17
GHGT, Melbourne, 22.10.2018 Techno-economic evaluation of five technologies for CO 2 capture from cement production Mari Voldsund , Stefania Osk Gardarsdottir, Simon Roussanaly, Rahul Anantharaman, Chao Fu, David Berstad (SINTEF ER), Edoardo De Lena, Matteo Romano (Politecnico di Milano), Armin Jamali, Johannes Ruppert (VDZ), José-Francisco Pérez- Calvo (ETH), Giovanni Cinti (Italcementi)

Techno-economic evaluation of five technologies for CO 2

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

GHGT, Melbourne, 22.10.2018

Techno-economic evaluation of five technologies for CO2 capture from cement production

Mari Voldsund, Stefania Osk Gardarsdottir, Simon Roussanaly, Rahul Anantharaman, Chao Fu, David Berstad (SINTEF ER), Edoardo De Lena, Matteo Romano (Politecnico di Milano), Armin Jamali, Johannes Ruppert (VDZ), José-Francisco Pérez-Calvo (ETH), Giovanni Cinti (Italcementi)

2

Introduction

• Motivation7-9% of global anthropogenic CO2 emissions from the cement industry – CCS only viable option

• H2020 project CEMCAPPrepare the ground for large-scale implementation of CO2 capture in the European cement industry

Understanding costs and reducing uncertainties important!

CEMCAP technologies

3

• Oxyfuel process

• Chilled ammonia process

• Membrane-assisted CO2 liquefaction

• Calcium looping (CaL)• Tail-end

• Integrated entrained flow

• Reference: MEACaL-integrated

- tail-end

4

Size: 3000 tclk/dayBAT plant

Approach

• CEMCAP framework

• Reference cement kiln

• Key performance indicators• Specific equivalent primary energy consumption

per CO2 avoided (SPECCA)• Cost of clinker• Cost of CO2 avoided

• Several conditions studied• Base case (90% capture, pipeline, steam from NG boiler)

• Alternative cases: Low air leak, optional capture, shiptransport, steam import, etc.

• Sensitivity analysis

5

MEA absorption

• Base case• SPECCA: 7.1 MJ/kgCO2

• Cost of clinker: +72%

• Cost of CO2 avoided: 80 €/tCO2

• Cost of steam critical

012345678

Basecase

Low airleak in

mill

60%capture

Shiptransport

Steamimport

SPEC

CA [M

J LHV/

kgCO

2]

SPECCA

0

20

40

60

80

100

120

140

Referencecement

plant

Basecase

Low airleak in

mill

60%capture

Shiptransport

Steamimport

COC

[€/t

clk]

Cost of clinker

0

20

40

60

80

100

120

140

Basecase

Low airleak in

mill

60%capture

Shiptransport

Steamimport

CAC

[€/t

CO2]

Cost of CO2 avoided

Steam

Electricity

Coal

Raw material

Other variable costs

Fixed OPEX

CAPEX

Total

6

Oxyfuel process

012345678

Base case Low airleak incore

process

High airleak incore

process

No airleak incooler

Shiptransport

SPEC

CA [M

J LHV/

kgCO

2]

SPECCA

0

20

40

60

80

100

120

140

Referencecement

plant

Basecase

Low airleak incore

process

High airleak incore

process

No airleak incooler

Shiptransport

COC

[€/t

clk]

Cost of clinker

0

20

40

60

80

100

120

140

Basecase

Low airleak incore

process

High airleak incore

process

No airleak incooler

Shiptransport

CAC

[€/t

CO2]

Cost of CO2 avoided

Steam

Electricity

Coal

Raw material

Other variable costs

Fixed OPEX

CAPEX

Total

• Base case• SPECCA: 1.6 MJ/kgCO2

• Cost of clinker: +49%

• Cost of CO2 avoided: 42 €/tCO2

• Low CAPEX and OPEX

7

Chilled ammonia process

• Base case• SPECCA: 3.8 MJ/kgCO2

• Cost of clinker: +68%

• Cost of CO2 avoided: 66 €/tCO2

• Lower steam and power demand than MEA

• IP protection for improved process ongoing

0

1

2

3

4

5

6

7

8

Basecase

Low airleak in

mill

86%capture

Shiptransport

Steamimport

SPEC

CA [M

J LHV/

kgCO

2]

SPECCA

0

20

40

60

80

100

120

140

Referencecement

plant

Basecase

Low airleak in

mill

86%capture

Shiptransport

Steamimport

COC

[€/t

clk]

Cost of clinker

0

20

40

60

80

100

120

140

Basecase

Low airleak in

mill

86%capture

Shiptransport

Steamimport

CAC

[€/t

CO2]

Cost of CO2 avoided

Steam

Electricity

Coal

Raw material

Other variable costs

Fixed OPEX

CAPEX

Total

8

0

20

40

60

80

100

120

140

Referencecement

plant

Basecase

Low airleak in

mill

60%capture

Shiptransport

COC

[€/t

clk]

