donne une stabilité de 10 -9 s. L’exactitude est plus faible, mais le coût est bien moins élevé. Quant au TAI lui -

même, puisque c’est l’échelle de référence, on ne peut mesurer son exactitude, ni sa stabilité ; mais on peut les

estimer. Les dernières valeurs (1998) indiquent une exactitude et une stabilité de 2.10 -14 s soit 1 s pour

1 500 000 ans. Le changement a été tel que l’on parle de révolution du temps atomique. C’est la grandeur

physique déterminée le plus précisément, au point qu’elle sert désormais de référence à l’étalon -mètre.

Toutefois, comme on peut le voir sur la figure ci -dessous, le TAI se décale par rapport à UT.

Figure 02 – Décalage entre l’UT et le TAI.

Page 7: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 5

Et comme notre rythme biologique suit le rythme solaire, une échelle complémentaire a été établie : le Temps

Universel Coordonné (UTC), qui a la même stabilité que le TAI et ne s’écarte jamais de plus de 0,9 s de UT1.

Pour cela, on rajoute une seconde « intercalaire ». La dernière a été ajoutée le 31/12/98 à 23h59m59s. C’est en

fait l’UTC qui est utilisé pour générer le temps légal de tous les pays.

3. TECHNIQUE DE MESURE

Nous allons voir une technique de mesure du temps l’horloge atomique à jet de Césium. Ceci nous servira de

point de comparaison. Comme nous l’avons énoncé dans l’introduction, l’avènement de la physique atomique et

quantique, a permis la construction de ces horloges. En effet, ces sciences nous ont appris que les atomes

possédaient des niveaux d’énergie strictement définis, caractéristiques de chaque type d’atome (hélium, carbone,

césium…), et que leurs électrons des couches extérieures ne peuvent rester en dehors de ces niveaux. Toute

l’énergie acquise par un électron supérieure à un niveau n, mais inférieure au niveau n+1, sera perdue et

l’électron restera au niveau n. Mais tous ces niveaux ont été fort bien définis, et on connaît aujourd’hui

parfaitement les énergies de toutes les transitions possibles (excitation, désexcitation) entre les niveaux de

chaque atome. De plus, suivant la relation de Planck-Einstein, (ils ont tous les deux contribué à faire progresser

ces deux sciences de manière fulgurante), l’énergie est liée à la fréquence par la relation : E = h.f où h est la

constante de Planck ≈ 6.62 10-34 J.s

On peut donc définir parfaitement la fréquence qui autorisera une certaine transition ou qui sera émise lors d’une

certaine désexcitation. Ici, ce qui nous intéresse, c’est le temps et nous avons déjà dit que la fréquence était

l’inverse d’un intervalle de temps : la période. Pour construire une horloge, il suffira d’utiliser une fréquence de

transition, et de compter ses périodes. Lorsque l’onde électromagnétique sera la cause du changement d’état,

l’étalon sera dit passif, tandis que lorsque l’onde EM sera le résultat du changement d’état, l’étalon sera dit actif.

L’horloge à atome de Césium est la plus stable et la plus exacte à l’heure actuelle. On remarquera qu’on retrouve

le même principe dans une horloge comtoise : elle comptabilise les oscillations de son balancier en faisant

avancer son aiguille à chaque période. Une horloge à quartz comptabilise également les vibrations de son

oscillateur à quartz.

Figure 03 – Fonctionnement d’une horloge à atomes de Cessium.

