13
REVUE FRANÇAISE DAUTOMATIQUE , DINFORMATIQUE ET DE RECHERCHE OPÉRATIONNELLE .RECHERCHE OPÉRATIONNELLE T. NAKAGAWA D. N. P. MURTHY Optimal replacement policies for a two-unit system with failure interactions Revue française d’automatique, d’informatique et de recherche opérationnelle. Recherche opérationnelle, tome 27, n o 4 (1993), p. 427-438. <http://www.numdam.org/item?id=RO_1993__27_4_427_0> © AFCET, 1993, tous droits réservés. L’accès aux archives de la revue « Revue française d’automatique, d’infor- matique et de recherche opérationnelle. Recherche opérationnelle » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/ legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi- chier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

T.NAKAGAWA D.N.P.MURTHY … · 432 T. NAKAGAWA, D. N. P. MURTHY TABLE 1 Optimal numbers N* to minimize Cj (N) when Pi(t) = l(t2Y/jl\e-t2 and aj =0.1. 1 2 5 10 20 50 2 2 1 1 î 1 1

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: T.NAKAGAWA D.N.P.MURTHY … · 432 T. NAKAGAWA, D. N. P. MURTHY TABLE 1 Optimal numbers N* to minimize Cj (N) when Pi(t) = l(t2Y/jl\e-t2 and aj =0.1. 1 2 5 10 20 50 2 2 1 1 î 1 1

REVUE FRANÇAISE D’AUTOMATIQUE, D’INFORMATIQUE ET DERECHERCHE OPÉRATIONNELLE. RECHERCHE OPÉRATIONNELLE

T. NAKAGAWA

D. N. P. MURTHYOptimal replacement policies for a two-unitsystem with failure interactionsRevue française d’automatique, d’informatique et de rechercheopérationnelle. Recherche opérationnelle, tome 27, no 4 (1993),p. 427-438.<http://www.numdam.org/item?id=RO_1993__27_4_427_0>

© AFCET, 1993, tous droits réservés.

L’accès aux archives de la revue « Revue française d’automatique, d’infor-matique et de recherche opérationnelle. Recherche opérationnelle » impliquel’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique estconstitutive d’une infraction pénale. Toute copie ou impression de ce fi-chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programmeNumérisation de documents anciens mathématiques

http://www.numdam.org/

Page 2: T.NAKAGAWA D.N.P.MURTHY … · 432 T. NAKAGAWA, D. N. P. MURTHY TABLE 1 Optimal numbers N* to minimize Cj (N) when Pi(t) = l(t2Y/jl\e-t2 and aj =0.1. 1 2 5 10 20 50 2 2 1 1 î 1 1

Recherche opérationnelle/Opérations Research

(vol. 27, n° 4, 1993, p. 427 à 438)

OPTIMAL REPLACEMENT POLICIES FOR ATWO-UNIT SYSTEM W1TH FAILURE INTERACTIONS (*)

by T. NAKAGAWA C1) and D. N. P. MURTHY (2)

Communicated by N. KAID

Abstract. - This paper considers a two-unii System with the following two f allure interactions:When unit 1 fails, (i) unit 2 fails with probability OCJ and (n) unit 1 causes damage with distributionG (z) to unit 2. Expected cost rates oftwo models are derived when the system is repîaced atfailureof unit 2 or at N-th failure of unit 1. Optimal replacement numbers iV* to minimize expected costsare discussed. Finally, an extended model of model 2 is introduced.

Keywórds: Two units, failure interaction, replacement, expected cost, optimal policy.

Résumé. - Nous considérons dans cet article un système à deux unités avec les deux interactionssuivantes en cas dépanne : dans l'unité 1 tombe en panne, (I) : l'unité 2 (II) tombe en panne avec laprobabilité a ; ; l'unité 1 cause des dommages avec une distribution G(z) à l'unité 2. Nous donnonsles formules de l'espérance du coût lorsque le système est remplacé en cas de panne de l'unité 2 ouà la N-ième panne de l'unité 1. Les nombres i¥* de renouvellement pour minimiser les coûts moyenssont examinés. Finalementf nous introduisons une extension au modèle 2.

Mots clés : Deux unités, interaction de pannes, renouvellement, espérance du coût, politiqueoptimale.

1. INTRODUCTION

Préventive maintenance policies for a single unit System have received a lotof attention and a variety of policies have been formulated and studied [1]. Iffailures of different units for multi-unit Systems are statistically independentand maintenances of each unit can be done separately» then the analysis isstraight forward as each unit is effectively a single unit System. However,failures of units offer the opportunity to replace one or more of non-failed

(*) Received August 1992.(*) Department of Industrial Engineering, Aichi Institute of Technology, Yagusa-cho, Toyota

470-03, Japan.(2) Department of Mechanical Engineering, The University of Queensland, St. Lucia, Q4072,

Australia.

