120
UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON LINÉAIRE DES COQUES CYLINDRIQUES ANISOTROPIQUES NON UNIFORMES SOUMISES À UN ÉCOULEMENT SUPERSONIQUE REDOUANE RAMZI DÉPARTEMENT DE GÉNIE MÉCANIQUE ÉCOLE POLYTECHNIQUE DE MONTRÉAL THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION DU DIPLÔME DE PHILOSOPHIAE DOCTOR (GÉNIE MÉCANIQUE) DÉCEMBRE 2012 © Redouane Ramzi, 2012.

UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

UNIVERSITÉ DE MONTRÉAL

COMPORTEMENT DYNAMIQUE NON LINÉAIRE DES COQUES CYLINDRIQUES

ANISOTROPIQUES NON UNIFORMES SOUMISES À UN

ÉCOULEMENT SUPERSONIQUE

REDOUANE RAMZI

DÉPARTEMENT DE GÉNIE MÉCANIQUE

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION

DU DIPLÔME DE PHILOSOPHIAE DOCTOR

(GÉNIE MÉCANIQUE)

DÉCEMBRE 2012

© Redouane Ramzi, 2012.

Page 2: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée :

COMPORTEMENT DYNAMIQUE NON LINÉAIRE DES COQUES CYLINDRIQUES

ANISOTROPIQUES NON UNIFORMES SOUMISES À UN

ÉCOULEMENT SUPERSONIQUE

présentée par : RAMZI Redouane

en vue de l’obtention du diplôme de : Philosophiae Doctor

a été dûment acceptée par le jury d’examen constitué de :

M. BALAZINSKI Marek, Ph.D., président

M. LAKIS Aouni A., Ph.D., membre et directeur de recherche

M. KAHAWITA René, Ph.D., membre

M. NEJAD ENSAN Manouchehr, Ph.D., P.Eng., membre

Page 3: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

iii

DÉDICACE

À mes très chers parents

À mes frères et sœurs

Page 4: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

iv

REMERCIEMENTS

Je voudrais exprimer mes profondes gratitudes et appréciations à mon directeur de recherche,

Dr. Aouni Lakis, de sa précieuse orientation, de ses encouragements, et conseils sur les attitudes

de recherche tout au long de mes études supérieures, et aussi pour l'occasion qu'il m'a

donnée pour la préparation de mon diplôme de doctorat au sein de l’École Polytechnique.

Je présente mes remerciements spéciaux aux membres du comité du jury de ma thèse,

Dr. Marek Balazinski,

Dr. Aouni A. Lakis,

Dr. René Kahawita,

Dr. Manouchehr Nejad Ensan,

Dr. Gérald J. Zagury,

pour le temps consacré à l’évaluation de mon travail de recherche et aussi à ses suggestions.

Je tiens à exprimer ma gratitude à nombreux membres de ma famille qui ont continué à me

soutenir et m'encourager. Je ne serai jamais en mesure de rembourser vos actes innombrables

de gentillesse et d'amour, ni de vos sacrifices personnels. Je suis particulièrement reconnaissant à

mon père et ma mère qui ont consacré plus de temps pour moi que toute autre personne.

Page 5: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

v

RÉSUMÉ

L’analyse des coques minces soumises à un écoulement d’air supersonique a été le sujet de

plusieurs recherches. La plupart de ces études traite de l’analyse linéaire des coques cylindriques

ouvertes avec ou sans écoulement supersonique. Peu de travaux ont été faits pour l’analyse non

linéaire (géométrique et/ou du fluide) des coques cylindriques fermées soumises à l’écoulement

supersonique.

On propose dans cette thèse le développement d’un modèle qui est capable d’analyser

linéairement et non linéairement des coques minces, élastiques, anisotropes, fermées et soumises

à des pressions internes et d’écoulement d’air supersonique externe. La dynamique non linéaire et

l’instabilité de flottement des coques cylindriques circulaires fermées sont aussi analysées. La

méthode développée est une combinaison de la méthode des éléments finis, de la théorie des

coques minces et de la théorie aérodynamique du fluide. Les coques fermées, sujet de l’étude,

sont principalement simplement supportées et les autres conditions frontières arbitraires sont

aussi traitées.

La première partie de ce travail traite l’analyse non linéaire structurale (grande amplitude de

vibration) des coques cylindriques vides et fermées. La coque est divisée en plusieurs éléments

finis de type coque cylindrique fermée et les fonctions de déplacements linéaires sont dérivées de

la théorie de coque cylindrique mince de Sanders. Les coefficients modaux sont dérivés de la

théorie non linéaire de Sandres-Koiter pour les coques cylindriques minces en termes des

fonctions de déplacements linéaires développées. Les matrices de rigidité non linéaires du second

et troisième ordre sont déterminées à partir de la méthode des éléments finis. Les équations non

linéaires sont résolues par la méthode numérique de Runge-Kutta d’ordre quatre. Les fréquences

linéaires et non linéaires sont alors déterminées en fonction de l’amplitude du mouvement de la

coque pour plusieurs cas. Les résultats obtenus sont en bonne concordance avec ceux des autres

auteurs.

Dans la seconde partie de cette thèse, on présente un modèle pour l’analyse de flottement des

coques cylindriques, soumises à un écoulement supersonique externe. L’équation linéaire de la

théorie aérodynamique de Piston nous a permet d’exprimer directement la pression exercée par le

fluide comme une fonction des déplacements en tout point de la structure. L’intégration

Page 6: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

vi

analytique de la pression nous donne des matrices exprimant l’interaction fluide-structure dans

l’écoulement supersonique. Plusieurs figures présentées dans cette partie illustrent la théorie et le

comportement dynamique des coques cylindriques, soumises à un fluide en écoulement

supersonique. Une bonne concordance des résultats a été obtenue avec d’autres théories et

expériences.

La troisième partie de cette recherche présente un modèle pour prédire l’influence des non-

linéarités associées aux grandes amplitudes de vibration de parois de la coque et à l’écoulement

supersonique du fluide des coques cylindriques minces, soumises à des pressions internes et de la

compression axiale. Avec les matrices de masse et de rigidité linéaires et non linéaires de la

coque vide ainsi qu’avec les matrices de rigidité et d’amortissements linéaires et non linéaires du

fluide en écoulement supersonique, nous développons dans cette partie des matrices linéaires et

non linéaires pour l’écoulement supersonique d’air. En dérivant une expression non linéaire pour

la pression aérodynamique en fonction des déplacements nodaux ainsi que de la combinaison des

effets non linéaires de l’écoulement supersonique du fluide et la grande amplitude de vibration de

la structure, l’équation non linéaire obtenue est résolue par la méthode numérique de Runge-

Kutta d’ordre quatre. Les fréquences linéaires et non linéaires sont alors déterminées en fonction

de l’amplitude de vibration de la coque et l’épaisseur des parois des coques pour plusieurs cas.

Cette méthode combine les avantages de la méthode des éléments finis qui traite des coques

complexes et la précision de la formulation basée sur des fonctions de déplacements dérivées de

la théorie des coques et aussi la théorie aérodynamique de Piston qui donne l’expression de la

pression aérodynamique à chaque point de la structure étudiée. On a donc ici un modèle puissant

pour prédire les caractéristiques de flottement linéaires et non linéaires des coques cylindriques

soumises à l’écoulement supersonique du fluide.

Page 7: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

vii

ABSTRACT

Analysis of thin shells subjected to supersonic airflow has been the subject of several researches.

Most of these studies treat the linear analysis of open cylindrical shells (curved plates) with or

without supersonic flow. Few works have been done for nonlinear analysis (geometric and/or

fluid) of closed cylindrical shells subjected to supersonic flow. We propose here in this thesis to

develop a model that is able to linear and nonlinear analysis of thin elastic anisotropic closed

shells, and subjected to internal pressure and external supersonic airflow. Nonlinear dynamics

and flutter instability of closed circular cylindrical shells are also analyzed. The model developed

is a combination of finite element method, thin shell theory and aerodynamic fluid theory. Closed

shells are mainly simply supported; other arbitrary boundary conditions are also treated. The first

part of this work studies the nonlinear structural analysis (large amplitude of vibration) of empty

closed cylindrical shells. The shell is divided into several closed cylindrical finite element and the

functions of motion are derived from linear theory of thin cylindrical shells of Sanders. The

modal coefficients are derived from the nonlinear theory of Sandres-Koiter for thin cylindrical

shells in terms of linear displacement functions developed. The nonlinear stiffness matrices of

second and third order are determined from the finite element method. The nonlinear equations

are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies

are then determined as a function of the movement amplitude of the shell for several cases. The

results obtained are in good agreement with those of other authors. In the second part of this

thesis, we present a model for the flutter analysis of cylindrical shells, subjected to an external

supersonic flow. The linear equation of aerodynamics Piston theory allows us to express directly

the pressure exerted by the fluid as a function of the displacements at any point of the structure.

The analytical integration of the pressure gives us matrices expressing the fluid-structure

interaction in supersonic flow. Several figures presented in this section illustrate the theory and

the dynamic behavior of cylindrical shells subjected to supersonic fluid flow. A good agreement

was obtained with other theories and experiments .The third part of this research presents a model

to predict the influence of nonlinearities associated with large amplitude of vibration of the shell

walls and the supersonic fluid flow of thin cylindrical shells taking into account the internal

pressure and axial compression. With linear and nonlinear mass and stiffness matrices of the

empty shell as well as the linear and nonlinear stiffness and damping fluid matrices, we develop

Page 8: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

viii

consequently the linear and nonlinear matrices for supersonic airflow. By deriving an expression

for the non-linear depending on the aerodynamic pressure nodal displacements, as well as the

combination of non-linear effects of the supersonic flow of the fluid and the large amplitude of

vibration of the structure, the non-linear equation obtained is resolved by the fourth order Runge-

Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

of the amplitude of vibration of and the thickness of the shells for several cases. This method

combines the advantages of the finite element method treating a complex shells and accuracy of

the formulation based on displacement functions derived from shell theory and also aerodynamic

Piston theory which gives an expression of aerodynamic pressure at each point of the structure

studied. So here we have a powerful model to predict the linear and nonlinear characteristics

during flutter phenomena of cylindrical shells subjected to supersonic fluid flow.

Page 9: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

ix

TABLE DES MATIÈRES

DÉDICACE ................................................................................................................................... III

REMERCIEMENTS ..................................................................................................................... IV

RÉSUMÉ ........................................................................................................................................ V

ABSTRACT .................................................................................................................................VII

TABLE DES MATIÈRES ............................................................................................................ IX

LISTE DES TABLEAUX .......................................................................................................... XIII

LISTE DES FIGURES ............................................................................................................... XIV

LISTE DES SIGLES ET ABRÉVIATIONS ............................................................................. XVI

INTRODUCTION ........................................................................................................................... 1

CHAPITRE 1: REVUE DE LITTÉRATURE ................................................................................ 3

1.1 Revue de littérature .......................................................................................................... 3

1.2 Plan de la thèse ................................................................................................................. 7

CHAPITRE 2: ARTICLE 1- EFFECT OF GEOMETRIC NON-LINEARITIES ON NON-

LINEAR VIBRATIONS OF CLOSED CYLINDRICAL SHELLS ............................................... 9

2.1 Abstract ............................................................................................................................ 9

2.2 Introduction ....................................................................................................................... 9

2.3 Linear Part ...................................................................................................................... 11

2.4 Non-linear Part ............................................................................................................... 15

2.5 Numerical resolution ...................................................................................................... 19

2.6 Discussion of Results ..................................................................................................... 21

2.7 Conclusion ...................................................................................................................... 26

2.8 Appendix ........................................................................................................................ 27

Page 10: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

x

2.9 References ...................................................................................................................... 29

CHAPITRE 3: ARTICLE 2- EFFECTS OF GEOMETRIC NONLINEAIRITIES ON

CYLINDRICAL SHELLS SUBJECTED TO A SUPERSONIC FLOW ..................................... 31

3.1 Abstract .......................................................................................................................... 31

3.2 Nomenclature ................................................................................................................. 31

3.3 Introduction .................................................................................................................... 33

3.4 Structural Model ............................................................................................................. 36

3.4.1 Linear Part .................................................................................................................... 36

3.4.2 Nonlinear Part .............................................................................................................. 39

3.5 Stress Matrix .................................................................................................................. 43

3.6 Aerodynamic Model ....................................................................................................... 44

3.7 Nonlinear Analysis ......................................................................................................... 46

3.8 Calculation and Discussion ............................................................................................ 48

3.8.1 Convergence of the Method ......................................................................................... 48

3.8.2 Onset of Flutter Predictions for Cylindrical Sheels in Supersonic Flow ..................... 49

3.8.3 Behavior of nonlinearity flutter for a pressurized cylindrical shell ............................. 50

3.8.4 Effect of Freestream Static Pressure in Post-Flutter .................................................... 51

3.8.5 Effect of internal stresses in the flutter stage of cylindrical shells subjected to

supersonic flow ...................................................................................................................... 52

3.8.6 Effect of length-radius ratios of cylindrical shells on the supersonic flutter ............... 53

3.8.7 Effect of Shell Boundary Conditions ........................................................................... 54

3.8.8 Effect of supersonic flow on the nonlinear behavior of cylindrical shells ................... 56

3.8.9 Effect of circumferential wave number ........................................................................ 56

3.9 Conclusion ...................................................................................................................... 57

3.10 Appendix ........................................................................................................................ 59

Page 11: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

xi

3.11 References ...................................................................................................................... 62

