29
MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology Lecture 4: Global Insolation & EM Spectrum 1

Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

  • Upload
    others

  • View
    24

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

MET4410RemoteSensing:RadarandSatelliteMeteorologyMET5412RemoteSensinginMeteorology

Lecture4:GlobalInsolation&EMSpectrum

1

Page 2: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

EnergyInputfromtheSun� Offundamentalimportancetotheglobalclimateistheinputofenergyfromthesunanditsspatialandtemporaldistribution.Thisinputisafunctionoftwovariables:◦ 1)thefluxofsolarradiationincidentonthetopoftheatmosphere,and◦ 2)thefractionofthatfluxthatisabsorbedbyeitherthesurfaceortheatmosphereateachpointintheearth-atmospheresystem.

� Theseconddependsinacomplexwayondistributionsofcloudsandabsorbinggasesintheatmosphere,aswellasontheabsorbingpropertiesofthesurface.

2

Page 3: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

GlobalInsolation� Howmuchtotalsolarradiationisincidentontheearth’satmosphere,onaverage?

� Thesun’sincidentflux(fluxdensity)atEarth’smeandistancefromtheSunisS0=1370Wm-2

� Thus,thetotalfluxofsolarradiationinterceptedbytheearthis𝜱=S0πRE2=1.74X1017 W

3

Page 4: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

RegionalDependenceofInsolation� Theflux(density)ofsolarradiationmeasuredonaunithorizontalareaatthetopoftheatmospheredependsontheangleofincidenceofthesun(solarzenithangle):

F=S0cosѲs

4

Page 5: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

TotalInsolationofaSingleLocation� Totalinsolation[energyperunitarea]atthetopoftheatmosphereatasinglelocationoverthecourseofa24-hourperiod.Thisinsolationisgivenby

� Wdependsontworeadilyidentifiablefactors:(1)thelengthofthedaytsunset −tsunrise ,and(2)theaveragevalueofcosθs(t)duringthetimethesunisup.

5

Page 6: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

ThechangingseasonisduetothetiltofEarth’sspinaxis

WhatcausesEarth’sSeasons?

6

Page 7: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

SeasonalVariationofTotalInsolation� Atequator,thelengthofadayis12hoursyear-round,butthemaximum

elevation(zenithangle)thesunreachesinthecourseofthedayvarieswiththetimeofyear.Twiceayear,atthetimeofthevernalandautumnalequinox(approximatelyMarch21andSeptember21,respectively),thesunpassesdirectlyoverheadatnoon(zenithangle=0).Atothertimesofyear,theminimumzenithangleachievedinthecourseofthedayisequaltotheangleoftiltoftheearth’saxistowardorawayfromthesun,uptoamaximumof23◦ atthetimeofthesummerandwintersolstices(June21andDecember21,respectively).

� AtAtlatitudespoleward of23◦,thesunisneverdirectlyoverhead,andtheminimumzenithangleisalwaysgreaterthanzero.Dur-ing thesummerseason,thesuncanreachapointfairlyhighinthesky,whereasinthewinterseason,themaximumelevationangleismuchlower.Moreover,thedaysarelongerinthesummerhemi-spherethaninthewinterhemisphere.

7

Page 8: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

RadiationDailyaveragesolarfluxatTOPasafunctionoflatitudeandtimeofyear

8

Page 9: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

DailyaveragesolarfluxatTOPasafunctionoflatitudeforthetwosolsticedatesandaveragedoverayear

9

Page 10: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

TheElectromagneticSpectrum

10

Page 11: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

Whyisaspecificspectralbandinterestingtoatmosphericscientists?

� Diabatic heating/cooling:heatexchangebetweenearthandtherestoftheuniverse.

� Photochemistry:chemicalreactionsintheatmospherearedrivenbysunlight..

� Remotesensing:Anyfrequencyofradiationthatisabsorbed,scatteredoremittedbytheatmospherecanpotentiallybeexploitedforsatellite- orground-basedmeasurementsofatmosphereproperties.

11

Page 12: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

12

Page 13: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

GammaRaysandX-Rays�

13

Page 14: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

Ultraviolet(UV)Band�

14

Page 15: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

VisibleBand�

15

Page 16: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

16

Page 17: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

SolarRadiationatTOP

17

Page 18: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

Infrared(IR)Band� 0.7 µm< 𝝺<1000 µm(1mm)� IRbandisveryimportanttobothdiabatic heating/cooling&remotesensingbecause:◦ EnergyexchangethroughIRbandbetweenlowerandupperlevelsoftheatmosphereandbetweenearth-atmospheresystemandouterspace.◦ MajorandminorgasspeciesoftheatmospherehavedistinctiveabsorptionfeaturesintheIRband,whichallowustoexploitthisbandforremotesensingoftemperature,watervapor,andtracegases.◦ Greenhousegases:IRabsorbingtracegases.