Recherche opérationnelle/Opérations Research, 0399-0559/93/04/$ 4.00© AFCET-Gauthier-Villars

Page 3: T.NAKAGAWA D.N.P.MURTHY … · 432 T. NAKAGAWA, D. N. P. MURTHY TABLE 1 Optimal numbers N* to minimize Cj (N) when Pi(t) = l(t2Y/jl\e-t2 and aj =0.1. 1 2 5 10 20 50 2 2 1 1 î 1 1

428 T. NAKAGAWA, D. N, P. MURTHY

units at a cheaper cost. Such policies are called opportunistic replacementpolicies and have been studied [6, 7, 9],

In a multi-unit System, often the failure times of different units arestatistically correlated [8]. In other instances, the failures of units can affectone or more of the remaining units. Such types of interactions betweenunits have been termed as failure interaction by Murthy and Nguyen [2].They defined two types of failure interactions - induced failure and shockdamage. Further, Murthy and Casey [3] considered préventive maintenancesof a two-unit System with shock damage interaction.

In this paper, we consider a system with unit 1 and unit 2. If unit 1failes then it undergoes only minimal repair, and unit failures occur at non-homogeneous Poisson processes with an intensity function r(t\ where r(i)is increasing in t.

Further, when unit 1 fails, we indicate the following two failure interactionsbetween two units:

(i) Induced failure; unit 2 fails with probability o/ at the j-th time ofunit 1 failure.

(ii) Shock damage; unit 1 causes damage with distribution G(z) to unit 2.

Suppose that the system is replaced at failure of unit 2 or a JV-th failureof unit 1, whichever occurs first. Expected cost rate of two models arederîved and optimal replacement numbers iV* to minimize them are discussed.Finally, we introducé an extended model of model 2 where the system isalso replaced at time T.

2. MODEL 1: INDUCED FAILURE

Whenever unit 1 fails, it acts as a shock to induce an instantaneous failureof unit 2 with a certain probability. Let aj dénote the probability that unit 2fails atj-th failure of unit 1. It is assumed that 0 < a j < OLI<* * *<o/<- • •. TheSystem is replaced at failure of unit 2 or iV-th failure of unit 1.

The probability that the System is replaced at iV-th failure of unit 1 is

Tlie probability that the system is replaced at failure of unit 2 is

1 - ax)(l-a2) - • (1 - aj-i)*,;3=1

Page 4: T.NAKAGAWA D.N.P.MURTHY … · 432 T. NAKAGAWA, D. N. P. MURTHY TABLE 1 Optimal numbers N* to minimize Cj (N) when Pi(t) = l(t2Y/jl\e-t2 and aj =0.1. 1 2 5 10 20 50 2 2 1 1 î 1 1

OPTIMAL REPLACEMENT POLICEES 429

where ao=O. It is evident that (1) + (2) = 1.

The mean time to replacement is

Ë

r(t)dt

= ËVsince

r , rat! e-m r(t)it=

were R(t) = / r (u) du.

The expected number of unit 1 failures until replacement is

J V - l

Note that we do not include the number of y-th failure when the system isreplaced at j-th failure of unit 1 (j-1, 2, * * -,N).

Therefore, the expected cost rate is

N-l

i-o

vol. 27, n° 4, 1993

Page 5: T.NAKAGAWA D.N.P.MURTHY … · 432 T. NAKAGAWA, D. N. P. MURTHY TABLE 1 Optimal numbers N* to minimize Cj (N) when Pi(t) = l(t2Y/jl\e-t2 and aj =0.1. 1 2 5 10 20 50 2 2 1 1 î 1 1

430 T. NAKAGAWÀ, D. N. P. MURTHY

(y = 0, 1, 2, • • •) which is used for the other models throughout the paper,Ci = cost of one unit 1 failure, C2=replacement cost at iV-th failure of unit 1,and C3= replacement cost at failure of unit 2 with C3>C2.

We seek an optimal number iV* which minimizes Ci (AT). From theinequality C\ {N+l)>C\ (iV), we have

N-l

r E Aj ir Pi (<) di jv-C

+(C3 " ( / ^ " i L ËJo Piv (*) at ^ o h

Dénote the left side of (6) by Lx (N).