CHAPITRE 4 : ARTICLE 3 - EFFECT OF GEOMETRIC AND FLUID FLOW

NONLINEARITIES ON CYLINDRICAL SHELLS SUBJECTED TO A SUPERSONIC FLOW

4.1 Abstract .......................................................................................................................... 64

4.2 Nomenclature ................................................................................................................. 64

4.3 Introduction .................................................................................................................... 67

4.4 Structural model development ....................................................................................... 69

4.4.1 Masse and stiffness matrices for linear structural model ............................................. 69

4.4.2 Stiffness matrices for nonlinear structural model ........................................................ 72

4.5 Initial stress matrix ......................................................................................................... 77

4.6 Aerodynamic model development ................................................................................. 78

4.7 Nonlinear numerical analysis ........................................................................................ 80

4.8 Calculation and discussion ............................................................................................. 83

4.8.1 Convergence of the method for differents modes ........................................................ 83

4.8.2 Onset of flutter predictions for cylindrical shells subjected to a supersonic flow ....... 84

4.8.3 Validation of model ...................................................................................................... 85

4.8.4 Effect of circumferential wave mode ........................................................................... 86

4.8.5 Effect of internal pressure ............................................................................................ 87

4.8.6 Effect of supersonic flow regimes in flutter of circular cylindrical shells ................... 88

4.8.7 Nonlinear flutter behavior for different longitudinal modes ........................................ 89

4.9 Conclusion ...................................................................................................................... 90

4.10 Appendix ........................................................................................................................ 92

4.11 References ...................................................................................................................... 96

Page 12: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

xii

CHAPITRE 5: DISCUSSION GÉNERALE ................................................................................ 98

CONCLUSIONS ET RECOMMANDATIONS ........................................................................... 99

BIBLIOGRAPHIE ................................................................................................................. ….101

Page 13: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

xiii

LISTE DES TABLEAUX

Tableau 1.1: Catégories d’analyse de flottement des coques ......................................................... 3

Tableau 3.1: Critical freestream static pressure for different shells boundary conditions,

px=0.0 psi........................................................................................................................................55

Page 14: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

xiv

LISTE DES FIGURES

Figure 2.1: Cylindrical finite element geometry ........................................................................... 11

Figure 2.2: Finite element discretization and nodal displacement ................................................ 13

Figure 2.3: Influence of large amplitude on nonlinear frequency ................................................. 21

Figure 2.4: Influence of large amplitude on nonlinear frequency ratio for n=10 and m=1 .......... 22

Figure 2.5: Influence of longitudinal modes on nonlinear vibration at large amplitude ............... 23

Figure 2.6: Influence of various boundary conditions on nonlinear behavior of cylindrical

shells ........................................................................................................................... 24

Figure 2.7: A comparison with the results of Evensen and Ganapathi (ξ = 0.5, ε = 0.01 and 1.0);

, Present study; , Evensen [8]; , Ganapathi [15]. ............................. 24

Figure 2.8: A comparison with the results of Evensen (ξ = 2.0, ε = 0.01 and 1.0)

; Present analysis; , Evensen [8] ................................................................. 25

Figure 2.9: The amplitude-frequency relation. , Present analysis

; Ganapathi [15] ................................................................................................. 26

Figure 3.1: Cylindrical shell and finite element geometries ......................................................... 35

Figure 3.2: Finite element discretization and nodal displacement .............................................. 37

Figure 3.3: Natural frequency vs Number of elements ................................................................. 49

Figure 3.4: a) Real part and b) imaginary part of eigenvalues of the system vs freestream

static pressure p∞, n = 23, pm = 0.5 psi, px = 0.0 psi. ............................................... 50

Figure 3.5: Flutter frequency vs mean amplitude of first mode .................................................... 51

Figure 3.6: Amplitude of flutter vs frequency flutter for different regions of flutter ................... 52

Figure 3.7: Effect of internal pressure during flutter .................................................................... 53

Figure 3.8: Flutter amplitude vs frequency flutter for different L/R ............................................. 54

Figure 3.9: Flutter amplitude vs flutter frequency for different shell boundary conditions .......... 55

Page 15: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

xv

Figure 3.10: Effect of supersonic flow in nonlinear behavior of cylindrical shells

M = 3, p∞ = 0.5 psi, pm = 0.0 psi, n = 23 .................................................................... 56

Figure 3.11: Flutter amplitude versus frequency flutter of cylindrical shells at different

circumferential wave numbers .................................................................................. 57

Figure 4.1: Finite element discretization and nodal displacement ................................................ 70

Figure 4.2: Naturel frequency vs Number of elements ................................................................. 84

Figure 4.3: a) Real part and b) Imaginary part of eigenvalues of the system vs freestream static

pressure p∞, n = 23, pm = 0.5 psi, px = 0.0 psi. ........................................................... 85

Figure 4.4: Flutter frequency vs amplitude, pec = 0.66 psi. ........................................................... 86

Figure 4.5: Amplitude flutter vs frequency flutter at n = 23 and n = 24 ....................................... 87

Figure 4.6: Effect of internal stress during the flutter, n = 25, pec =0.75 psi ................................. 88

Figure 4.7: Flutter amplitude vs frequency flutter for different L/R ............................................. 89

Figure 4.8: Flutter amplitude vs flutter frequency for different longitudinal modes .................... 90

Page 16: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

xvi

LISTE DES SIGLES ET ABRÉVIATIONS

HOT Highly optimized tolerance

NASP National Aerospace Plante

HSCT High-Speed Civil Transport

RLV Reusable Launch Vehicle

JSF Joint Strike Fighter

QSP Quiet Supersonic Plateform

DARPA Defense Advanced Research Projects Agency

LCO Oscillation de cycle limite

MEF Méthode d’élément finis

2-D Bidimensionnel

3-D Tridimensionnel

DOF Degré de liberté

QUAD Quadrique

Page 17: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

1

INTRODUCTION

La première observation de flottement peut être retracée au milieu des années 1940 où les

roquettes allemandes V-2 ont rencontré des problèmes de flottement qui ont abouti à secouer les

parois en métal lorsque les roquettes ont volé à une vitesse supersonique. Les défaillances

structurelles dues au flottement ont été largement prises en compte dans les avions, les navettes

spatiales, les missiles, les roquettes et les ponts à cause de la vitesse élevée d’écoulement d’air.

Le phénomène de flottement d’une coque est généralement auto-excité par des oscillations auto-

entretenues de la partie externe d'un véhicule volant lorsqu'il est exposé à un écoulement d’air le

long de sa surface. L’origine de ce genre d'instabilité structurelle est l'interaction entre

l’écoulement de fluide et le solide. L’effet de la pression aérodynamique appliquée sur la

structure conduit à la coalescence de la fréquence entre certains modes de vibration de la coque

qui représentent un symbole spécifique de flottement, ce qui résulte que la résonance de ces

modes en coalescence amplifie l'amplitude de vibration de la coque.

L’étude de flottement de la coque tombe dans le domaine de l'aéroélasticité (Bisplinghoff et al.)

dans le sens qu’elle est un résultat des interactions entre les forces d'inerties, aérodynamiques et

élastiques. En plus du flottement de la coque, il existe un autre comportement en flottement

appelé le flottement d’aile, qui s'adresse au battement des ailes en raison de la pression

aérodynamique sur les deux côtés de la structure. Le flottement de la coque se produit dans des

structures comme les panneaux de la structure d'aéronefs et des panneaux spatiaux minces qui

subissent de la pression d’air en écoulement. Les théories fondamentales et la compréhension

physique de flottement des coques peuvent être trouvées dans de nombreux livres tels que

Dowell, Librescu et quelques articles scientifiques dans la littérature.

La prévention ou la prédiction du flottement a longtemps été reconnue comme un critère essentiel

dans la conception des véhicules de vol à haute vitesse, comme High-Speed Civil Transport

(HSCT), National Aerospace Plante (NASP), X-33 Advanced Technology Demonstrator,

Reusable Launch Vehicle (RLV), Joint Strike Fighter (JSF), X-38 Spacecraft, le program Hyper-

X de X-43 et récemment le programme Quiet Supersonic Plateform (QSP) parrainé par la

DARPA. Les recherches approfondies sur des analyses et des expériences de flottement ont

fourni des séries d'outils pour les concepteurs. Aujourd'hui, grâce aux progrès impressionnants du

matériel informatique et des logiciels, les concepteurs se dirigent de plus en plus vers les outils

Page 18: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

2

analytiques-numériques et, par conséquent, la forte demande des méthodes de calcul numérique

plus puissant, précis et efficace pour l'analyse de flottement a lancé des activités de recherche

résurgentes.

Devant le passage de transsonique à supersonique et de supersonique à hypersonique,

l’amélioration de la vitesse de vol devient un but ultime pour la conception des structures

aérospatiales. On note aussi que pour l'analyse de flottement de la coque d'un véhicule volant à

une vitesse hypersonique, la plupart des expériences et expertises accumulées par des générations

d’aéroélasticiens sur les analyses de flottement supersonique des coques cylindriques comme

l’étude approfondie présentée dans cette thèse peuvent être exploitées. Les facteurs majeurs tels

que les choix de la théorie de l'aérodynamique, linéaire/non linéaire du modèle structural

dynamique, l'approche analytique/numérique à appliquer, les considérations des effets de

paramètres du système et l’analyse des vibrations aéroélastiques hypersoniques restent les mêmes

que pour l'analyse de flottement supersonique. L’analyse linéaire du comportement dynamique

des coques cylindriques vides ou soumises à l’écoulement supersonique reste limité et ne

correspond pas aux résultats expérimentaux ce qui nous oriente vers l’étude non linéaire afin

d’expliquer et de prédire des phénomènes aéroélastiques.

Le but de cette présente étude est de développer un logiciel basé sur une formulation modale

d’éléments finis, capable de faire l’analyse linéaire et non linéaire du comportement de flottement

des coques minces sous un écoulement d’air supersonique. Une telle formulation modale est

destinée à être un outil de conception pratique pour les coques cylindriques de véhicules

supersoniques afin d’obtenir le coût (temps de calcul) réduit efficace sans perdre de précision et

assez simple pour l’application sans recours à des manipulations mathématiques sophistiquées et

aussi de prendre en compte autant que possible les considérations de la conception réelle, par

exemple l’application de pression interne et de chargement axial qui a été incorporée dans

l’algorithme. Il est également prévu que ce logiciel aidera à l’analyse de fatigue et de la

conception du contrôleur de la suppression de flottement durant le développement de véhicules

supersoniques. La revue de littérature qui suit sert un bref résumé de la recherche pertinente et

expose également la nécessité du travail effectué dans le reste de cette thèse de recherche.

Page 19: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

3

CHAPITRE 1 : REVUE DE LITTÉRATURE ET PLAN DE LA THÈSE

1.1 Revue de littérature

Les études théoriques et expérimentales de flottement des coques ont commencé en 1950. Les

recherches et les résultats menés dans ce stade précoce ont été résumés par Fung (1960) and

Johns (1965). Après, les auteurs ont groupé une littérature théorique sur le flottement des coques

dans des catégories basiques en se basant sur les théories structurales et aérodynamiques utilisées

dans l’article de Dowell (1970), comme montré dans le Tableau 1.1. Le tableau est pris à partir de

l’article récent de Mei et al (1999). Les types d’analyse cités dans le tableau sont aussi attribués

par Gray et Mei (1993), en considérant la théorie d’analyse de flottement de la coque proposée

par McIntosh et al (1977). Une étude bibliographique sur le sujet spécifique d’analyse de

flottement de la coque a été donnée par Reed (1997) avec le support du programme NASP. Il y a

aussi des articles de revue concernant certains types d’analyse de flottement listés dans le tableau

1.1, les articles de revue concernant l’application de la méthode des éléments finis pour l’analyse

de flottement du panneau par Bismarck-Nasr (1999) et la revue de méthodes analytiques variées

incluant l’approche d’éléments finis pour les analyses non linéaires de flottement supersonique

du panneau donnée par Zhou (1999).

Tableau 1.1 : Catégories d’analyse de flottement des coques

Théorie structurale Théorie aérodynamique Nombre de mach

Linéaire Piston linéaire √2<M<5

Linéaire Écoulement potentiel

linéarisé 1<M<5

Non linéaire Piston linéaire √2<M<5

Non linéaire Écoulement potentiel

linéarisé 1<M<5

Non linéaire Piston non linéaire M>5

Non linéaire Équation d’Euler ou

Navier –Stokes

Transsonique, Supersonique

and Hypersonique

Page 20: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

4

à cause de la simplicité mathématique de la théorie structurale linéaire, la majorité des analyses

de flottement préliminaire appartient à l’analyse linéaire de flottement de la coque. Parmi ces

travaux, on trouve : Hedgepeth (1963), Dugundji (1966) and Cunningham (1989). Comme

indiqué clairement dans l’article de Dowell (1967), l’analyse de flottement du panneau utilisant la

théorie linéaire est incapable de prendre en compte les non-linéarités structurales. La théorie

structurale linéaire indique qu’il existe une pression dynamique critique à partir de laquelle le

mouvement de la coque devient instable et se développe exponentiellement avec le temps. En

réalité, quand l’amplitude de vibration de la coque devient grande, le panneau s’étend aussi. Cette

tension dans le plan introduit des forces significatives de traction de membrane (Woinowsky-

Krieger (1959)) de sorte que la flexion de la coque est retenue dans une plage limitée, qui est

appelée oscillation de cycle limité (LCO). L’analyse linéaire de flottement de coques est utilisée

seulement pour prédire les limites de flottement. D’autres chercheurs comme Eisley (1956),

Houboult (1958), Fung (1958), and Bolotin (1963) ont utilisé la théorie structurale non linéaire

pour la détermination des limites de flottement. Plusieurs analyses non linéaires de flottement du

panneau peuvent être trouvées dans une vaste quantité de littérature, mais celles de flottement de

coques cylindriques fermées sont rares. La théorie de large déflexion de Von Karman est

largement utilisée pour tenir compte de la non-linéarité géométrique, qui a été appliquée avec

succès au problème de flottement non linéaire du panneau. En dépit de la cohérence comparative

sur laquelle la théorie structurale non linéaire a été utilisée, différentes théories aérodynamiques

linéaires ont été employées, la plus populaire adoptée est la théorie de Piston de premier ordre

quasi-stationnaire, qui est appliquée pour la vitesse d’écoulement de nombre de Mach √2. Dowell

(1967) a appliqué la théorie aérodynamique d’écoulement potentielle linéarisée pour étudier le

comportement de LCO des plaques dans un écoulement d’air avec le nombre de Mach proche de

1. La théorie aérodynamique quasi-statique d’Ackret, connue comme la théorie statique de la

bande (Cunningham), a été appliquée à l’analyse de flottement supersonique non linéaire par

Fralich (1965). Généralement, l’analyse linéaire de flottement est utilisée pour la prédiction de

limites de stabilité à travers l’analyse propre tandis que l’analyse non linéaire de flottement a

besoin d’un traitement spécial. La plupart des approches d’analyse incluent l’intégration

numérique directe, la méthode de balance harmonique et la méthode de perturbation. La première

application de l’intégration numérique directe est due à Dowell (1967) dans l’étude des

oscillations non linéaires pour des plaques simplement supportées dans le plan en flottement.