Page 8: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 6

Un oscillateur à quartz génère un signal électrique de fréquence 10 MHz soit 10.106 oscillations par seconde, et

un dispositif électronique le multiplie pour obtenir la fréquence micro -onde f = 9 192 631 770 Hz. Cette

fréquence est ensuite injectée dans une cavité de Ramsey : c’est un guide d’onde dont la géométrie est telle qu’il

entretient une résonance à cette fréquence particulière. Ensuite, un four envoie un jet d’atomes de Cs 133 selon

deux états A et B. Comme le montre la figure 03, seul ceux dans l’état A vont pouvoir entrer dans la cavité,

grâce à un système de déflection magnétique. S’il y a résonance entre la fréquence des atomes A et f, les atomes

passent dans l’état B, un nouveau déflecteur magnétique permet de ne collecter que ceux de l’état B. En fonction

de la réponse du détecteur, une boucle d’asservissement permet de modifier la fréquence du quartz pour

maximiser le nombre d’atomes dans l’état B. On notera qu’il existe d’autres horloges atomiques mais que leurs

performances ne sont pas satisfaisantes (horloges à Rubidium, ma sers à hydrogène,…).

II. AVANCEES DES TECHNIQUES DE MESURE DU TEMPS

Au vu de la précision obtenue par l’horloge atomique, on pourrait raisonnablement se demander pourquoi

continuer les recherches. Ceci s’explique par le simple fait que la technologie actuelle est si complexe que l’on

en voit rarement les fondements. Si on prend un téléphone portable par exemple, il nous semble tout à fait

normal de ne pas entendre les conversations d’une tierce personne. Pourtant ceci exige le respect sans faille des

canaux d’émission, i.e. un oscillateur interne très précis, et que les postes d’émission et de réception soient

parfaitement synchronisés. D’autres exemples montrent l’utilité de ces recherches, comme le GPS que nous

verrons par la suite, et la recherche astronomique. Mais voyons à présent deux des principales avancées

technologiques.

1. DERNIERE GENERATION D’HORLOGES ATOMIQUES

Comme nous l’avons vu pour l’horloge à Césium, il faut réajuster constamment la fréquence. L’agitation

thermique des atomes due aux mouvements désordonnés incessants de ceux-ci provoque, par effet Doppler, une

variation de la fréquence de transition.

Pour cesser l’agitation, il faut cesser leur mouvement, c’est -à-dire les refroidir à une température proche de la

température du zéro absolue, soit 0 K ou –273,15 °C. Toutefois, on ne peut les éjecter à cette température du four

car l’intensité du jet dépend de cette température. Ils sont donc stoppés par irradiation laser. En combinant quatre

lasers, un dans chaque direction autorisée, on parvient à les freiner considérablement grâce au principe

d’absorption. Un atome qui absorbe un photon subit une impulsion dans le sens opposé à son mouvement. En

bloquant les quatre directions, il ne peut plus s’échapper. De plus, cet effet se conjugue avec un autre effet

quantique, appelé l’effet Sisyphe, qui a tendance à confiner encore plus les électrons. Ce procédé permet

d’atteindre une température de 2 µK, soit une vitesse moyenne d’agitation de 1,5 cm.s-1.

Page 9: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 7

On voit sur la figure suivante un exem ple d’utilisation d’horloge à atomes froids à l’Observatoire de Paris. Dans

ce cas, le jet est intermittent : on lance une « boule d'atomes » refroidis (environ 10 millions d'atomes dans un

volume d'un cm3), on attend qu'ils retombent puis, environ une sec onde après, on en lance une suivante, etc... La

stabilité de cette horloge a été évaluée à environ 5.10 -16 sur une journée. Certaines améliorations prévues

pourraient même lui permettre de descendre à une valeur de 10 -16 (10 picosecondes par jour). Lorsque plusieurs

horloges du même type (une dizaine sont actuellement en cours de réalisation notamment en France, en Suisse,

aux USA ou au Japon) interviendront dans le calcul du TAI, la stabilité de ce dernier en sera grandement

améliorée. Il est aussi à noter qu'une version spatiale d'une horloge à atomes refroidis (PHARAO), à laquelle

sera adjoint un maser à hydrogène, devrait prochainement être embarquée à bord de la Station Spatiale

Internationale afin de permettre des transferts de temps avec une précision de l'ordre d'une dizaine de

picosecondes (projet ACES, Atomic Clock Ensemble in Space).

Figure 04 – a) La fontaine atomique du BNM -LPTF (1,2 m de haut). b) son schéma de principe.