� Sub-bands:◦ NearIR:0.7 µm< 𝝺<4 µm,52%ofsolaroutputisinthisband.Atmosphereisnotuniformlytransparent.Thereareseveralabsorptionlines.Forexample,𝝺=1.3 µm.◦ ThermalIR:4 µm< 𝝺<50 µm,0.99%oftotalsolaroutput.Veryimportantforenergyexchangeandatmosphericabsorption.◦ FarIR:50µm< 𝝺<1000 µm,energytransferisinsignificant.Potentialapplicationstoremotesensingofcirrusclouds. 18

Page 19: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

AbsorptionSpectrumoftheCloudFreeAtmosphere

• Solar/shortwave radiation: 0.1 µm < 𝝺<4 µm, UV, visible, near IR. 99% of solar output.

• Terristrial/longwave : radiation: 4 µm < 𝝺<50 µm, thermal IR. 99% of earth-atmosphere’s output radiation. 19

Page 20: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

Greenhouse effect: shortwave solar radiation is nearly transparent to the atmosphere, but longwaveterrestrial radiation is trapped by greenhouse gases,causing the increase of surface temperature.

20

Page 21: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

Ozone layer and climatePhotodissociation by

ultraviolet

Solar ultraviolet photon

Ozone is a loosely bonded moleculeand can be easily dissociated . 21

Page 22: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

Formation of Ozone

Ozone

Sustaining Ozone

Depletion of Ozone

3CFCl assuch CFCs

10-50 km (stratosphere)

23 CFClCl UVCFCl +→+

ClO O Cl →+

23 O2Cl O ClO +→+

22

Page 23: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

The Ozone Hole

Ozone concentration drops sharply over Antarctica

23

Page 24: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

The Ozone Hole

Polar vortex

Cold air-80C

2. As the cold temperatures persist over the polar, polar stratospheric clouds form. 3. Chlorine reservoir species HCl and ClONO2 become very active on the surface of polar stratospheric clouds.

232 ClNHO ClONO HCl +→+

22322 ClOHHClHOCl HOCl;NHO OH ClONO +→++→+

ClCl Cl2 +→+ νh

1. Polar winter leading to the stronger circumpolar wind belt (polar vortex) to isolate the cold air within it.

24

Page 25: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

MicrowaveBand� 1mm< 𝝺<10 cmor3GHz< f<300 GHz� Noenergytransferinthisbandintheatmosphere.� Microwavecircuitshaveaquasi-opticalcharacter:waveguides,feedhorns,parabolicreflectors.

� Veryusefulforradar&passivemicrowaveradiometer.◦ Interactionswithprecipitation-sizedparticles(10-85GHz):monitoringsevereweather◦ Relativetransparencyofcloudswhenfrequency<100GHz,allowtodetectthepropertiesofsurfaceandofthetotalatmospherecolumnunderallweatherconditionsexceptrainfall.

25

Page 26: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

RadioBand� 𝝺>10 cmorf<3GHz� Frequenciesarelowenoughtobeamenabletogeneration,amplification,anddetectionusingtraditionalelectroniccomponentsandcircuits.

� Radiobandradiationtendstointeractveryweaklywiththeatmosphereandthereforehasonlylimitedapplicabilitytoatmosphereremotesensing.Twoexamples:◦ 915MHzground-basedDopplerwindprofiler.Observingscatteringfromturbulence-inducedfluctuationsinatmospheredensityandhumidity.◦ Lightningdetectionsystems:detectlowfrequency“static”emittedbylightningdischarges.

26

Page 27: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

EMSpectrumforRadar

27

Page 28: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

28

Page 29: Lecture 4: Global Insolation & EM Spectrumfaculty.fiu.edu/~Hajian/MET4410_5412/MET4410_5412_Lec4_slides.pdfLecture 4: Global Insolation & EM Spectrum 1. Energy Input from the Sun

Summary

� Gamma&X-rays:unimportant.� UV:importanttophotochemistry,remotesensingofozone.

� Visible&IRband:veryimportanttobothenergytransferandremotesensing

� Microwaveband:remotesensingonly� Radioband:onlyafewremotesensingapplications

29