24
Thierry LANGIN Directeur de Recherche CNRS Directeur de l’Institut de Biotechnologie des Plantes Responsable du groupe « Maladies des Céréales » UMR 1095 Génétique, Diversité, Ecophysiologie des Céréles

Thierry LANGIN Directeur de Recherche CNRS Directeur de l’Institut de Biotechnologie des Plantes

Embed Size (px)

DESCRIPTION

Thierry LANGIN Directeur de Recherche CNRS Directeur de l’Institut de Biotechnologie des Plantes Responsable du groupe « Maladies des Céréales » UMR 1095 Génétique, Diversité, Ecophysiologie des Céréles. Contexte : - PowerPoint PPT Presentation

Citation preview

Thierry LANGIN

Directeur de Recherche CNRS

Directeur de l’Institut de Biotechnologie des Plantes

Responsable du groupe « Maladies des Céréales »

UMR 1095 Génétique, Diversité, Ecophysiologie des Céréles

 

Contexte : L’agriculture mondiale doit trouver les moyens de pouvoir

répondre à l’augmentation des besoins en certaines productions végétales

Par exemple, il est admis que la demande mondiale de céréales devrait augmenter d’environ 50% au cours des 20 – 30 prochaines années

Causes : Augmentation de la population mondiale

Changement des habitudes alimentaires

Nouvelles utilisations (Industries, chimie verte, biocarburants, …)

Solutions :- Augmenter les surfaces cultivées : possibilités limitées

Les plus importants « réservoirs » de surfaces potentiellement cultivables existent en Afrique et en Amérique du sud

(« Cerrados »)

rendre à nouveau « cultivables » des zones polluées

Adapter les plantes à la culture dans les zones arides

- Augmenter les rendements

- Augmenter la productivité

changements de pratiques culturales

mieux gérer la pression parasitaire (peut entrainer des

pertes allant de qques % à presque 100%) et les besoins en eau (compétition entre besoins des populations/agriculture !)

Quelques éléments de contexte:Le Blé dans le monde, en Europe et en

France

D’après

ADAGE (JF Sousanna)

Arvalis: colloque changement climatique: conséquences pour les grandes cultures et l’élevage 22/10/2009

CIMMYT: consortium to raise yield potential 9-13/11/2009

Arvalis: marchés et competitivité 19/11/2009

Une demande croissante (population, mode de vie) et moins de terres: urgence pour l’amélioration du

rendement

L’Europe et la France N°1

Les rendements stagnent malgré un progrès génétique….

Insuffisant pour compenser l’évolution défavorable du climat

Climat qui va devenir de plus en plus pénalisant

– Un objectif : Réduire les intrants de la culture de blé• N = Importante charge financière

– Coût direct : N 25% (indexée sur le pétrole)– Coûts indirects : augmente les risques de maladies et de verses

interventions cultures

• N = Principale charge environnementale– Coût énergétique : N 60% (équivalent-pétrole)

– Pollution des eaux de surface (NO3-)

– Gaz à effet des serre (N2O)

– Une nécessité : Maintenir le rendement et la teneur en protéines

• N = Principal facteur limitant de la production de blé en Europe de l’ouest

• N = Principal déterminant de la teneur en protéines et donc de la valeur d’utilisation des blés

Il faut optimiser l’efficience d’utilisation de l’N et de sa conversion en teneur en protéines

La filière doit tendre vers un équilibre environnemental - économique de la production

de blés de qualité

• Hier : objectif= produire le maximum- semer tôt, dense,- avec une variété productive (en général sensible aux maladies)- fertiliser pour éviter toute carence risques accrus de verse et de maladies usage intense des régulateurs de croissance et produits phytos

• Demain: objectif= maximiser la marge et minimiser les impacts environnementauxPour réduire notablement les risques phytosanitaires, accepter une réduction d’objectif de rendement - Semer plus tard ou moins dense- réduire l ’alimentation azotée précoce moins de risques de verse et de maladies possibilité de réduire traitements fongicide et régulateurs de croissance - choisir la variété sur d’autres critères que le rendement maxi, en particulier leur résistance aux maladies (d’après MH Jeuffroy, UMR Agronomie Grignon)

Culture à hautes performances économiques et environnementales: une autre logique de

conduite

Génétique et amélioration du blé Cibles et objectifs. I

• Potentiel de rendement (CIMMYT consortium)– Efficience de la photosynthèse: C3/C4, CO2 concentration,