2. TEMPS DES PULSARS

Cette étude fait partie du domaine de l’ast ronomie. L’observation des pulsars a montré qu’ils tournaient très

rapidement sur eux-même : ils ont une période de l’ordre de 1 ms, voire 1 s dans les cas standards. Leur avantage

principal est leur stabilité à long terme : le pulsar PSR 1937+21, découvert en 1982, a envoyé des impulsions qui

ont pu être comptabilisées sans erreur depuis sa découverte. En revanche, sa stabilité à court terme est médiocre

(3.10-4 seulement), en raison du rapport signal à bruit très faible. De surcroît, un bémol est à ajoute r sur la

stabilité à long terme puisque les théoriciens estiment que le bruit d’ondes gravitationnelles, « écho » du big

bang, perturberait la métrique de l’espace-temps, effet qui ne serait détectable que sur des temps très longs.

a) b)

Page 10: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 8

Figure 05 – Représentation artistique d’un pulsar.

Selon l’équipe temps-fréquence de l’Observatoire de Besançon, qui a travaillé sur les pulsars PSR1937+21 et

PSR 1855+09, leur stabilité ne serait meilleure que celle du TAI que pour des durées comprises entre 6 mois et

un an. Avant 6 mois, les instabilités à court terme dominent. Après un an, les instabilités à long terme

commenceraient à s’installer. Toutefois, l’étude qui n’a porté que sur 10 ans, est bien trop courte (en astronomie)

pour servir de données sûres. La recherc he reste donc encore ouverte.

Nous venons de voir que les mesures de temps et donc de fréquence présentent à l’heure actuelle une excellente

précision et stabilité (jusqu’à 10-14). De plus, l’avenir laisse encore de nombreuses portes ouvertes pour

l’amélioration de ces facteurs, aussi bien dans les définitions existantes comme le TAI, qui ne cesse de

s’améliorer, que dans les nouvelles études (comme l’horloge à jet d’atomes froids, ou les pulsars). Nous allons

nous consacrer à présent à une application importante : le système de positionnement par satellite.

III. LES SYSTEMES DE DISTRIBUTION Nous venons de voir comment les techniques actuelles permettent d’obtenir une précision importante ;

cependant, cela ne sert à rien si lors de la transmission de cette information, l’erreur due à la transmission

surpasse de beaucoup l’erreur de précision.

1. PROBLEME DU TRANSFERT DES DONNEES LIEES AU TEMPS

Ce problème reste relativement récent, étant donné que l’explosion de la communication étendue ne date que

d’une cinquantaine d’années environ. Toutefois, le sujet date presque du début de la civilisation. Aux cloches, se

sont substitués les chronomètres (développé par Christian Huggens en 1660), puis en 1965 apparue la première

horloge atomique portable, permettant un transfert de temps de l’ordre de quelques microsecondes. Entre temps,

les scientifiques s’étaient rendu compte que les signaux électromagnétiques amélioraient le transfert de façon

incomparable ( cf.. télégraphe). Etant donné que le temps est inversemen t proportionnel à la fréquence, pour

atteindre un temps extrêmement faible il faut donc des fréquences extrêmement élevées : les micro-ondes.

Cependant, les hautes fréquences (HF) ne sont pas des fréquences qui donnent la meilleure précision. Lors de la

diffusion, les conditions atmosphériques ne permettront d’atteindre que 10 7 pour la précision des variations de

fréquence, et de l’ordre de la ms pour le temps. Mais leur faible coût leur a fait remporter la partie.

