22
Annals of Discrete Mathematics 23 (1984) 39-60 0 Elsevier Science Publishers B.V. (North-Holland) 39 ORDERED SETS AND DUALITY FOR DISTRIBUTIVE LATTICES H. A. Priestley Mathematical Institute University of Oxford England An account is given of the categorical duality which exists between bounded distributive lattices and compact totally order disconnected spaces. During the past decade, a wide range of structural problems concerning distributive lattices have been solved by the topological and order theoretic techniques provided by duality, and a representative selection of these is presented. In addition, certain related dualities are briefly considered, as are compact totally order disconnected spaces in their own right. The paper ends with a 'dictionary' of mutually dual properties. ENSEMBLES ORDONN~S ET DUAL IT^ POUR LES TREILLIS DISTRIBUTIFS Au cours de ces derniPres annges, les dualit6s du type Pontryagin ont prolif6r6. L'une d'elles est celle existant entre la cate'gorie des treillis distributifs et born6s e t la cat6gorie des espaces compacts et totalement sgpargs pour l'ordre. (Un espace topologique X avec une relation d'ordre partielgest totalement s6par6 pour l'ordre si, quels que soient les points x,y de X avec LI: $ y, il existe un ensemble dgcroissant (c'est-&dire, un idgal pour l'ordre) U qui est ouvert et ferm6 et tels que z 4 U. y E U.) entre 1) et P, 2 ses repercussions et 2 sa place dans le paysage math6matique. Au niveau des objets, la dualit6 permet d'identifier un treillis L 6 D avec le treillis des ensembles dgcroissant- ouverts et ferm6s d'un espace XL 6-z; pour XL, on peut prendre l'ensemble des ide'aux premiers, ordonn6 par inclusion et convenablement topologis6. On a donc la g6n6ralisation naturelle simultan6e de la reprgsentation de Birkhoff des treillis distributifs finis (oh la topologie est discrPte et ne joue aucun r61e) et la repr6sentation de Stone des algPbres de Boole (oh l'ordre est discret). Une dualit6 cat6gorique parfaite unit la th6orie des treillis dans la langue des espaces topologiques ordonngs. La reprssentation imag6e que ces espaces fournissent (bien que celle-ci ne soit plus guPre constitu6e que de diagrammes de Venn sophistiquss) est 6tonnament puissante. Elle est illustr4e par un mblange d'applications et d'exemples qui mettent B nu la structure destreillis et la structure des variet6s d'algPbres dans u. L'ordre joue un rsle crucial en dudlit6 c-f. cette dualit6 de la dualit6 equivalente pour mettant en jeu les espaces spectraux. L'action rkciproque entre la topologie et l'ordre sur un objet de peut 6tre assez subtile. concernant l'ordre (il y a, par exemple, des descriptions diverses de ceux des ensembles ordonn6s qui peuvent devenir objets de c), beaucoup de problsmes encore en suspens semblent aussi attirants qu'6pineux ! Le pr6sent d6veloppement s'int6resse 2 la dualit6 - - et P et permet de traduire les concepts de En e f f e t , c'est l'oidre qui distingue Alors qu'on a don& une r6ponse a certaines questions

[North-Holland Mathematics Studies] Orders: Description and Roles - In Set Theory, Lattices, Ordered Groups, Topology, Theory of Models and Relations, Combinatorics, Effectiveness,

  • Upload
    ha

  • View
    214

  • Download
    1

Embed Size (px)

Citation preview

Annals of Discrete Mathematics 23 (1984) 39-60 0 Elsevier Science Publishers B.V. (North-Holland) 39

ORDERED SETS AND DUALITY FOR DISTRIBUTIVE LATTICES

H . A . P r i e s t l e y

M a t h e m a t i c a l I n s t i t u t e U n i v e r s i t y of Oxford

England

An a c c o u n t i s g i v e n o f t h e c a t e g o r i c a l d u a l i t y which e x i s t s be tween bounded d i s t r i b u t i v e l a t t i c e s and compact t o t a l l y o r d e r d i s c o n n e c t e d s p a c e s . D u r i n g t h e p a s t d e c a d e , a w i d e r a n g e of s t r u c t u r a l p roblems c o n c e r n i n g d i s t r i b u t i v e l a t t i c e s h a v e b e e n s o l v e d by t h e t o p o l o g i c a l and o r d e r t h e o r e t i c t e c h n i q u e s p r o v i d e d by d u a l i t y , and a r e p r e s e n t a t i v e s e l e c t i o n o f t h e s e i s p r e s e n t e d . I n a d d i t i o n , c e r t a i n r e l a t e d d u a l i t i e s are b r i e f l y c o n s i d e r e d , as are compact t o t a l l y o r d e r d i s c o n n e c t e d s p a c e s i n t h e i r own r i g h t . The p a p e r e n d s w i t h a ' d i c t i o n a r y ' o f m u t u a l l y d u a l p r o p e r t i e s .

ENSEMBLES O R D O N N ~ S E T DUAL IT^ POUR LES TREILLIS DISTRIBUTIFS

Au c o u r s d e ces d e r n i P r e s a n n g e s , l es d u a l i t 6 s du t y p e P o n t r y a g i n o n t p r o l i f 6 r 6 . L 'une d ' e l l e s e s t c e l l e e x i s t a n t e n t r e l a c a t e ' g o r i e d e s t r e i l l i s d i s t r i b u t i f s e t b o r n 6 s e t la c a t 6 g o r i e d e s e s p a c e s compacts e t t o t a l e m e n t s g p a r g s p o u r l ' o r d r e . (Un e s p a c e t o p o l o g i q u e X a v e c une r e l a t i o n d ' o r d r e p a r t i e l g e s t t o t a l e m e n t s 6 p a r 6 pour l ' o r d r e s i , q u e l s q u e s o i e n t l e s p o i n t s x,y d e X a v e c LI: $ y , il e x i s t e un ensemble d g c r o i s s a n t ( c ' e s t - & d i r e , un i d g a l p o u r l ' o r d r e ) U q u i e s t o u v e r t e t ferm6 e t t e l s que z 4 U. y E U.) e n t r e 1) e t P , 2 ses r e p e r c u s s i o n s e t 2 s a p l a c e d a n s l e p a y s a g e math6mat ique .

Au n i v e a u d e s o b j e t s , l a d u a l i t 6 p e r m e t d ' i d e n t i f i e r un t r e i l l i s L 6 D a v e c l e t r e i l l i s d e s e n s e m b l e s d g c r o i s s a n t - o u v e r t s e t fe rm6s d ' u n e s p a c e XL 6-z; p o u r XL, o n p e u t p r e n d r e l ' e n s e m b l e d e s ide 'aux p r e m i e r s , o rdonn6 p a r i n c l u s i o n e t convenablement t o p o l o g i s 6 . On a donc l a g 6 n 6 r a l i s a t i o n n a t u r e l l e s i m u l t a n 6 e d e l a r e p r g s e n t a t i o n d e B i r k h o f f d e s t r e i l l i s d i s t r i b u t i f s f i n i s (oh l a t o p o l o g i e e s t d i s c r P t e e t n e j o u e aucun r 6 1 e ) e t l a r e p r 6 s e n t a t i o n d e S t o n e d e s a l g P b r e s d e Boole (oh l ' o r d r e e s t d i s c r e t ) .

Une d u a l i t 6 c a t 6 g o r i q u e p a r f a i t e u n i t l a t h 6 o r i e des t r e i l l i s d a n s l a l a n g u e d e s e s p a c e s t o p o l o g i q u e s o r d o n n g s . La r e p r s s e n t a t i o n imag6e q u e ces e s p a c e s f o u r n i s s e n t ( b i e n q u e c e l l e - c i ne s o i t p l u s guPre c o n s t i t u 6 e q u e d e diagrammes d e Venn s o p h i s t i q u s s ) e s t 6 t o n n a m e n t p u i s s a n t e . E l l e e s t i l l u s t r 4 e p a r un mblange d ' a p p l i c a t i o n s e t d ' e x e m p l e s q u i m e t t e n t B nu l a s t r u c t u r e d e s t r e i l l i s e t l a s t r u c t u r e d e s v a r i e t 6 s d ' a l g P b r e s dans u. L ' o r d r e j o u e un rsle c r u c i a l e n d u d l i t 6 c-f. c e t t e d u a l i t 6 d e l a d u a l i t 6 e q u i v a l e n t e p o u r m e t t a n t e n j e u l es e s p a c e s s p e c t r a u x . L ' a c t i o n r k c i p r o q u e e n t r e l a t o p o l o g i e e t l ' o r d r e s u r un o b j e t d e p e u t 6 t r e a s s e z s u b t i l e . c o n c e r n a n t l ' o r d r e ( i l y a , p a r exemple , d e s d e s c r i p t i o n s d i v e r s e s d e c e u x d e s ensembles o r d o n n 6 s q u i p e u v e n t d e v e n i r o b j e t s d e c ) , beaucoup d e p r o b l s m e s e n c o r e e n s u s p e n s s e m b l e n t a u s s i a t t i r a n t s q u ' 6 p i n e u x !

Le p r 6 s e n t d6veloppement s ' i n t 6 r e s s e 2 l a d u a l i t 6

- -

e t P e t p e r m e t d e t r a d u i r e l es c o n c e p t s d e

En e f f e t , c ' e s t l ' o i d r e q u i d i s t i n g u e

A l o r s qu'on a don& une r 6 p o n s e a c e r t a i n e s q u e s t i o n s

40 H. A . Priestle y

1. INTRODUC'I'LO?:

Dur ing t h e p a s t t e n y e a r s , d u a l i t i e s of P o n t r y a g i n t y p e have p r o l i c e r a t e d . One such d u a l i t y i s t h a t be tween t h e c a t e g o r y o f bounded d i s t r i b u t i v e l a t t i c e s and t h e c a t e g o r y 2 of compact t o t a l l y o r d e r d i s c o n n e c t e d s p a c e s , w h i c h , a t t h e o b j e c t l e v e l , p r o v i d e s t h e n a t u r a l s i m u l t a n e o u s g e n c r a l i s a t i o n of B i r k h o f f ' s r e p r e s e n t a t i o n o f f i n i t e d i s t r i b u t i v e l a t t i c e s and S t o n e ' s r r p r e s e n L a t i o n o f Boolean a l g e b r a s , The f u l l c a t e g o r i c a l d u a l i t y which l i n k s and a l l o w s l a t t i c e t h e o r e t i c c u n c e p t s and problems t o be t r a n s l a t e d i n t o t h e language of o r d e r e d t o p o l o g i c a l s p a c e s . The f i n a l s e c t i o n of t h i s s u r v e y a s s e m b l e s f o r r e f e r e n c e some of t h e most f r e q u e n t l y used items i n t h e LLE ' d i c t i o n a r y ' . s e c t i o n s we d e s c r i b e tiow t h e d u a l i t y works and i l l u s t r a t e some of t h e ways i n which i t has b e e n used t o r e v e a l t h e s t r u c t u r e of l a t t i c e s i n and of c e r t a i n s u b c l a s s e s of !. t o p o l o g y and o r d e r i n R :-object .3nd, i n b a r e s t o u t l i n e , we c o n s i d e r t h e g e n e r a l s e t t i n g i n which d i s t r i b u t i v e l a t t i c e d u a l i t y s h o u l d b e p l a c e d .

I t h a s n o t been p o s s i b l e i n t h e s p a c e a v a i l a b l e t o p r o v i d e :I f u l l y comprehens ive s u r v e y . I n s e l e c t i n g m a t e r i a l we have t r i e d t o complement t h e a d m i r a b l e a c c o u n t o f d u a l i t y p r e s e n t e d by B . A . Uavcy and D . Duffus i n t h e i r p a p e r ' E x p o n e n t i a t i o n and d u a l i t y ' p u b l i s h e d i n t h e P r o c e e d i n g s of t h e Banff Symposium on Ordered S e t s 1371; o u r approach i s somewhat more t o p o l o g i c a l and p e r h a p s l e s s i n f l u e n c e d by u n i v e r s a l a l g e b r a . We h a v e t r i e d t o make t h e b i b l i o g r a p h y c o m p l e t e i n r e s p e c t o f t h e E-E d u a l i t y and i t s a p p l i c a t i o n s to problems c o n c e r n i n g d i s t r i b u t i v e - l n t t i r r - o r d e r e d a l g e b r a s , b u t h a v e n o t s o u g h t t o g i v e full r e f e r e n c e s f o r t h e same problems t r e a t e d a l g e b r a i c a l l y .

