51
S and Q Matrices Reloaded Applications to Open, Inhomogeneous and Complex Cavities G. Painchaud-April, J. Dumont, D. Gagnon and L. J. Dubé Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON 2013 Cartagena, Spain

S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

S and Q Matrices ReloadedApplications to Open, Inhomogeneous and Complex Cavities

G. Painchaud-April, J. Dumont,D. Gagnon and L. J. Dubé

Département de physique, génie physique et optiqueUniversité Laval, Québec, Canada

ICTON 2013Cartagena, Spain

Page 2: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Outline

1 Scattering MatrixResonances / Quasi-Bound StatesEnergy FormalismTime Delay

2 Numerical Construction

3 ApplicationsNumerical ResultsOutlooks

4 Conclusion

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 2 / 28

Page 3: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Scattering Matrix

Section Outline

1 Scattering MatrixResonances / Quasi-Bound StatesEnergy FormalismTime Delay

2 Numerical Construction

3 ApplicationsNumerical ResultsOutlooks

4 Conclusion

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 3 / 28

Page 4: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Scattering Matrix Resonances / Quasi-Bound States

Section Outline

1 Scattering MatrixResonances / Quasi-Bound StatesEnergy FormalismTime Delay

2 Numerical Construction

3 ApplicationsNumerical ResultsOutlooks

4 Conclusion

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 4 / 28

Page 5: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Scattering Matrix Resonances / Quasi-Bound States

What is Resonance?

�ψinc�

�ψsca�

Outside the dielectric, we solveHelmholtz’ equation:

∇2 + n2k2��

�ψ�

= 0.

�ψsca�

= S�

�ψinc�

Poles of |detS(k)| with k ∈ C(S(k) = representation of S ).

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 5 / 28

Page 6: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Scattering Matrix Resonances / Quasi-Bound States

What is Resonance?

�ψinc�

�ψsca�

Outside the dielectric, we solveHelmholtz’ equation:

∇2 + n2k2��

�ψ�

= 0.

�ψsca�

= S�

�ψinc�

Poles of |detS(k)| with k ∈ C(S(k) = representation of S ).

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 5 / 28

Page 7: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Scattering Matrix Resonances / Quasi-Bound States

What is Resonance?

�ψinc�

�ψsca�

Outside the dielectric, we solveHelmholtz’ equation:

∇2 + n2k2��

�ψ�

= 0.

�ψsca�

= S�

�ψinc�

Poles of |detS(k)| with k ∈ C(S(k) = representation of S ).

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 5 / 28

Page 8: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Scattering Matrix Resonances / Quasi-Bound States

What is Resonance?

�ψinc�

�ψsca�

Outside the dielectric, we solveHelmholtz’ equation:

∇2 + n2k2��

�ψ�

= 0.

�ψsca�

= S�

�ψinc�

Poles of |detS(k)| with k ∈ C(S(k) = representation of S ).

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 5 / 28

Page 9: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Scattering Matrix Resonances / Quasi-Bound States

What Is Resonance?

Can we find a set of real energy levels for anopen dielectric cavity?

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 6 / 28

Page 10: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Scattering Matrix Energy Formalism

Section Outline

1 Scattering MatrixResonances / Quasi-Bound StatesEnergy FormalismTime Delay

2 Numerical Construction

3 ApplicationsNumerical ResultsOutlooks

4 Conclusion

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 7 / 28

Page 11: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Scattering Matrix Energy Formalism

Delay due to the Cavity

Average E.M. Energy

EV =1

2

∫∫∫

RV

[εE∗ · E+µH∗ ·H]d3r

Outside the cavity (r> R0), the modes are

ψm = H(−)m (nokr)eimθ +

`

Sm`H(+)`

(nokr)ei`θ

Coupling between modes:

EVmm′ =

1

2

∫∫∫

RV

εE∗m · Em′

+µH∗m ·Hm′�

d3r

R0

RV

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 8 / 28

Page 12: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Scattering Matrix Energy Formalism