Page 11: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 9

2. EXEMPLE : LE SYSTEME GPS

Il existe à l’heure actuelle principalement deux systèmes aptes à assurer les fonctions de Global Navigation

Satellite System : la navigation par satellite. Il s’agit du système américain NAVSTAR-GPS (navigation system

time and ranging – Global Positionning System) et du système soviétique GLONASS (GLObale Navigation

Satellite System). On remarquera que les principales avancées dans ce domaine correspondent aux deux

principales puissances mondiales. Ceci n’est pas surprenant si on considère que le système GPS nécessite

l’utilisation de satellites, technologies extrêmement coûteuses tant par le satellite lui -même (les matériaux

doivent supporter de fortes accélérations, des rayonnements spatiaux importants, et avoir une durée de vie longue

sans pannes, d’où l’utilisation de matériaux particulièrement chers dont l’or), que par la mise en orbite du

satellite. Nous ne nous attacherons à décrire que le système américain, puisque le sujet ne pourrait tenir à lui seul

dans ce dossier. Revenons un instant sur l’historique du sys tème.

Le système GPS a été inventé par les militaires américains du DoD (department of defense) pour permettre la

navigation par satellite, et remplacer le système TRANSIT/NNS. Il a pour but de fournir à l’utilisateur une

information précise de position, de vitesse et de temps (à tout instant, en tout point et dans n’importe quelles

conditions atmosphériques du globe). Nous obtenons ainsi une couverture quasi mondiale et quasi permanente,

une précision de localisation (très importante pour les navigateurs en plein océan), un nombre d’utilisateurs

illimités et un coût très faible du service. Ce système présente des qualités que peu d’autres systèmes peuvent

atteindre, voire aucuns. Néanmoins, comme ce sont les Etats -Unis qui ont financé et mis au point le projet, ils

gardent la main mise sur le système, ce qui est contraire à l’esprit scientifique. C’est pourquoi, en sus de la

Russie, l’Europe encourage un projet de lancement de satellites européens permettant d’être quasiment

indépendant (et à terme de ne plus en dépendre) du bon vouloir américain.

Principe de fonctionnement du GPS - Détermination de la position

On utilise une méthode proche du principe de triangulation, c’est -à-dire que l’on mesure la distance entre

l’utilisateur et un certain nombre de satellites de positions connues. Ceci permet d’établir des sphères centrées

sur des satellites dont l’intersection donne la position. La détermination du satellite utilisé est possible grâce à la

reconnaissance d’un signal pseudo-aléatoire émis par chaque satellite. Ce signal contient aussi des informations

sur la position et l’orbite du satellite. Pour calculer la distance, une simple relation temps -distance est appliquée :

D = c.T …où c est la vitesse de la lumière

On retrouve ici l’exigence sur la précision temporelle dont nous avions déjà parlé afin d’atteindre une précision

spatiale correcte. Un petit calcul d’erreur en montre toute l’importance : ∆ D = 3.108∆T. Une erreur de 1 ms

induit une erreur de 300 km, ce qui revient à placer Toulouse en Espagne. En conséquence, pour la mesure de T,

le satellite et le récepteur s’envoient le même signal au même instant d’après l’horloge générale du système GPS.

Le récepteur retarde ensuite le début de cette émission jusqu'à ce que son signal se superpose ave c celui

provenant du satellite. La valeur de ce retard est ainsi le temps mis par le signal pour se propager du satellite

jusqu'à l'utilisateur.

Page 12: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 10

Figure 06 – Détermination de la position par le sysème GPS.

Ainsi, l’utilisation de cette méthode par trois satellites nous donne un système de trois équations à trois

inconnues, dont la résolution aboutit aux coordonnées de l’utilisateur :

R12 = (x-x1)² + (x-x2)² +(x-x3)² où les (xi,yi,zi) sont les coordonnées du satellite i

R22 = (y-y1)² + (y-y2)² +(y-y3)²

R32 = (z-z1)² + (z-z2)² +(z-z3)²

Principe de fonctionnement du GPS - Détermination de la vitesse

Pour mesurer la vitesse de l’utilisateur, on mesure l’effet Doppler sur le signal provenant d’un satellite GPS. Le

récepteur n’utilise pas exactement la même fréquence que le satellite ; le rapport des fréquences, fonction des

positions et des vitesses relatives du satellite et de l’utilisateur, permet de déterminer la vitesse.