We assume f a m i l i a r i t y w i t h t h e r u d i m e n t s of t h e t h e o r y of d i s t r i b u t i v e l a t t i c e s a s s e t o u t i n 1 1 4 7 , 1191 and C541. Our r e p r e s e n t a t i o n s p a c e s w i l l be o r d e r e d s e t s , a p p r o p r i a t e l y t o p o l o g i s e d . The n o t a t i o n ( X , C , d w i l l d e n o t e a s e t X e q u i p p e d w i t h a t o p o l o g y e and a p a r t i a l o r d e r <. The b a s i c p r o p e r t i e s of s u c h s p a c e s were d e v e l o p e d i n 1681; s e e a l s o C 2 4 1 , [ 4 9 1 and 1711. I t i s p e r h a p s w o r t h e m p h a s i s i n g now t h a t t h e p r o o f s u s i n g d u a l i t y of t h e v a s t m a j o r i t y of t h e a l g e b r a i c theorems s t a t e d i n t h i s p a p e r r e q u i r e t o p o l o g i c a l e x p e r t i s e no g r e a t e r t h a n t h a t i m p a r t e d by a f i r s t ( u n d e r g r a d u a t e l e v e l ) c o u r s e i n g e n e r a l t o p o l o g y .

I f iP,d i s an o r d e r e d s e t , we w r i t e , f o r :r E I>,

111 t h e e a r l i e r

In a d d i t i o n we b r i e f l y i n v e s t i g a t e t h e i n t e r a c t i o n be tween t h e

4r= i y E P I y < 5 } t Z = i y E z ' I ~ { > a l and , f o r 12 & P ,

4Q = U i C Z I a E Q), I-& = U[+x I 5 E Q I . A s u b s e t Q o f P i s s a i d t o be decreasing ( increasing) i f +Q = Q (+Q = Q). In t h e l i t e r a t u r e , d e c r e a s i n g s e t s are a l s o c a l l e d o r d e r i d e a l s , h e r e d i t a r y s e t s , i n i t i a l segments , down se t s , l o w e r s e t s and lower e n d s . I f t' i s a n o r d e r e d se t we d e n o t e by Pop t h e o r d e r e d s e t o b t a i n e d by r e v e r s i n g t h e o r d e r .

2 . BASIC DUALITY FOR DISTRIBUTIVE LATTICES

The c a t e g o r y h a s as o b j e c t s t h e bounded d i s t r i b u t i v e l a t t i c e s ; t h e u n i v e r s a l bounds o f any L, t i, a r e d e n o t e d by O,1. l a t t i c e homomorphisms. W i t h i n a r e two i m p o r t a n t f u l l s u b c a t e g o r i e s : c o n s i s t s of t h e f i n i t e d i s t r i b u t i v e l a t t i c e s and of t h e Boolean a l g e b r a s . A s l o n g ago a s t h e 1 9 3 0 ' s key r e p r e s e n t a t i o n theorems were proved f o r t h e s e s u b c a t e g o r i e s :

Morphisms i n 0, a r e t h e 0 , l - p r e s e r v i n g

THEOREM 2 . 1 ( G . B i r k h o f f 1181; or see L l 9 1 ) . to t h c latticc, of decrea::lng .:uhsct:: of t h e S L L J ( L ) o f Join- irreducible elements of L .

Let L € L&.. Then I , i s isomorpJLic

Ordered sets and duality for distributive lattices 41

13irI<ltoff s h o w c ~ d t h . t t ,itiy t 1 i s isontorpl t i ( . L O i~ r i n g of s e t s . T h i s w a s rn.ldc, i i i o r t ' prLst-isL, by S t o n i , , w l i o g ~ v c i t i I 8 5 I a p u r e l y t o p o l o g i c ; ~ l ~ - c ' p r e s c n t ; ~ ~ i o n f o r N I '-cjI).j t,c t s L 11.1 t 11~1cs nu t t ir;in s j i ; i i -c ' t t t 1 y r e d ucc t o 13 i r k h o r f ' s r e p resc7.n t ii t i o r OII c,), . I n r c t respect ri ntot-c. ti;ittii-Lil appi-oa<,lt set'tns o b v i o u s . For f, f i n i t c , t h e m:ip

f ( ++ 1 ' t , i s i ' t s u p ; in i somorphisni ht.twt.cn , 7 f / , j a n d t h e pr imc i d e a l s o f /, o r d c r e d by i n c l u s i o n . F o r i Bmi lean , thc. maxinr,iI idea ls c t l i n t , i d c ' w i t h t h e p r i t w id txa ls . 'Thus r t t i Lipprupt- iaLe r c - p r c s e n L n t i o n spac.e f ~ r 1, E w i ~ u l d seL>m tcl h e t h c se t o f pr ime i d e c i l s o l 1 , c , q u i p p d wit11 an ordctr ( r ' f . Thc.clrc,nt 2 . 1 ) - a n d 3 t o p o l o g y (i,J'. Theorem 2 . 2 ) .

A c c u r d i n g l y , t c i eaclt 1, t 1 ' w e a s s o c i a t e i t s Ti', (Xi,, k, G) , where

H i s t h c s e t or pr ime idt,:ils o f /,,

,i i s s e t i n c l u s i o n

k h a s : I S .I bas t , t h c s t ' t s t , r t .X I .I'

/

and

IJe c a n i d c n t i t y (k'L,P,2) w i t h thr' honi-set p,(l,,z) of morphisnts on to t h e 2-elemcnt c h a i n , p o i n t w i s e o r d e r e d and t o p o l o g i s c d a s ;I s u h s p a c t ~ o f ?-'I, w h e r e 2 d e n o t e s the, 2-elfmcxnt ch,iin w i t h tlic d i s c r c t c t o p o l o g y .

T h e t o p o l o g y P i s compact . A l s o , t h e t h e c r u c i , i l p r o p e r t y of Lctfil c ? r c / c ' 2 3 L

p r o p e r t i e s o f compact t o t a l l y o r d e r n e c t e d s p a c e s a r e c o l l e c t e d t o g e t h e r i n P r o pi's i t i o t i 2 . 6 .

We d e f i n e t o he t h e c a t e g o r y o r conipnct t o t a l l y o r d e r d i s c o n n e c t e d s p a c e s ( P r i e s t l e y s p a c e s ) and c o n t i n u o u s o r d e r - p r e s e r v i n g maps. For i' E we d e n o t e by U ( P ) t h e l a t t i c e o f P-clopen d e c r c a s i n g s u b s e t s of P . We d e f e r u n t i l 5 7 t h e f o r m a l c a t e g o r i c a l s t a t e m e n t of t h e Q-E d u a l i t y . F o r o u r immediate p u r p o s e s we need o n l y t h e r e p r e s e n t a t i o n f o r o b j e c t s (which giv6.s t h e common g e n e r a l i s a t i o n of Theorems 2 .1 and 2 . 2 ) and t h e basic f a c t s a b o u t d u a l morphisms.

THEOREM 2 . 3 ( 1 7 0 1 ) . ( i ) L e t L € c. Y ' / w ? ? ,Y E I' nizd I, 2 O(.Y ) 7iin tiit, niq,

( i i ) Lr:t T ' E c. Tt' /di O(/)) E

c z ! , is€ A'), I . I ' 3 ( T I , f o r ii t l , . /

l o g y of (Xl,:k,G) a r e l i n k e d by : g i v e n p o i n t s .I,,;/ i n XL w i t h

3: & y, t h e r e e x i s t s ;I &-clopen d c c r r , t h a t : I .$ v, !/ € 1'. Basic

I, T, a +-+ in E X L 11' + (21.

t r i i d F' 2 X i ) (,,) (2 1ic'r.c nimning h o n ; c w r i ( iryii L:ni trntl or&l~ i s o ~ I ~ L i Y ~ p l 1 ism) .

We s h a l l h e n c e f o r t h i d e n t i f y i, w i t h O ( X ) and I ' w i t h ( L E Q, 1' € L l . L*

The p r o o f of Theorem 2 . 3 i n v o l v e s a c o n s t r u c t i o n of pr ime i d e a l s which n e c e s s i t a t e s i n v o k i n g snme form of t h e Axiom of C h o i c e . I n f a c t t h e d u a l i t y theorem f o r is e q u i v a l e n t t o t h e Roolean Prime I d e a l Theorem, which i s s t r i c t l y weaker t h a n ( A C ) . However t h e s t a t e m e n t t h a t e v e r y d i s t r i b u t i v e l a t t i c e w i t h 1 h a s a maximal i d e a l i m p l i e s (AC) ( s e e 1 1 7 1 ) . A f u l l e r d i s c u s s i o n of t h e s e p o i n t s c a n be found i n I h O l .

The d u a l i t y t h e o r e m c a n e a s i l y be a d a p t e d t o h a n d l e l a t t i c e s which l a c k e i t h e r z e r o o r i d e n t i t y ( s e e 1 7 1 1 ) . However i n p r a c t i c e i t i s u s u a l l y e a s i e r t o a d j o i n b o u n d s , s o as t o be a b l e t o work i n E .

For morphisms we h a v e

PROPOSITION 2.4 ([70], 1711) . Thcrc exi::ts a ii- c Lion Oc h l L ' f 3 1 2 ~ - 1 m ~ p 1 1 i : ; i n s f:L + Id and ~-rr~orpl~i:;ins $ : X M + X givcn l ) ~ ! E j "(u) i f arid onZ!/ if $(!/) E n L j

42 H.A. Priestley

(a E L, y E XM). f is i n j e c t i v e if and only if $ is sur jec t ivc .

COROLLARY 2 .5 . Let L,M E c. ' I ' h m ( u p to isomorphism i n am! p ) ,

Further, f is surtji.c2f if trnd onl!j if $ 7s an cmb<dJirig, atid

( i ) M i:: a ~ 0 , l l - s u h l a l t i r r of L if and only if X is i i i c i m a ~ 7 ~ X undcrz a M I, continuous order-prescJroing map;

( i i ) M = L / B for some congruence 8 on 1, if and on7y if XM i:; a clo;ed sitbsrt of

*

We conclude t h i s s e c t i o n wi th a p ropos i t i on c o n t a i n i n g key elementary f a c t s about P-spaces. These r e s u l t s provide a l l t h e b a s i c t o o l s used i n d u a l i t y p roo t s o f a l g e b r a i c theorems.

PROPOSITION 2 .6 (See [681, 1711). l;rt (X,C,<) b t compact and t o i a l l g order disconnected. l'izen

( i ) t he graph of < is closed i n X x X;

( i i ) if Q is C-closed, +Q, +Q are r e s p c c t i w l y C-closed dccreasing, Z-c2oscd incwasing;

( i i i ) if Q i s C-clospd, Q contains a point idhich i s minimal (maximal) i n Q w i t / ) respect t o G;

( i v ) if Q,R are C-closed .substts of X such that x there ex i s t s a C-clopen decreasing subset V of X such that Q 5 X

LJ for all x E Q, y E R, then V , h' c V .

3. EQUATIONAL SUBCATEGORIES OF 0: THE INFLUENCE OF CATEGORY THEORY AND UNIVERSAL ALGEBRA

This s e c t i o n b u i l d s on t h e b a s i c d u a l i t y theory i n 52 and focuses on concepts and problems wi th t h e i r r o o t s i n ca t egory theory and un ive r sa l a lgeb ra . In te r a l i a , w e b r i e f l y cons ide r f r e e o b j e c t s and coproducts i n and i t s subca tegor i e s , and s u b d i r e c t l y i r r e d u c i b l e a lgeb ras i n va r ious e q u a t i o n a l subca tegor i e s of E. Suppose ,C i s a subca tegory o f k . Provided w e can i d e n t i f y t h e P-objec ts a r i s i n g a s dua l s of C-objects and can d e s c r i b e the dua l s of C-morphisms, we can r e s t r i c t t h e g-z d u a l i t y t o o b t a i n a d u a l i t y f o r ,C and thereby a technique f o r ana lys ing C. This approach has proved p r o f i t a b l e f o r , f o r example, d i s t r i b u t i v e p-a lgebras and double p-a lgebras , Stone a lgeb ras , de Morgan a l g e b r a s , Ockham a l g e b r a s and tukas iewicz a lgeb ras ; r e fe rences can be found i n the b ib l iog raphy .