Page 21: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

5

Ventres (1970) a recherché le comportement non linéaire de flottement des plaques encastrées par

l’intégration numérique directe. Les procédures de cette approche incluent la première

application de la méthode de Galerkin dans le domaine spatial pour les équations différentielles

partielles non linéaires du mouvement pour donner un ensemble d’équations différentielles

ordinaires couplées dépendant du temps, donc l’intégration numérique temporelle est effectuée

pour simuler la réponse de flottement. La méthode de Raleigh-Ritz, qui exige que les modes

supposés satisfont seulement les conditions limites géométriques, est une autre approche pour

l’expansion spatiale approximée pour la déflexion de la plaque. La méthode de balance

harmonique a été aussi appliquée avec succès pour l’analyse non linéaire de flottement par

certains chercheurs (1965-1987).

Cette méthode, comparée à l’intégration numérique directe, nécessite moins de temps de calcul

mais elle est extrêmement fastidieuse à mettre en œuvre. La méthode de perturbation a été

introduite pour l’analyse non linéaire de flottement par Morino (1976); un bon compromis est

trouvé entre les méthodes de perturbation et celles de la méthode de balance par Kuo (1972). En

général, pour les deux méthodes de perturbation et de balance harmonique, la déflexion du

panneau est représentée en termes de deux à six modes normaux.

Certaines limitations intrinsèques présentent des obstacles à l’application des approches

analytiques mentionnées précédemment à des analyses plus vastes. Par exemple, la méthode de

Galerkin ou la méthode de Rayleigh-Ritz exige des hypothèses raisonnables par rapport aux

fonctions de la forme de mode normal, qui doivent satisfaire les conditions limites du panneau.

Généralement, les panneaux avec des conditions de support simple, comme les limites

simplement supportées ou encastrées, sont faciles à traiter. Pour les conditions de support

complexe, même pour la combinaison des conditions de support simple, les fonctions de

déplacement situables peuvent ne pas existées ou sont trop compliquées à manipuler. Les

propriétés matérielles anisotropiques des matériaux composites ont une large application

d’ingénierie, donc il est difficile pour analyser le flottement non linéaire utilisant les méthodes

analytiques. Compte tenu de ces problèmes, les chercheurs ont eu recours à des méthodes

numériques comme la méthode des éléments finis (MEF) dont son utilisation pour l’analyse

linéaire de flottement du panneau a été initialisée par Olson (1967), suivie par plusieurs

chercheurs (1970-1977). L’application de la MEF pour le flottement non linéaire du panneau a

commencé en 1977 par Mei dans l’étude de flottement de panneau 2D avec la négligence de

Page 22: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

6

l’inertie de membrane. La MEF pour l’analyse non linéaire de flottement peut être en plus

classifiée en deux catégories :

La formulation d’éléments finis dans le domaine fréquentiel et la formulation dans le domaine

temporel. La formulation du domaine fréquentiel est bien développée et largement appliquée pour

résoudre les limites de flottement (analyse propre) et l’étude des oscillations harmoniques LCO.

Mei et Rogers (1976) ont incorporé le module de l’analyse de flottement supersonique pour le

panneau 2D dans le code de Nastran. Rao and Rao (1980) ont recherché le flottement

supersonique des panneaux 2D restreints dans les bornes. Mei et Weidman (1977) ont été les

premiers qui ont étudié le LCO du panneau 3D, les effets d’amortissement, les rapports d’aspect,

les forces initiales dans le plan et les conditions limites ont été examinées aussi. Le flottement des

panneaux 3D a été étudié par Mei et Wang (1982) et Hang and Yang (1983) ont utilisé les

éléments finis de plaque triangulaire pour étudier des harmoniques LCO. En comparaison, la

formulation du domaine du temps qui implique l’intégration numérique est moins documentée

dans l’analyse non linéaire de flottement des panneaux. Les principaux obstacles pour

l’implantation de la formulation dans le domaine temporel sont (Green and Killey (1972) et

Robinson (1990)) : i) le grand nombre de degrés de liberté (DOF) de système, ii) les matrices de

rigidité non linéaires pour chaque élément doit être à chaque pas de temps et iii) le pas de temps

de l’intégration est extrêmement petit.

D’autres groupes de chercheurs ont focalisé leurs études sur le flottement non linéaire du panneau

considérant la non-linéarité aérodynamique donnée par Chandiramani et Librescu (1996). Le

flottement dans l’écoulement supersonique des panneaux en composites cisaillés et déformés a

été recherché. La théorie de déformation de cisaillement et les charges aérodynamiques basées

sur la théorie de Piston de troisième ordre ont été utilisées. Les équations de flottement du

panneau ont été dérivées en utilisant la méthode de Galerkin. La méthode de continuation de la

longueur de l’arc a été utilisée pour déterminer l’état d’équilibre statique et ses stabilités

dynamiques ont été ensuite examinées. Les effets des petites imperfections géométriques du

panneau, la direction de l’écoulement d’air et la compression uniforme dans le plan sur les limites

de flottement ont été recherchés. Il a été conclu que la théorie de déformation de cisaillement et la

théorie aérodynamique non linéaire sont nécessaires pour la détermination des limites de

flottement des panneaux en composite modérément épaisses. Le mouvement de post-flottement

de ces panneaux en composite a aussi été étudié par l’application d’une technique de prédicateur-

Page 23: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

7

correcteur de Newton-Raphson pour la solution périodique et l’intégration numérique pour les

solutions quasi-périodiques de flottement.

1.2 Plan de la thèse

La thèse inclut cinq chapitres qui répondent à la structuration d’une thèse présentée sous forme

d’articles, où chaque article contient résumé, introduction, revue de la littérature, méthode suivie,

résultats, discussion et liste des références. Après ces articles, on donne une discussion générale

et une conclusion en illustrant la réussite des objectifs visés dans ce projet de thèse. Les articles

suivants ont été soumis pour publication au cours de l’étude doctorale.

R. Ramzi, A. Lakis. Effect of Geometric Non-linearities on Non-linear Vibrations of Closed

Cylindrical Shells, accepté pour publication dans: International Journal of Structural Stability and

Dynamics.

R. Ramzi, A. Lakis. Effects of Geometric Nonlinearities on Cylindrical Shells Subjected to a

Supersonic Flow, accepté pour publication dans: Computers & Fluids.

R. Ramzi, A. Lakis. Effect of Geometric and Fluid Flow Nonlinearities on Cylindrical Shells

Subjected to a Supersonic Flow, accepté pour publication dans: International Journal of

Numerical Methods and Applications.

Le premier chapitre présente une revue de littérature pertinente dans le sujet et un plan de thèse

proposé dans ce mémoire.

Dans le chapitre 2, qui correspond au 1er

article, une formulation d’éléments finis détaillée est

donnée, ainsi que l’équation du mouvement dérivé basée sur le principe de travail virtuel. La

théorie des coques minces de Sanders-Koiter est utilisée pour aborder la non-linéarité structurale

et la méthode des éléments finis pour discrétiser la coque cylindrique. Une transformation modale

est effectuée sur l’équation de mouvement du système assemblé. Les procédures d’évaluation des

matrices de rigidité non linéaires sont présentées aussi.

Dans le chapitre 3, qui correspond au 2e article, les équations gouvernant le mouvement en

coordonnées modales sont transformées en une représentation d’état d’espace afin de faciliter la

mise en œuvre de l’intégration numérique directe. La méthode d’intégration de Runge-Kutta

d’ordre quatre est aussi appliquée pour trouver des résultats de l’analyse des coques cylindriques

soumises à l’écoulement supersonique.

Page 24: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

8

Le chapitre 4, qui correspond au 3e article, présente des résultats numériques et des discussions

d’une analyse non linéaire géométrique des coques cylindriques et aussi de l’écoulement du

fluide. Les amplitudes de vibration sont comparées aux résultats existants des méthodes

analytiques et numériques à des fins de vérification.

Une discussion générale vient de montrer la validation de la méthodologie suivie et les résultats

obtenus par la comparaison avec différentes études des recherches publiées par d’autres

chercheurs pour chaque article considéré dans cette thèse et ceci est le sujet du 5e chapitre.

À la fin de cette thèse, une conclusion générale et des recommandations ont été données pour

récapituler tous les sujets abordés dans cette thèse et le travail futur prévu.

Page 25: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

9

CHAPITRE 2: ARTICLE 1 - EFFECT OF GEOMETRIC NON-

LINEARITIES ON NON-LINEAR VIBRATIONS OF CLOSED

CYLINDRICAL SHELLS

Submitted, 22 march 2012 to the International Journal of Structural Stability and Dynamics

Redouane Ramzi and Aouni Lakis

2.1 Abstract

Geometrically non-linear free vibrations of closed isotropic cylindrical shells are investigated

through an analytical-numerical model. The method developed is a combination of Sanders-

Koiter nonlinear shell theory and the finite element method. The cylindrical shell is subdivided

into cylindrical finite elements and the displacement functions are derived from exact solutions of

Sander’s equations for thin cylindrical shells. Expressions for the mass, linear and non-linear

stiffness matrices are determined by exact analytical integration. Various boundary conditions of

shell and in-plane effects are considered. Non-linear responses are analyzed using the Runge-

Kutta numerical method. The non-linear frequency ratio is determined with respect to the

amplitude thickness ratio of the motion for different study cases. Detailed numerical results are

presented for various parameters for a closed isotropic shell. The results indicate either hardening

or softening types of non-linear behaviors, depending on the structure data.

The results of this approach show good agreement with pertinent results published by many

authors considering several cases of shells. This research clarifies the current disagreement about

types of cylindrical shells with geometric non-linearities.

2.2 Introduction

In recent development work for the aerospace, spatial, oil and nuclear industries, the study of

thin-walled cylindrical shells is of great importance in structural design to obtain the desired

performance, rigidity, lightness, strength and stability characteristics of a structure in different

conditions. This challenge has led to several published studies based on thin shell theories such

us Sanders-Koiter, Donnell’s shallow-shell, Flũgge-Lur’e-Byrne and Novozhilov theories. The

resonant frequency in non-linear vibration is a function of its amplitude through the frequency-

amplitude relationship which indicates whether the non-linearity is hardening or softening. The

Page 26: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

10

first study on non-linear vibrations of circular cylindrical shells was undertaken by Reissner[1] in

1955. Donnell’s shallow-shell theory for a single half-wave of the vibration mode was applied to

the case of simply supported shells, and the results showed that the non-linearity could be either

of the hardening or softening type. Cummings [2] has remarked that the governing equations

used by Reissner depend on the area of integration. Chu [3] made a similar analysis but for a

closed cylindrical shell, and found that the non-linearity characteristic was of the hardening type.

Evensen [4] experimentally tested some shells that were subjected to large vibration amplitudes

and observed that the non-linearity was of the softening type. After this he re-examined Chu [3]

and Nowinski’s [5] analysis. Olson [6] also observed a slight softening non-linearity during

experimental studies of a thin seamless shell made of copper. Evensen and Fulton [7] studied the

non-linear dynamic response of thin circular cylindrical shells, and they concluded that the non-

linearity may be either hardening or softening depending upon the ratio of the number of axial

waves to the number of circumferential waves. Evensen [8] analyzed the free and forced non-

linear vibrations of thin circular rings using two vibration modes (driven and companion modes),

and applying Galerkin’s procedure for resolution of the equations of motion. Evenseen [9] also

studied infinitely long cylindrical shells using the harmonic balance method. The non-linear free

vibration of circular cylindrical shells was examined by Alturi [10] using Donnell’s equations

given by Chu [3], and Dowell and Ventres [11]. The Galerkin technique was used to reduce the

problem to a system of coupled non-linear ordinary differential equations for the modal

amplitudes. The result was a non-linear hardening type. Chen and Babcock [12] analyzed the

large vibration amplitudes of a simply-supported thin-walled cylindrical shell using the

perturbation method to study the influence of the companion mode on the non-linear forced

response of a circular cylindrical shell. The results indicate that the non-linearity may be either

softening or hardening depending on the mode. To account for geometric non-linearity, small

arbitrary initial imperfections, and using the strain-displacement relations of the Sanders-Koiter

non-linear theory, Radwan and Genin [13-14] derived a set of non-linear modal equations for thin

shells of arbitrary geometry using the modal expansion method. The results obtained indicated a

hardening type non-linearity. Using a QUAD-4 shear flexible developed shell element model

(FEM), the free non-linear vibrations of thin circular cylindrical shells have been studied by

Ganapathi and Vardan [15]. The non-linear governing equations were solved using a Welson

numerical integration scheme; modified Newton-Raphson iterations have been employed.