Principe de fonctionnement du GPS - Synchronisation

Les stations de contrôle de l’armée américaine remettent quotidiennement à l’heure les horloges atomiques des

satellites. L’utilisateur peut donc régler son horloge sur cette heure précise. Nous avons volontairement laissé de

côté les données techniques des satellites NAVSTAR, que l’on peut consulter en annexe.

Principe de fonctionnement du GPS - Précision du système

Du fait même de la méthode utilisée (la triangulation) deux facteurs d’erreur interviennent :

- le GDOP (Geometric Dilution Of Precision) : géométrie des satellites par rapport à l’utilisateur

- l’UERE (User Equivalent ranging Error) : précision de mesure de distance entre utilisateur et satellite

L’erreur de localisation s’exprime donc comme le produit de ces deux facteurs. Ci -dessous se dresse un tableau

des sources d’erreur.

Ti correspond à la durée du trajet reliant le satellite au récepteur

Page 13: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 11

Sources d'erreur Erreur sur la mesure

du temps (en nanosecondes)

Erreur sur la distance (en mètres)

Synchro. sur l'horloge GPS 3 1

connaissance position du satellite 4.5 1.5

traversée de l'ionosphère 9 3

Stabilité horloge utilisateur 3 1

précision de la résolution équations 3 1

contributions dynamiques utilisateur 4.5 1.5

Total (compensé) 12.6 4.2

Tableau 01 – Sources d’erreur pour l’UERE.

Si on associe une valeur du PDOP de 6 (plutôt pessimiste) à l’erreur totale de 4,2 m, on trouve une erreur

approximative sur la position finale de 25 m. Compte tenu de toutes ces incertitudes, la précision du système

Navstar utilisé en Precise Positioning System (P.P.S) i.e. en l'absence de perturbations volontaires, est :

- 22 mètres d'incertitude horizontale - 23 mètres d'incertitude verticale - 100 nanosecondes d'incertitude sur le temps - Une fraction de m.s-1 d'incertitude sur la vitesse

Pour les systèmes civils, notamment le SPS (Standard Positionning System), le DoD recommande une

dégradation de la précision aux valeurs suivantes (la précision du système Glonass est légèrement supérieure) :

- 100 mètres d'incertitude horizontale - 156 mètres d'incertitude verticale - 340 nanosecondes d'incertitude sur le temps - 0,3 mètres par seconde d'incerti tude sur la vitesse

Applications du GPS

La navigation en temps réel est bien sûr l’application principale. La précision attendue pour un tel mode de

navigation est de 10 à 15 mètres sur sa position et de quelques centimètres par seconde sur sa vitesse si

l'utilisateur utilise le code précis et une centaine de mètres dans le cas contraire. Comme nous l’avons dit, son

excellente précision, son faible coût (une fois les satellites installés) et l’utilisation possible par un très grand

nombre, font de ce système un instrument de navigation très prisé. Toutefois, ce système rencontre des

difficultés pour s’imposer dans le cadre de l’aviation civile du fait de l’incertitude sur des temps très courts

(l’exactitude des données de tel satellite n’est pas assurée), et du fait de la main mise sur le système de militaires

(d’un point de vue politique). Mais il existe d’autres applications, que nous séparerons suivant deux domaines :

civil et militaire (nous avons montré que les performances étaient différentes).

Applications militaires

Le GPS sert au guidage de bombes. Des essais ont eu lieu notamment dans le désert de Yuma. A une altitude de

10 000 pieds (soit ~ 3 km), l’erreur de position fut en moyenne de 56 pieds (soit 17 m). Il sert aussi pour les

missiles de croisière. Bien que peu approprié au guidage de missiles intercontinentaux en terrain ennemi, le

système NAVSTAR permet aux bombardiers de détruire potentiellement 400 à 600 % d’unités ennemies de plus

qu’avec les systèmes habituels. D’autres applications doivent exister, mais les recherches militaires sont souvent

classées secret défense.