We i l l u s t r a t e wi th a s imple example. The ca t egory R of ( d i s t r i b u t i v e ) p-algebras c o n s i s t s of those l a t t i c e s L E complementation s a t i s f y i n g c h a = 0 i f and only i f c Q u*. t he g-morphisms p rese rv ing *. THEOREM 3.1 (C731). is open whenever U E O(XL); for a E L,

Let f E D_(L,M) have duaZ $ E ~ ( X M , XI,). the minimal elements beZow y onto the minimal etements below $(y).

Theorem 3.1 provides a dua l d e s c r i p t i o n of &-congruences from which one s e e s t h a t L E i s s u b d i r e c t l y i r r e d u c i b l e i f and on ly i f L i s a Boolean a lgeb ra wi th a new i d e n t i t y ad jo ined ( s e e [351, C371 and C731, o r , f o r an a l g e b r a i c approach, C641, C651).

The s u b v a r i e t i e s of & were f i r s t desc r ibed by K. B . Lee i n C651. cha in

which posses s a unavy o p e r a t i o n , *, of pseudo- The B -morphisms a r e

"W

Let L E g, Then L E Bw if and only if XL is such that f U

Then f E & ( L , M ) if and only if $ maps

a* = XL +a.

I They form a

Ordered sets and duality for distributive lattices 43

!-l C k0 ( = e ) c El (= Stone a l g e b r a s ) c R

f o r 1 n < w, B c o n s i s t s of those a l g e b r a s L i n H f o r which X i s such t h a t each of i t s elements ma jo r i se s a t most n minimal p o i n t s .

The c l a s s HW of d i s t r i b u t i v e double p-a lgebras ( t h a t i s , a l g e b r a s 1, such t h a t L and Lop a r e w i n h' ) i s much less t r a c t a b l e than . However major advances have been made i n r ec2n t yea r s by R . Beazer, B . A . Davey, T . Katriiidk and A . Urquhar t , us ing both a l g e b r a i c and topo log ica l methods. In p a r t i c u l a r , Urquhart has shown i n 1971tha t RW has an uncountable l a t t i c e of s u b v a r i e t i e s ; h i s proof uses d u a l i t y backed up by-gome graph t h e o r e t i c i d e a s .

Anyone of a c a t e g o r i c a l bent would not f e e l f u l l y acquain ted wi th a g iven ca tegory u n t i l he had desc r ibed the f r e e o b j e c t s ( i f a n y ) , and i n v e s t i g a t e d l i m i t s and c o l i m i t s . Under our d u a l i t y , l i m i t s t ransform i n t o c o l i m i t s , e t c . , so we can ana lyse v i a c. THEOREM 3.2 (See 1371, 1 4 1 1 ) . The free bounded d i s t r i b u t i v e l a t t i c e on K

generators, F ~ ( K ) , e s i s t s and +as duaZ space ZK. For any ordwcd s e t Q, t h e free bounded d i s t r i b u t i v e Zatticc generated by Q, FED(&), e x i s t s and has dual spacP (2')OP (where zQ i s thc s p t of order-preservfR funct ions from Q t o 2, ordered pointwise and topologisrd as u subspace o f 2 i.

Here Fg(Q) i s r equ i r ed t o possess the fo l lowing u n i v e r s a l p rope r ty : t h e r e e x i s t s an order-embedding e : Q -+ FD(&) and, f o r each 1, and each o rde r -p rese rv ing map a:& -+ L , t h e r e e x i s t s a D-morphism G:FD(Q) -+ L such t h a t U 0 e = a. embedding e of Q i n O ( ( 2 q P ) sends z E Q t o { h E 24 1 h(z) = 01.

Coproducts e x i s t i n 0.

c . . . c Rw; -2

7 2 -w L

The

E x p l i c i t l y , we have

THEOREM 3.3. ( i ) Let be a fafarm:ly o f g-objects. Then the coproduct

L A i s O( JTx, ) (where the product o f the dual spaces i s ordered point- At A X E A X wise i.

( i i ) Let L,M E 0. Then the coproduct L * M is O ( X L x X M ) , which i s isomorphic t o C G ( X L , M ) , the l a t t i c e of continuous order-preserving funct ions from XL t o M , uhere M i s equipped with the d iscre te topology.

For a d i s c u s s i o n of t hese and o t h e r r e s u l t s on coproducts i n g, s e e 1 2 7 1 , 1321, L791, 1801. We cons ide r f u r t h e r i n 54 the s p e c i a l ca se of Pos t a l g e b r a s (coproducts B * C, where B E and C i s a f i n i t e c h a i n ) . For c e r t a i n subca tegor i e s ,C of _D, t h e C-coproduct conven ien t ly c o i n c i d e s wi th t h e _D-coproduct (de Morgan a l g e b r a s provide one example 1281). i n s t a n c e , a s p e c i a l d e s c r i p t i o n of t h e coproduct is needed ( s e e 1393).

An element of ,D i s a (weak) p r o j e c t i v e i f and only i f i t i s a r e t r a c t of some F ~ ( K ) . However, R . Balbes has proved i n 1131 t h a t every g -p ro jec t ive l a t t i c e i s N D-ca ta ly t i c ( L i s g-catalyt ic i f _D(L,M) i s a l a t t i c e under t h e po in twi se o r d e r i n g f o r each M E E'; s e e L631), and t h a t t he converse a l s o ho lds f o r coun tab le l a t t i c e s . ; - ca t a ly t i c l a t t i c e s have been c h a r a c t e r i s e d a l g e b r a i c a l l y i n C131. We a l s o have

I n o t h e r s u b c a t e g o r i e s , & f o r

Such l a t t i c e s have proved d i f f i c u l t t o d e s c r i b e e x p l i c i t l y ( s e e 191, C151).

THEOREM 3.4 ( 1 7 4 1 ) . Let L E ;. Then the following are equivalent:

(i) L i s 2-catalyt ic;

( i i ) X L i s a compact zero-dimensional topologica2 l a t t i c e ;

( i i i ) L i s a r e t m c t of FD(Q), for some ordered s e t Q.

44 H.A. Priestley

This theorem impl i e s , a s i s well-known, t h a t t he dua l space of a i , -pro jec t ivc l a t t i c e i s a complete l a t t i c e , and t h a t L t g),, i s p r o j e c t i v e i f and only i f i t s s e t o f j o i n - i r r e d u c i b l e s J ( L ) i s a l a t t i c e . More s p e c i f i c a l l y , an ordered s e t i s isomorphic t o t he set of prime i d e a l s under i n c l u s i o n of a U_-projective l a t t i c e i f and only i f i t i s a r e t r a c t of some z", where both maps involved p rese rve up-d i rec ted sups and down-directed i d s ( C 7 4 1 ; see also 5 6 ) .

The i n j e c t i v e s i n a r e j u s t the complete Boolean a lgeb ras (L9l; f o r a t opo log ica l p roo f , s e e C717). R e l a t i n g t o completeness i n we have

THEOREM 3.5. Let I, E g. 3'hen the following are eqiu7:vali?nt:

( i ) L is complete;

( i i ) X L is eziremZZy order disconnectad ( t i iut is, tho C-closwe: of U E 11 i : ; U-open, where C, U arc r c s p e c t i v d ! j Lhc C-opt?ii dccrca:; h g , i n c m m in9 stit::

in (XL, C,Q;

(with po in tu i se ordar) 7::: condi t ional ly cornplc (i i i) t h e l a t t i c e CG(XLJR) of continuous ordcr-prcscw)ing function:: from XL t o W

For a proof of ( i ) Q ( i i ) , s ee 1711; f o r ( i ) Q (i i i) see 1781, where f u n c t o r i a l p r o p e r t i e s of t he assignment L *+ C (X ,R) a r e a l s o cons idered . M . J . Canfe l l i n h i s t h e s i s 1231 proves a r e s u l t ver? l i k e ( i i ) * ( i i i ) . we remark t h a t i t was i n C231 t h a t compact t o t a l l y o rde r d i sconnec ted spaces were f i r s t in t roduced , i n connec t ion wi th a s tudy of semi-algebras of cont inuous func t ions .

< c On a h i s t o r i c a l n o t e ,

4 . DUALITY I N A C T l O N : POST ALGEBRAS AND BEYOND

Sec t ion 5 w i l l be a po t p o u r r i of a p p l i c a t i o n s of d u a l i t y , chosen f o r t h e i r d i v e r s i t y . In t h i s s e c t i o n , by c o n t r a s t , we cons ide r a r a t h e r r e s t r i c t e d , bu t neve r the l e s s impor tan t , c l a s s of l a t t i c e s : t he Pos t a lgeb ras and g e n e r a l i s a t i o n s of t hese . We begin wi th Pos t a l g e b r a s . These a r e a l g e b r a i c a l l y well-understood ( see , f o r example, 1141) and d u a l i t y can do no more than make s t anda rd r e s u l t s obvious. We then cons ide r chain-based l a t t i c e s , f o r which a dua l space approach provides new s t r u c t u r a l in format ion . A f t e r a cu r so ry d i s c u s s i o n of o t h e r Post a lgeb ra g e n e r a l i s a t i o n s we f i n a l l y u n v e i l a p rev ious ly e l u s i v e c l a s s : t he d i s t r i b u t i v e l a t t i c e s of o rde r < m. Our account is based on work of W . G . Bowen (C201, c211, C221).

We no te t h a t t he dua l space of a Boolean a lgeb ra i s , qua ordered s e t , an a n t i c h a i n , whi le t h e dua l space of a cha in i s a cha in . For convenience we denote the elements of t h e z e l e m e n t cha in n by O , l , ...$- 1 and those of i t s dua l space n;l ( t h e d i s c r e t e l y topologised (n-i)-element cha in ) by 1 , 2 , . . . , n-1.

Let L = B >k - n (where B E g) be a t y p i c a l Post a lgeb ra . Then ,YL = XB x nZ1, which can be v i s u a l i s e d as t h e d i s j o i n t

t n-l X n- 1

x2 1 ; x1

xB

Figure 1

union of n clopen ' l a y e r s ' X i , each homeomorphic t o t h e Boolean space xn, where

( z , i ) Q (y,j)

i f and only i f z = y and i so t h a t each p o i n t of XL i s major i sed p r e c i s e l y by the cor responding p o i n t s i n h ighe r l a y e r s ( see f i g u r e 1 ) . L a t t i c e elements a r e r ep resen ted by clopen dec reas ing s e t s . These a r e b u i l t

j,

Ordered sets and duality for distributive lattices 45

up from ' c h a i n e l e m e n t s ' a n d ' c e n t r a l e l e m e n t s ' . L e t co = 0 , e . = u X . (i > 1).

0 < c'l < * * * < c' n- 1

Then j<i 3

= 1 O = t

forms d c h d i n i n L i somorphic t o ". The c e n t e r o f 1, ( i t s complemented e l e m e n t s ) i s {ij xn-1 I b E ii); i t forms A Boolean a l g e b r a i somorphic t o 8. t h e s e s p e c i a l e l e m e n t s .

F i g u r e 2 d e p i c t s

c h a i n e lement c e n t r a l e lement

F i g u r e 2

A g e n e r a l e l e m e n t a i n L may be r e p r e s e n t e d d i a g r a m m a t i c a l l y a s i n F i g u r e 3 and i t i s e a s i l y s e e n t h a t i t h a s a unique r e p r e s e n t a t i o n i n e a c h of t h e f o l l o w i n g forms.

D i s j o i n t r e p r e s e n t t i on : n- 1

Monotone r e p r e s e n t a t i o n : n- 1

a = v ( c j i A e.), c. E B, L' c f o r i j. i j i=o

I n F i g u r e 3 t h e d i s j o i n t r e p r e s e n t a t i o n i s i n d i c a t e d ; t h e monotone r e p r e s e n t a t i o n is o b t a i n e d i n a s i m i l a r f a s h i o n .

F i g u r e 3

More i m p o r t a n t l y , t h e d u a l s p a c e makes t r a n s p a r e n t t h e r e p r e s e n t a t i o n of e l e m e n t s of L a s c o n t i n u o u s f u n c t i o n s from XB t o hand d iagram i n F i g u r e 4 d e p i c t s a n e lement o f O(Xn x n--l); t h e r i g h t hand d iagram shows t h e graph o f t h e a s s o c i a t e d c o n t i n u o u s f u n c t i o n .