Page 27: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

11

The approach presented in this article involves two steps:

Using linear strain-displacement and stress-strain relationships which are inserted into Sander’s

equations of equilibrium, we determine the displacement functions by solving the linear equation

system. We then determine the mass and linear stiffness matrices for a finite element and

assemble the matrices for the complete shell.

Using strain-displacement relationships from the Sanders-Koiter non-linear theory, the modal

coefficients are obtained from the displacement functions. The second and third order non-linear

stiffness matrices for a finite element are then calculated by precise analytical integration with

respect to modal coefficients.

The finite element proposed was a closed cylindrical segment (Figure 1) with four degrees of

freedom at each node: axial, radial, circumferential, and rotational.

Figure 2.1: Cylindrical finite element geometry

This approach is more accurate than usual finite element methods. Other advantages offered by

this method include:

Arbitrary boundary conditions can be used - High and low frequencies may be obtained with high

accuracy - Precise results are obtained in cases with low and high circumferential wave numbers -

Valid for a large amplitude of vibration that can reach 5 times the wall thickness of the closed

cylindrical shell - More accurate than the usual finite element methods - Computation time is

very short -Structured and simple method.

2.3 Linear Part

The equations of motion of an anisotropic cylindrical shell in terms of U, V, and W (axial,

tangential and radial displacements) (Figure 2) are written as follows:

0),,,( ijJ PVWUL (1)

W

U

V

Page 28: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

12

Where ( 1,2,3)J JL

are three linear partial differential equations (given in Appendix) and ijp are

elements of the elasticity matrix for anisotropic shells which is given by:

11 12 14 15

21 22 24 25

33 36

41 42 44 45

51 52 54 55

63 66

0 0

0 0

0 0 0 0[ ]

0 0

0 0

0 0 0 0

p p p p

p p p p

p pP

p p p p

p p p p

p p

For the isotropic case,

0 0 0 0

0 0 0 0

(1 )0 0 0 0 0

2[ ]

0 0 0 0

0 0 0 0

(1 )0 0 0 0 0

2

D D

D D

D

PK K

K K

K

where,

3

212(1 )

EhK

Bending stiffness,

21

EhD

Membrane stiffness

The displacement functions associated with the circumferential wave number are assumed in the

normal manner, as:

( , ) cos

( , ) cos

( , ) sin

x

R

x

R

x

R

U x Ae n

W x Be n

V x Ce n

(2)

(3)

(4)

Page 29: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

13

Figure 2.2: Finite element discretization and nodal displacement

where n is the circumferential mode,

Note that this approach treats closed cylindrical shells based on the circumferential wave number,

not on the longitudinal wave number.

Substituting (4) into the equations of motion (1), a system of three homogeneous equations, linear

functions of constants A, B, C, are obtained. For the solution to be non-trivial, the determinant of

this system must be equal to zero. This brings us to the following characteristic equation:

8 6 4 2

8 6 4 2 0Det H f f f f f

The values of coefficients if in this eighth-degree polynomial are given in Appendix.

Each root of this equation yields a solution to the linear equations of motion (1). The complete

solution is obtained by adding the eight solutions independently with constants Ai, Bi and Ci

(i = 1, 2,…., 8). These constants are not independent. We can therefore express Ai and Bi as a

function of Ci, as follows:

i i i

i i i

A C

B C

The values of i and i can be obtained from system (1) by introducing relation (6). To

determine eight iC constants, it is necessary to formulate eight boundary conditions for the finite

elements. The axial, tangential and radial displacements will be specified for each node. The

following relation defines the element displacement vector at the boundaries:

(5)

(6)

W

U

W V

un

dwn/dx wn

xj=l

xi=0

Page 30: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

14

Tjjjiiij

iwvuwvu

i

j

A C

where the elements of matrix [A] are given in Appendix.

Multiplying Eq. (8) by [A]-1

and substituting the result into Eq. (4), we obtain:

j

iN

,xW

,xV

,xU

where [N] represents the shape function matrix given in this form:

1N T R A

and [T], [R], [A] are described in Appendix.

The constitutive relation between the stress and deformation vector of a cylindrical shell is given

as:

j

iBP

]][[

The mass and stiffness matrices for each element are derived using the classic finite element

procedure and can then be expressed as:

dA]B][P[]B[]k[

dA]N[]N[h]m[

TL

T

Where is the density of the shell, h its thickness and dA Rdxd . The matrices [m] and [k] are

obtained analytically by carrying out the necessary matrix operations over x and θ in the

equation. The global matrices sM and sK may be obtained, respectively, by assembling the

mass and stiffness matrices for each individual finite element.

(11)

(12)

(10)

(7)

(8)

(9)

Page 31: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

15

2.4 Non-linear part

The coefficients of the modal equations are obtained using the Lagrange method in the same way

developed by Radwan and Genin [13], paying attention to geometric non-linearities. Following

this, the second and third non-linear stiffness matrices corresponding to geometric non-linearities

are computed and superimposed on the linear system.

Shell displacements (u,v,w) are expressed as sums of generalized product coordinates iq t and

spatial functions U, V, W (see Eq.(4)).

,

,

,

i i

i

i i

i

i i

i

u q t U x

v q t V x

w q t W x

The deformation vector is written as a function of the generalized coordinates by separating the

linear part from the non-linear part.

, ,2 , , ,2T

L NL xx x xx x

Where subscripts ``L`` and ``NL`` mean ``linear`` and ``non-linear``, respectively, and L and

NL are defined in Appendix.

The Lagrange’s equations of motion in generalized coordinates iq t are found using Hamilton’s

principle and Eq. (13):

iiii

Qq

V

q

T

q

T

dt

d

where T is the total kinetic energy, V is the total elastic strain energy of deformation and the iQ ’s

are the generalized forces. In this case study; 0iQ (free vibration).

Using the vector deformation given by (14), the developed formulation for total kinetic and strain

energy and inserting these into the Lagrange equation (15), the following non-linear modal

equations are obtained after a long development of equations:

(13)

(14)

(15)

Page 32: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

16

( ) ( 2) ( 3) 0

1,2,....

L NL NL

pr r pr r prs r s prsq r s q

r r r s r s q

m k k k

p

Where prm , L

prk are terms of the mass and linear stiffness matrices given by Eq. (12). The terms

( 2)NL

prsk and ( 3)NL

prsqk represent the second and third-order non-linear stiffness and are given by the

following integrals for the case of an isotropic closed cylindrical shell:

dACp)ED(pBpApK prsprsprsprsprs)NL(

prs 331222112

and

( 3)

11 22 12 33( )NL

prsq prsq prsq prsq prsq prsqK p A p B p D E p C dA

Where dA Rdxd , pij are the terms of the elasticity matrix [P], and the terms

Aprs,Bprs,Cprs,Dprs,Eprs and Aprsq,Bprsq,Cprsq,Dprsq,Eprsq represent the coefficients of the modal

equations. These coefficients are given by the following equations:

Aprs=ap Ars+ar Asp+as Apr Aprsq=2Apq Ars

Bprs=bp Brs+br Asp+bs Bpr Bprsq=2Bpq Brs

Cprs=cp Crs+cr Csp+cs Cpr Cprsq=2Cpq Crs

Dprs=ar Bsp+as Bpr+bp Ars Dprsq=2Apq Brs

Eprs=br Asp+bs Apr+as Brs Eprsq=2Bpq Ars

with;

ap = Up,x , bp= 1/R ( Vp,θ + Wp ), cp= 1/2 ( Up,θ / R + Vp,x )

Apq =1/8 R2 ( R Vp,x – Up,θ ) . ( R Vq,x – Uq,θ ) + 1/2 Wp,xWq,x

Bpq = 1/8 R2 ( R Vp,x – Up,θ ) . ( R Vq,x –Uq,θ ) + 1/2 R2 ( Wp,θ - Vp ) . ( Wq,θ - Vq )

Cpq = 1/4 R ( Wp,x Wq,θ – Wq,x Wp,θ ) – 1/4 R ( Vp Wq,x + Vq Wp,x )

where U, V and W are spatial functions determined by Eq. (4).

In Eqs. (16 - 20), the subscripts ‘p,q’, ’p,r,s’ and ‘p,r,s,q’ represent the coupling between two,

three and four modes, respectively.

(16)

(17)

(18)

(19)

(20)

Page 33: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

17

Let us illustrate the development of the expression for the (p,q) term of matrices Apq and Apqrs.

The expression Apq is given by:

/p q x R

pq pqA a e

and Apqrs is :

8 8( ) /

1 1

p r s q x R

prsq rs pq rs

r s

A a a e

rs is the term (r,s) of matrix [E], where [E] represents a matrix of constants defined by

1T

E A A , and

1 22 2

2

1 1sin cos

2 4pq pq pqa a n a n

R

with

1

pq p p p q q qa n n

2

pq p qa

Similarly, the matrices [Bpq]… [Eprsq] can be written as a function of α, β, λ, x and θ. The (p, q)

terms of these matrices are described in Appendix. For details of the basis of the presented

method, consult Ref. [13].

After integration, we obtain:

2 21 1TNL NL

prsk A J A

3 31 1

28

TNL NL

prsqk A J AR

(21)

(22)

(23)

(24)

(25)

(26)

(27)

Page 34: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

18

The (p,q) term in matrix 2

,

NL

p qJ

and 3

,

NL

p qJ

are written as:

8 8

1 1

2

8 8

1 1

1 , 1

0,

1 ,

0

p q rsr R

l s p q r

NL p q r

sr

k l

p q r

G p q e

ifJ p q

G p qR

if

and

8 8

1 1

3

8 8

1 1

2 , 1

0,

2 ,

0

p q r ssr R

k l p q r s

NL p q r s

sr

k l

p q r s

G p q e

ifJ p q

G p qR

if

where G1(p,q) and G2(p,q) are coefficients in conjunction with α, β, λ and elements pij in matrix

[P]. The general expressions of G1(p,q) and G2(p,q) are given by :

1 1 1 1 1 11 1 1

(p,q) 11 1

1 2 1 2 1 21 1 1

11 2

1 2 1 2 1 21 1 1

22 1

1 1 1 1 1 11 1 1

33 1

1 11

12 1

G1 = p rs r sp s pr

p rs r sp s pr

p rs r sp s pr

p rs r sp s pr

r sp

p II a A a a A a a A a

p II a A a a A a a A a

p II b A b b A b b A b

p II c A c c A c c A c

p II a A b

1 1 1 11 1

1 21

12 2

1 1 1 1 1 11 1 1

12 1

1 2 1 21 1

12 2

s pr p rs

p rs

r sp s pr p rs

r sp s pr

a A a b A a

p II b A a

p II b A a b A a a A b

p II b A a b A a

where,

3

1

sin 2

3

nII

2

2

sin(2 )(2 cos (2 ))

3

n nII

n

(28)

(29)

(30)

(31)

Page 35: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

19

and

1 1 2 2 1 1

( , ) 11 22 12 11 22

2 1 1 2 2 1 1 2

12 11 12

1 1 1 1

12 22

1 1 2 2 2 1 1 2

33

32 2 3

16

1

4

3

4

1

4

p q pl kq pl kq pl kq

pl kq pl kq pl kq pl kq

pl kq pl kq

pl kq pl kq pl kq pl kq

G p p p a a p a a p b b

p a b b a p p a a a a

p p a b b a

p c c c c c c c c

where the terms 1a and 2

a are given by Eqs. (24-25). Terms b(1)

…, c(1)

…and c(2)

are

coefficients appearing in expressions for the elements of matrices [Bpq] and [Cpq] defined in Eqs

(20). These coefficients are given in Appendix.

2.5 Numerical resolution

The mass and stiffness matrices, both linear and non-linear, given in Eqs. (12-26-27) are only

determined for one element. After subdividing the shell into several elements, the global mass

and stiffness matrices are obtained by assembling the matrices for each element.

Assembly is done in such a way that all the equations of motion and the continuity of

displacements at each node are satisfied. These matrices are designated as [M], [K(L)

], [K(NL2)]

and [K(NL3)

] respectively.

2 32 3 0L NL NL

M K K K

Where δ is the displacement vector and M , L

K

, 2NL

K

and 3NL

K

are respectively

the mass, linear and second and third-order non-linear stiffness matrices of the system.

In practice, very specific conditions are applied to the shell boundaries. Thus, these square

matrices are reduced to square matrices of order NREDUC=NDF*(N+1)-J, where J represents

the number of constraints applied. The system of equations then becomes:

2 3

2 3 0r r r r r r r r

L NL NLM K K K

Where the subscript ‘‘r’’ means, ‘‘reduced’’.

(32)

(33)

(34)

Page 36: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

20

Let us set:

rq

where represents the square matrix for eigenvectors of the linear system and q is a time-

related vector. Substituting Eq. (33) into system (32) and pre-multiplying the whole equation by

T

, we obtain;

2 3

2 3 0T T T Tr r r r

L NL NLM q K q K q K q

The products of matrix T r

M

and T r

LK

represent diagonal matrices, written

as D

M

and D

LK

respectively. By neglecting the cross-product terms in 2

q and

3

q of Eq. (34), we obtain:

2 32 2

1 1

0NREDUC NREDUC

L NL NL

pp p pp p ps s ps s

s s

m q k q k q k q

Thus there are ‘‘NREDUC’’ simultaneous equations in the form of Eq. (35).

