Lec7[1]Valores Maximos y Minimos

Embed Size (px)

Citation preview

  • 8/13/2019 Lec7[1]Valores Maximos y Minimos

    1/22

    MATH 209

    Calculus,III

    Volker Runde

    Maximum andmimimumvalues MATH 209Calculus, III

    Volker Runde

    University of Alberta

    Edmonton, Fall 2011

  • 8/13/2019 Lec7[1]Valores Maximos y Minimos

    2/22

    MATH 209

    Calculus,III

    Volker Runde

    Maximum andmimimumvalues

    Local and absolute maxima and minima

    Definition

    The function f(x, y) has alocal maximumat (a, b) iff(x, y) f(a, b)for all (x, y) near (a, b). In this case, we call

    f(a, b) a local maximum valueoff. Iff(x, y)f(a, b)for all(x, y)Df, we say that f has anabsolute maximumat (a, b).

    Definition

    The function f(x, y) has alocal minimumat (a, b) iff(x, y) f(a, b)for all (x, y) near (a, b). In this case, we callf(a, b) a local minimum valueoff. Iff(x, y)f(a, b)for all(x, y)Df, we say that f has anabsolute minimumat (a, b).

  • 8/13/2019 Lec7[1]Valores Maximos y Minimos

    3/22

    MATH 209

    Calculus,III

    Volker Runde

    Maximum andmimimumvalues

    First derivative test

    Theorem (first derivative test)

    If f has a local maximum or minimum at(a, b) and if f x(a, b)

    and f y(a, b) exist, then

    fx(a, b) =fy(a, b) = 0.

    IdeaIffhas a local maximum or minimum at (a, b), then thetangent plane to the graph off must be horizontal.

  • 8/13/2019 Lec7[1]Valores Maximos y Minimos

    4/22

    MATH 209

    Calculus,III

    Volker Runde

    Maximum andmimimumvalues

    Examples, I

    Example

    Letf(x, y) =x2 +y2 2x 6y+ 14,

    so that

    fx(x, y) = 2x 2 and fy(x, y) = 2y 6.

    It follows that

    fx(a, b) =fy(a, b) = 0 (a, b) = (1, 3).

    Hence, a local maximum or minimum off canonlyoccur at(1, 3).

  • 8/13/2019 Lec7[1]Valores Maximos y Minimos

    5/22

    MATH 209

    Calculus,III

    Volker Runde

    Maximum andmimimumvalues

    Examples, II

    Example (continued)

    For any (x, y) R2:

    f(x, y) =x2 +y2 2x 6y+ 14

    = (x 1)2 + (y 3)2 + 4

    4

    =f(1, 3)

    Hence, fhas an absolute minimum at (1, 3).

  • 8/13/2019 Lec7[1]Valores Maximos y Minimos

    6/22

    MATH 209

    Calculus,III

    Volker Runde

    Maximum andmimimumvalues

    Stationary points, I

    Definition

    A point (a, b) is calledstationaryorcriticalforf iffx(a, b) =fy(a, b) = 0.

    Refomulation of the first derivative test

    Iffhas a local maximum or minimum at (a, b), then (a, b)

    must be a critical point for f.

  • 8/13/2019 Lec7[1]Valores Maximos y Minimos

    7/22

    MATH 209

    Calculus,III

    Volker Runde

    Maximum andmimimumvalues

    Stationary points, II

    ExampleLet

    f(x, y) =x2 +y3.

    Then

    fx(x, y) = 2x and fy(x, y) = 3y2,

    so that (0, 0) is the only stationary point for f.Since f(0, y) =y3 for all y, we get both positive and negativevalues offno matter how close (x, y) gets to (0, 0).

    Thus, there is no local maximum or minimum of f at (0, 0).

    Definition

    Let (a, b) a stationary point for f such that f has neither alocal maximum or minimum at (a, b). Then we call (a, b) a

    saddleforf.