( s e e Theorem 3 . 3 and C801): t h e l e f t

46 H. A. Priestle y

Figure 4

The coproduct n k 2 i s genera ted by i t s c e n t e r and an n-element cha in i n a very s p e c i f i c way. We now cons ide r a more gene ra l s i t u a t i o n . Suppose t h a t C i s a f ixed cha in

0 = co < el < ... < c = 1 n- 1

i n a l a t t i c e L E 2. be chain-based i f L is genera ted by ii U C, where I3 i s t h e c e n t e r of I,; t h e d i s t i n g u i s h e d cha in C i s c a l l e d a c i a i n basc f o r I,. We s h a l l c a l l I, E U_ a P - l a t t i c e i f some f i n i t e subchain of I, i s a c h J i n base . Such l a t t i c e s were in t roduced by T . Traczyk 1891 and have been s t u d i e d by G . Eps t e in and A . Horn in C441. It is e a s i l y proved from the obse rva t ions conta ined i n

LEMMA 4 . 1 . of the natural l'nclusion maps from U,C in to L .

Then (L;C) (o r where no confus ion a r i s e s j u s t i.) i s s a i d t o

0

Theorem 4 . 2 g ives the dua l c h a r a c t e r i s a t i o n of P o - l a t t i c e s .

Lcl ( L ; C ) be chain-based and l e t v:XL + X b J a:XL + n-1 be thc duuls

-1 ( i ) ( a ) a E B Q a = II ( h ) for some clopen subsel 0 o$ Xu; -1 (b) each e

t h c Lopology on X L ;

-1

E C, ei f 0, i c c q r e s s i b ~ e as a (ri); i ( i i ) { i r - l (~ i ) I b clopen i n xB} u {a- '( i) I 7: = 1 , 2 , ...,n- 11 forms a s h h a s e f o r

-1 ( i i i ) ( a ) for i = 1,2, ..., n-1, a (i) is a n antichain;

(b) for z E XB, ~i (z) is a f i n i t r chain;

( i v ) 3: I-- (n(3:),a(x)) is a homeomorphic order embedding of XI, i n t o XB x n i l .

THEOREM 4 . 2 (W.G.Bowen [20], [221). only if for some Boolean space Z and some n > 1, X I , is a closed subspace of

Let L E g. Then L is a P0-lattice if and

2 x n-1.

The d u a l space of a P O - l o t t i c e may be dep ic t ed a s i n F igure 5:

N

prime i d e a l s l i e i n d i s j o i n t maximal cha ins and i n d i s j o i n t c lopen ' l a y e r s ' . The l a y e r i n g of t h e space depends on t h e choice of cha in base ( see Lemma 4 . 1 ( i i ) ) . The dua l space of L i s ( t o w i t h i n homeomorphism and o rde r isomorphism) una l t e red i f a c lopen s u b s e t of a l a y e r i s moved t o occupy a vacant space i n a n ad jacen t l a y e r , bu t t h e cha in base changes.

Let C denote the c o l l e c t i o n of cha in bases of a P o - l a t t i c e L of t h e maximal p o s s i b l e l eng th , o rdered elementwise.

n:l Y

-Ij Figure 5

Ordered sets and duality for distributive lattices 41

We say 1, i s a E’l-l,atticc. i f C has a l a r g e s t e lement ,

a F -2utticc i f C has l a r g e s t and s m a l l e s t elements and a P:i-Lalticc i f /Ci = 1.

2

The P . - l a t t i c e s a r e i n v e s t i g a t e d i n C 4 4 1 , 1901. Dual space diagrams make i t easy t o e shnb l i sh many p r o p e r t i e s of P . - l a t t i c e s , i nc lud ing those s e t o u t i n t h e t a b l e below; thc new r e s u l t s a r e provea i n [ 2 0 1 . a l g e b r a s : those L E f o r which

We denote by

0 + b = maxic E L 1 c A a G 0 1

t h e c l a s s of Heyting

e x i s t s f o r a l l (l,b E /,. Dual ly ,

a + h = m ‘ l n t c E i, 1 c v a > b } ,

In t h e dua l space a + 11 is r ep resen ted by X L where t h i s e x i s t s . a + b by + ( b \ t i ) .

I n t hc t a b l e (1,;L‘) i s a chain-based l a t t i c e , wi th C E C the cha in

+ ( a -. b ) and

0 =

For any a t L ,

< d1 < ... < en-, = I,

and n i s the c e n t e r of L . Note t h a t Theorem 4 . 2 and Coro l l a ry 2 . 5 ( i i ) imply t h a t ( L ; C ) is (isomorphic t o ) t he q u o t i e n t o f ii x - n by a congruence.

! iz = max{b t H I b G u } , i f t h i s e x i s t s .

A 1 geb r a i c e q u i v a l e n t

P - l a t t i c e

e i + e = e . i-1 7,

( L ; C ) a

P - l a t t i c e V i 1

e + c = e

and ! ei e x i s t s

V i

i i-1 I: ( L ; C ) a

P - l a t t i c e 2

/I and ! en-2 = 0

Dual e q u i v a l e n t

X c losed i n

X, x n,--1 L,

X L c losed

dec reas ing i n

XB x n z l

X c lopen

dec reas ing i n

XB x n-1

L

Rela t ion of L

a lgebra B * ~f

Pos t

Quot ien t by a

congruence

Quot ien t by a

f i l t e r

Quot ien t by a

p r i n c i p a l

f i l t e r

Heyting a l g e b r a

equiva len t

L,LOPE

The dua l space c h a r a c t e r i s a t i o n s make i t easy t o c o n s t r u c t examples of P . - l a t t i c e s . The fo l lowing ones a l l have t h e same c e n t e r , viz. t he Boolean a lgeb ra o f ’ f i n i t e and c o f i n i t e s u b s e t s of IN, whose dua l space 2 i s the one-point cornpac t i f ica t ion of t h e d i s c r e t e spacelN, wi th the d i s c r e t e o r d e r . g ives a l a t t i c e which is i n t h e i n d i c a t e d c l a s s b u t n o t i n the c l a s s above. A l l a r e s u b s e t s of X = 2 x 2, which i s the dua l of a P - l a t t i c e (Pas t a l g e b r a ) .

Each of the dua l spaces below

I I I 111:::1 X 3

48 H A . Priestley

(: 1 d S s

1'. - l a t t i c e s L

P - l a t t i c e s 1

I'"-lat t i c e s

F i g u r e h

'I'hc f o l l o w i n g space p r o v i d e s a c o n t r a s t i n g example . Wc t a k e X < / j h l orrlercci s e t t o be A x - 2 , where A i s t h e Cai i tur s e t , d i s c r e t e l y u r d e r c d . i n t o a compact t o t a l l y o r d e r d i s c o n n e c t e d s p a c e by t d k i n g as ;i c L i ~ p e n s \ h b a s c > f u r ;I t o p o l o g y t h e s e t s I ( . c , 2 ) I .I: E A] U l i : x - 2 1 (c is c l o p e n i n A w i t h i t s u s u a l t o p o l o g y } . 'The r e s u l t i n g s p a c e i s made u p o f two copi t l s o f A forming two l a y e r s , w i t h Lhe d i s c r e t e t o p o l o g y induced on t h e upper l a y e r and the u s u a l t o p o l o g y on t h e lower one . The l a y e r s a r e , o f c o u r s c , n o t t o p o l o g i c a l l y d i s j o i n t a n d i t is p o s s i b l e t o show t h a t t l ie d i s t r i b u t i v e l a t t i c e X r e p r e s e n t s h a s - no ch.iin hdsc; in f a c t i t i s n o t even a s u b l a t t i c e o f I' - l a t t i c e . 0

The dual space o f a Post a l g e b r a L hi i s t h e f o l l o w i n g p r o p e r t i e s :

'This s e t can bc made

(7:) XI, i s o r d e r e d a s a d i s j o i n t un ion o f maximal c h a i n s ;

(-I-) XI, i s t o p o l o g i s e d iis ;1 f i n i t e d i s j o i n t un ion of Boolean s p a c e s .

B e w i l d e r i n g l y many s u b c l a s s e s o f h a v e been c o n s i d e r e d which s h a r e t o a g r e a t c ' r d e g r e e t h e a l g e b r a i c p r o p e r t i e s of P o s t a lgcsbras (n-va lued C u k a s i e w i c z a l g e b r a s , S t o n e l a t t i c e s L I E o r d e r n , ... ) . A L L , d u a l l y , r e t a i n e i t h e r p r o p e r t y (") o r p r o p e r t y ( - 1 ) . A s y s t e m a t i c s t u d y O F t h e i n t e r a c t i o n be tween t h e s e c l a s s e s has been u n d e r t a k e n by W . G . Bowen in 1 2 0 1 .

From among l a t t i c e s s a t i s f y i n g (") we s i n g l e o u t f o r b r i e f ment ion t h e n-valued f .ukas iewicz a l g e b r a s . The dual s p a c e X I of such a n a l g e b r a i. looks l i k e a Post a l g e b r a d u a l s p a c e 7 x n.=.,l i n which som; o f t h e l a y e r s have b e e n p i n c h e d Logethcr by a map &:(:r ,L) ++ i\.(x:), where h . : Z -+ X1 s u r j e c t i v e , o r d e r - p r e k e r v i n g and s & c h t l i a i r,!] a r e i n c o m p a r a b l e i t and on1.y i f rT . (s ) , ii (!y) are incomparab I e .

( i = l , 2 , ..., Y L - ~ ) i s c o n t i n u o u s ,

The r i g l i t , ipproach Lo c 1 , i s s i F y i n g l , i t L i c e s w i t h p r o p e r t y ( I ) seems t o be L o mike

Ordered sets and duality for distributive lattices 49

Tire du , i l sp : i c~> oI 'I 1 : i t t ic .c ui th i s t y p c i s t h e d i s j o i n t un ion of t h e I!oolenn sp.Ic<'s 'Y ( [ ' = 1,2, . . . , j / - l ) . 'I'lit, d i s t r i b u t i v e l a t t i c e s o f o r d e r ni form

"~;-l,* I ' I s u b c a t e g o r y o f c. I t s n l g e b r ' i s Iicive b i n a r y o p e r a t i o n s V , A , u n a r y , ( I ' = 1 , 2 ,..., : r t ) .ind n u l l a r y o p e r a t i o n s i'. ( i = 0 , 1 , ..., m-1); i f

' i i - l a r e as i n D e t i n i t i o k 4 . 3 , i . = (2 1 , i s n f o r d e r i i < m, t h e n , ( ] ' . . . 9 '

v rr) A f y ; i n r t ~ j - i , ~ ~ , l l l ~

f o r i n-1

;t . 2 ' > '1 ,ind ( r i s t h e comptement U T (.

Frequent l y thr. cei1tc.r d i s t r i b u t i v e l a t t i c e L w i l l b e t o o s m a l l Tor 1, t o be

s u b l a t t i c c bl s u c h t h a t e n c r a t e d b y bl u i?. I J ~ assume !, rind L"p a r e t i e y t i n g n l g e b r n s .ind d c f i u e t h e i i i , I' 01 1, t o b e t h e s u b l a t t i c e g e n e r a t e d by a11 C' leme1t t s

F o r any i i E !i, (a + ~ 2 ' ) + ((2' + n) = ii, so t h e c e n t e r i s t .un ta ined i n the c x o c e n t e r . F u r t h e r n i o t i v a t i o n f o r the p e r h a p s c u r i o u s l o o k i n g d e f i n i t i o n i s p r o v i d e d by F i g u r e 8 , which i l l u s t r a t e s t h e l o o s e s e n s e i n which t h e e x o c e n t r a l g i 'ncr r i to r (1' + c) ( ( 2 '- 1 1 ) c n n be t h o u g h t of as h a v i n g (c + b ) + ( f J + c) as an ' approxi t i la te coiiipteriren~' .

i- I

gcllel-.ltcd by ii ; I d '1 g n i t e rlic3in i:. We may t h e n seek some o t h e r ' m i n i m a l '

(11 --f < 2 ) 4 (c + / I ) (b,c t I , ) .

__ . . . .

5 . A M I S C E L I A N Y OF IIUALLTY APPLICATIONS

An i m p o r t a n t use t c ) which d u a l i t y tias been p u t tins been t h e p r o d u c t i o n o f

The e x o c e n t e r w a s i n t r u d u c e d by C . Epstein 1 4 3 I ; h i s d e f i . n i t i o n is d i f f e r e n t irtm,

b u t e q u i v a l e n t t o , t h e onc g i v e n here . ProperLics o f t h e e x o c e n t e r h a v e been i n v e s t i g a t e d i n d e p e n d e n t l y by W . G . Bowen i n 1 2 0 1 , I 2 1 I a n d by G . 1 7 p s t r i n a n d A . Horn ( s e e I 4 5 I ) .