Setting p p pq t A f with 0 1pf and 0 0pf

Eq. (35) becomes, after the iA simplification and dividing byppm ,

2 3

23 2 3/ / 0

L NL NL

pp pp pp

pp p p p p p

pp pp pp

k k kf f t A t f t A t f

m m m

where t represents the shell thickness. The coefficient /pp ppk m represents the p linear vibration

frequency of system. The solution pf of these ordinary non-linear differential equations

which satisfies the initial conditions (36) is approximated by a fourth-order Runge-Kutta

numerical method. The linear and non-linear natural angular frequencies are evaluated using a

systematic search for the pf roots as a function of time. The /NL L ratio is expressed as a

function of the non-dimensional ratio /pA t where pA is the vibration amplitude.

(39)

(38)

(35)

(36)

(37)

Page 37: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

21

2.6 Discussion of Results

The single mode response of an empty, closed isotropic cylindrical shell corresponding to m=1

and n=4, is shown in Figure 2.3. The calculation has been performed for a simply supported

cylindrical shell with the following dimensions and material properties: t=0.0254 cm, R=2.54 cm,

L=40 cm, E=200 GPa, ν=0.3, ρ=7800 kg/m3. It illustrates a non-linearity of the hardening type

for a low number of circumferential waves. The presented results are compared with Refs. [22-

23]. Ref. [22] was obtained based on Donnell’s simplified non-linear method considering only

lateral displacement. Raju and Rao used the finite element method based on an energy

formulation.

It is observed that the variation ratio between the non-linear and linear frequency Wnl/Wl

increases as the ratio A/t increases although these variations are small for A/t below 1.0. The

difference between results obtained by the present theory and those of Refs. [22-23] might be due

to the fact that Nowinski [22] neglected in-plane inertia and took into account only lateral

displacement. Raju and Roa [23] expressed the displacement components along the shell

generator in polynomial form.

Figure 2.3: Influence of large amplitude on non-linear frequency

In Figure 2.4, the non-linear frequency response as a function of the amplitude of vibration for

the non-linear free vibration case for Olsen’s shell (n=10, m=1, ξ=0.1635, ε=0.003025, ν=0.365)

is compared with theoretical and experimental results obtained previously by several authors in

order to validate the present work. This case concerned an empty isotropic cylindrical shell with

0,9

0,95

1

1,05

1,1

1,15

1,2

1,25

1,3

1,35

1,4

0 1 2 3 4

Nowinski

Rajuand Rao

my study

Wnl/W

l

A/t

Page 38: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

22

simply-supported ends. The geometrical and material characteristics of the cylindrical shell

considered by Olson [6] are: L=0.39 m, R= 0.203 m, t = 0.11176x10-3

m, E = 124x109 Pa,

ν =0.35 and ρ = 8930 kg/m3. Good agreement can be seen, which allows us to confirm that the

new approach presented in this paper can be used in analyzing the influence of large amplitude

vibrations on simply-supported closed cylindrical shells.

Figure 2.4: Influence of large amplitude on non-linear frequency ratio for n=10 and m=1

In Figure 2.5, the effect of the axial longitudinal mode on non-linear behavior of the cylindrical

shell under large-amplitude vibration for circumferential wave number n = 10, is investigated.

Here, the closed shell is simply supported and has the following data: E = 200 GPa, v=0.3, ρ =

7800 kg/m3, R = 2.54 cm, L = 40 cm, t = 0.0254 cm. Results show that the non-linearity is the

softening type for m=1 and the hardening type for other longitudinal axial modes. A more

pronounced non-linearity is seen at mode m = 7.

0

0,5

1

1,5

2

2,5

3

0,99 0,995 1 1,005 1,01

Rougi[21]

Evensen[8]

chen/babcock[12]

amabil[24]

my study

experimental study[6]

A/t

Wnl/Wl

Page 39: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

23

Figure 2.5: Influence of longitudinal modes on non-linear vibration at large amplitude

An advantage of the presented model is that it allows the study of various boundary conditions.

This is clearly shown in Figure 2.6, which presents the effect of boundary conditions on non-

linear free vibration. The shell tested has the same data as Figure 2.5.

The non-linearity is the hardening type for the shell with free-free boundary conditions, however

the softening type is observed for other boundary conditions, and more pronounced in clamped-

clamped and simply supported – simply supported. The effect is small for a cylindrical shell

under clamped-simply supported and clamped-free boundary conditions.

0,8

0,85

0,9

0,95

1

1,05

1,1

1,15

1,2

1,25

0 1 2 3 4

m=1m=2m=3m=4m=5m=6

Wnl/W

l

A/t

0,8

0,85

0,9

0,95

1

1,05

1,1

1,15

1,2

1,25

1,3

0 0,5 1 1,5 2 2,5 3 3,5

m=7

m=8

m=9

m=10

m=11

m=12

Wnl/W

l

A/t

Page 40: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

24

Figure 2.6: Influence of various boundary conditions

on nonlinear behavior of cylindrical shells

As a next step; a detailed parametric study was carried out for the simply-supported shell, and

results from the presented method were compared with those of available analytical models. Two

values of aspect ratio ξ = mπR/nL and three values of parameter ε = (n2h/R)

2 were considered.

They are; ξ = 0.5 and ε = 0.01, 1.0; m and n are the axial half wave and circumferential wave

numbers and L and R are the length and radius of the cylindrical shell respectively.

Figure 2.7: A comparison with the results of Evensen and Ganapathi

(ξ = 0.5, ε = 0.01 and 1.0);

, Present study; , Evensen [8]; , Ganapathi [15].

0

0,5

1

1,5

2

2,5

3

3,5

0,999 0,9995 1 1,0005 1,001

C-C

C-F

C-S

S-F

S-S

F-F

A/t

Wnl/Wl

0

0,4

0,8

1,2

1,6

0,75 0,8 0,85 0,9 0,95 1

Є=1.0 Є=0.01

A/t

Wnl/Wl

Page 41: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

25

In Figure 2.7, the results of our study show that the non-linearity is the softening type for small

values of ξ (for example ξ = 0.5), and as ε increases the vibrations become more and more non-

linear. It can be concluded that the strength of the non-linearity depends on the value of the

parameter ε. For comparison purposes, Evensen’s and Ganapathi’s results [8-15] have been

plotted in Figure 2.7. The result obtained using the present method represents a good

compromise. Furthermore, in Figure 2.8 a hardening behavior of non-linearity vibrations is

observed for large values of ξ (ξ = 2.0 as shown in Figure 2.8). Similar observations are revealed

using the Evensen analysis [8]; the non-linearity trend becomes stronger for large values of ε.

The numerical results obtained in this section for ξ = 0.5 and ξ = 2.0 are also in good agreement

with results reported in Ref. [25].

Figure 2.8: A comparison with the results of Evensen (ξ = 2.0, ε = 0.01 and 1.0).

; Present analysis; , Evensen [8]

To study the influence of in-plane boundary conditions on non-linear vibrations of a cylindrical

shell, the case of a simply-supported shell with axial displacement is restrained (u = w = v = 0).

Figure 2.9 presents the results obtained in comparison with Ganapathi analysis 15, for various

values of ξ and ε. Analysis of Figures [2.7-9] reveals that the trends of non-linearity behavior

does not change, which is confirmed by Ganapathi’s [15] results for an isotropic cylindrical shell.

0

1

2

3

4

5

6

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6

Є=0.1 Є=0.01

A/t

Wnl/Wl

Page 42: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

26

Figure 2.9: The amplitude-frequency relation. , Present analysis

; Ganapathi [15]

2.7 Conclusion

The non-linear free vibrations of thin-walled cylindrical shells were analyzed using an approach

based on non-linear Sanders-Koiter shell theory and a hybrid finite element method. The second

and third order stiffness matrices for an empty closed cylindrical element were considered. This

study was performed for various shells examined in the literature for both low and high

circumferential wave numbers. A precise prediction of non-linearity trends under high-amplitude

vibration can be provided using the presented method. The effects of various boundary conditions

and axial modes on non-linear vibration behaviors have also been treated. In all cases, the degree

of non-linearity is dependent upon thickness, radius, length, circumferential and axial wave

numbers. However, the type of non-linearity is determined by the aspect ratio ξ. The results

obtained for non-linearities are in good agreement with available studies for ξ = 0.5, 2.0. and ε =

0.01, 0.1, 1.0. In-plane boundary conditions have no effect the nature of non-linearity. Results

for low and high wave numbers compare closely with previous studies based on different non-

linear shell theories and numerical methods for non-linear equation resolution. The presented

method allows a large field study of geometric and material parameters under various conditions

in which these structures may be used.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0,85 0,9 0,95 1 1,05 1,1 1,15 1,2 1,25

ξ=2

Є=1.0

ξ=2

Є=0.01

ξ=0.5

Є=1.0

ξ=0.5

Є=0.01

A/t

Wnl/Wl

Page 43: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

27

2.8 Appendix

Sander’s linear equations for thin cylindrical shells in terms of axial, tangential and

circumferential displacements are:

The coefficients of characteristic Eq. (5) are given by:

2

1 33 36 66

2

3 12 33 15 36 66

5 15 36 66

2

7 22 55 25

2

9 33 36 66

11 36 24 66 54

4

3 4

2

2

3 9 4

2 3 /

f p p R p R

f p p p p R p R

f p p p R R

f p p R p R

f p p R p R

f p p p R p R R

2928 11 44 14

22 2 2 2

26 9 1 44 11 45 11 66 5 14 7 11 44 14 11 11 3 44 3 11 14

9 11 24 14 12

42

24 1 7 44 9 11 55 45 66 1 9 7 11 3 25 55 3 14 11 11

2 4 2 2

2

12 4 . 2 2

ff p p p

r

nf f f p p p p p f rp f p p p r f p f p rf f pr

f p p p pr

nf f f p f p p p p f f f p f p p f p f p rrr

2 2

11 3 5 1 11 5 7 14 5 9 25 22 3 14 11 11

2 2

12 5 9 7 14 3 11 24 3 1 9 7 11 9 11 25 9 11 22 12

6 2 2 2 2

2 7 45 66 55 1 9 7 11 3 5 7

25 55 1 11

(2 ) (2 ) ( ). 2

2 2 2

2 4

1 . 2 2

f r f f f f rf f p rf f n r p rp f r p f p

p f f r f p f f r p f f f f p f p p f p p p

f n r f p p p f f f p f r f f

p r p rf f rf

3 5 11 25 11 55

4 2

1 7 24 25 1 9 7 11 3 12 5 7 3 25 3 55

2

25 22 1 11 11 25 11 55 3 5

2 2 2

22 1 9 7 11 3 25 22 11 25 11 22 3 12 7 12

4

0 1 7 22

1

2 2 2

2 1 1

1 1 2

2

f p p r p p

n r f f p p f f f p f p rf f f p f r p

p rp f f r p p r p p f f

n p f f f p f r p rp r p p p p f p f p

f n f f p r n

2

2 4 2 2 3

25 55 1 25 55 25 221p n r p n f n r p r p n r p rp

2 2 2 3 3 2 2 2

15 33 63121 11 142 2 3 2 2 2 2

3 2 2

36 66

2 3 2 2

2

5121 22 2

1( , , , ) ( ) ( ) ( )( )

2

3 1( )( 2 )

2 2 2

1( , , , ) ( ) (

ij

ij

P P PPU U V W W W V V UL U V W P P P

x R x x x x R x x R R x R

P P W V U

R R x x R

PP PUL U V W P

R R x R

2 3 3 2

52 54 25 552 24

2 2 2 2 2 2 3 2

2 2 3 2 2

63 6633 362 2 2

3 3 2

423 41 43 2 2

1)( ) ( ) ( )( )

3 31 3 1( )( ) ( )( 2 )

2 2 2 2

( , , , ) ( )ij

P P P PPV W W W V

R R R R x R R R

P PV U W V UP P

R x R x R R x x R x

PU V WL U V W P P P

x R x x

4 4 3 3 3

45 634 4 2 2 2 2 2 2

4 3 3 3 3 2 4 3

66 51 52 55

2 2 2 2 2 2 2 3 3 2 4 4 3

4

5421 22

2 2 2 2

2 1( ) ( )

2 3 1( 2 ) ( ) ( )

2 2

( )

P PW W V U V

x R x x R R x x

P P P PW V U U V W W V

R x x R x R x R R

PP PU W VW

R x R x R

2 2

2524

2 2 3 2( )

PP W W V

R R

Page 44: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

28

Matrices 3 3[ ]T , 3 8[ ]R , and 8 8[ ]A are defined as:

/ / /

/

/ / /

cos( ) 0 0

[ ] 0 cos( ) 0

0 0 sin( )

(1, ) , (2, ) , (3, ) 1,2,...,8

(1, ) , (2, ) 1, (3, ) , (4, ) , (5, )

(6, ) , (7, ) , (8, )

i i i

i

i i i

x R x R x R

i i

l Rii i i

l R l R l Rii

n

T n

n

R i e R i e R i e i

A i A i A i A i A i eR

A i e A i e A i e iR

1,2,...8

Expressions L and NL for cylindrical shells are given by:

2

2

2

2 2

2

2

1

1

1

2 3 1

2 2

L

U

x

VW

R

V U

x R

W

x

W V

R

W V U

R x R x R

and

2 2

2 2

2

1 1 1

2 8

1 1 1

2 8

1

2

0

0

0

NL

W V U

x x R

W V UV

R x R

W W WV

R x x

Matrices pqB and

pqC

/p q x R

pq pqB b e

/p q x R

pq pqC c e

where

1 1 2

2

1 1sin

2 4pq pq pqb a b n

R

1 2

2

1sin cos

4pq pq pqc c c n n

R

with

1

pq p p p q q qa n n

1

pq p qb n n

1

pq p qc n , 1,...,8p q

Page 45: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

29

2.9 References

1. E. Reissner, Non-linear Effects in Vibrations of Cylindrical Shells, Ramo-Wooldridge

Corporate Report. (1995) AM5-6.