Page 14: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 12

Applications civiles

Du fait d’être sa propre source « lumineuse », le GPS reste opérationnel de jour comme de nuit, et quelles que

soient les conditions atmosphériques (→ technologie radar). Il s’ensuit donc de nombreuses applications dans le

domaine civil. Citons à titre d’exemples, les satellites qui déterminent leur propre position grâce au GPS et

calibrent très précisément les images qui leur sont demandées, ou encore l’orbitographie des satellites de haute

altitude. Cependant, vu que le positionnement est plus délicat au -delà de 20 200 km, la précision dans ce cas

reste bien en dessous de celle des satellites de basse altitude. Des applications plus évidentes dans notre

quotidien peuvent être mises en avant : le positionnement des ambulances, taxis, véhicules de police, et autres

véhicules de sécurité. Le GPS rend possible la visualisation sur écran de la localisation de véhicules ; on parle de

système AVLS devant être complété par deux logiciels et des réseaux (data) existants. Ce système comprend :

les équipements embarqués sur les véhicules, le centre de commandement et de conduite, la liaison de

télécommunication.

En plus de tous les avantages que nous avons déjà cités (opérationnel 24h/24h, mondial, …), il présente

l’avantage d’être gratuit et de le rester pendant au moins 7 ans. Dans un futur proche, l’équipement de nos

voitures permettra l’obtention d’informations vocales sur le chemin à suivre, les conditions météo (même si la

météo est déjà donnée par la radio),… Enfin, les trains profiteront de ce système, grâce à la diffusion d’ondes

radio à 900 MHz. Le central pourra alors les repérer, contrôler leur route et leur temps de route pour avertir les

passagers de tout retard, et intervenir plus rapidement en cas d’incident. Pour clore cette partie, citons les

nouvelles recherches dans le cadre du GPS :

- Un récepteur GPS avec un seul canal de type NBS

- Un récepteur GPS/GLONASS (type R100-30T de 3S Navigation)

- Un récepteur GPS, 12 canaux, double fréquence type Rogue SNR -12 RM

- Un récepteur GPS, 12 canaux, double fréquence type Ashtech ZXII -T

Les mesures de la fréquence et du temps sont plus qu’intimement liées. La détermination du temps permet

d’obtenir une excellente mesure de la fréquence et aussi des distances. Elle a ouvert la voie à l’élaboration de

nouvelles techniques de communication, comme les téléphones portables ou le système GPS que nous avons vu

en détail. En regard de la haute stabilité des horloges atomiques existantes et futures et de leur extrême précision

(10-14), nous pourrions penser qu’il est temps de passer à d’autres domaines. Les horloges à atomes froids dont

nous avons parlé sont en cours de construction (en France, au Japon,…) et permettro nt encore d’améliorer la

précision de la mesure du temps. Alors, pourquoi continuer ? Pourquoi ne pas investir ailleurs ? Nous pouvons,

avec le GPS, trouver quelqu’un, avec une précision théorique de D = 0,0003 m pour T = 10-12, et au pire de 25 m

en pratique. Certes, La construction de ces horloges et le lancement de satellites revient cher. La réponse à cette

question se trouve au cœur même de l’histoire de la science.

Si les scientifiques avaient arrêté leurs recherches chaque fois qu’ils pensaient avoi r atteint leur but, nous en

serions encore peut-être à l’utilisation du charbon comme source d’énergie. L’histoire montre que les progrès

sont venus de la recherche de l’impossible (la conquête de la Lune, les voitures dont certains scientifiques

pensaient que nous ne pourrions supporter l’accélération…). Nous aurons peut -être bientôt d’autres surprises,

comme les voitures entièrement automatiques et autonomes, qui sont d’ailleurs à l’étude…

Page 15: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 13

BIBLIOGRAPHIE

OUVRAGES

- C. Audoin and B. Guinot. Les fondements de la mesure du temps. Masson, Paris, 1998.

- F. Vernotte. Les échelles de temps naturelles. In Premier colloque transfrontalier, pages 199-202,

Besançon, 1993.

- M. Granveaud. Échelles de temps atomique. Collection des monographies BNM, Paris, 1986.