Delay due to the Cavity

Average E.M. Energy

EV =1

2

∫∫∫

RV

[εE∗ · E+µH∗ ·H]d3r

Outside the cavity (r> R0), the modes are

ψm = H(−)m (nokr)eimθ +

`

Sm`H(+)`

(nokr)ei`θ

Coupling between modes:

EVmm′ =

1

2

∫∫∫

RV

εE∗m · Em′

+µH∗m ·Hm′�

d3r

R0

RV

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 8 / 28

Page 13: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Scattering Matrix Energy Formalism

Delay due to the Cavity

Average E.M. Energy

EV =1

2

∫∫∫

RV

[εE∗ · E+µH∗ ·H]d3r

Outside the cavity (r> R0), the modes are

ψm = H(−)m (nokr)eimθ +

`

Sm`H(+)`

(nokr)ei`θ

Coupling between modes:

EVmm′ =

1

2

∫∫∫

RV

εE∗m · Em′

+µH∗m ·Hm′�

d3r

R0

RV

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 8 / 28

Page 14: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Scattering Matrix Energy Formalism

Delay due to the Cavity

E∞mm′ = limRV→∞

4n0RVw

kδmm′ +

2w

k

−i∑

`

S∗`m∂ S`m′

∂ k

!

E0mm′ : diverging free space

energy of the beam.

Q =−iS† ∂ S∂ k: complex coupling

between angular momentumchannels → excess energy dueto the cavity → delay times.

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 9 / 28

Page 15: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Scattering Matrix Energy Formalism

Delay due to the Cavity

E∞mm′ = limRV→∞

4n0RVw

kδmm′ +

2w

k

−i∑

`

S∗`m∂ S`m′

∂ k

!

E0mm′ : diverging free space

energy of the beam.

Q =−iS† ∂ S∂ k: complex coupling

between angular momentumchannels → excess energy dueto the cavity → delay times.

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 9 / 28

Page 16: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Scattering Matrix Energy Formalism

Delay due to the Cavity

E∞mm′ = limRV→∞

4n0RVw

kδmm′ +

2w

k

−i∑

`

S∗`m∂ S`m′

∂ k

!

E0mm′ : diverging free space

energy of the beam.

Q =−iS† ∂ S∂ k: complex coupling

between angular momentumchannels → excess energy dueto the cavity → delay times.

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 9 / 28

Page 17: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Scattering Matrix Time Delay

Section Outline

1 Scattering MatrixResonances / Quasi-Bound StatesEnergy FormalismTime Delay

2 Numerical Construction

3 ApplicationsNumerical ResultsOutlooks

4 Conclusion

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 10 / 28

Page 18: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Scattering Matrix Time Delay

Resonances ↔ Time Delay

Characteristic Modes of the CavityThe field is given by

ψp =∑

m

h

ApmH(−)

m (nkr) + BpmH(+)

m (nkr)i

eimθ .

andB = SA.

Setting up the eigenvalue problem:

QAp = τpAp.

τp are the delay times and represent the time the energy of themode described by Ap spends inside the cavity.Resonances appear as peaks in the delay spectrum (τp vs. k).

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 11 / 28

Page 19: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Scattering Matrix Time Delay

Resonances ↔ Time Delay

Characteristic Modes of the CavityThe field is given by

ψp =∑

m

h

ApmH(−)

m (nkr) + BpmH(+)

m (nkr)i

eimθ .

andB = SA.

Setting up the eigenvalue problem:

QAp = τpAp.

τp are the delay times and represent the time the energy of themode described by Ap spends inside the cavity.Resonances appear as peaks in the delay spectrum (τp vs. k).

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 11 / 28

Page 20: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Scattering Matrix Time Delay

Resonances ↔ Time Delay

Characteristic Modes of the CavityThe field is given by

ψp =∑

m

h

ApmH(−)

m (nkr) + BpmH(+)

m (nkr)i

eimθ .

andB = SA.

Setting up the eigenvalue problem:

QAp = τpAp.