2. B.E. Cummings, Some non-linear vibration and response problems of cylindrical panels and

shells, Graduate aeronautical Laboratories, California Institute of technology, Pasadona. (1962)

SM 62-32 (AFOSR 3123).

3. H.N. Chu, Influence of large amplitudes on flexural vibrations of thin circular cylindrical

shells, Journal of aerospace Sciences. 28 (1961) 602-609.

4. D.A. Evensen, Some observations on the non-linear vibration of thin cylindrical shells,

American Institute of Aeronautics and Astronautics Journal. 1(1966) 2857-2858.

5. J. Nowinski, Non-linear transverse vibrations of orthotropic cylindrical shells, American

Institute of Aeronautics and Astronautics. 1 (1963) 617-620.

6. M.D. Olson, Some experimental observations on the non-linear vibration of cylindrical shell,

American Institute of Aeronautics and Astronautics 3 (1965) 1775-1777.

7. D.A. Evensen and R.E. Fulton, Some studies on the non-linear dynamic response of shell-type

structures, Proceedings of an International Conference on Dynamic Stability of Structures,

Evanston, IL 237-254, Oxford & New York: Pergamon Press (1966).

8. D.A. Evensen, Nonlinear flexural vibrations of thin-walled circular cylinders, Nasa Technical

Note, Langley Research Center, (1967) NASA- TN D-4090 .

9. D.A. Evensen, Non-linear vibrations of an infinitely long cylindrical shell, American Institute

of Aeronautics and Astronautics Journal. 6 (1968) 1401-1403.

10. S. Atluri, A perturbation analysis of non-linear free flexural vibrations of a circular

cylindrical shell, International Journal of Solids and Structures. 8(1972) 549-569.

11. E.H. Dowell and C.S. Ventres, Modal equations for the non-linear flexural vibrations of a

cylindrical shell, International Journal of Solids and Structures. 4 (1968) 975-991.

12. J.C. Chen and C.D. Babcock, Non-linear vibration of cylindrical shells, American Institute of

Aeronautics and Astronautics Journal, 13 (1975) 868-876.

Page 46: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

30

13. H. Radwan and J. Genin, Non-linear modal equations for thin elastic shells, International

Journal of Non-linear Mechanics. 10 (1975) 15-29.

14. H.R. Radwan and J. Genin, Non-linear vibrations of thin cylinders. Journal of Applied

Mechanics, 43(1976) 370-372.

15. M. Ganapathi and T.K. Varadan, Large amplitude vibrations of circular cylindrical shells,

Journal of sound and vibration. 192 (1996), 1-14.

16. H.V Ramani, An analytical investigation of large amplitude free flexural vibration of thin

circular cylindrical shells, M.S. Dissertation (1985), Indian Institute of Technology, Madras,

India.

17. A.A. Lakis and M.P. Paidoussis, Dynamic Analysis of Axially Non-Uniform Thin Cylindrical

Shells, Journal of Mechanical Engineering Science. 14(1) (1972) 49-71.

18. A. Selmane, and A.A. Lakis, Non-Linear Dynamic Analysis of orthotropic Open Cylindrical

Shells Subjected to a Flowing Fluid, Journal of Sound and Vibration. 202(1) (1997) 67-93.

19. J.L. Sanders, An Improved First-Approximation Theory for Thin Shell. (1959) NASA R-24.

20. M.H. Toorani, and A.A. Lakis, General equations of Anisotropic Plates and Shells Including

Transverse shear Deformations, Rotary Inertia and Initial Curvature Effects, Journal of Sound

and Vibration. 237(4) (2000) 561-651.

21. R. Rougui, and F. Moussaoui, R. Benamar, Geometrically non- linear free and forced

vibrations of simply supported circular cylindrical shells: A semi-analytical approach,

International Journal of Non-linear Mechanics. 42 (2007) 1102-1115.

22. J.L. Nowinski, Non-linear transverse vibrations of orthotropic cylindrical shells, AIAA . 1

(1963) 617-620.

23. K.K, Raju, G.V. Rao, Large amplitude asymmetric vibrations of some thin elastic shells, Int.

J. Non-linear Mech. 10 (1975) 15-29.

24. M. Amabili, F. Pellicano, M.P. Paidoussis, Non-linear vibrations of simply supported circular

cylindrical shells coupled to quiescent fluid, J. Fluids Struct. 12 (1998) 883-918.

Page 47: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

31

CHAPITE 3: ARTICLE 2 - EFFECTS OF GEOMETRIC

NONLINEAIRITIES ON CYLINDRICAL SHELLS SUBJECTED TO A

SUPERSONIC FLOW

Submitted, 15 June 2012 to Computers and Fluids

Redouane Ramzi and Aouni Lakis

3.1 Abstract

A nonlinear analysis is presented for cylindrical shells subjected to supersonic flow using

Sanders-Koiter nonlinear shell theory for large amplitude of vibrations and linear piston theory

for modeling the fluid/structure interaction. Internal pressure and axial loads are taken into

account. A hybrid finite element is developed and applied for discretizing the system. Linear and

nonlinear mass, stiffness and damping matrices are found. The governing equation of the system

is resolved using the Runge Kutta numerical method. The flutter amplitude of vibration versus

the flutter frequency is obtained. Several parameters that are critical in the design of aeronautic

structures are investigated here. Results show that the system loses stability due to coupled mode

flutter; however a softening type of nonlinearity in all cases studied occurs beyond the flutter.

The results are in good agreement with existing theoretical and experimental results for flutter

frequency and amplitude published in the literature.

3.2 Nomenclature

a∞ Freestream speed of sound

Ai Motion amplitude

[A] Matrix defined in Appendix

[B] Defined by Equation 11

[Cf] Aerodynamic damping matrix of fluid

ap,bp,cp Modal coefficients determined by equation 20

apq,bpq,cpq Coefficients determined by equations in Appendix

a(i)

pq,b(i)

pq,c(i)

pq Coefficients determined by equations in Appendix

Apq, Bpq, Cpq Modal coefficients determined by equations in Appendix

Aprs, Bprs, Cprs , Dprs, Eprs Modal coefficients determined by equation 19

Aprsq, Bprsq, Cprsq, Dprsq, Eprsq Modal coefficients determined by equation (19, 22)

Page 48: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

32

D Membrane stiffness, defined by Equation 3

{ε} Deformation vector giving in Appendix

E Young’s modulus

[E] Matrix defined by Equation 23

{Fp} Force vector due to the aerodynamic pressure field

h Shell thickness

K Bending stiffness of shell, defined by Equation 3

[Ks] Global stiffness matrix for a shell

[k] Stiffness matrix for a shell element

[kf] Local aerodynamic stiffness matrix

[kI] Initial stiffness matrix for a shell element

[Kf] Global aerodynamic damping matrix

[KI] Global initial stiffness matrix for a shell

[KNL2

] Nonlinear stiffness matrix of second order

[KNL3

] Nonlinear stiffness matrix of third order

L Shell length

M Mach number

[Ms] Global mass matrix for a shell

n Circumferential number

[m] Mass matrix for a shell element

N Cylindrical shell number

Nx,Nθ,Nxθ Stress resultant for a circular cylindrical shell

xN ,N Stress resultant due to shell internal pressure and axial compression

[N] Defined by Equation 10

pa Aerodynamic pressure

p∞ Freestream static pressure

pm, px Shell internal pressure and axial compression

[P] Elasticity matrix

Qx, Qθ Transverse stress resultant for a circular cylindrical shell

R Shell radius

[Rf] Matrix defined in Appendix

Page 49: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

33

U Axial displacement

Ui Potential energy due to initial strain

V Circumferential displacement

W Radial displacement

x Longitudinal coordinate

δi, δj Displacement at node i and j

λj Complex roots of the characteristic equation

υ Poisson’s ratio

γ Adiabatic exponent

θ Circumferential coordinate

ρ Shell density

ρf Fluid density

ω Oscillation frequency

øxx, øxθ, øn Elastic rotations for a circular cylindrical shell

{σ} Stress vector

3.3 Introduction

The aeroelastic stability of closed cylindrical shells in supersonic flow is of keen interest for

designers of skin panels of missiles, the space shuttle, and military aerospace vehicles. The first

event of flutter instability on these structures appears to have been on the V-2 rocket. Among

authors who focus their studies on developing linear models to investigate shell stability in

supersonic flow, we find: Dowell, Olson and Fung, Barr and Stearman, and Ganapathi et al.

However, a major difference occurs between experimental results and those from linear studies

for prediction of flutter and the behavior of structures during flutter. A nonlinear study therefore

becomes necessary to explain the behavior observed in the experiments. Very few studies have

addressed the nonlinear aeroelastic stability of cylindrical shells subjected to supersonic flow.

In 1955, Librescu [1,2] was the first to study the stability of circular cylindrical finite shallow

shells. He used Donnell’s nonlinear shallow shell theory and piston theory for calculating the

supersonic flow pressure, taking into account only simple mode expansion. No results on limit

cycle amplitudes were given. A simplified form of Donnell’s nonlinear shallow shell theory is

applied by Olson and Fung [3] for simply-supported shells considering a simple two-mode

Page 50: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

34

expansion including an axisymmetric term. The supersonic flow/structure interaction was

modeled using linear piston theory. Evensen and Olson [5] considered the companion mode and

four-degree-of-freedom mode expansion, which allows the study of travelling-wave flutter. The

same behavior of travelling waves is predicted and measured for large-amplitude forced vibration

of shells. Following this study, linear theoretical and experimental studies of supersonic flutter of

circular cylindrical shells including geometric imperfections were published by Carter and

Stearman [6] and Barr and Stearman [7,8]. They also developed a linear piston theory to calculate

the supersonic flow pressure for Mach numbers superior to 1.6. Vol’mir and Medvedeva [9],

studied the nonlinear supersonic flutter of circular cylindrical shells, considering the initial

deflection and axial loads. They used a combination of Donnell’s nonlinear shallow shell theory

and linear piston theory; the finite difference numerical method was applied to search the

solutions.

Amabili and Pellicano [10] investigated the aeroelastic stability of simply-supported, circular

cylindrical shells in supersonic flow using Donnell’s nonlinear shallow-shell theory describing

large amplitude and linear piston theory to modulate the fluid flow/structure interaction. Their

study takes into account structural damping and employs the Galerkin Method for descretizing

the system. Results show that the system loses stability by standing wave flutter through

supercritical bifurcation, however a very small increment in the free streamstatic pressure can

produce a travelling wave flutter.

Horn et al [11] conducted an experimental study of the stability of circular cylindrical shells in

axial air-flow of both subsonic and supersonic regimes. Divergence was found for subsonic flow

and flutter for supersonic flow. Another experimental study of supersonic flutter of pressurized

and axially compressed circular cylindrical shells was performed at the NASA Ames Research

Center, California, in 1962 and 1964 [12].

The approach presented in this paper is summarized in three points:

- Using linear strain-displacement and stress-strain relationships which are inserted into

Sander’s equations of equilibrium, we determine the displacement functions by solving the

linear equation system. We then determine the mass and linear stiffness matrices for a finite

element and assemble the matrices for the complete shell.

Page 51: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

35

- Using strain-displacement relationships from Sanders-Koiter nonlinear theory, the modal

coefficients are obtained from the displacement functions. The second and third-order

nonlinear stiffness matrices for a finite element are then calculated by precise analytical

integration with respect to modal coefficients.

- Linear piston theory is applied for modeling and determining the supersonic flow pressure

and describing the structure/fluid interaction.

The equations of cylindrical shells are used to obtain the displacement functions instead of using

the more common arbitrary polynomial forms. The finite element proposed is a closed cylindrical

segment (Figure 3.1) with four degrees of freedom at each node: axial, radial, circumferential,

and rotational.

i = 1, 2… N

Figure 3.1: Cylindrical shell and finite element geometries

The approach developed here is more accurate than usual finite element methods. Different

arbitrary boundary conditions can be used, and high and low frequencies may be obtained with

high accuracy. Precise results are obtained with low and high circumferential wave numbers.

Large amplitude vibration can be examined. The presented approach also enables short

computation time and higher precision of results due to use of exactitude piston theory, which

yields the pressure created by supersonic air flow at each point in the structure.

x 1

2 3

N

U

W

V

i

Page 52: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

36

3.4 Structural Model

3.4.1 Linear Part

The equations of motion of an anisotropic cylindrical shell in terms of U, V and W (axial,

tangential and radial displacements) (Figure 3.2) are written as follows:

0),,,( ijJ PVWUL

Where ( 1,2,3)JL J are three linear partial differential equations (given in Appendix) and ijp are

elements of the elasticity matrix for anisotropic shells which is given by:

11 12 14 15

21 22 24 25

33 36

41 42 44 45

51 52 54 55

63 66

0 0

0 0

0 0 0 0[ ]

0 0

0 0

0 0 0 0

p p p p

p p p p

p pP

p p p p

p p p p

p p

For the isotropic case,

0 0 0 0

0 0 0 0

(1 )0 0 0 0 0

2[ ]

0 0 0 0

0 0 0 0

(1 )0 0 0 0 0

2

D D

D D

D

PK K

K K

K

where,

3

212(1 )

EhK

Bending stiffness,

21

EhD

Membrane stiffness

The displacement functions associated with the circumferential wave number are assumed in the

normal manner, as:

( , ) cos

( , ) cos

( , ) sin

x

R

x

R

x

R

U x Ae n

W x Be n

V x Ce n

(2)

(1)

(3)

(4)

Page 53: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

37

Figure 3.2: Finite element discretization and nodal displacement

where n is the circumferential mode,

Note that this approach treats closed cylindrical shells based on the circumferential wave number,

not on the longitudinal wave number.