3=0

. / x ^iV - ÂftT+1+ (C3 - C2J ' (t) dt AN JQ piv (t) dt\ \

Suppose that either of aj or r(t) is strictly increasing. Then, from [5], if r(t)/*oo

is strictly increasing then / pj(t) dt is strictly decreasing in y and if o/Jo

is strictly increasing then [AN—AN+I]/AN+I is also strictly increasing. Then,Li (AO is strictly increasing in N9 and hence, m optimal number N* is givenby a unique minimum such that L\ (N)>c^.

Consider two particular cases:(i) Suppose that aj is constant, i\e., otj = a and

Aj = (l-ay (j=0, 1, 2, * * •). Then, équation (6) is rewitten as

j=0 1 — a — (1 — a ) ^fi°PN(t)dt ö

ci + (a/(l - a))(c3 - c2)

Recherche opérationnelle/Opérations Research

Page 6: T.NAKAGAWA D.N.P.MURTHY … · 432 T. NAKAGAWA, D. N. P. MURTHY TABLE 1 Optimal numbers N* to minimize Cj (N) when Pi(t) = l(t2Y/jl\e-t2 and aj =0.1. 1 2 5 10 20 50 2 2 1 1 î 1 1

OPTIMAL REPLACEMENT POLICES 431

If r 0) is strictly increasing then the left side L\ (N) of (7) is strictly increasingand

lim Li(N) = r(oo) f°° e~aRW dt - —-.

Thus, if

r(=o)- < * ) '

then a finite AT* is given by a unique minimum which satisfies (7).Note that the expected number of unit 1 failures until unit 2 failure is

OOOO -

(1 — ay = .

Then,

1-a ci + ( a / ( l - a)) caa ci + ( a / ( l - a ) ) (03 - cg) ci m 4- C3 — C2 ?

is increasing in m from 0 to 00. Thus, a finite AP exists, when m is smaller.

EXAMPLE. Suppose that pj (t) = [(£2)Vi 0 e""*2- Then, since r(t) = 2t isstrictly increasing to 00, there exists a unique minimum which satisfies (7).Table 1 shows the optimal numbers AT* for (c3-e2)/ei = l, 2, 5, 10, 20, 50and c2/ci=2, 3, 5, 10, 20, 50 when a=0.1.

(ii) Suppose that r(r) = A, i.e., unit 1 failure occurs at a Poisson processwith rate À.Then, équation (6) is

<8>

If aj is strictly increasing in j then the left side L\ (N) of (8) is strictlyincreasing and

N-lru _ _

lim 1 - a o o

vol. 27, n° 4, 1993

Page 7: T.NAKAGAWA D.N.P.MURTHY … · 432 T. NAKAGAWA, D. N. P. MURTHY TABLE 1 Optimal numbers N* to minimize Cj (N) when Pi(t) = l(t2Y/jl\e-t2 and aj =0.1. 1 2 5 10 20 50 2 2 1 1 î 1 1

432 T. NAKAGAWA, D. N. P. MURTHY

TABLE 1

Optimal numbers N* to minimize Cj (N) whenPi(t) = l(t2Y/jl\e-t2 and aj =0.1.

1

2

5

10

20

50

2

2

1

1

î

1

1

3

2

2

2

1

1

1

crfci

5

2

2

2

I

1

1

10

4

4

3

3

2

1

20

6

6

4

3

2

50

11

11

9

7

5

3

where o>oo =• Kni aj. Thus, if

f ^ ^ O /"V>

then a finite N* ïs a unique minimum which satisfies (8).

EXAMPLE. Suppose that r(t) = X and aj = l~0. Then, from the results (ii),a finite w* exists and is given by a unique minimum which satisfies

^ ^ j = 0C3-C2

Table 2 shows the optimal number AT* for (c3-C2>/ci = l, 2, 5, 10, 20, 50and c2/ci=2, 3, 5, 10, 20, 50 when /?=0.9.

3. MODEL 2: SHOCK DAMAGE

Whenever unit 1 fails, it acts as a shock to unit 2 and causes damagewith distribution G(x) to unit 2. The damage is cumulative and unit 2 failswhenever the total damages exceed a failure level Z. The System is replacedat failure of unit 2 or iV-th failure of unit I.

Recherche opérationnelle/Opérations Research

Page 8: T.NAKAGAWA D.N.P.MURTHY … · 432 T. NAKAGAWA, D. N. P. MURTHY TABLE 1 Optimal numbers N* to minimize Cj (N) when Pi(t) = l(t2Y/jl\e-t2 and aj =0.1. 1 2 5 10 20 50 2 2 1 1 î 1 1

OPTIMAL REPLACEMENT POLICŒS 433

TABLE 2

Optimal numbers N* to minimize Ci (N) when

pj (t) = [(X tytj!] e~Xt andaj = l -(0.9) K

• 1 . . . . . . . .