τp are the delay times and represent the time the energy of themode described by Ap spends inside the cavity.

Resonances appear as peaks in the delay spectrum (τp vs. k).

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 11 / 28

Page 21: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Scattering Matrix Time Delay

Resonances ↔ Time Delay

Characteristic Modes of the CavityThe field is given by

ψp =∑

m

h

ApmH(−)

m (nkr) + BpmH(+)

m (nkr)i

eimθ .

andB = SA.

Setting up the eigenvalue problem:

QAp = τpAp.

τp are the delay times and represent the time the energy of themode described by Ap spends inside the cavity.Resonances appear as peaks in the delay spectrum (τp vs. k).

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 11 / 28

Page 22: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Scattering Matrix Time Delay

Resonances ↔ Time Delay

kR0

cτ/R0

5.3 5.35 5.4 5.45 5.5100

101

102

103

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 11 / 28

Page 23: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Numerical Construction

Section Outline

1 Scattering MatrixResonances / Quasi-Bound StatesEnergy FormalismTime Delay

2 Numerical Construction

3 ApplicationsNumerical ResultsOutlooks

4 Conclusion

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 12 / 28

Page 24: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Numerical Construction

Construction of the S-matrixGoalCompute S for arbitrary geometries and arbitrary refractive index profiles.

Divide in concentric shellsSolve angular part in FourierseriesConnect the shellsIsolate S from B = SA.

A. I. Rahachou and I. V. Zozoulenko, Appl. Opt. (43), 1761 (2004).

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 13 / 28

Page 25: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Numerical Construction

Construction of the S-matrixGoalCompute S for arbitrary geometries and arbitrary refractive index profiles.

Divide in concentric shells

Solve angular part in FourierseriesConnect the shellsIsolate S from B = SA.

A. I. Rahachou and I. V. Zozoulenko, Appl. Opt. (43), 1761 (2004).J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 13 / 28

Page 26: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Numerical Construction

Construction of the S-matrixGoalCompute S for arbitrary geometries and arbitrary refractive index profiles.

Divide in concentric shells

Solve angular part in FourierseriesConnect the shellsIsolate S from B = SA.

A. I. Rahachou and I. V. Zozoulenko, Appl. Opt. (43), 1761 (2004).J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 13 / 28

Page 27: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Numerical Construction

Construction of the S-matrixGoalCompute S for arbitrary geometries and arbitrary refractive index profiles.

Divide in concentric shellsSolve angular part in Fourierseries

Connect the shellsIsolate S from B = SA.

A. I. Rahachou and I. V. Zozoulenko, Appl. Opt. (43), 1761 (2004).J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 13 / 28

Page 28: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Numerical Construction

Construction of the S-matrixGoalCompute S for arbitrary geometries and arbitrary refractive index profiles.

Divide in concentric shellsSolve angular part in FourierseriesConnect the shells

Isolate S from B = SA.

A. I. Rahachou and I. V. Zozoulenko, Appl. Opt. (43), 1761 (2004).J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 13 / 28

Page 29: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Numerical Construction

Construction of the S-matrixGoalCompute S for arbitrary geometries and arbitrary refractive index profiles.

Divide in concentric shellsSolve angular part in FourierseriesConnect the shells

Isolate S from B = SA.

A. I. Rahachou and I. V. Zozoulenko, Appl. Opt. (43), 1761 (2004).J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 13 / 28

Page 30: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Numerical Construction

Construction of the S-matrixGoalCompute S for arbitrary geometries and arbitrary refractive index profiles.

Divide in concentric shellsSolve angular part in FourierseriesConnect the shells

Isolate S from B = SA.

A. I. Rahachou and I. V. Zozoulenko, Appl. Opt. (43), 1761 (2004).J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 13 / 28

Page 31: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Numerical Construction

Construction of the S-matrixGoalCompute S for arbitrary geometries and arbitrary refractive index profiles.

Divide in concentric shellsSolve angular part in FourierseriesConnect the shells

Isolate S from B = SA.