Substituting (4) into the equations of motion (1), a system of three homogeneous equations, linear

functions of constants A, B, C, is obtained. For the solution to be non-trivial, the determinant of

this system must be equal to zero. This brings us to the following characteristic equation:

8 6 4 2

8 6 4 2 0Det H f f f f f

The values of coefficients if in this eighth-degree polynomial are given in Appendix.

Each root of this equation yields a solution to the linear equations of motion (1). The complete

solution is obtained by adding the eight solutions independently with constants Ai, Bi and Ci (i =

1,2,….,8). These constants are not independent. We can therefore express Ai and Bi as a function

of Ci, as follows:

i i i

i i i

A C

B C

W

U

W

V

un

dwn/dx

wn

xj=l

xi=0

(5)

(6)

Page 54: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

38

The values of i and i can be obtained from system (1) by introducing relation (6). To

determine eight iC constants, it is necessary to formulate eight boundary conditions for the finite

elements. The axial, tangential and radial displacements will be specified for each node. The

following relation defines the element displacement vector at the boundaries:

{ } { }

CAj

i

where the elements of matrix [A] are given in Appendix.

Multiplying Equation (8) by [A]-1

and substituting the result into Equation (4), we obtain

j

iN

,xW

,xV

,xU

where [N] represents the shape function matrix given in this form:

and [T], [R], [A] are described in Appendix.

The constitutive relation between the stress and deformation vector of a cylindrical shell is given

as:

j

iBP

]][[

The mass and stiffness matrices for each element are derived using the classic finite element

procedure and can then be expressed as:

dA]B][P[]B[]k[

dA]N[]N[h]m[

T

T

Where is the density of the shell, h its thickness and dA Rdxd . The matrices [m] and [k] are

obtained analytically by carrying out the necessary matrix operations over x and θ in the

(11)

(12)

1N T R A (10)

(7)

(8)

(9)

Page 55: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

39

equation. The global matrices sM and sK may be obtained, respectively, by assembling the

mass and stiffness matrices for each individual finite element.

3.4.2. Nonlinear Part

The coefficients of the modal equations are obtained using the Lagrange method in the same way

developed by Radwan and Genin [13], paying attention to geometric nonlinearities. Following

this, the second and third nonlinear stiffness matrices corresponding to geometric nonlinearities

are computed and superimposed on the linear system.

Shell displacements (u, v, w) are expressed as sums of generalized product coordinates iq t and

spatial functions U, V, W (see Eq. (4)).

,

,

,

i i

i

i i

i

i i

i

u q t U x

v q t V x

w q t W x

The deformation vector is written as a function of the generalized coordinates by separating the

linear part from the nonlinear part.

, ,2 , , ,2T

L NL xx x xx x

Where subscripts ``L`` and ``NL`` mean ``linear`` and ``nonlinear``, respectively, and L and

NL are defined in Appendix.

The Lagrange’s equations of motion in generalized coordinates iq t are found using Hamilton’s

principle and Equation (13):

iiii

Qq

V

q

T

q

T

dt

d

where T is the total kinetic energy, V is the total elastic strain energy of deformation and the iQ ’s

are the generalized forces.

Using the vector deformation given by (14), the developed formulation for total kinetic and strain

energy and inserting these into the Lagrange equation (15), the following nonlinear modal

equations are obtained after a long development of equations:

(13)

(14)

(15)

Page 56: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

40

( ) ( 2) ( 3) 0

1,2,....

L NL NL

pr r pr r prs r s prsq r s q

r r r s r s q

m k k k

p

Where prm , L

prk are terms of the mass and linear stiffness matrices given by Equation (12).

The terms )NL(

prsk 2 and

)NL(prsqk

3 represent the second and third-order nonlinear stiffness and are

given by the following integrals for the case of an isotropic closed cylindrical shell:

dACp)ED(pBpApK prsprsprsprsprs)NL(

prs 331222112

and

( 3)

11 22 12 33( )NL

prsq prsq prsq prsq prsq prsqK p A p B p D E p C dA

Where dA Rdxd , ijp are the terms of the elasticity matrix [P], and the terms Aprs, Bprs, Cprs,

Dprs, Eprs and Aprsq, Bprsq, Cprsq, Dprsq, Eprsq represent the coefficients of the modal equations.

These coefficients are given by the following equations:

Aprs=ap Ars+ar Asp+as Apr Aprsq=2Apq Ars

Bprs=bp Brs+br Asp+bs Bpr Bprsq=2Bpq Brs

Cprs=cp Crs+cr Csp+cs Cpr Cprsq=2Cpq Crs

Dprs=ar Bsp+as Bpr+bp Ars Dprsq=2Apq Brs

Eprs=br Asp+bs Apr+as Brs Eprsq=2Bpq Ars

with

ap = Up,x , bp= 1/R ( Vp,θ + Wp ), cp= 1/2 ( Up,θ / R + Vp,x )

Apq =1/8 R2

( R Vp,x – Up,θ ) . ( R Vq,x – Uq,θ ) + 1/2 Wp,xWq,x

Bpq = 1/8 R2 ( R Vp,x – Up,θ ) . ( R Vq,x –Uq,θ ) + 1/2 R

2 ( Wp,θ - Vp ) . ( Wq,θ - Vq )

Cpq = 1/4 R ( Wp,x Wq,θ – Wq,x Wp,θ ) – 1/4 R ( Vp Wq,x + Vq Wp,x )

Where U, V and W are spatial functions determined by Equation (4).

(16)

(17)

(18)

(19)

(20)

Page 57: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

41

In Equations (16) - (20), the subscripts ‘p,q’, ’p,r,s’ and ‘p,r,s,q’ represent the coupling

between two, three and four modes, respectively.

Let us illustrate the development of the expression for the (p,q) term of matrices Apq and Apqrs.

The expression Apq is given by:

/p q x R

pq pqA a e

and Apqrs is :

8 8( ) /

1 1

p r s q x R

prsq rs pq rs

r s

A a a e

rs is the term (r,s) of matrix [E], where [E] represents a matrix of constants defined by

1T

E A A , and

1 22 2

2

1 1sin cos

2 4pq pq pqa a n a n

R

with

1

pq p p p q q qa n n

2

pq p qa

Similarly, the matrices [Bpq]… [Eprsq] can be written as a function of α, β, λ, x and θ. The (p, q)

terms of these matrices are described in Appendix. For details of the basis of the presented

method, consult reference [13].

After integration, we obtain:

2 21 1TNL NL

prsk A J A

3 31 1

28

TNL NL

prsqk A J AR

The (p,q) terms in matrix 2

,

NL

p qJ

and 3

,

NL

p qJ

are written as:

(21)

(22)

(23)

(24)

(25)

(26)

(28)

(27)

Page 58: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

42

8 8

1 1

2

8 8

1 1

1 , 1

0,

1 ,

0

p q rsr R

l s p q r

NL p q r

sr

k l

p q r

G p q e

ifJ p q

G p qR

if

and

8 8

1 1

3

8 8

1 1

2 , 1

0,

2 ,

0

p q r ssr R

k l p q r s

NL p q r s

sr

k l

p q r s

G p q e

ifJ p q

G p qR

if

where G1(p,q) and G2(p,q) are coefficients in conjunction with α, β, λ and elements pij in matrix

[P]. The general expressions of G1(p,q) and G2(p,q) are given by :

1 1 1 1 1 11 1 1

11 1

1 2 1 2 1 21 1 1

11 2

1 2 1 2 1 21 1 1

22 1

1 1 1 1 1 11 1 1

33 1

1 11

12 1

G1(p,q) = p rs r sp s pr

p rs r sp s pr

p rs r sp s pr

p rs r sp s pr

r sp

p II a A a a A a a A a

p II a A a a A a a A a

p II b A b b A b b A b

p II c A c c A c c A c

p II a A b

1 1 1 11 1

1 21

12 2

1 1 1 1 1 11 1 1

12 1

1 2 1 21 1

12 2

s pr p rs

p rs

r sp s pr p rs

r sp s pr

a A a b A a

p II b A a

p II b A a b A a a A b

p II b A a b A a

where,

3

1

sin 2

3

nII

2

2

sin(2 )(2 cos (2 ))

3

n nII

n

(29)

(30)

(31)

(32)

(33)

Page 59: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

43

and

1 1 2 2 1 1

11 22 12 11 22

2 1 1 2 2 1 1 2

12 11 12

1 1 1 1

12 22

1 1 2 2 2 1 1 2

33

32( , ) 2 3

16

1

4

3

4

1

4

pl kq pl kq pl kq

pl kq pl kq pl kq pl kq

pl kq pl kq

pl kq pl kq pl kq pl kq

G p q p p p a a p a a p b b

p a b b a p p a a a a

p p a b b a

p c c c c c c c c

where the terms 1

a and

2a are given by Equations (25-26). Terms b

(1)…, c

(1)…and c

(2) are

coefficients appearing in expressions for the elements of matrices [Bpq] and [Cpq] defined in

Equations (20). These coefficients are given in Appendix.

3.5 Stress Matrix

The potential energy is given as:

dxRdNNNNUl

nxxxxi

0

2

0

222 )(2/1

where;

RpN

R

pN

m

xx

2

xN , N are stress resultants due to shell internal pressure mp and axial compression xp

respectively, l is the element length, is about the normal to the x plane, xx is the strain

rotation about x , and n is the rotation about the normal to a shell element.

This rotation vector is expressed as [14],

)1

(2

1

)(1

x

VU

R

WV

R

x

W

n

xx

(34)

(35)

(37)

(36)

Page 60: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

44

Upon insertion of displacements (U,W,V) given in Equation (8), the potential energy is rewritten

in terms of the nodal degrees of freedom, which leads to the initial stiffness matrix for each

element in the following form:

dxRdNC

NN

N

N

CNkl

TT

x

x

TT

I

0

2

000 ][][

00

00

00

][][][

where;

xR

R

x

C

2

10

2

1

01

0

00

][ 0

3.6 Aerodynamic Model

The pressure on the body surface is approximated by the pressure exerted by a piston moving

in the flow with a velocity equivalent to the superposition of the velocity due to the changing of

body shape and the velocity due to the rigid-body motion of the body:

12

211

/

a/

p

p

where;

p is the aerodynamic pressure,

p∞ is the freestream static pressure,

γ is the adiabatic exponent,

a∞ is the freestream speed of sound

ω is the velocity of the piston.

The piston velocity ω is given by [18,19]:

x

WU

t

W

U is the freestream velocity and W is the radial displacement.

(40)

(41)

(39)

(38)

Page 61: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

45

Considering the linear terms in the binomial expansion of Equation (40), we obtain:

t

W

ax

WMPPa

1

The form of the radial displacement assumed is the same as that considered by Lakis and

Paidoussis in [15]:

8

1

8

1 j

j

j

)tR

x(i

W)ncos(eWj

Where j is the jth

root of the characteristic equation, is the natural angular frequency and n is

the circumferential wave number.

Substituting Equation (43) into Equation (42), we obtain the equation for the aerodynamic

pressure on the cylindrical shell wall:

j

if

j

if

j

radiala ARTa

pARTMp

Ripp

11

0

0

The damping and stiffness for fluid flow are then obtained by substituting Equations (9) and (44)

into the integral (45);

[ ] { }T

p aF N p dA

The linear matrix of aerodynamic damping [Cf] and stiffness matrix [Kf] are given as follows:

1 1T

f fC A D A

1 1T

f fK A G A

where;

dxRRrPa

Dl

fT

f

0

dxRRrMPr

iG f

lTj

f

0

(45)

(43)

(44)

(42)

(46)

(48)

(49)

(47)

Page 62: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

46

3.7 Nonlinear Analysis

The motion of a cylindrical shell subjected to an external supersonic flow is governed by the

equation of motion which may be presented as follows:

2 3

3( 2) 0i i i i iL L L NLNL

s f

j j jj j

M C K K K

where subscripts s and f refer to the shell in vacuo and in fluid flow respectively, and is the

degrees of freedom vector for the total nodes.

Further useful expressions are:

L L

s I fK K K K

dxRdNC

NN

N

N

CNK TT

x

xl

TTI

0

0

2

0

0

00

00

00

T

sK B P B dA

1 1T

L

f fK A G A

where;

T Tk

f f

iG p M R T T R dA

R

Let us set:

q

where represents the square matrix for eigenvectors of the linear system and q is a time-

related vector. Substituting Equation (55) into system (50) and pre-multiplying the whole

equation by T

, we obtain;

2 32 3

0D D D T TL L L NL NL

s fM q C q K q K q K q

(50)

(51)

(52)

(54)

(55)

(56)

(53)

Page 63: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

47

where;

D TL L

s sM M ,

D TL L

f fC C ,

D TL L

K K

D denotes diagonal, and the matrices quantifying the fluid contribution to the matrix equations of

motion are non-symmetric. To facilitate the analysis, therefore, we consider only the symmetric

portion of the matrices. This simplifying hypothesis is valid since the original and simplified

systems have comparable dynamic behavior [20].