2

5

10

20 . . . . . . .

50

c2lc\

2 3 5 10 20 50

1 4 7 12 17 25

1 1 4 8 12 19

1 1 1 4 7 12

1 1 1 1 4 8

1 1 1 1 1 5

1 1 1 1 1 1

The probability that the System is replaced at Af-th failure of unit 1 is

GW (Z),

where G® (x) is the y-th convolution of G (x) with itself.

The mean time to replacement is

V G^ (Z) / Pj (t) dt.

The expected number of unit 1 failures until replacement is

N-l

(N - 1) G^'(Z)+ V u - 1) [G^"1) {Z) -

where G®Hx)=l for x>0.

Therefore, the expected cost rate is

N-ï

C2 (N) =

N-l

i=o) (Z) /0°° Pj (t) dt

vol. 27, n° 4, 1993

(9)

(10)

(11)

(12)

Page 9: T.NAKAGAWA D.N.P.MURTHY … · 432 T. NAKAGAWA, D. N. P. MURTHY TABLE 1 Optimal numbers N* to minimize Cj (N) when Pi(t) = l(t2Y/jl\e-t2 and aj =0.1. 1 2 5 10 20 50 2 2 1 1 î 1 1

434 T. NAKAGAWA, D. N. P. MURTHY

where c\ =cost of one unit 1 failure, C2=replacement cost at iV-th failure ofunit 1» and c$= replacement cost at failure of unit 2 with

In particular, when Z goes to infinity, C% (N) is

(13)

which corresponds to (11) of [5].

We seek an optimal number N* which minimizes C% (N) in (12). From theinequality C2(N+l)>C2(N), we have

, N-lN-l „oo N-l

iN-l

(Z) f£°pN(t)dt fy+GW(Z)1 >C 3 . (14)

Dénote the left side of (14) by L2(N).

L2(N+l)~L2(N)

N-l

[ G ^ ) ( Z ) G ( ) (Z) GW (Z) - G(N+V (Z)02) 1

Suppose that either of [1-G ( W + 1 (Z)/G(JV)(Z)] or r(f) is stricüy increasing.Then, Lq, (N) is also strictly increasing in N, and hence, an optimal numberN* is given by a unique minimum which satisfies (14).

In particular, suppose that G(x) = 1 - e~ftx. Then,

is decreasing in N. Further,

Recherche opérationnelle/Opérations Research

Page 10: T.NAKAGAWA D.N.P.MURTHY … · 432 T. NAKAGAWA, D. N. P. MURTHY TABLE 1 Optimal numbers N* to minimize Cj (N) when Pi(t) = l(t2Y/jl\e-t2 and aj =0.1. 1 2 5 10 20 50 2 2 1 1 î 1 1

OPTIMAL REPLACEMENT POLICES 435

limN -»• o o

L2(N) = ci Ir (oo)^2 G& (Z) / Pj (t) dt - /xZ \

r(oo) £G<>>(Z) / pj(t)dt\,

where

• (00) f; OU) (z)7^ Jo

. î

then a finite N* is given by a unique minimum which satisfies (14). Further,when r(0 = A, if 1 + ixZ>{c^-cx)l{c^-C2) then a finite N* exists uniquely,

/•oo

since r \/"OO °°

• (oo) ƒ pj (t) dt = 1 and ^ G^')(Z) = l + (j,Z.

4. EXTENDED MODEL

In model 2, suppose that the system is replaced at time J, at failure ofunit 2 or Af-th failure of unit 1, whichever occurs first.

The probability that the System is replaced at time T is

J2PJ(T)G^(Z). (15)i=o

The probability that the system is replaced at N-th failure of unit 1 is

(16)j=N

The probability that the system is replaced at failure of unit 2 is

N-l oo

j=0 j=NN

vol. 27, n° 4, 1993

Vl (T). (17)

Page 11: T.NAKAGAWA D.N.P.MURTHY … · 432 T. NAKAGAWA, D. N. P. MURTHY TABLE 1 Optimal numbers N* to minimize Cj (N) when Pi(t) = l(t2Y/jl\e-t2 and aj =0.1. 1 2 5 10 20 50 2 2 1 1 î 1 1

436 T. NAKAGAWA, D. N. P. MURTHY

It is evident that (15) + (16) + (17) = 1.