  • 8/13/2019 Lec7[1]Valores Maximos y Minimos

    8/22

    MATH 209

    Calculus,III

    Volker Runde

    Maximum andmimimumvalues

    Second derivative test, I

    Theorem (second derivative test)

    Let f have continuous second derivatives, and let(a, b) be astationary point for f . Set

    D=fxx(a, b)fyy(a, b) fxy(a, b)2 =fxx(a, b) fxy(a, b)fyx(a, b) fyy(a, b)

    .Then:

    1 if fxx(a, b)>0 and D>0, then f has a local minimum at

    (a, b);

    2 if fxx(a, b)0, then f has a local maximum at(a, b);

    3 if D

  • 8/13/2019 Lec7[1]Valores Maximos y Minimos

    9/22

    MATH 209

    Calculus,III

    Volker Runde

    Maximum andmimimumvalues

    Second derivative test, II

    Important

    IfD= 0, then anything is possible:1 fmay have a local minimum at (a, b), or

    2 fmax have a local maximum at (a, b), or

    3 (a, b) may be a saddle for f.

    Hence,ifD= 0 nothing can be said.

  • 8/13/2019 Lec7[1]Valores Maximos y Minimos

    10/22

    MATH 209

    Calculus,III

    Volker Runde

    Maximum andmimimumvalues

    Examples, III

    Example

    Letf(

    x, y) =

    x4

    +y4

    4xy

    + 1,

    so that

    f

    x = 4x3 4y and

    f

    y = 4y3 4x.

    Thus, (x, y) is a stationary point for f if and only ifx3 =y andy3 =x, which implies x9 =x.

  • 8/13/2019 Lec7[1]Valores Maximos y Minimos

    11/22

    MATH 209

    Calculus,III

    Volker Runde

    Maximum andmimimumvalues

    Examples, IV

    Example (continued)

    As

    0 =x9 x

    =x(x8 1)

    =x(x4 1)(x4 + 1)

    =x(x2 1)(x2 + 1)(x4 + 1)

    =x(x 1)(x+ 1)(x2 + 1)(x4 + 1),

    we have x=1, 0, 1.Hence, the critical points for f are (0, 0), (1, 1), and (1,1).

  • 8/13/2019 Lec7[1]Valores Maximos y Minimos

    12/22

    MATH 209

    Calculus,III

    Volker Runde

    Maximum andmimimumvalues

    Examples, V

    Example (continued)

    Next, use the second derivative test. We have

    2f

    x2 = 12x2

    ,

    2f

    y2 = 12y2

    , and

    2f

    xy =4,

    so that

    D(x, y) =2f

    x2

    2f

    y2

    2f

    xy

    2

    = 144x2y2 16.

    Therefore:

    1 as D(0, 0) =16, fhas a saddle at (0, 0);

  • 8/13/2019 Lec7[1]Valores Maximos y Minimos

    13/22

    MATH 209

    Calculus,III

    Volker Runde

    Maximum andmimimumvalues

    Examples, VI

    Example (continued)

    2 as D(1, 1) =D(1,1) = 128>0 and

    2f

    x2(1, 1) =

    2f

    x2(1,1) = 12>0,

    fhas a local minimum at both (1, 1) and (1,1) with

    corresponding local minimum valuesf(1, 1) =f(1,1) =1.

  • 8/13/2019 Lec7[1]Valores Maximos y Minimos

    14/22

    MATH 209

    Calculus,III

    Volker Runde

    Maximum andmimimumvalues

    Examples, VII

    ExampleFind those points on the surface Sgiven by z2 =xy+ 1 thatare closest to the origin.Let P(x, y, z) be a point on S. Then:

    distance from (0, 0, 0) to (x, y, z) =|x, y, z|

    =

    x2 +y2 +z2

    =

    x2 +y2 +xy+ 1.

    Now:x2 +y2 +xy+ 1 is minimal

    f(x, y) :=x2 +y2 +xy+ 1 is minimal.

  • 8/13/2019 Lec7[1]Valores Maximos y Minimos

    15/22

    MATH 209

    Calculus,III

    Volker Runde

    Maximum andmimimumvalues

    Examples, VIII

    Example (continued)As

    fx= 2x+y and fy = 2y+x,

    a point (x, y) is stationary for f if and only ifx= 12 y and

    x=2y, i.e., if and only ifx= 0 =y.Since

    fxx= 2>0, fyy = 2, and fxy = 1,

    we haveD= 4 1 = 3>0,

    so that fhas a local minimum at (0, 0).As z=1 for x=y= 0, the points (0, 0, 1) and (0, 0,1) are

    the points on Sclosest to (0, 0, 0).