RUBISCO….– Optimisation de l’indice de récolte (harvest index: goal 0.6)

• Adaptation au changement climatique– Evitement: décalage du cycle au delà de l’évolution “subie”

(> 1 mois)– Tolérance aux stress thermique/hydrique: exploitation des

ressources génétiques. – Potentiel de récupération post-stress

Génétique et amélioration du blé Cibles et objectifs. II

• Qualité du grain et des co-produits– Satisfaire la demande en quantité ET en

qualité pour des usages diversifiés.– Teneur ET composition des protéines pour

l’alimentation humaine et animale– Qualité de l’amidon pour l’industrie (matériaux

bio-sourcés)– Co-produits (paille) pour bio-énergie?– Valeur santé

Génétique et amélioration du blé Cibles et objectifs. III

• Résistance/tolérance aux stress biotiques– Insectes: pucerons, cicadelles (virus ) cecidomyes…

favorisés par la douceur des hivers– Virus (yellow dwarf, mosaic…)– Maladies fongiques: rouilles, septoriose, fusariose

(mycotoxines)– Espèces invasives

• Enjeux pour la ferme France: réduction de 50% de l’usage des pesticides (Ecophyto2018)– Économie # 40€/ha x 5 Mha = 200 M€/an– Et une meilleure qualité sanitaire (résidus) Compréhension des phénotypes, accélération du progrès

génétique: sélection génomique, création d’idéotypes (virtual and real), exploitation des ressources génétiques….

Comment améliorer génétiquement une espèce végétale :

Amélioration variétale classique

Biotechnologies/Transgénèse

Amélioration variétale classique

La plupart des spécialistes considèrent qu’il existe encore des marges de progression importantes pour certaines espèces végétales cultivées

Exploitation de la variabilité génétique naturelleCroisements intra- et inter-espèces par recombinaisons génétiques

Phase de domestication (depuis 7-9000 ans) - sélection inconsciente de quelques mutations : floraison groupée, grains nus qui ne tombent pas, avec nombre maximum

plantes qui ne se maintiennent que grâce à l'homme domestication = perte de variabilité

Téosinte (2,5cm)

Epi de maïs hybride (30cm)

6000 - 9000 ans

Amélioration variétale classique

La plupart des spécialistes considèrent qu’il existe encore des marges de progression importantes pour certaines espèces végétales cultivées

Exploitation de la variabilité génétique naturelleCroisements intra- et inter-espèces & recombinaison génétique

Phase de domestication (depuis 7-9000 ans) - sélection « involontaire » de quelques mutations : floraison groupée, grains nus qui ne tombent pas, avec nombre maximum

plantes qui ne se maintiennent que grâce à l'homme domestication = perte de variabilité

Sélection variétale « moderne » (depuis fin de XIXème)-sélection généalogique des meilleures lignées dans la descendance-introduction de caractères de résistance aux maladies par rétrocroisement

mais entrainant de nombreux gènes adjacents = génie génétique- sélection dite récurrente pour élargissement de la base génétique- Utilisation de lignées « mâle ou femelle-stérile » pour faciliter la construction

de lignées hybrides- Utilisation de la « vigueur hybride » chez les plantes sans autofécondation-Sélection Assistée par Marqueurs ou SAM

Amélioration variétale classique

La plupart des spécialistes considèrent qu’il existe encore des marges de progression importantes pour de certaines espèces végétales cultivées

Exploitation de la variabilité génétique naturelleCroisements intra- et inter-espèces par recombinaisons génétiques

Pbs : (i) Erosion des ressources génétiques

(ii) Pour certaines espèces cultivées, il n’existe pas de ressources génétiques disponibles pour certains caractères d’intérêt (résistance à certains stress biotiques ou abiotiques)

(iii) Disparition des populations ou espèces sauvages « sources »

Id : Compenser partiellement en générant une variabilité

génétique « artificielle » par mutagénèse Agents mutagènes type RX, Ems, …Création de banques de mutants de TillingFusions de cellules

Biotechnologies/Transgénèse

Qu’est ce qu’un organisme génétiquement modifié ou OGM ?

Définition du Conseil des Communautés Européennes :

"toute entité biologique capable de se reproduire ou de transférer du matériel génétique modifié d'une manière qui ne s'effectue pas naturellement par multiplication et/ou par recombinaison naturelle".

