9
1 Franck ARTZNER Institut de Physique de Rennes UMR CNRS 6251 Université Rennes 1 Auto-assemblages bio-inspirés : peut-on fabriquer sans effort des structures complexes avec une précision sub-nanométriques ? Journée "Nanosciences pour l’énergie" Auto-assemblages bio-inspirés : peut-on fabriquer des structures complexes avec une précision sub-nanométriques ? - Introduction + Exemple d’enjeux de la précision sub-nanométrique + Intérêts des auto-assemblages biologiques - Deux mécanismes d’auto-assemblages : + Contrôle du diamètre de nanotubes de silice + Cristallisation de nanoparticules Quantum Dots : QDs λ émission d = 2 nm r Fluorescent semi-conductor nanocrystal d = 6 nm d Shell (ZnS) Core (CdSe) Hydrophobic Ligands VB CB Noginov, Nature 2009 Some nanostructures… with well defined lengths Spaser effect quenching no coupling Resonance : d optimum d d d LPN Fedotov, PRL 2010 Some nanostructures… with well defined lengths Purcell effect Coherence High Accuracy (<1nm) is required Tobacco Mosaic Virus (TMV) Self-assembly Self-assembly of 2130 proteins - Monodisperse (length, diameter) - Spontaneous self-assembly - Reproducibility - Parallel Processes - Triggering

Quantum Dots : QDs - sfp.in2p3.frsfp.in2p3.fr/expo/Conf2012/Nanosciences/Nano_Energie_ARTZNER.pdf · Silica Marine Sponge : Euplectella sp. 1μm 10μm 100nm 100μm 1mm 1cm 10cm 5mm

  • Upload
    voxuyen

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Quantum Dots : QDs - sfp.in2p3.frsfp.in2p3.fr/expo/Conf2012/Nanosciences/Nano_Energie_ARTZNER.pdf · Silica Marine Sponge : Euplectella sp. 1μm 10μm 100nm 100μm 1mm 1cm 10cm 5mm

1

Franck ARTZNERInstitut de Physique de Rennes

UMR CNRS 6251Université Rennes 1

Auto-assemblages bio-inspirés : peut-on fabriquer sans effort des structures complexes avec une

précision sub-nanométriques ?

Journée "Nanosciences pour l’énergie" Auto-assemblages bio-inspirés : peut-on fabriquer des structures complexes

avec une précision sub-nanométriques ?

- Introduction+ Exemple d’enjeux de la précision sub-nanométrique+ Intérêts des auto-assemblages biologiques

- Deux mécanismes d’auto-assemblages :+ Contrôle du diamètre de nanotubes de silice+ Cristallisation de nanoparticules

Quantum Dots : QDs

λémission

d = 2 nm

r

Fluorescent semi-conductor nanocrystal

d = 6 nm

d

Shell (ZnS) Core (CdSe)

HydrophobicLigands

VB

CB

Noginov, Nature 2009

Some nanostructures…with well defined lengths

Spasereffect

quenching no couplingResonance :doptimum

d d d

LPNFedotov, PRL 2010

Some nanostructures…with well defined lengths

Purcell effect

Coherence

High Accuracy (<1nm) is required

Tobacco Mosaic Virus (TMV) Self-assembly

Self-assemblyof 2130 proteins

- Monodisperse (length, diameter)- Spontaneous self-assembly- Reproducibility - Parallel Processes- Triggering

Page 2: Quantum Dots : QDs - sfp.in2p3.frsfp.in2p3.fr/expo/Conf2012/Nanosciences/Nano_Energie_ARTZNER.pdf · Silica Marine Sponge : Euplectella sp. 1μm 10μm 100nm 100μm 1mm 1cm 10cm 5mm

2

Virus-Enabled Silicon Anode for Lithium-Ion BatteriesChen, ACS NANO, 2010

Dujardin, NanoLetters, 2003

Belcher, Science, 2002

Gold nanoparticles

SiliconZnS nanoparticles

18nm

Applications… Silica Marine Sponge : Euplectella sp.

Aizenberg, PNAS, 2004

Aizenberg, Science 2005, …

A perfectoptical fiber

inout

Silica Marine Sponge : Euplectella sp.