- A. Danjon. Astronomie générale. J. et R. Sennac Éditeurs, Paris, 2ème édition, 1959.

- Chronos, editor. La mesure de la fréquence des oscillateurs. Masson, Paris, 1991.

- J. Vanier and C. Audoin. The quantum physics of atomic frequency standards , volume 1-2. IOP

Publishing Ltd, Bristol et Philadelphie, 1989.

- Global Positioning System Overview par Peter H.DANA,

- Navstar GPS de Benjamin PENET, Stéphane LAURAS et Eric EDELSTEIN , Institut Supérieur

d'Electronique de Paris.

- Systèmes de navigations par satellites deJ.L JONQUIERE, École Nationale de l'Aviation Civile.

- Revue des Télécommunications 2eme trimeste 1994

SITES INTERNET

- http://www.bipm.fr/ Bureau International des Poids et Mesures

- ftp://omaftp.oma.be/pub/astro/euref/data/r100/ Pages personnelles

- http://www.obs-besancon.fr Observatoire de Besançon

- http://www.astro.oma.be/D1/GPS_new/fr/tijdfr.html Pages personnelles

- http://guibert.multimania.com/gps/gps2.html Pages personnelles

Page 16: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 14

ANNEXE 01 LE TEMPS UNIVERSEL

VARIATION DU JOUR SOLAIRE

+23°

-23° Horizon Equateur céleste

Dans l’hémisphère Nord, lors des périodes estivales, notamment au solstice d’été, le soleil se trouve à +23° au -

dessus de l’équateur céleste. Il se trouve ainsi au plus haut de l’horizon, et donc sa course apparente sur la sphère

céleste est plus longue : le jour solaire est plus long. En revanche, lors des périodes hivernales, notamment au

solstice d’hiver, le soleil se trouve à

–23° au-dessous de l’équateur céleste. Sa course est donc plus courte, et le jour solaire est plus court. La

définition du jour solaire varie donc au cours de l’année.

Sphère céleste : sphère centrée sur la Terre imaginée par les astronomes de l’antiquité. Les pôles et l’équat eur

de la sphère céleste sont la projection des pôles et de l’équateur de la Terre. La déclinaison d’une étoile

correspond à l’angle formé par la ligne de visée qui va de la Terre à l’étoile et l’équateur céleste.

Temps sidéral :on parle de jour sidéral et de mois sidéral.

Jour sidéral : (du latin sideris :astre) cycle de 23h56min, qui se rapporte à la rotation de la Terre mesurée par

rapport à l’ensemble des étoiles du ciel pris comme système de référence.

Mois sidéral : correspond à une révolution de la lune autour de la Terre, soit 27,3 jours.

ces explications proviennent de « Astronomie et Astrophysique » de Marc Séguin et Benoît Villeneuve chez erpi.

calendrier julien :

calendrier établi par Jules César, dans lequel nous sommes encore, où l’année jul ienne comporte 365,25 jours.

Page 17: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 15

Effet Doppler :

Lorsque une source et un observateur sont en mouvement l’un par rapport à l’autre, la fréquence perçue par

l’observateur diffère de celle émise par la source. Lorsque l’observateur s’approche de la source, la f réquence

perçue est supérieure à celle émise, inférieure lorsqu’il s’éloigne.

Le système GPS :

Les satellites associés

Pour les satellites NAVSTAR, il existe 3 orbites possibles :

- géostationnaire : elle suit la rotation de la Terre de sorte que le satellite regarde toujours le même point.

Les satellites évoluent dans le plan de l’équateur céleste.

- fortement excentrique : ils fournissent une meilleure réception tout en assurant la couverture des

latitudes élevées et des régions polaires.

- Circulaires inclinées : le satellite maintient un rayon par rapport au centre de la Terre et une vitesse à

peu près constantes.