« Cette technologie permet de faire ce que la nature ne « Cette technologie permet de faire ce que la nature ne nous a pas permis de faire jusqu’à maintenant et là nous a pas permis de faire jusqu’à maintenant et là commence le vrai débat » commence le vrai débat » 

(Pierre Tambourin, Directeur général du Génopole)(Pierre Tambourin, Directeur général du Génopole)

PGMPGM = Plantes Génétiquement Modifiées = Plantes Génétiquement Modifiées

Biotechnologies/Transgénèse

Transgénèse/Sélection classique

- Possibilité de n'introduire qu’un seul gène (ou un petit nombre de gènes), allèle sauvage ou allèle mutés in vitro

exemple 1 : riz enrichi en pro-vitamineA dit riz "doré"

- Possibilité d’exprimer le ou les transgène(s) de façon tissus ou organes spécifique

- Surmonter la barrière des espèces : introduction de gènes issus d'espèces +/- éloignées (nouvelle variabilité)

exemple 2 : maïs résistant à la pyrale dit « maïs Bt » (Monsanto 801)

- Créer de nouveaux gènesexemple 3 : vignes résistantes au court-noué

Biotechnologies/Transgénèse

Comment fabrique-t-on un OGM ?

1- transfert direct d’ADN- Les méthodes électrochimiques (transformation de protoplastes)

- électroporation- PEG

- Les méthodes physiques (transfo de cellules, de tissus, d’organes…)- la biolistique- la microinjection

2- transfert par Agrobacterium tumefaciensDes techniques in vitro aux techniques in planta

Objectif : Amélioration de la valeur nutritive du riz/situation sanitaire de certains pays consommateurs - lutte contre la carence en vitamine A

La carence en pro-vitamine A affecte environ 124 millions de personnes, répartis dans 118 pays, principalement en Afrique et en Asie S-E.

Cette carence est responsable de 1-2 millions morts/an et de 500 000 cas de cécité irréversible chez l’enfant.

Exemple 1 : Le riz doré

En 1992, deux chercheurs appartenant à un organisme public, Ingo Potrykus (Suisse) et Peter Bayer (Fribourg), ont le projet de reconstituer la voie de synthèse du carotène dans les grains de riz. Sortie du "Golden rice 1" en 2000 puis amélioration "Golden rice 2" en 2004. Libre de tout brevet (don des licences par Syngenta, etc…)

Actuellement, plusieurs lignées transgéniques sont en cours d'essai au champ, aux USA et au Philippines (IRRI), avec l’objectif, si les essais sont concluants, d’un passage dans les variétés locales

Projet qui se heurte à une forte opposition de la plupart des mouvements « anti-OGM », Greenpeace en tête! ?

La pyrale est un papillon dont le chenille se nourrit à partir des tissus des tiges et des grains de maïs (maladie en recrudescence en Europe)

Pas de résistance génétique15 à 30 % des maïs traités chaque année par des insecticides présentant une toxicité certaine

Solution alternative : utilisation d’un insecticide « biologique » produit par une bactérie, le bacille de Thuringe (Bt) qui est connu depuis longtemps pour son efficacité sur la chenille processionnaire du pin s'est révélé très efficace contre la pyrale (et la sésamie)

Développement d’un insecticide « biologique » basé sur l’utilisation de granulés avec bactérie inactivée (autorisée en agriculture biologique).

Problèmes :Faisabilité des traitements dans les champs de maïs (hélicoptère)Coûts des traitements

Exemple 2 : La résistance à la pyrale

Précautions :

Evaluation de la toxicité des toxines Bt sur différentes

populations d’insectes non pathogènes : existence d’un spectre

d’hôte + ou – étroit

Toxicité nulle chez les autres animaux et l'homme (pas de

récepteur dans intestins)

Stratégie :

Introduction par transgénèse du gène de biosynthèse,

Cry1Ab, sous contrôle d’un promoteur permettant une

production forte à très forte de la toxine Bt dans les feuilles et

les tiges (6g/ha) et une production très limitée, mais non nulle,

dans les grains (1ng/g) :

Obtention de plantes résistantes à la pyrale

via la production in planta de la Toxine Bt

(Amélioration possible avec la caractérisation de promoteurs à expression encore

plus spécifique)

Faire produire par la plante cet insecticide biologique :