1μm

10μm

100nm

100μm

1mm

1cm

10cm

5mm

20μm

5μm

1cm

500nm

HierarchicalOrganization :

From centimeter to nanometer

1μm

10μm

100nm

100μm

1mm

1cm

10cm

10µm

1cm

Bio-inspired self-assembliesSome advantages …

1cm500nm

+ Monodispersity+ Reproducibility+ High Accuracy- Length tuning

+ Hierarchical self-organisation

+ Simple and low cost :No external work,…

+ Simultaneous processesHigh throughput,…

Objective :Design of bottom-up processes

generating well-defined nanostructures ??

Bio-inspired Scaffolds to manufacture nanomaterials :

nanotubes & Quantum Dots arrays

Objectives :+ Shape+ Crystallization+ Monodispersity+ Length Modulation

Objectives :+ Shape+ Crystallization+ Monodispersity+ Length Modulation

Which Scaffolds or template ????

Bio-inspired Scaffoldsto manufacture nanomaterials :

nanotubes & Quantum Dots arrays

Page 3: Quantum Dots : QDs - sfp.in2p3.frsfp.in2p3.fr/expo/Conf2012/Nanosciences/Nano_Energie_ARTZNER.pdf · Silica Marine Sponge : Euplectella sp. 1μm 10μm 100nm 100μm 1mm 1cm 10cm 5mm

3

Bio-inspired Scaffolds to manufacture hybrids materials :

Silica nanotubes & QDs metacrystals

Biological Self-Assemblies…

Virus φ=25nmProteins :

Size : 3-6 nm

Part 1 Part 2

Outline : 2 examples with- Scaffold- Nanomaterials- Properties

A Peptidic Template to Manufacture Silica Nanotubes

Self-assembly process ?

1,8nm

2+

Self-assembly process ?

I] PeptidicNanotubes

II] Mineralization

A Peptidic Template to Manufacture Silica Nanotubes

A

300 nm300nm

A Peptidic Nanotube Template

Freeze Etching EM

Lanreotide: synthetic octapeptideColl. Maité Paternostre (Saclay)

Diameter :24.4 nm

Wall thicknesse = 2 nm

water

5%(w/w)

Structure by Fiber Diffraction =>Valery & al, PNAS (2003)

Phase diagram in water :Valery & al, Biophys. J. (2004)

Self-assembly mechanism :Pouget & al, J.A.C.S (2010)

Ipsen-Pharma

Céline Valery PhD thesis 2003

Page 4: Quantum Dots : QDs - sfp.in2p3.frsfp.in2p3.fr/expo/Conf2012/Nanosciences/Nano_Energie_ARTZNER.pdf · Silica Marine Sponge : Euplectella sp. 1μm 10μm 100nm 100μm 1mm 1cm 10cm 5mm

4

3) Hydrophilic :+ H20

+

+

+

2) Aliphatic/Aliphatic :

4) Hydrogen Bonds :

1) Aromatic/Aromatic :

1,8nm

2+

Biological Interactions in Water :A nanometer scale Lego

Orientation !!!

aliphatic

aromatic

Self-assembly Rules

A Hierarchical Organisation

Step 1 Step 2

Step 3

26 protofilaments

18 Å

+ water

+

+

+

An dynamical equilibrium in water

+

++

++

++++

+

+++

++

++

+

+ ++

++

++

+

++

++

+ + +

- Electrostatic repulsion- Translation entropy

- Aromatic- Aliphatic

2+

Nanotube mineralization1 the organic template:

Lanreotide

1,8nm

24 nm

2 nm

octapeptide

2+

H2O

2 the inorganic compounds:silica

TEOS: Si(OEt)4

?Emilie Pouget PhD thesis 2006Christope Tarabout PhD thesis 2009

Morphological control: limited diffusion by a gel containing the peptide in a solution of silica precursors (TEOS)

Synthesis: spontaneous organic/inorganic assembly

"chimie douce" : in water, room T°, neutral pH

time≈48h

peptide

TEOS/waterFibers

~1cm

Capillarydiameter=1,5mm

Pouget & al, Nature Materials (2007)

1μm

10μm

100nm

100μm

1mm

1cm

10nm

1nm

Macroscopique FibersPolarising Ligth Optical Microscopy

=> Orientationnal order parallel to fiber axis

200μm

Dry Fiber

1mm

As synthesised

1mm

=> Centimeter Length

Page 5: Quantum Dots : QDs - sfp.in2p3.frsfp.in2p3.fr/expo/Conf2012/Nanosciences/Nano_Energie_ARTZNER.pdf · Silica Marine Sponge : Euplectella sp. 1μm 10μm 100nm 100μm 1mm 1cm 10cm 5mm

5

1μm

10μm

100nm

100μm

1mm

1cm

10nm

1nm

Transmission Electron Microscopy

Nanotubes Bundles

1 μm

Mineralisation possible !!