Page 18: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 16

ANNEXE 02

LES SIGNAUX EMIS PAR LES SATELLITES GPS

Chaque satellite émet simultanément sur deux fréquences porteuses, 1575.42MHz et 1227.6MH z, qui sont

ensuite modulés par modulation de phase. Chaque satellite GPS émet un message de navigation, qui contient

toutes les données nécessaires au récepteur pour effectuer tous les calculs de navigation. Ces données

comprennent :

• une information de l'état de santé du satellite

• les informations nécessaires à l'acquisition du code du message

• les informations de précision du satellite

• une information concernant le retard de propagation du à la ionosphère

• les éphémérides du satellite

Le problème majeur est la réception car le signal reçu diffère du signal émis. En effet, le bruit du canal de

transmission, le décalage temporel dû au temps de propagation et au décalage entre horloges, et le décalage par

effet Doppler viennent perturber la précision du sy stème.

Le signal GPS ne se détériore ni à l’émission, ni lors de la propagation, est facile à acquérir, décomposer et est

riche en informations.

Dégradation volontaire :

Le système possède l’avantage d’être dégradable de façon précise. On utilise pour ce la trois méthodes :

- manipulation de l’horloge : on fait varier la fréquence fondamentale de l’horloge.

- Suppression d’une partie de l’éphéméride envoyé par le satellite à l’utilisateur : diminution de la

précision de la détermination de distance.

- Anti-spoofing : possibilité de codage ou de brouillage de code pour en restreindre l’accès. Ce dispositif

est actif en permanence depuis le 31/01/94.

Les satellites Européens :

ERS 1 (ne fonctionne plus)

ERS 2 (1991)

Ce satellite sert de radar imageur spatial.

Exemples de récepteurs GPS : http://lareg.ensg.ign.fr/CNIG.PSD/GPS/

ce site donne les fiches techniques sommaires de nombreux récepteurs géodésiques, que nous ne pouvons tous

indiquer ici. Nous en indiquons deux pour l’exemple.

Page 19: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 17

RECEPTEUR SERCEL NR106

Constructeur: Dassault Sercel NP Distributeur Français Dassault Sercel 16 rue Bel-Air BP439 44 474 CARQUEFOU Tél : 02 40 30 59 00 Fax : 02 40 30 58 92 e-mail: Web : Modèle: NR106 Mise en service:1993 Nombre de canaux: 10 Mode de poursuite: continu Signaux captés: C/A, L1 Nombre maximun de satellites poursuivables:10 Dimension Lxlxh (m): 0,275 x 0,275 x 0,125 Poids récepteur (kg): 4,1 Alimentation: 10 à 36 V Type d'antenne: hélice quadrifilaire Poids (kg): Post-traitement: Trajectography, Kinematic, GPSwin Rapid Static Temps réel: option KART temps réel Mise à jour: 5/12/97

RÉCEPTEUR ASHTECH REFERENCE STATION

Constructeur: Ashtech Distributeur Français MARTEC 5 rue Carle-Vernet 92310 SEVRES Tél : 01 46 23 79 09 Fax : 01 46 26 55 55 e-mail: Web : http://www.ashtech.com/ Modèle: Reference station (recepteur Z12) Mise en service: Nombre de canaux: 12 L1, 12 L2 Mode de poursuite: continu Signaux captés: C/A, L1, L2 Nombre maximum de satellites poursuivables: 12 Dimension Lxlxh (m): Poids récepteur (kg): Alimentation: 5 - 16 V Type d'antenne: Chokering Poids (kg): Post-traitement: PRISM II Temps réel: oui Mise à jour: 5/12/97

Page 20: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 18

ANNEXE 03

THE STATE OF THE ART IN TIME

AND FREQUENCY MEASUREMENT

Kevin C. Daly and Gary Smith

Article initial fourni avec le sujet proposé : « la mesure temps-fréquence »

Page 21: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 19

Page 22: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 20

Page 23: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 21

Page 24: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 22

Page 25: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 23

Page 26: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 24

Page 27: LA MESURE - webriviere.free.fr

La mesure temps – fréquence Rivière – 2001

Pour en savoir plus, cliquez www.nriv.free.fr 25