The . ippropri , i tcness of the d c f i i i i t i o n is c o n f i r m e d by

50 H.A. Priestley

counterexamples and of l a t t i c e s s a t i s f y i n g s p e c i f i e d cond i t ions . We g ive some i l l u s t r a t i o n s , r e f e r r i n g the r eade r t o the c i t e d papers f o r t he (sometimes i n t r i c a t e ) d e t a i l s of t h e c o n s t r u c t i o n s .

A s a f i r s t example cons ide r the problem of f ind ing which 1, E have the p rope r ty (*): every i d e a l ( f i l t e r ) i n L i s t h e i n t e r s e c t i o n o i maximal i d e a l s ( f i l t e r s ) . I t was poin ted ou t by A . Monteiro t h a t (*) holds i f L is Boolean. Using d u a l i t y , M . E . Adams proved i n C21 t h a t i t holds i f e i t h e r L E R, o r L is s c a t t e r e d ( t h a t i s , t he r a t i o n a l cha in does not embed i n L ) , He a l s o cons t ruc t ed an example of t he f a i l u r e of (*); t he dua l space of a s u i t a b l e l a t t i c e was obta ined by t ak ing the Cantor s e t i n i t s usua l topology and superimposing an appropr i a t e o r d e r . A d i f f e r e n t example was found by R . Balbes 1111 us ing a l g e b r a i c techniques . This is no t t he only case of a problem's be ing so lved independently and almost s imul taneous ly by a l g e b r a i c and topo log ica l methods which a r e n o t mut a l l y d u a l . Another i s provided by q u a s i v a r i e t i e s of p-a lgebras : t h a t t h e r e a r e 2'0 of these was shown a l g e b r a i c a l l y by A. Wroriski I1001 and t o p o l o g i c a l l y by M. E . Adanis c31. This r e s u l t was r e f i n e d by G . GrBtzer, H . Lakser and R. W . Quackenbush C551 who shnwed t h a t the q u a s i v a r i e t i e s w i t h i n form a non-modular l a t t i c e , of c a r d i n a l i t y 2% ; t h e i r t echniques inc lude d u a l i t y , ?haugh app l i ed t o f i n i t e a lgeb ras on ly .

We now look a t s i i b l a t t i c e s . M a r i s e s from (XL,E,4) as fo l lows .

Fur M a { 0 , I ) - s u b l a t t i c e of 1, E U,, t he dua l space of L e t

J" = I ( z , y ) I z + y , (VU E M)(y E a =) x E a)}

be the separating s e t f o r M. Then S U 4 i s a quas io rde r r e l a t i o n on X m d P given by x p y i f and only i f (.z,y), (y,z) E S U 4 is an equiva lence r e t a t i o n . equipping thep-equiva lence c l a s s e s wi th the obvious q u o t i e n t topology and o r d e r , we o b t a i n M ' s dual space . Sepa ra t ing s e t s ( i n c l u d i n g t h e i r ex tens ion t o not n e c e s s a r i l y bounded l a t t i c e s ) were f i r s t e x p l i c i t l y employed by M . E . Adams c11. The technique i s perhaps no t a s widely known a s i t deserves t o be ( i t r e c e n t l y proved u s e f u l f o r s tudy ing the exocenter (Theorem 4 . 4 ) ) . As a simple a p p l i c a t i o n we mention Adams' dua l cons t ruc t ion of a d i s t r i b u t i v e l a t t i c e wi th no maximal proper s u b l a t t i c e s : t he dua l space c o n s i s t s of t he n a t u r a l numbers s u i t a b l y ordered . The main r e s u l t s i n Cll concern the Fratt in? sublat t icc @ ( L ) of a d i s t r i b u t i v e l a t t i c e L ; by d e f i n i t i o n , @ ( L ) is t h e i n t e r s e c t i o n of t h e maximal proper s u b l a t t i c e s of L . I t is shown, in ter a l i a , t h a t any d i s t r i b u t i v e l a t t i c e L is Q ( L ' ) f o r some d i s t r i b u t i v e l a t t i c e I,'.

Many yea r s ago, A . Tarsk i posed h i s 'cube problem': does t h e r e e x i s t B E B, such t h a t B B x B x B bu t B $ B X B ? I n a remarkable paper C621, J . Ketonen r e c e n t l y c h a r a c t e r i s e d the countable Boolean a l g e b r a s and provided a ( coun tab le ) counterexample t o t h e cube problem. For coproducts of countable Boolean a l g e b r a s , V. Trnkov5 C921 proved t h a t B p B * B * B does imply B B * B . By - o n t r a s t , M. E . Adams and V. Trnkovd have shown i n C81 t h a t i t is p o s s i b l e t o f i n d 2'0 non- isomorphic countable d i s t r i b u t i v e l a t t i c e s L E 0, such t h a t L 2 L * L * L bu t L $ L * L ; f u r t h e r , given p resc r ibed countable bounded d i s t r i b u t i v e l a t t i c e s B,C, each of t h e l a t t i c e s L above can be chosen t o have B a s a s u b l a t t i c e and C a s a homomorphic image. The c o n s t r u c t i o n uses d u a l i t y i n a n o n - t r i v i a l way.

Our l a s t example i s somewhat d i f f e r e n t and involves t h e i n t e r v a l topology. On any ordered s e t P, t h e interval topology has a c losed subbase of t h e s e t s +x, +x f o r z E P. I t w i l l be of some importance i n 56; he re we a r e concerned wi th i t s appearance i n a r e c e n t paper by G . Gierz and J . D . Lawson C5ll on so-ca l led gene ra l i zed continuous l a t t i c e s . They prove t h a t a d i s t r i b u t i v e l a t t i c e L is the q u o t i e n t of a completely d i s t r i b u t i v e l a t t i c e L' under a map p rese rv ing up-d i rec ted supsanddown-directed i n f s p r e c i s e l y when the i n t e r v a l topology on L is Hausdorf f . The proof of s u f f i c i e n c y i s obta ined by t ak ing L' t o be t h e l a t t i c e of order - p re se rv ing maps from (X r equ i r ed q u o t i e n t map; i t is unknown whether t h e theorem remains v a l i d wi thou t t h i s assumption.

By

)OP t o 2. D i s t r i b u t i v i t y of L is used t o produce t h e F$?'e(4,

Ordered sets and duality for distributive lattices 5 1

6. TOPOLOGY AND ORDER IN PRIESTLEY SPACES

A P r i e s t l e y space i s s imul taneous ly an ordered s e t and a (Boolean) t o p o l o g i c a l space . It must a l s o be t o t a l l y o rde r d i sconnec ted . To s e e the s t r e n g t h of t h i s l a t t e r requi rement we d e a l b r i e f l y wi th t h e problem of topo log i s ing an ordered s e t t o c r e a t e Li g-ob jec t . s e t ( I 3 , < ) i s wprc.;cvitclDle, t h a t i s , i s isomorphic t o (X C) f o r some L E t . A deep a n a l y s i s of r i n g s p e c t r a by M . t lochster [561 r evea led t h a t (F ,G) i s r e p r e s e n t a b l e p r e c i s e l y when i t i s isomorphic t o t h e s e t of prime i d e a l s , o rdered by i n c l u s i o n , o f a commutative r i n g wi th i d e n t i t y . Thus r e p r e s e n t a b i l i t y i s of i n t e r e s t bo th t o l a t t i c e t h e o r i s t s and to r i n g t h e o r i s t s ; f o r a sample of t h e l i t e r a t u r e s e e [ l o ] , 1121, C311, C481, C561, 1661, C871, where f u r t h e r r e f e r e n c e s can a l s o be found.

Equ iva len t ly , we a sk under what c o n d i t i o n s a g iven ordered

L’-

Any r e p r e s e n t a b l e s e t (P,<) is such t h a t

( i ) every up-d i rec ted subse t of P has a sup , every down-directed s u b s e t has an i n f ;

rzd,ul = {u,u1 ( t h a t i s , L J . , ~ ] c o n t a i n s a cove r ing p a i r ) ; ( i i ) I’ is weakly a tomic : i f .r < y , t h e r e e x i s t u,v such t h a t x < u < u y and

( i i i ) t he i n t e r v a l topology on P is compact;

( i v ) Fop i s a l s o r e p r e s e n t a b l e .

Condi t ions ( i ) - ( i v ) e s s e n t i a l l y appear i n C561. I t i s easy t o prove t h a t they hold i n the under ly ing ordered s e t of any _P-object ( s e e 1701 and C491, 5VI.1). By ( i ) , any r e p r e s e n t a b l e s e m i l a t t i c e i s n e c e s s a r i l y a complete l a t t i c e . From ( i ) , ( i i ) we s e e immediately t h a t , f o r example, n e i t h e r o nor w+w* i s r e p r e s e n t a b l e . I n f a c t , a cha in is r e p r e s e n t a b l e i f and on ly i f i t s a t i s f i e s ( i ) , ( i i ) . I n g e n e r a l , even ( i ) , ( i i ) and ( i i i ) a r e i n s u f f i c i e n t t o gua ran tee r e p r e s e n t a b i l i t y ( s e e 1661).

Among o rde red s e t s s a t i s f y i n g ( i ) and ( i i ) a r e c l e a r l y t h e a l g e b r a i c l a t t i c e s ( s e e 1491 f o r the d e f i n i t i o n and b a s i c p r o p e r t i e s ) . An a l g e b r a i c l a t t i c e P becomes a P r i e s t l e y space i f i t i s given t h e (Lawson) topology X ( P ) wi th open subbase c o n s i s t i n g of t h e s e t s + k ( k E K(P), t h e compact e lements i n P) and P 93: (J. i’) ( see [491 , C741, 1751) . Among the dua l spaces of t h i s type a r e t h e zero-dimensional t opo log ica l l a t t i c e s a r i s i n g i n Theorem 3.4.

In gene ra l a r e p r e s e n t a b l e ordered s e t can c a r r y many d i f f e r e n t t opo log ie s which make i t a P r i e s t l e y space , and so r e p r e s e n t many non-isomorphic l a t t i c e s . A c l a s s i c example i s provided by M a d j o i n e d ) ; A(M ) and A(MwOP) yieYd non-isomorphic then LI con ta in2 the i n t e r v a l topology IV(P) on P (by P r o p o s i t i o n 2 .6 ( i i ) ) ; t h i s i s how r e p r e s e n t a b i l i t y cond i t ion ( i i i ) comes about . Thus C i s uniquely determined (as IV(P)) i f IV(P) i s Hausdorf f . When t h i s happens, we have ( P , Q) ( X L , ~ ) f o r (up t o isomorphism) only one L E 0. Among l a t t i c e s uniquely determined i n t h i s way by t h e i r o rdered s e t s of prime i d e a l s a r e t h e ; - ca t a ly t i c l a t t i c e s and i n p a r t i c u l a r any ;-object f r e e l y genera ted by an ordered s e t and any g -p ro jec t ive l a t t i c e . The i n t e r v a l topology on P i s Hausdorff whenever P has no i n f i n i t e a n t i c h a i n ; necessary and s u f f i c i e n t cond i t ions f o r IV(P) t o be Hausdorff a r e given i n C461, C51l.

We have been cons ide r ing t o p o l o g i s i n g a g iven ordered s e t t o produce a P r i e s t l e y space . produce a _P-object may be t r i v i a l o r hard depending on t h e type of o r d e r i n g demanded. making i t a g -ob jec t . [671; a l i n e a r o r d e r can be imposed on a Boolean space (X,,t) i f and on ly i f t h e Boolean a l g e b r a B has an ordered base .

We conclude t h i s s e c t i o n wi th a cau t iona ry example, due t o A. R . S t r a l k a [ 8 6 1 .