  • 8/13/2019 Lec7[1]Valores Maximos y Minimos

    16/22

    MATH 209

    Calculus,III

    Volker Runde

    Maximum andmimimumvalues

    Examples, IX

    Example

    Make a rectangular box out of 12 m2 of cardboard without lidsuch that its volume is maximal.Let

    x= length,

    y= width

    z= height,

    so that

    V= volume =xyz,

    S= surface area = 2xz+ 2yz+xy= 12.

  • 8/13/2019 Lec7[1]Valores Maximos y Minimos

    17/22

    MATH 209

    Calculus,III

    Volker Runde

    Maximum andmimimumvalues

    Examples, X

    Example (continued)

    As S= 12, we obtain

    z= 12 xy

    2(x+y),

    so that

    V =xy

    12 xy

    2(x+y) =

    12xy x2y2

    2(x+y) .

  • 8/13/2019 Lec7[1]Valores Maximos y Minimos

    18/22

    MATH 209

    Calculus,III

    Volker Runde

    Maximum andmimimumvalues

    Examples, XI

    Example (continued)

    It follows that

    V

    x =

    1

    2

    (12y 2xy2)(x+y) (12xy x2y2)

    (x+y)2

    =1

    2

    12xy 2x2y2 + 12y2 2xy3 12xy+x2y2

    (x+y)2

    =1

    2

    12y2 2xy3 x2y2

    (x+y)2

    = y2

    2

    12 2xy x2

    (x+y)2

    and, similarly, Vy

    = x2

    2 122xyy2

    (x+y)2 .

  • 8/13/2019 Lec7[1]Valores Maximos y Minimos

    19/22

    MATH 209

    Calculus,III

    Volker Runde

    Maximum andmimimumvalues

    Examples, XII

    Example (continued)

    To maximize V, we need x, y>0 such that Vx

    = Vy

    = 0.As

    12 2xy

    x2

    = 0 = 12 2xy

    y2

    if and only ifx2 =y2 if and only ifx=y, solve

    0 = 12 2x2 x2 = 12 3x2

    forx. It follows that x=y= 2 (and thus z= 1). As themaximum ofVmust occur, we can skip the second derivativetest.Hence, V is maximal for x=y= 2 and z= 1 with V = 4.

  • 8/13/2019 Lec7[1]Valores Maximos y Minimos

    20/22

    MATH 209

    Calculus,III

    Volker Runde

    Maximum andmimimumvalues

    Examples, XIII

    Example

    Find the absolute minimum and maximum values of

    f(x, y) =x2 2xy+ 2y

    on the rectangle

    D :={(x, y) : 0x3, 0y2}.

    with sides

    L1 :={(x, 0) : 0 x3},

    L2 :={(3, y) : 0 y2},

    L3 :={(x, 2) : 0 x3},

    L4

    :={(0, y) : 0 y2}.

  • 8/13/2019 Lec7[1]Valores Maximos y Minimos

    21/22

    MATH 209

    Calculus,III

    Volker Runde

    Maximum andmimimumvalues

    Examples, XIV

    Example (continued)

    Asfx= 2x 2y and fy =2x+ 2

    there is only one critical point, namely (1, 1); we havef(1, 1) = 1.On L1: y= 0, f(x, 0) =x

    2, 0 x3.Hence, the minimum value of f on L1 is f(0, 0) = 0, and themaximum value is f(3, 0) = 9.On L2: x= 3, f(3, y) = 9 4y, 0y2.Hence, the minimum value of f on L2 is f(3, 2) = 1, and themaximum value is f(3, 0) = 9.

  • 8/13/2019 Lec7[1]Valores Maximos y Minimos

    22/22

    MATH 209

    Calculus,III

    Volker Runde

    Maximum andmimimumvalues

    Examples, XV

    Example (continued)

    On L3: y= 2, f(x, 2) =x2 4x+ 4 = (x 2)2, 0x3.

    Hence, the minimum value of f on L3 is f(2, 2) = 0, and the

    maximum value is f(0, 2) = 4.On L4: x= 0, f(0, y) = 2y, 0 y2.Hence, the minimum value of f on L4 is f(0, 0) = 0, and themaximum value is f(0, 2) = 4.Hence:

    the absolute minimum value off on D isf(0, 0) =f(2, 2) = 0;

    the absolute maxiimum value off on D is f(3, 0) = 9.