The mean time to replacement is

N-l

Pj(T)*N

(T) G<'"> (Z) + GW {Z) f tPN-! (t) r (t) dtN

J°Z)} / tp3^ (t) r (t) dt

3=0[

3=0

The expected number of unit 1 failures until replacement is

N-l oo

Ü) (Z) + (JV-1) 53 K (T) GW {Z)3 = N oo

- i)(eu-1)(z) - cw (z)] 53 ft-(D• J V - 1 o o

Therefore, the expected cost rate is

C{T,N)/ N-l

iV+C3 ft

__ \

(18)

(19)

-, (20)

3=0

where c\ =cost of one unit failure <?2=replacement cost at JV-th failure ofunit 1, ^3= replacement cost at failiire of unit 2, and C4=replacement costat time T.

In particular, when T goes to infinity, C(T, N) agrées with C2 (N) in (12).; when bo& M and Z go to infinity, (20) is

Recherche opérationnelle/Opérations Researefa

Page 12: T.NAKAGAWA D.N.P.MURTHY … · 432 T. NAKAGAWA, D. N. P. MURTHY TABLE 1 Optimal numbers N* to minimize Cj (N) when Pi(t) = l(t2Y/jl\e-t2 and aj =0.1. 1 2 5 10 20 50 2 2 1 1 î 1 1

OPTIMAL REPLACEMENT POLICES 437

which agrées with [1] of periodic replacement.

5. CONCLUSIONS

We considérée two types of failure interactions and discussed the optimalreplacement policies.

The above two models characterize many real Systems. The followingis an illustrative example from chemical industry. The System consists ofa métal container (unit 2) in which chemical reactions take place and thetempérature of the container is controlled by cold water pumped through apneumatic pump (unit 1). Consider the case where the pump f ails and as aresuit the pressure inside can build up to lead to an explosion if the quantityof reacting fluid is high. This situation is modelled by model 1 with otj = afor ail j and a is the probability that the volume of fluid in the containeris high. A different scenario is the following. Whenever the pump fails, thetempérature of the tank rises and the container surface gets corroded. As aconséquence, the thickness of the container decreases. The damage is theréduction in the wall thickness and it is additive. The container fails whenthe total réduction in the wall thickness exceeds some specified limit. Thissituation is modelled by model 2. Note that without unit 1 failure, there is nodamage to unit 2 and hence it does not fail. If the container is preventivelymaintained at time T before failure and is like new, the System correspondsto an extended model.

REFERENCES

1. R. E. BARLOW and F. PROSCHAN, Mathematical Theory of Reliability, Wiley, NewYork, 1965.

2. D. N. P. MURTHY and D. G. NGUYEN, Study of two component system with failureinteraction, Naval Res. Logisi. Quart., 1985, 32, pp. 239-248.

3. D. N. P. MURTHY and R. T. CASEY, Optimal policy for a two component system withshock type failure interaction, Proc. of the 8th National Conference of AustralianOpérations Res. Soc, Melbourne, 1987, 5, pp. 161-172,

4. X NAKAGAWA, A summary of discrete replacement poEcies, Eumpean / . ofOperatÏonalRes*, 1984, 17, pp. 382-392.

5. T. NAKAGAWA and M. KOWADA, Analysis of a system with minimal repair andits application to replacement policy, European J. of Operational Res., 1983, 72,pp. 176-182,

vol 27, n° 4, 1993

Page 13: T.NAKAGAWA D.N.P.MURTHY … · 432 T. NAKAGAWA, D. N. P. MURTHY TABLE 1 Optimal numbers N* to minimize Cj (N) when Pi(t) = l(t2Y/jl\e-t2 and aj =0.1. 1 2 5 10 20 50 2 2 1 1 î 1 1

4 3 8 T. NAKAGAWA, D. N. P. MURTHY

6. K. W. PULLEN and M. U. THOMAS, Evaluation of opportunistic replacement policy fora two unit System, IEEE Trans. Reliability, 1986, R-35, pp. 320-324.

7. R. RADNER and D. W. JORGENSEN, Opportunistic replacement of a single part in theprésence of several monitored parts, Management Science, 1963, 10, pp. 70-84.

8. M. SHAKED and J. G. SHANTOCUMAR, Reliability and Maintainability, in StochasticModels, D. P. HEYMAN and M. J. SOBEL Eds., 1990, North Holland, Amsterdam.

9. S. YAMADA and S. OSAKI, Optimum replacement policies for a System composed ofcomponents, IEEE Trans. Reliability, 1981, R-30, pp. 278-283.

Recherche opérationnelle/Opérations Research