A. I. Rahachou and I. V. Zozoulenko, Appl. Opt. (43), 1761 (2004).J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 13 / 28

Page 32: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Numerical Construction

Construction of the S-matrixGoalCompute S for arbitrary geometries and arbitrary refractive index profiles.

Divide in concentric shellsSolve angular part in FourierseriesConnect the shellsIsolate S from B = SA.

A. I. Rahachou and I. V. Zozoulenko, Appl. Opt. (43), 1761 (2004).J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 13 / 28

Page 33: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Applications

Section Outline

1 Scattering MatrixResonances / Quasi-Bound StatesEnergy FormalismTime Delay

2 Numerical Construction

3 ApplicationsNumerical ResultsOutlooks

4 Conclusion

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 14 / 28

Page 34: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Applications Numerical Results

Section Outline

1 Scattering MatrixResonances / Quasi-Bound StatesEnergy FormalismTime Delay

2 Numerical Construction

3 ApplicationsNumerical ResultsOutlooks

4 Conclusion

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 15 / 28

Page 35: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Applications Numerical Results

Example Applications of the Method

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 16 / 28

Page 36: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Applications Numerical Results

Ellipse (integrable geometry)

kR0

cτ/R

0

6.48 6.49 6.5 6.51 6.5210

0

101

102

103

mode

J. Unterhinnighofen et al, Phys. Rev. E(78), 016201 (2008).

Re�

kR0

= 6.5

| Im�

kR0

|= 0.032

kR0 = 6.499

2R0/cτ= 0.029

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 17 / 28

Page 37: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Applications Numerical Results

Square (corners + high delay)

kR0

cτ/R

0

4.5 4.52 4.54 4.56 4.58 4.610

0

101

102

103

104

105

mode

W.-H. Guo et al, IEEE J. of Qu. El. (39),1106 (2003).

Re�

kR0

= 4.54

| Im�

kR0

|= 1.05× 10−4

kR0 = 4.53

2R0/cτ= 1.06× 10−4

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 18 / 28

Page 38: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Applications Numerical Results

Stadium (composite structure)

kR0

cτ/R

0

4 4.5 5 5.510

0

101

102

mode

S.-Y. Lee et al, Phys. Rev. A (70), 023809(2004).

Re�

kR0

= 4.89

| Im�

kR0

|= 0.055

kR0 = 4.89

2R0/cτ= 0.052

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 19 / 28

Page 39: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Applications Numerical Results

Photonic Complex

kR0

cτ/R

0

5.3 5.35 5.4 5.45 5.510

0

101

102

103

(A) (B)(C)

(a)(b)

(c)

J.-W. Ryu et al, Phys. Rev. A (79), 053858

(2009).

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 20 / 28

Page 40: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Applications Numerical Results

Annular cavity (closed-form, holey cavity)

kR0

cτ/R

0

10.1 10.15 10.2 10.25 10.310

0

102

104

106

108

(14, 5)(A)

(7, 8)(B)

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 21 / 28

Page 41: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Applications Outlooks

Section Outline

1 Scattering MatrixResonances / Quasi-Bound StatesEnergy FormalismTime Delay

2 Numerical Construction

3 ApplicationsNumerical ResultsOutlooks

4 Conclusion

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 22 / 28

Page 42: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Applications Outlooks

Outlooks

TE Modes & µ 6= 1Equations to solve inside thecavity become

∇2 + n2k2�

Ez =1

µ∇µ · ∇Ez

∇2 + n2k2�

Hz =1

ε∇ε · ∇Hz

for TM and TE, respectively,and boundary conditionsdepend on both µ and ε.

Full 3DPossible and theoreticallysimilar, but poses somenumerical challenges.Steady-state ab initio lasertheory (SALT)Quasibound states as guides toconstant flux states.