(a countable a n t i c h a i n wi th u n i v e r s a l bounds - o b j e c t s . I f (P,C,s) E p ,

We remark i n p a s s i n g t h a t t h e problem of o r d e r i n g a Boolean space t o

For example, no l i n e a r o r d e r e x i s t s on t h e Tychonov p lank (w+l) X (w,+l) This is e s s e n t i a l l y due t o R . D . Mayer and R . S . P i e r c e

52 H.A. Priestley

C o n s i d e r t h e C a n t o r s e t A w i t h i t s u s u a l t o p o l o g y C and o r d e r Q d e r i n e d by 2: L/ i f and o n l y i f 5: = y o r J = 1, !/ = 0 o r i i !i c o v e r s .c i n t h e n a t u r a l o r d e r on A . 'The s p a c e (A,C,G) i s c a l l e d t h e Lr:;aL?/wc/~s; i t i s made up or a c o u n t a b l e c o l l e c t i o n of 2-element c h a i n s and an u n c o u n t a b l e a n t i c h a i n . Lt t u r n s o u t t h a t , g i v e n 5: $ y i n A ,

( i ) 3 d i s j o i n t C-clopen s e t s i l l , Vl w i t h .c t U1, !/ 6 V1,

V 2 , r e s p e c t i v e l y i n c r e a s i n g , d e c r e a s i n g , w i t h , 2'

( i i ) 3 d i s j o i n t C-open s e t s U x E u2, y E v 2 ,

b u t

( i i i ) 3 d i s j o i n t C-clopen se t s 0, V , r e s p e c t i v e l y i n c r e a s i n g , d e c r e a s i n g , w i t h

I n f a c t o (a ) = { $ , a ) !

5: 6 u, E V .

7 . DUALITY IN A WIDER PERSPECTIVE

?he c r e d i t f o r i n i t i a t i n g t h e s t u d y o f ~ o p o l o g i c a l r e p r e s e n t a t i o n s of a l g e b r a i c o b j e c t s goes t o M . H . S t o n e , H i s c o n t r i b u t i o n i s p u t in h i s t o r i c a l p e r s p e c t i v e i n t h e i n t r o d u c t i o n t o 1'. T . J o h n s t o n e ' s book S t o n e Spaces [ 601. We recommend t h i s s t i m u l a t i n g and w i d e - r a n g i n g a s s e s s m e n t as complementary re , id ing t o t h e f o l l o w i n g s h o r t d i s c u s s i o n of d u a l i t i e s r e l a t e d t o t h e !)-z d u a l i t y .

We b e g i n w i t h some h i s t o r i c a l remarks on d u a l i t i e s f o r 0. S t o n e ' s o r i g i n a l t o p o l o g i c a l r e p r e s e n t a t i o n e x t e n d s t o a d u a l i t y be tween f! and t h e c a t e g o r y 2 o t s p e c t r a l s p a c e s ( s e e [ 1 4 1 , [541 , [ 8 5 1 ) . W . H . C o r n i s h proved i n [261 t h a t m d S a r e i s o m o r p h i c ( n o t j u s t e q u i v a l e n t ) c a t e g o r i e s . I f t h e c - d u a l of L i s TXL,C,Q) t h e n i t s 2-dual i s ( X L , C ) where C i s t h e t o p o l o g y o f C-open d e c r e a s i n g sets ; c o n v e r s e l y , C i s c o n s t r u c t e d f r o m a s p e c t r a l t o p o l o g y by t a k i n g d S a s u b b a s e t h e C-compact-open s e t s and t h e i r complements , and Q is g i v e n by s y Q

y E c l ~ { 3 c 1 . M . H o c n s t e r [561 . For p r a c t i c a l p u r p o s e s seems t o h a v e d i s t i n c t a d v a n t a g e s o v e r S . However t h e r e a r e s i t u a t i o n s where a ' h u l l - k e r n e l ' a p p r o a c h (as w i t h 2) i s a p p r o p r i a t e ; one s u c h is t h e s p e c t r a l t h e o r y f o r d i s t r i b u t i v e c o n t i n u o u s l a t t i c e s r e c e n t l y d e v e l o p e d by K . H . Hofmann and J . D . Lawson ( [ 5 8 ] ; o r s e e [ 4 9 1 ) . One can r e c a p t u r e d u a l i t y f o r f rom t h i s by r e g a r d i n g t h e pr ime i d e a l s of 1, E as t h e pr ime e l e m e n t s of T d ( L ) , t h e i d e a l l a t t i c e of L , which i s a d i s t r i b u t i v e c o n t i n u o u s l a t t i c e ( s e e [ 4 9 1 , p . 325) . An e x t e n s i o n of d u a l i t y i n a q u i t e d i f f e r e n t d i r e c t i o n is s u g g e s t e d by G.-C. R o t a i n 1761.

We now s e e k a more s y s t e m a t i c u n d e r s t a n d i n g of how t h e d u a l i t y be tween i n some s e n s e p r o t o t y p i c a l . We b e g i n w i t h a f o r m a l s t a t e m e n t o f t h e d u a l i t y be tween o u r c a t e g o r i e s

The t r a n s i t i o n f rom 2 t o was p a r t i a l l y made by A . Nerode [691 and

and P i s

i) : d i s t r i b u t i v e l a t t i c e s w i t h 0,1, - 0 , l - p r e s e r v i n g l a t t i c e homomorphisms

c o n t i n u o u s o r d e r - p r e s e r v i n g maps. and ,F : compact t o t a l l y o r d e r d i s c o n n e c t e d s p a c e s

We n o t e t h a t t h e o b j e c t "2" a p p e a r s i n two g u i s e s : as 2 i t l i e s i n L l , as 2 i t l i e s i n P. u n d g r s t o o d t o be t h e 2-e lement c h a i n w i t h e l e m e n t s 0 , l . I t w i l l now b e more c o n v e n i e n t t o work w i t h p o i n t w i s e - o r d e r e d hom-sets r a t h e r t h a n pr ime i d e a l s .

DUALITY THEOREM. T?w categ0ric.s varianl f inetor;

(where Liic image c ( L , z ) of L has the pointwise o r d m and topology inherli ted from

The n o t a t i o n h e r e is d i f f e r e n t f rom t h a t a d o p t e d i n § 5 ; 2 i s t o b e

and ,P are d u a l l y equivalent u n d m t h e contra-

- D(-,L) : + p

Ordered sets and duality for distributive lattices 53

2')

aiui - P(-,?) : + i'

:'YlC, J O i t i : 1

r t ~ ' ~ ' g{Ii.h ri ( J h r l I, t 2, i' E [) L J ; ~ f L J I,,:

-+ <( f, 1 1 : 1 ~ + I i ( p ( - , ? ) ,2) '3s t-hc nl j i i~nci ior~ - - - I J 4

( E 1 , ( / I ) ) (f) = f ( a )

a d (rtl,(x)) (9) = o ( . I - ) (.r 11, $ E C ( P , ? ) ) .

The P o n t r y a g i n d u a l i t y f o r comp;i~-t g r o u p s e x h i b i t s e s s e n t i a l l y t h e same f e a t u r e s a s t h e c-[ d u a l i t y . i s o m o r p h i c t o t h e group or c o n t i n u o u s homomorphisms f rom i t s c h a r a c t e r g r o u p - A ( / l , 3 ' ) t o x; h e r e t h e c i r c l e g r o u p 2' qim d i s c r e t e group T l i e s i n 4, quo. compact g r o u p 2' i t l i e s i n t h e d u a l c a t e g o r y . o b j e c t ; in e a c h of t h e m u t u a l l y d u a l c a t e g o r i e s c a n b e i d e n t i f i e d w i t h s t r u c t u r e d hom-sets (morphisms i n t o Y,X, morphisms i n t o 2,2); A(A,r) i n h e r i t s a t o p o l o g i c a l and o p e r a t i o n a l s t r u c t u r e - f r o m TI, w h i l e i ) ( L , T ) i n h e r i t s a t o p o l o g i c a l and r e l a t i o n a l s t r u c t u r e f rum 2". been s e t up by B . A . Ilavey and 11. Werner i n [ 4 2 1 . The t h e o r y h a s i t s r o o t s i n a v a r i a n t of F r e y d ' s r e p r e s e n t a b i l i t y theorem and f o l l o w s e a r l i e r work by , among o t h e r s , B . A . Davey [ 3 4 1 and I<. H. Hofmann and K . Keimel [ 5 7 1 . The t h e o r y d e v e l o p e d by Davey and Werner e n c o m p a s s e s , b e s i d e s t h e P o n t r y a g i n and c-' d u a l i t i e s , M o r i t a d u a l i t y f o r modules , t h e Hofmann-Mislove-Stralka d u a l i t y f o r compact z e r o - d i m e n s i o n a l s e m i l a t t i c e s [591 and d u a l i t i e s (some o l d , some new) f o r c e r t a i n o t h e r v a r i e t i e s which a r e g e n e r a t e d by a s i n g l e f i n i t e a l g e b r a . A s u b c l a s s of U may h a v e two d u a l i t i e s , one by r e s t r i c t i o n of t h e {-f d u a l i t y , t h e o t h e r p r o v i d e d d i r e c t l y by t h e Davey/Werner a p p r o a c h . Sometimes t h e s e d u a l i t i e s are e s s e n t i a l l y t h e same ( f o r S t o n e a l g e b r a s , f o r e x a m p l e ) , somet imes t h e y a re d i f f e r e n t (as i s t h e c a s e f o r Kleene a l g e b r a s ) .

B r a n c h i n g o u t i n a d i f f e r e n t d i r e c t i o n , o n e n a t u r a l l y s e e k s an e x t e n s i o n of ,U-p d u a l i t y t o l a t t i c e s i n g e n e r a l . V a r i o u s r e p r e s e n t a t i o n s have b e e n d e v i s e d , e a c h w i t h i n t e r e s t i n g f e a t u r e s ( [ 3 0 1 , [ 5 0 1 , [ 9 4 1 ) . G . G i e r z and K . Keimel i n [ 5 0 ] e x t e n d t o t h e i n f i n i t e c a s e t h e n o t i o n o f scaffoZding i n t r o d u c e d f o r f i n i t e l a t t i c e s by R . Wille [ 9 8 1 ; t h e i r r e p r e s e n t a t i o n , which i s b a s e d on compact H a u s d o r f f t o p o l o g i c a l p a r t i a l l a t t i c e s , h a s proved u s e f u l i n p r o b l e m s on e x p o n e n t i a t i o n ( s e e [161 , [ 9 9 1 ) . U r q u h a r t ' s d u a l i t y [ 9 4 1 ; t h i s u s e s as r e p r e s e n t a t i o n s p a c e s c e r t a i n t o p o l o g i c a l s p a c e s e q u i p p e d w i t h a p a i r o f q u a s i o r d e r s l i n k e d w i t h t h e t o p o l o g y and w i t h e a c h o t h e r . Any l a t t i c e c a n be i d e n t i f i e d w i t h a c o l l e c t i o n of s u b s e t s o f s u c h a s p a c e u n d e r o p e r a t i o n s A , v, where A i s i n t e r s e c t i o n , b u t , a s i s i n e v i t a b l e f o r n o n - d i s t r i b u t i v e l a t t i c e s , v i s n o t g e n e r a l l y u n i o n . F o r n o n - s u r j e c t i v e morphisms t h e n o t i o n of a d u a l morphism d o e s n o t e x i s t , b u t t h e d u a l i t y d o e s e x t e n d f a r enough t o e n a b l e U r q u h a r t t o p r o v e t h e i n d e p e n d e n c e o f t h e c o n g r u e n c e l a t t i c e and t h e au tomorphism g r o u p o f a f i n i t e l a t t i c e .

The U-P d u a l i t y seems t o s t a n d i n a s t r a t e g i c p o s i t i o n . e x h i b i t many o f t h e s t r u c t u r a l f e a t u r e s t h a t p e r v a d e d u a l i t y t h e o r y , y e t i s s p e c i a l enough t o p r o v i d e a p r a c t i c a l method of s o l v i n g p r o b l e m s , and t h i s method h a s t h e mer i t o f b e i n g p i c t o r i a l .

I t a s s e r t s t h a t any A E /1 ( t h e v a r i e t y o f a b e l i a n g r o u p s ) i s

I n b o t h P o n t r y a g i n and F - t d u a l i t i e s t h e

A g e n e r a l f ramework f o r d u a l i t i e s o f t h i s s o r t h a s

C l o s e s t i n s p i r i t t o t h e C-z d u a l i t y i s A .

I t i s g e n e r a l enough t o

8 . A D-p DICTIONARY

The t a b l e be low summar ises some of t h e most commonly u s e d d u a l e q u i v a l e n t s . Many o f t h e s e now come i n t o t h e realm o f f o l k l o r e and w e h a v e n o t a t t e m p t e d t o

54 H.A. Priestley

a t t r i b u t e them. Most a r e easy consequences of r e s u l t s i n 92 o r appear a s theorems elsewhere i n the t e x t . Throughout, L E and has dua l space (XL,C,G); we i d e n t i f y L with O(XL). The topo log ie s of &-open dec reas ing ( i n c r e a s i n g ) s e t s a r e denoted by i: (U). In the t a b l e each s ta tement i n the f i r s t cslumn i s equ iva len t t o the cor responding s ta tement i n the second column.