Coll. Erik Dujardin, Annie Cavalier

200nm

Long nanotubes with a monodisperse diameter

1μm

10μm

100nm

100μm

1mm

1cm

10nm

1nm

1μm

10μm

100nm

100μm

1mm

1cm

10nm

1nm

B

C

A

25nm 25nm

50nm

Silica Double walled Nanotubes

2 spatial frequencies :- 3.4nm with cos-like phase = FT (double dirac ) => double wall- 25.4nm with Jo-like phase = FT (thin cylinder)

1μm

10μm

100nm

100μm

1mm

1cm

10nm

1nm

SAXS (Small Angle X-ray Scattering)SAXS Beam Line ID O2, ESRF, T. Narayanan, T. Weiss

0,2Å-1

TemplateStructure

isconserved

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

0,05 0,15 0,25 0,35 0,45

q(A-1)

log

(I

0,096Å-1

Δq=0,025Å-1

q(Å-1)

Log

(I)

Lanreotide

Silica

<d> = 24.6nm

Simple model

r (nm)

SiLan

Siρ

1.4 2.0 1.4

1μm

10μm

100nm

100μm

1mm

1cm

10nm

1nm

Hierarchical Characterisation

Formation mechanism ?

Silica : 1,4nm

Lanreotide: 2nm

<d> = 24,6nm

Initial template Mineralisation ?

Lanreotide.Initial Nanotubes

TEOS/water

Dynamical template

Time ≈48h

Page 6: Quantum Dots : QDs - sfp.in2p3.frsfp.in2p3.fr/expo/Conf2012/Nanosciences/Nano_Energie_ARTZNER.pdf · Silica Marine Sponge : Euplectella sp. 1μm 10μm 100nm 100μm 1mm 1cm 10cm 5mm

6

++

++

2+2+

--

++

++

--

Pouget & al, Nature Materials (2007)

- dynamical template- kinetic coupling of reactions

A step by step construction :- dynamical template- kinetic coupling of reactions

A step by step construction :

Infinite growing ?????

Optical fibers ?

Duval et al, Electronic Letters, 2008

Diameter (µm) Loss (dB/cm)

4 -1.2

10 -2.3

20 -5.7

50 -6.6

35nm

9nm

Diameter Control ? Coll. J.C Cintrat (CEA Saclay)N. Fay, M. Paternostre (Saclay)

… a Peptides Library.

Close contact model :Diameter prediction : > 95%

NH

NN

N

O

O

O

H

H

H O

NH2

NN

O

OH

H

O

N

H

N

O

H

NH2

OH

HN

+H3N

OH

SS

A Diameter library from ..

24nm

Tarabout et al, PNAS 2011

From a Bio-inspired Scaffoldto Silica Nanotubes

StructureInteractions

- Aromatic- Aliphatic- Hydrophylic- H-bonding- Coulomb

Mutations+ Diameter

From 9 to 35 nm

- Shape (ribbons,…)Library of 20 mutants

Nano-optics within Bundles

Mineralisation

Part 2 :

Bio-inspired Scaffolds to manufacture nanomaterials :

nanotubes & Quantum Dots arrays

Page 7: Quantum Dots : QDs - sfp.in2p3.frsfp.in2p3.fr/expo/Conf2012/Nanosciences/Nano_Energie_ARTZNER.pdf · Silica Marine Sponge : Euplectella sp. 1μm 10μm 100nm 100μm 1mm 1cm 10cm 5mm

7

Toward 3D template : lipids multilayers

4 nm

Phospholipids

Lipid membrane in water :

O

O

O

O

N

O

O

O

O

OP

N

O OO

DMTAP

DMPC

++

+

++ +

+

+

++++

+SUV50nm

lipids multilayers

Bending Energy :

E = ½.kbend.u2.q4

E ∝ ½. kbend.u2/d4u

d = 2π/q

Colloid adhesion effects ?

+ Strong adhesion+ Large size

Flat 1D 2D

Can we generate in plane orderwith planar membranes ? Quantum Dots : QDs

λémission

d = 2 nm

r

Fluorescent semi-conductor nanocrystal

d = 6 nm

d

Shell (ZnS) Core (CdSe)

HydrophobicLigands

Coll. Valérie Marchi-Artzner (Chemistry@Rennes)

Functionnalization

1. Hydrosoluble QDs2. Anionic QDs

-

---

-

-

- -

3. QDs size (= λemission)

3.0 nm

dQD~6-8 nm

-Hydrophilic linksSulfur

Coll. Valérie Marchi-Artzner (Chimie@Rennes)

Crystallization by adhesion ?