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 23 / 28

Page 43: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Conclusion

Section Outline

1 Scattering MatrixResonances / Quasi-Bound StatesEnergy FormalismTime Delay

2 Numerical Construction

3 ApplicationsNumerical ResultsOutlooks

4 Conclusion

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 24 / 28

Page 44: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Conclusion

Conclusion

Primary FindingsScattering description for the S-matrix and its associated delaymatrix Q

Characteristic modes = eigenvectors Ap of the Q-matrix thatundergo a simple phase shift in the presence of the cavity, i.e.self-replicating waves.Resonances = peaks in τp vs. k (form a subset of the characteristicmodes).Computable quantities: Field in all space, resonance position (realwavenumber), resonance width (real delay) and quality factor Q.Approach applicable to open, continuously inhomogeneous cavitiesof arbitrary geometry.

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 25 / 28

Page 45: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Conclusion

Conclusion

Primary FindingsScattering description for the S-matrix and its associated delaymatrix Q

Characteristic modes = eigenvectors Ap of the Q-matrix thatundergo a simple phase shift in the presence of the cavity, i.e.self-replicating waves.

Resonances = peaks in τp vs. k (form a subset of the characteristicmodes).Computable quantities: Field in all space, resonance position (realwavenumber), resonance width (real delay) and quality factor Q.Approach applicable to open, continuously inhomogeneous cavitiesof arbitrary geometry.

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 25 / 28

Page 46: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Conclusion

Conclusion

Primary FindingsScattering description for the S-matrix and its associated delaymatrix Q

Characteristic modes = eigenvectors Ap of the Q-matrix thatundergo a simple phase shift in the presence of the cavity, i.e.self-replicating waves.Resonances = peaks in τp vs. k (form a subset of the characteristicmodes).

Computable quantities: Field in all space, resonance position (realwavenumber), resonance width (real delay) and quality factor Q.Approach applicable to open, continuously inhomogeneous cavitiesof arbitrary geometry.

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 25 / 28

Page 47: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Conclusion

Conclusion

Primary FindingsScattering description for the S-matrix and its associated delaymatrix Q

Characteristic modes = eigenvectors Ap of the Q-matrix thatundergo a simple phase shift in the presence of the cavity, i.e.self-replicating waves.Resonances = peaks in τp vs. k (form a subset of the characteristicmodes).Computable quantities: Field in all space, resonance position (realwavenumber), resonance width (real delay) and quality factor Q.

Approach applicable to open, continuously inhomogeneous cavitiesof arbitrary geometry.

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 25 / 28

Page 48: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Conclusion

Conclusion

Primary FindingsScattering description for the S-matrix and its associated delaymatrix Q

Characteristic modes = eigenvectors Ap of the Q-matrix thatundergo a simple phase shift in the presence of the cavity, i.e.self-replicating waves.Resonances = peaks in τp vs. k (form a subset of the characteristicmodes).Computable quantities: Field in all space, resonance position (realwavenumber), resonance width (real delay) and quality factor Q.Approach applicable to open, continuously inhomogeneous cavitiesof arbitrary geometry.

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 25 / 28

Page 49: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Conclusion

Acknowledgements

The ICTON 2013 organizing committeeThe Canada Excellence Research Chair in Photonic Innovations(CERCP), especially Younès Messaddeq and Jean-François Viens.The Natural Sciences and Engineering Research Council of Canada(NSERC)Computations were made on the supercomputer Colosse fromUniversité Laval, managed by Calcul Québec and Compute Canada

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 26 / 28

Page 50: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Convergence

Section Outline

5 Convergence

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 27 / 28

Page 51: S and Q Matrices Reloaded · Département de physique, génie physique et optique Université Laval, Québec, Canada ICTON2013 Cartagena,Spain. Outline 1 ScatteringMatrix Resonances/Quasi-BoundStates

Convergence

Homogeneous Disk

10−510−410−310−210−1100101

kR02ε

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100M

axim

umer

ror

kR0 = 2.50

kR0 = 5.00

kR0 = 10.00

kR0 = 20.00

kR0 = 40.00

kR0 = 80.00

Figure 1 : Maximum error in the elements of the numerical scattering matrixwith respect to the size of the annuli.

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 28 / 28