D - L a t t i c e types

L f i n i t e

Boolean

a cha in

countable

comp 1 e t e

f r e e on K gene ra to r s

Spec ia l elements i n L

Jo in - i r r educ ib le (# 0)

Meet - i r reducib le (# 1)

Morphisms f E g ( L , M )

f i n j e c t i v e

f s u r j e c t i v e

I d e a l s , f i l t e r s , congruences

I d e a l i n L

p r i n c i p a l i d e a l

prime i d e a l

maximal i d e a l

F i l t e r

Congruence

L a t t i c e s r e l a t e d t o L

I d e a l l a t t i c e

F i l t e r l a t t i c e

Congruence l a t t i c e

LOP

Minimal Boolean ex tens ion

F r a t t i n i s u b l a t t i c e

P -

C d i s c r e t e

( X u , < ) an a n t i c h a i n

(XL,G) a cha in

C m e t r i s a b l e

C l U V 6 c v v E 1:

x = ZK L -

&-clopen s e t +;c

t -c lopen s e t X L \ tr

@ E _ P ' X M J L '

$ s u r j e c t i v e

$ a n embedding

C-open dec reas ing s e t

&-clopen dec reas ing s e t

s e t X L fz (3: E XL)

se t X L \ {XI (X maximal)

C-open i n c r e a s i n g s e t

t-open s e t

No tes / r e fe rence

Theorem 3 .5

Theorem 3.2

see [I]

Ordered sets and duality for distributive lattices 55

n i' Notes l r e fe rence

Ca tegor i ca l no t ions

S u b l a t t i c e of L

Quot ien t l a t t i c e of L

F i n i t e d i r e c t p roduct

Coproduct

Tensor product

Equat iona l Subca tegor i e s

B (p-a lgebras) "W

L Hu Pseudocomplement a*

R -morphism -W

R," (dua l p-a lgebras)

L E n," Dual pseudocomplement a+

2 (Heyting a l g e b r a s )

L E E

R e l a t i v e pseudocomplement a + b

- H-morphism

Hop (dua l Heyting a l g e b r a s )

L E HOP

R e l a t i v e dua l pseudo- complement a + b

HoP-morphism

de Morgan a l g e b r a s

L de Morgan

-a

L Separa t ing s e t f o r X

Closed subspace of XL

D i s j o i n t union

Di rec t product

XI, ' +(a ' b )

Dual $ such t h a t $ o + = + . $

V E & * + V E C

+ ( b ' a )

$ 0 4 = + 0 $ Dual $ such t h a t

3 o rde r - r eve r s ing homeo- morphism g on X L wi th g2 = 1

Coro l l a ry 2.5 & 111 Coro l l a ry 2.5

Theorem 3 . 3

see C771

Theorem 3.1

I n gene ra l , a unary homomorphic (dua l homomorphic) o p e r a t i o n on L corresponds t o a cont inuous o rde r -p rese rv ing (o rde r - r eve r s ing ) s e l f map on X L'

56 H.A . Priestley

REF I.: R K N C E S

C11 Adams, M.E., 'I'tic F r R t t i n i s u b l n t [ i c e o f ;i d i s t r i h u L i v c 1 a t L i c e , ALg?bra Univ. 3 (1973) 216-228.

121 Adams, M . E . , A p roblem of A . Mcinteiru c u n c e r n i n g r e l a t i v c c . c ~ i ~ r ~ ~ l c ~ n i i ~ n t ; ~ t i c l ' l ( o f l a t t i c e s , Col loq . Math. 30 (1974) 61-67.

l a t t i c e s , J. London Math. S o c . ( 2 ) I 3 (1976) 381-384. [ 3 1 Adams, M . E . , I n i p l i c a t i o n a l c l a s s e s o f pseudocomplcnientcL1 d i s L r i b u t i v c

C4l Adanis, M.E. , Koubek, V. a n d S i c h l e r , J . , Homomorphisms and endcimiirplrisms i n v a r i e t i e s of pseudocomplemented d i s t r i b u t i v e l a t t i c e s ( w i t h app1 i c a t i o n s t o H e y t i n g a l g e b r a s ) , p r e p r i n t .

l a t t i c e s w i t h s m a l l endomurphisni monoids, p r e p r i n t . 1 5 I Adams, M . E . , Koubek, V . and S i c h l e r , . I . , Pseud~,coniplemented d i s t r i b u t i v e

C61 Adams, M.E., Koubek, V . and S i c t i l e r , . J . , Homomorphisms and endomorphisms of

[ 7 1 Adams, M.E. and S i c h l e r , J . , Endomorphism monoids o f d i s t r i b u t i v e d o u b l e

d i s t r i b u t i v e l a t t i c e s , p r e p r i n t .

p - a l g e b r a s , (:lasgow Math. J. 20 (1979) 81-86.

d i s t r i b u t i v e l a t t i c e s , Algebra Univ. 15 (1982) 242-257. 181 Adams, M.E. and Trnkovb, V . , l s o m o r p h i s n ~ s of sums of c o t i n t a b l e bounded

[91 B a l b e s , R., P r o j e c t i v e and i n j e c t i v e d i s t r i b u t i v e l a t t i c e s , P : i c i f i c J. Matll. 21 (1967) 405-420.

[ l o 1 B a l b e s , R . , On t h e p a r t i a l l y o r d e r e d se t of pr ime i d e a l s 01 a d i s t r i b u t i v e

1111 B a l b e s , R . , A s o l u t i o n t o a problem c o n c e r n i n g t h e i n t e r s e c t i o n of maximal

l a t t i c e , Canad. J. Math. 2 3 (1971) 866-874.

f i l t e r s and maximal i d e a l s i n a d i s t r i b u t i v e l a t t i c e , A l g e b r a Univ. 2 (1972) 389-392.

r 1 2 1 B a l b e s , R., On t h e p a r t i a l l y o r d e r e d set of pr ime i d e a l s o f a d i s t r i b u t i v c l a t t i c e , 11, B u l l . Acad. Polon . S c i . S6r . Math. Astronom. Phys . 26 (1978) 771-773.

1131 B a l b e s , R . , C a t a l y t i c d i s t r i b u t i v e l a t t i c e s , A l g e b r a U n i v . ' 1 1 (1980) 334- 340.

[141 B a l b e s , R. and Dwinger , Ph . , D i s t r i b u t i v e L a t t i c e s , U n i v e r s i t y of M i s s o u r i P r e s s , Columbia, M i s s o u r i , 1 9 7 4 ) .

C l 5 l B a l b e s , R. and Horn, A . , P r o j e c t i v e d i s t r i b u t i v e l a t t i c e s , P a c i f i c J . Math. 3 3 (1970) 273-279.

1161 Bauer , H . , Keimel , K. and Ki ih le r , R . , V e r f e i n e r u n g s - und Ki i rzungssz tze f i i r P r o d u k t e g e o r d n e t e r t o p o l o g i s c h e r R3ume und f i i r F u n k t i o n e n ( -ha lb- )verbSnde , i n Cont inuous L a t t i c e s ( P r o c e e d i n g s , Bremen 1 9 7 9 ) , L e c t u r e Notes i n Mathemat ics 871 ( S p r i n g e r - V e r l a g , Berl in-Heidelberg-New York, 1981) .

B u l l . London Math. SOC. 4 (1972) 1-2. C171 Be l l , J.L. and F r e m l i n , D.H. , The maximal i d e a l theorem f o r l a t t i c e s of s e t s ,

1181 R i r k h o f f , G . , R ings o f s e t s , Duke Math. J. 3 (1937) 443-454.

C191 B i r k h o f f , G . , L a t t i c e Theory (American M a t h e m a t i c a l S o c i e t y , P r o v i d e n c e ,

[ Z O I Bowen, W.G., L a t t i c e Theory and Topology, D.Phi l . T h e s i s , U n i v e r s i t y of

C211 Bowen, W.G., The e x o c e n t e r of a d o u b l e H e y t i n g a l g e b r a , p r e p r i n t .

c221 Bowen, W.G., T o p o l o g i c a l r e p r e s n t a t i o n of P o s t a l g e b r a s and cha in-based

Rhode I s l a n d , 1967) .

Oxfo rd (1981) .

l a t t i c e s , p r e p r i n t .

Ordered sets and duality for distributive lattices 5 1

1 2 3 1 C a n f e l l , M . J . , S e m i - a l g e b r a s and Rings of C o n t i n u o u s F u n c t i o n s , Ph.D. T h e s i s , U n i v e r s i t y o f Edinburgh (1968) .

1241 Choe, T.tl., P a r t i a l l y ordered t o p o l o g i c a l s p a c e s , An. Acad. Brasil. C i . 5 1

1251 C i g n o l i , K. and C a l l e g o , M.S., D u a l i t i e s f o r some De Morgan a l g e b r a s and

126 1 C o r n i s h , W.H., On H . P r i e s t l e y ' s d u a l of t h e c a t e g o r y of bounded

1 2 7 1 C o r n i s h , W.H., Ordered t o p o l o g i c a l s p a c e s and t h e c o p r o d u c t o f bounded

1281 C o r n i s h , W.H. and F o w l e r , P.R., C o p r o d u c t s o f d e Morgan a l g e b r a s , B u l l .

L291 C o r n i s h , W.H. and F o w l e r , P . R . , C o p r o d u c t s o f Kleene a l g e b r a s , 3. A u s t r a l .

1301 Crapo, H., U n i t i e s and n e g a t i o n : on t h e r e p r e s e n t a t i o n of f i n i t e l a t t i c e s ,

1 3 1 1 Davey, B.A. , A n o t e o n r e p r e s e n t a b l e p o s e t s , A l g e b r a Univ. 3 (1973) 345-347.

1321 Davey, B.A. , F r e e p r o d u c t s o f bounded d i s t r i b u t i v e l a t t i c e s , A l g e b r a Llniv. 4

1331 Davey, H . A . , D u a l i t i e s fo r e q u a t i o n a l c l a s s e s of Brouwer ian a l g e b r a s and

1341 Davey, B.A. , T o p o l o g i c a l d u a l i t y f o r p r e v a r i e t i e s of u n i v e r s a l a l g e b r a s , i n : R o t a , C.-C. ( e d . ) , S t u d i e s i n F o u n d a t i o n s and C o m b i n a t o r i c s , Advances i n M a t h e m a t i c s Supplementary S t u d i e s , Volume 1 (Academic P r e s s , New York- London, 1978) .

A l g e b r a Univ. 8 (1978) 73-88.

r c l a t i v c S t o n e a l g e b r a s , C o l l o q . Math 46 (1982) 1-14.

Ordered S e t s , NATO Advanced S t u d y I n s t i t u t e s S e r i e s (D. R e i d e l P u b l i s h i n g Company, D o r d r e c h t , 1 9 8 2 ) .

f i n i t e s i m p l e l a t t i c e s , J. London Math. Soc. ( 2 ) 17 (1978) 203-211.

(1979) 53-63.

L u k a s i e w i c z ~ l g e b r a s , J. A u s t r a l . Math. Soc. 34 (1983) 377-393.

d i s t r i b u t i v e l a t t i c e s , Mat. V e s n i k 12 ( 2 7 ) ( 1 9 7 5 ) 329-332.

d i s t r i b u t i v e l a t t i c e s , C o l l o q . Math. 36 (1976) 27-35.

A u s t r a l . Math. Soc. 1 6 (1977) 1-13.

Math. Soc. 27 (1979) 209-220.

.J. P u r c Appl. A l g e b r a 2 3 (1982) 109-135.

(1974) 106-107.