Cost of clinker

0

20

40

60

80

100

120

140

Basecase

Low airleak in

mill

60%capture

Shiptransport

CAC

[€/t

CO2]

Cost of CO2 avoided

Steam

Electricity

Coal

Raw material

Other variable costs

Fixed OPEX

CAPEX

Total0

1

2

3

4

5

6

7

8

Base case Low air leakin mill

60% capture Shiptransport

SPEC

CA [M

J LHV/

kgCO

2]

SPECCA

Membrane-assisted CO2 liquefaction

• Base case• SPECCA: 3.2 MJ/kgCO2

• Cost of clinker: +92%

• Cost of CO2 avoided: 84 €/tCO2

• Power consumption and CAPEX

• Membrane performance critical

• Low maturity high contingency

9

0

1

2

3

4

5

6

7

8

Base case(IL 50%)

IL 20% Ship transport

SPEC

CA [M

J LHV/

kgCO

2]

SPECCA

-20

0

20

40

60

80

100

120

140

Referencecement

plant

Base case(IL 50%)

IL 20% Shiptransport

COC

[€/t

clk]

Cost of clinker

Calcium looping – tail-end

• Base case• SPECCA: 4.1 MJ/kgCO2

• Cost of clinker: +66%

• Cost of CO2 avoided: 52 €/tCO2

• Coal consumption

• Power import/export

• Dependent on integration level (IL)

-20

0

20

40

60

80

100

120

140

Base case(IL 50%)

IL 20% Shiptransport

CAC

[€/t

CO2]

Cost of CO2 avoided

Steam

Electricity

Coal

Raw material

Other variable costs

Fixed OPEX

CAPEX

Total

𝐼𝐼𝐼𝐼 =𝐶𝐶𝐶𝐶purge𝐶𝐶𝐶𝐶total

10

Calcium looping – integrated EF

• Base case• SPECCA: 3.2 MJ/kgCO2

• Cost of clinker: +73%

• Cost of CO2 avoided: 59 €/tCO2

• Lower coal demand than CaL tail-end

• Less heat recovery/power generation

• Low maturity high contingency

012345678

Base case Ship transport

SPEC

CA [M

J LHV/

kgCO

2]

SPECCA

0

20

40

60

80

100

120

140

Referencecement

plant

Basecase

Shiptransport

COC

[€/t

clk]

Cost of clinker

0

20

40

60

80

100

120

140

Basecase

Shiptransport

CAC

[€/t

CO2]

Cost of CO2 avoided

Steam

Electricity

Coal

Raw material

Other variable costs

Fixed OPEX

CAPEX

Total

11

Base case overview

-20

0

20

40

60

80

100

MEA Oxyfuel CAP MAL CaLtail-end

CaLIntegrated

EF

Cost

of C

O2

avoi

ded

[€/t

CO2]

Steam

Electricity consumption/generation

Coal

Raw material

Other variable cost

Fixed operating costs

Investment

Total cost of CO2 avoided

0

2

4

6

8

10

MEA Oxyfuel CAP MAL CaL - tail-end

CaL - EFintegrated

SPEC

CA [M

J LHV/

kgCO

2]

SPECCA – electricity mix

Coal: sub-critical

Base case (EU 2014)

Renewables

Sensitivity analysis12

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100

Cost

of c

linke

r [€/

t clk]

Carbon tax [€/t CO2]

Cost of clinker – carbon tax

w/o CCS

MEA

Oxyfuel

CAP

MAL

CaL tail-end

CaL EF

0

20

40

60

80

100

120

10 15 20 25 30 35 40

Cost

of C

O2

avoi

ded

[€/t

CO2]

Steam cost [€/MWh]

CO2 avoided – steam cost

MEA

Oxyfuel

CAP

MAL

CaL tail-end

CaL EF

0

20

40

60

80

100

120

25 35 45 55 65 75 85

Cost

of C

O2

avoi

ded

[€/t

CO2]

Electricity price [€/MWh]

CO2 avoided – electricity price

MEA

Oxyfuel

CAP

MAL

CaL tail-end

CaL EF

Conclusions

• Methodology for cost evaluation developed

• Results sensitive to assumptions

• More integrated technologies more promisingfrom cost perspective

• Other important aspects should be consideredtogether with costs

• Final evaluation must be taken for the specificplant

13

Final report: D4.6 CEMCAP comparative techno-economic analysis ofCO2 capture in cement plants

To be shared in:https://zenodo.org/communities/cemcap/

14

15

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 641185

This work was supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 15.0160

www.sintef.no/cemcap

Twitter: @CEMCAP_CO2

16

CAPEX

• Bottom-up approach

• Standard process equipment• Aspen Process Economic Analyser®

• Thermoflex

• Non-standard equipment• Estimates from industry partners

• Literature

• Annualized CAPEX

17

OPEX