++

++++

++

+

++

++++

++

+

++

++++

++

+

++

++++

++

+

++

++++

++

+

--

-

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

++

++++

++

+ ++

++++

++

+

++

++++

++

+ ++

++++

++

+

++

++++

++

+ ++

++++

++

+

++

++++

++

+ ++

++++

++

+

++

++++

++

+ ++

++++

++

+

--

- --

-

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

Coll. Marc Schmutz (ICS)

A. Dif, E. Henry et al, J.A.C.S. 2008

Coll. Valérie Marchi-Artzner (Chimie@Rennes)

Page 8: Quantum Dots : QDs - sfp.in2p3.frsfp.in2p3.fr/expo/Conf2012/Nanosciences/Nano_Energie_ARTZNER.pdf · Silica Marine Sponge : Euplectella sp. 1μm 10μm 100nm 100μm 1mm 1cm 10cm 5mm

8

G-actin

Actin filament

6nm

Anionic Polyelectrolyte

8nm

- 43 kDa- 375 AA- charge 4 à 6 –

Self Assembly

How to improve in-plane order ?

-

---

-

-

- -3.0 nm

dQD~6-8 nm

In-plane (2D) orderVery weak

35nm

300 µm

300 µm

++

++++

++

+

++

++++

++

+

++

++++

++

+

++

++++

++

+

++

++++

++

+

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

++

++++

++

+ ++

++++

++

+

++

++++

++

+ ++

++++

++

+

++

++++

++

+ ++

++++

++

+

++

++++

++

+ ++

++++

++

+

++

++++

++

+ ++

++++

++

+

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

380<λex<420 nm

Toward the 3D crystallization ?

2 phases …

Phase 1: 1D crystallization….Small Angle X-ray ScatteringSWING@SOLEILFlorian Meneau

6nm

6nm

10nm

10nm

Chains of Quantum Dots

8

9

10

2

3

0.250.200.150.100.050.00q[Å-1]

Phase 2 : 3D Crystallization

26.5nm

18.9nm

35.5nm

Small Angle X-ray ScatteringSWING@SOLEILFlorian Meneau

expe

3D model

Nanoparticules crystallisation by template strategyHenry et al, Nano Letters 2011

300 µm

380<λex<420 nm

Dynamical Templating

Post doc A. Dif

10

8

6

4

2

0

Inte

nsity

/ a.

u.

600580560540520500wavelength / nm

10

8

6

4

2

0

Inte

nsity

/ a.

u.

600580560540520500wavelength / nm

I (u.

a.)

Longueur d’onde d’émission (nm)

Excitation à 405 nm

Nanostructuration and optical properties

Page 9: Quantum Dots : QDs - sfp.in2p3.frsfp.in2p3.fr/expo/Conf2012/Nanosciences/Nano_Energie_ARTZNER.pdf · Silica Marine Sponge : Euplectella sp. 1μm 10μm 100nm 100μm 1mm 1cm 10cm 5mm

9

b c

2

1

)(0

01)( ∑

=

⋅−=−ΓN

l

rkki leN

kkrrrrr

Superradiance :

Conclusion : The scaffold is the key

Nanosciences pour l’énergie Auto-assemblages bio-inspirés

Transport optique Cohérence optique

AcknowledgementsBiomimetic@Rennes+ Emilie Pouget (Silica nanotubes)+ Christophe Tarabout (Diameter Modulation)+ Etienne Henry (Actin/QDs)+ Cristelle Mériadec (X-ray)+ Marie Postic (QDs crystallization)+ Open Postdoc Position (X-ray, biomimetic)

Synchrotron :T. Narayanan (ESRF)F. Meneau (SOLEIL)

Electron MicroscopyErik Dujardin (Toulouse)Marc Schmutz (Strasbourg)A. Cavalier (Rennes)

CEA@SaclayMaité PaternostreNicolas FayJ.C. CintratB. Rousseau

IPSEN PharmaCéline Valéry

Institut Curie François Amblard (actin)

Chemistry Dpt (Rennes) Valérie Marchi-Artzner (QDs)Aurélien Dif

€ ACI nano (2002-04)Région Bretagne, Rennes Métropoles