H e y t i n g a l g e b r a s , 'Trans. h e r . Math. S o c , 221 (1976) 119-146.

r 3 5 1 Davey, B.A., S u b d i r e c t l y i r r e d u c i b l e d i s t r i b u t i v e d o u b l e p - a l g e b r a s ,

1361 Davey, B.A., D u a l i t i e s f o r S t o n e a l g e b r a s , d o u b l e S t o n e a l g e b r a s , and

1371 Davey, B.A. and D u f f u s , D. , E x p o n e n t i a t i o n and d u a l i t y , i n : R i v a l , T . ( e d . ) ,

1381 Davey, B . A . , D u f f u s , D. , Quackenbush, R.W. and R i v a l , I., E x p o n e n t s of

1 3 9 1 Davey, B.A. and G o l d b e r g , M.S., The f r e e p - a l g e b r a g e n e r a t e d b y a

1 4 0 1 D a v e y , H.A. and McCarthy, M . J . , A r e p r e s e n t a t i o n t h e o r y f o r t h e v a r i e t y

r411 Davey, B.A. and R i v a l , I . , Exponents of l a t t i c e - o r d e r e d a l g e b r a s , A l g e b r a

C421 Davey, B.A. and Werner , M., D u a l i t i e s and e q u i v a l e n c e s f o r v a r i e t i e s of

1431 E p s t e i n , G . , D i s t r i b u t i v e l a t t i c e s o f o r d e r n , i n : P r o c e e d i n g s of t h e N i n t h

d i s t r i b u t i v e l a t t i c e , A l g e b r a 1Jniv. 11 (1980) 90-100.

g e n e r a t e d by t h e t r i a n g l e , A c t a Math. Acad. S c i . Hungar. 38 (1981) 241-255.

Univ. 14 (1982) 87-98.

a l g e b r a s , C o l l . Math. Soc. J h o s B o l y a i ( t o a p p e a r ) .

I n t e r n a t i o n a l Symposium on M u l t i p l e - v a l u e d L o g i c ( B a t h , 1979) ( I E E E , Long Beach, C a l i f . , 1 9 7 9 ) "

1441 E p s t e i n , G. and Horn, A. , Chain b a s e d l a L t i c e s , P a c i f i c J. Math, 55 (1974) 65-84.

1457 E p s t e i n , G . and Horn, A . , Cornered e l e m e n t s i n d o u b l e H e y t i n g a l g e b r a s , A b s t r a c t s A m e r , Math. Soc. 2 (1981) 389.

58 H.A. Priestley

1461 Ern&?, M., Separation axioms for interval topologies, Proc. Amer. Math. Soc. 79 (1980) 185-190.

1471 Filipoiu, A., Representation of tukasiewicz algebras by means o t ordered

1481 Fontana, M., Sopra alcuni problemi relativi agli insieme spettrali, Rend.

Stone spaces, Discrete Math. 30 (1980) 111-116.

Sem. Fac. Sci. Univ. Cagliari, 49 (1979) 445-467.

D.S., A Compendium of Continuous Lattices (Springer-Verlag, Herlin- Heidelberg-New York, 1980).

1491 Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J . D . , Mislove, M. and Scott,

[SO] Gierz, G. and Keimel, K., Topologische Darstellung von VerbYnde, Math. Z. 150 (1976) 83-99.

1511 Gierz, Go and Lawson, J.D., Generalized conLinuous dnd hypercontinuous

[52] Goldberg, M.S., Distributive p-algebras and Ockham algebras: a topological

[53] Goldberg, M.S., Distributive Ockham algebras: free algebrds and

[541 GrPtzer, G., General Lattice Theory (BirkhYuser Verlag, Bdsel, 1978).

[55] GrHtzer, G., Lakser, H. and Quackenbush, R.W., On the lattice of quasi-

lattices, Rocky Mountain J. Math. 11 (1981) 271-296.

approach, Ph.D. Thesis, La Trobe University, Bundoora, Australia (1979).

injectivity, Bull. Austral. Math, Soc. 24 (1981) 161-203.

varieties of distributive lattices with pseudocomplementation, Actd Sci. Math. (Szeged) 42 (1980) 257-263.

1561 Hochster, M., Prime ideal structure in commutative rings, Trans. Amer. Math.

C571 Hofmann, K.H. and Keimel, K., A General Character Theory for Partially

Soc. 142 (1969) 43-60.

Ordered Sets and Lattices, Mem. Amer. Math. Soc. 122 (1972).

C581 Hofmann, K.H. and Lawson, J.D., The spectral theory of distributive continuous lattices, Trans. her. Math. Soc . , 246 (1978) 285-310.

1591 Hofmann, K.H., Mislove, M. and Stralka, A., The Pontryagin duality of compact 0-dimensional semilattices and its applications, Lecture Notes in Mathematics 396 (Springer-Verlag, Berlin-Heidelberg-New York, 1974).

1601 Johnstone, P.T., Stone Spaces (Cambridge University Press, Cambridge, 1983).

C611 Katrifibk, T., The free {O,ll-distributive product of distributive p-algebras, Bull. Soc. Roy. Sci. Lisge 47 (1978) 323-328.

1621 Ketonen, J., The structure of countable Boolean algebras, Ann. of Math. 108

C631 Kucera, T.G. and Sands, B., Lattices of lattice homomorphisms, Algebra Univ.

1641 Lakser, H., The structure of pseudocomplemented distributive lattices I. Subdirect decomposition, Trans. Amer. Math. Soc. 156 (1971) 334-342.

[651 Lee, K.B., Equational classes of distributive pseudo-complemented lattices, Canad. J. Math. 22 (1970) 881-891.

1661 Lewis, W.J. and Ohm, J . , The ordering of Spec R , Canad. J . Math. 28 (1976)

[677 Mayer, R.D. and Pierce, R.S., Boolean algebras with ordered bases, Pacific J.

l68l Nachbin, L., Topology and Order (Van Nostrand, Princeton, N.J., 1965;

1691 Nerode, A . , Some Stone spaces and recursion theory, Duke Math. J. 26 (1959)

(1978) 41-89.

8 (1978) 180-190.

820-835.

Math. 10 (1960) 925-942.

reprinted by Krieger, Huntington, New York, 1976).

397-406,

Ordered sets and duality for distributive lattices 59

1701 P r i e s t l e y , H . A . , R e p r e s e n t a t i o n o f d i s t r i b u t i v e l a t t i c e s by means of o r d e r e d S t u n e s p a c e s , B u l l . London Math. Soc . 2 (1970) 186-190.

1 7 1 1 P r i e s t l e y , H . A . , O r d e r e d t o p o l o g i c a l s p a c e s and t h e r e p r e s e n t a t i o n o f d i s t r i b u t i v e l a t t i c e s , P r o c . London Math. S o c . ( 3 ) 24 (1972) 507-530.

1 7 2 I P r i e s t l e y , H . A . , S t o n e l a t t i c e s : a t o p o l o g i c a l a p p r o a c h , Fund. Math. 84

1731 P r i e s t l e y , H . A . , The c o n s t r u c t i o n of s p a c e s d u a l t o pseudocomplemented

1741 P r i e s t l e y , H . A . , C a t a l y t i c d i s t r i b u t i v e l a t t i c e s and compact z e r o -

r751 P r i e s t l e y , H .A. , A l g e b r a i c l a t t i c e s as d u a l s of d i s t r i b u t i v e l a t t i c e s , t o

(1974) 127-143.

d i s t r i b u t i v e l a t t i c e s , Q u a r t . J . Math. Oxford ( 2 ) 26 (1975) 215-228.

d i m e n s i o n a l t o p o l o g i c a l l a t t i c e s , p r e p r i n t .

a p p e a r i n : P r o c e e d i n g s o f t h e C o n f e r e n c e o n T o p o l o g i c a l and C a t e g o r i c a l A s p e c t s o f C o n t i n u o u s L a t t i c e s , Rremen, 1982.

o f t h e U n i v e r s i t y of Hous ton La t t ice Theory C o n f e r e n c e ( 1 9 7 3 ) .

d u a l s , Acta Math. Acad. S c i . Hungar . 35 (1980) 387-392.

1761 R o t a , G . - C . , The v a l u a t i o n r i n g o f a d i s t r i b u t i v e l a t t i c e , i n : P r o c e e d i n g s

177~1 Schmid, J . , T e n s o r p r o d u c t s of d i s t r i b u t i v e l a t t i c e s and t h e i r P r i e s t l e y

[781 Schmid, J . , On l a t t i c e s o f c o n t i n u o u s o r d e r - p r e s e r v i n g f u n c t i o n s , Fund. Math.

1791 Schmidt , E . T . , Remark on g e n e r a l i z e d f u n c t i o n l a t t i c e s , A c t a Math. Acad. S c i .

1801 Speed , ‘T .P . , A n o t e on P o s t a l g e b r a s , C o l l o q . Math. 24 (1971) 37-44.

L811 Speed , T . P . , P r o f i n i t e p o s e t s , B u l l . A u s t r a l . Math. Soc . 6 (1972) 177-183.

1821 Speed , T . P . , The o r d e r of p r i m e s , A l g e b r a Univ. 2 (1972) 85-87.

1831 S t o n e , M . H . , The t h e o r y o f r e p r e s e n t a t i o n s of Boolean a l g e b r a s , T r a n s . A m e r .

r 8 4 1 S t o n e , M . H . , A p p l i c a t i o n s o f t h e t h e o r y of Boolean r i n g s t o g e n e r a l t o p o l o g y ,

116 (1980) 19-30.

Hungar. 34 (1979) 337-339.

Math. SOC. 40 (1936) 37-111.

T r a n s . Amer. Math. Soc . 4 1 (1937) 375-481.

1851 S t o n e , M . H . , T o p o l o ~ i c a l r e p r e s e n t a t i o n of d i s t r i b u t i v e l a t t i c e s and Brouwer ian l o g i c s , C a s o p i s P e s t . Mat. Fys . 67 (1937) 1-25.

1861 S t r a l k a , A . R . , A p a r t i a l l y o r d e r e d s p a c e which i s n o t a P r i e s t l e y s p a c e , Semigroup Forum 20 (1980) 293-297.

1871 Tan, T . , On R e p r e s e n t a b l e P o s e t s , Ph.D. T h e s i s , U n i v e r s i t y o f M a n i t o b a ,

1881 Thomas, D . A . , P roblems i n F u n c t i o n a l A n a l y s i s , D.Phi1. T h e s i s , U n i v e r s i t y o f

Canada ( 19 74) .

Oxford ( 1 9 7 6 ) , Chs. 2-5.

C891 T r a c z y k , T . , Axioms and some p r o p e r t i e s of P o s t a l g e b r a s , C o l l o q . Math. 10 (1963) 193-209.

1901 Traczyk, T . , L a t t i c e s w i t h g r e a t e s t ( l e a s t ) c h a i n b a s e , B u l l . Acad. Polon . S c i . S 6 r . S c i . Math. Astronom. Phys . 23 (1975) 935-938.

1911 T r a c z y k , T . , R e p r e s e n t a t i o n theorems f o r P o s t a l g e b r a s , Arta P o l y t e c h . P r i c e CVUT 1 3 (1977) 57-62.

1921 Trnkov5, V . , I somorphisms of sums o f c o u n t a b l e Boolean a l g e b r a s , P r o c . A m e r .

L931 U r q u h a r t , A . : F r e e d i s t r i b u t i v e pseudo-complemented l a t t i c e s , A l g e b r a Univ.

1941 U r q u h a r t , A . , A t o p o l o g i c a l r e p r e s e n t a t i o n t h e o r y f o r l a t t i c e s , A l g e b r a l ln iv .

Math. Soc . 80 (1980) 389-392.

3 (1973) 13-15.

8 (1978) 45-58.

60 H. A. Priestley

1951 U r q u h a r t , A . , D i s t r i b u t i v e l a t t i c e s w i t h a d u a l homomorphic o p e r a t i o n ,

1961 U r q u h a r t , A . , P r o j e c t i v e d i s t r i b u t i v e p - a l g e b r a s , B u l l . A u s t r a l . Math. SOC.

S t u d i a Logica 38 (1979) 201-209.

24 (1981) 269-275.

1971 U r q u h a r t , A . , E q u a t i o n a l c l a s s e s o f d i s t r i b u t i v e d o u b l e p - a l g e b r a s , A l g e b r a Univ. 14 (1982) 235-243.

1981 Wille, R . , S u b d i r e k t e P r o d u k t e v o l l s t Y n d i g e r VerbBnde, 3 . Keine Angew. Math. 283/284 (1976) 53-70.

L991 Wille, R . , C a n c e l l a t i o n and r e f i n e m e n t p r o p e r t i e s f o r f u n c t i o n l a t t i c e s ,

Cl00l Wrofiski, A . , The number of q u a s i v a r i e t i e s o f d i s t r i b u t i v e l a t t i c e s w i t h

Hous ton J . Math. 6 (1980) 431-437.

pseudocomplementa t ion , P o l i s h Acad. S c i . I n s t . P h i l o s . S o c i o l . B u l l . S e c t . L o g i c 5 (1976) 115-121.