By neglecting the cross-product in 2

q of Equation (56), we obtain;

2 32 3

1

0NREDUC

L L NL NL

ii i ii i ii i ij j ij j

j

m q c q k q K q K q

Here we have ‘‘NREDUC’’ simultaneous equations of the form of Equation (58).

At first, we limit ourselves to solving Equation (56) by taking into account only the diagonal

terms of the products 22T NL

K

and 33T NL

K

, therefore Equation (58) is written

in this form:

2 32 3 0L L NL NL

ii i ii i ii i ii i ii im q c q k q K q K q

Setting; i i iq A f

with 10 if and 00 if

Equation (59) becomes, after the iA simplification and dividing by iim :

2

2 2 3

20i i

ii i i i i i i i i

A Af f f f f

t t

where;

ii

L

iii

m

c ;

ii

L

iii

m

k2 ;

tm

K

ii

NL

iii

2

;

3

2

NL

ii

i

ii

Kt

m

and t represents the shell thickness. The square root of coefficient /ii iik m represents the ith

linear

vibration frequency of system. The solution if of these ordinary nonlinear differential

(61)

(62)

(59)

(60)

(58)

(57)

Page 64: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

48

equations which satisfies the initial conditions (60) is approximated by a fourth-order Runge-

Kutta numerical method. The linear and nonlinear natural angular frequencies are evaluated using

a systematic search for the if roots as a function of time. The /NL L ratio is expressed as a

function of the non-dimensional ratio /iA t , where iA is the vibration amplitude.

3.8 Calculation and Discussion

The influence of nonlinearities associated with the wall of the shell on the vibration

characteristics of closed cylindrical shells subjected to linear supersonic flow is expressed by

Equation (59).

For a shell with given characteristics, we first present the results for convergence of the model,

and the ratio Wnl/Wl of linear and nonlinear frequencies is graphically represented in Figures 3.5

to 3.10 with respect to the non-dimensional ration Ai/t.

The shell and flow properties are given by:

6 10 2

2 4 3

16 10 / (11 10 / )

0.35

0.0040 (0.0001015 )

15.4 (0.381 )

8.00 (0.203 )

0.000833 / (8900 / )

3.00

8400 / (213 / )

s

E lb in N m

h in m

L in m

R in m

lb s in kg m

M

a in s m s

The influence of nonlinearities associated with large amplitude of cylindrical shells subjected to a

fluid at supersonic flow is the main focus of this analysis.

3.8.1 Convergence of the Method

A first calculation was made to determine the required number of finite elements for precise

determination of the results, which is very important in finite element analysis. Calculations were

made for a closed circular cylindrical shell subjected to supersonic flow for the number of finite

elements N = 2, 4, 6, 8...25. The shell is simply supported at both ends. The results for n = 23 and

for m = 1, 2 and 3, are shown in Figure 3.3. Convergence of natural frequency is reached for 20

elements.

Page 65: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

49

Figure 3.3: Natural frequency vs Number of elements

3.8.2 Onset of Flutter Predictions for Cylindrical Shells in Supersonic Flow

Figure 3.4, shows the eigenvalues associated with the first and second longitudinal modes (m=1,

2) with n = 23 (circumferential wave number) vs freestream static pressure p∞. The real part of

the eigenvalues gives the oscillation frequency, and the imaginary part gives the damping for

positive values and instability for negative values. Flutter begins where the imaginary part

crosses the zero and becomes negative. It can be seen that the shell loses stability at pcr = 0.75 psi,

a)

Figure 3.4: a) Real part and b) imaginary part of eigenvalues of the system

vs freestream static pressure p∞, n = 23, pm = 0.5 psi, px = 0.0 psi.

220

240

260

280

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

1st mode

2nd mode

3rd mode

Number of elements

Fre

quen

cy (

Hz)

548

549

550

551

552

553

554

555

556

557

558

0 0,2 0,4 0,6 0,8 1 1,2

Freestream Static Pressure (psi)

Rea

l ei

gen

val

ue

Page 66: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

50

b)

Figure 3.4 (suite): a) Real part and b) imaginary part of eigenvalues of the system

vs freestream static pressure p∞, n = 23, pm = 0.5 psi, px = 0.0 psi.

which is called the critical freestream static pressure. This instability is known as coupled-mode

flutter. This results in good agreement to Amabili results [10,21], which is found pcr = 0.77 psi,

and coincide with value obtained by Evensen and Olson [4,5].

3.8.3 Behavior of nonlinearity flutter for a pressurized cylindrical shell

Figure 3.5 shows how the flutter frequency varies with amplitude for the first longitudinal mode

(m=1). The flutter frequency is seen to decrease slowly with increasing amplitude (softening type

of nonlinearity), which is in very good agreement with the study by Olson and Fung [3]. M=3,

pm=0.5 psi, p∞=0.66 psi; n=23; knowing that the nonlinearity is considered by large amplitude

vibrations of cylindrical shell subjected to linear supersonic flowing fluid.

-1

0

1

2

3

4

5

6

7

8

0 0,2 0,4 0,6 0,8 1

Freestream Static Pressure (psi)

Imag

inar

y e

igen

val

ue

(Hz)

Page 67: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

51

Figure 3.5: Flutter frequency vs mean amplitude of first mode

3.8.4 Effect of freestream static pressure during the flutter

The shell tested is simply supported at both ends, and pressurized; the pressure exerted by the

supersonic flow is considered a multiple of critical freestream static pressure to study the

nonlinear behavior of flutter of a cylindrical shell during the period following the onset of the

flutter. Figure 3.6 shows how the flutter frequencies vary with flutter amplitude. The flutter

frequency is seen to decrease slowly with increasing amplitude. This is typical of the so-called

‘‘softening’’ type of nonlinearity, and the tendency is more pronounced at high supersonic flow

pressure as seen in p∞ = 1.5 pcr.

0

0,2

0,4

0,6

0,8

1

1,2

0,96 0,97 0,98 0,99 1 1,01

Olson and Fung

My study

Nondimensional flutter frequency, Wnl/Wl

Mae

n a

mp

litu

de

of

firs

t m

od

e, A

Page 68: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

52

Figure 3.6: Amplitude of flutter vs frequency flutter for different regions of flutter

3.8.5 Effect of internal stresses in the flutter stage of cylindrical shells

subjected to supersonic flow

The effect of internal pressure on the nonlinear flutter stage is shown in Figure 7. Two values of

supersonic flow pressure p∞ = 1.5 pcr and p∞ = 3.0 pcr, that exceed the critical freestreem static

pressure (given the flutter pcr = 0.75 psi) are investigated here. It can be observed that the effect

of internal pressure becomes stronger at supersonic flow pressures (p∞ = 2.25 psi) that are larger

than the critical freestream static pressure. Otherwise, when the pm = 0.5 psi (pressurized case),

the flutter frequency gradually decreases with increasing vibration amplitude, which explains the

stabilizing effect of internal pressure applied to cylindrical shells in supersonic flow. This

confirms the conclusion of Amabili and Olson and Fung in their researches. It is also noted that

in the region near the onset of flutter (p∞ = 1.5 pcr), no difference was observed according to the

Figure 3.7. Also the softening type nonlinearity of the shell is still observed.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0,5 0,7 0,9 1,1

0.9pcr

pcr

1.5pcr

Wnl/Wl

A/t

Page 69: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

53

Figure 3.7: Effect of internal pressure during flutter

3.8.6 Effect of length-radius ratios of cylindrical shells on the supersonic

flutter

Figure 3.8 shows the variation of flutter amplitude versus flutter frequency of cylindrical shells

under supersonic flow in the region corresponding to onset of flutter and during flutter stages,

depending on each length-radius case. On one side, the trend of the nonlinearity is a softening

type for L/R = 4 and 2, and a hardening type for the L/R = 1. The same behavior is observed for

supersonic flow pressure ( p∞ = 2 psi ). On the other side, the critical freestream static pressures

increase when L/R ratios decrease, and the trend of flutter frequency variation vs flutter

amplitude is more pronounced for L/R = 2. For case L/R = 1, the nonlinearity is a hardening type

and may indicate that the nonlinear geometry of the cylindrical shell modeled creates a critical

area, in which the flutter frequency is superior to natural frequency.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95 1,00 1,05 1,10

pm = 0.0 psi , p∞ = 1.5 pcr

pm = 0.5 psi , p∞ = 1.5 pcr

pm = 0.0 psi , p∞ = 3 pcr

pm = 0.5 psi , p∞ = 3 pcr

Wnl/Wl

A/t

Page 70: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

54

Figure 3.8: Flutter amplitude vs frequency flutter for different L/R

3.8.7 Effect of Shell Boundary Conditions

According to Table 3.1, simply-supported - free shells experience early onset of flutter at low

values of supersonic flow pressure (pcr = 0.37 psi). This can be compared to the case of shells

clamped at both ends; flutter instability occurs at higher values of supersonic flow

pressure (pcr = 1.07 psi).This clarifies the effect of boundary conditions, which can delay the

onset of flutter.

In order to illustrate the effect of boundary conditions on cylindrical shell flutter, the mode (n =

23, m = 1) for the same pressurized closed shell with different boundary conditions is shown in

Figure 3.9. The shell with simply-supported – free boundary conditions is the one with the more

pronounced nonlinearity effect. This effect is small for a panel that is simply supported at both

ends.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

2,2

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6

L/R=4,pcr=0,18 psi

L/R=2,pcr=0.54 psi

L/R=1,pcr=1.5 psi

L/R=4,p∞=2 psi

L/R=2,p∞=2 psi

L/R=1,p∞=2 psi

Wnl/Wl

A/t

Page 71: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

55

Table 3.1: Critical freestream static pressure for different shells boundary

conditions, px=0.0 psi

pcr (psi) ncritical pm (psi)

Clamped at both ends 0.84 23 0

Clamped at both ends 1.07 23 0.5

Free simply supported at both ends 0.75 23 0.5

Free simply supported at one end, free at the

other end

0.37

23

0.5

Figure 3.9: Flutter amplitude vs flutter frequency for different shell boundary conditions

0

0,5

1

1,5

2

2,5

0,95 0,96 0,97 0,98 0,99 1 1,01

clamped-clamped

simply supported-free

simply supported at both ends

Wnl/Wl

A/t

Page 72: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

56

3.8.8 Effect of supersonic flow on the nonlinear behavior of cylindrical shells

The effect of supersonic flow on the nonlinear behavior of unpressurized cylindrical shells is

presented in Figure 3.10. The flutter frequency decreases rapidly at higher values of flutter

amplitude for the shells subjected to supersonic flow than empty shells indicating the softening

type of nonlinearity becomes more severe. The results were found for the same data of the

cylindrical shells, therefore the existence of the airflow equation in linear form is capable to

influence the geometrically nonlinear cylindrical shell, which is refer to flow

velocity (supersonic), not to density.

Figure 3.10: Effect of supersonic flow in nonlinear behavior of cylindrical shells

M=3, p∞=0.5 psi, pm=0.0 psi, n=23.

3.8.9 Effect of circumferential wave number

In Figure 3.11, the effect of large amplitude on the flutter frequency for axial mode m = 1 and

various circumferential modes n (20 to 25) is presented. The closed cylindrical shell is simply

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

2,2

0,5 0,7 0,9 1,1

no flow fluid

with supersonic flow

Wnl/Wl

A/t

Page 73: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

57

supported and has the same data as other cases studied. The Figure shows that the nonlinearity is

of the softening type for all circumferential modes. It is also seen that the flutter amplitude vs

flutter frequency becomes more pronounced as the circumferential wave number increases.

Figure 3.11: Flutter amplitude versus frequency flutter of cylindrical

shells at different circumferential wave numbers

3.9 Conclusion

The method developed in this paper demonstrates the combined effect of the nonlinearity

associated with the wall of a shell and linear supersonic fluid flow on the resulting flutter

frequency and flutter amplitude for the specific case of closed cylindrical shells subjected to

external supersonic flow. It is a hybrid method, based on Sanders-Koiter nonlinear thin shell

theory, the linear aerodynamic piston theory and the finite element method.

The method combines the advantages of finite element analysis which deals with complex shells,

and the precision of a formulation employing displacement functions derived from shell and fluid

theories. This approach results in fast and efficient convergence of the calculations. The

calculated values show good agreement with experimental and theoretical results published in the

0

0,5

1

1,5

2

2,5

0 0,2 0,4 0,6 0,8 1 1,2

n=20

n=21

n=22

n=23

n=24

n=25

Wnl/Wl

A/t

Page 74: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

58

literature. These numerical results provide the nonlinear behaviors of cylindrical shells for

different boundary conditions when the shells are subjected to supersonic flow beyond the onset

of flutter. These results cannot be found using linear analysis. Several parameters which are

dependent on shell geometry and fluid flow are studied. In all study cases, the nonlinear softening

type is dominant, and mild flutter instability has been detected. The effect of geometric

nonlinearities associated with the walls is non-negligible and should be taken into account when

calculating the nonlinear flutter of a shell-flowing fluid system when the amplitude of vibration is

larger than the thickness of the shell.

Page 75: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

59

3.10 Appendix

Sander’s linear equations for thin cylindrical shells in terms of axial, tangential and

circumferential displacements are:

The coefficients of characteristic Equation (5) are given by:

2928 11 44 14

22 2 2 2

26 9 1 44 11 45 11 66 5 14 7 11 44 14 11 11 3 44 3 11 14

9 11 24 14 12

42

24 1 7 44 9 11 55 45 66 1 9 7 11 3 25 55 3 14 11 11

2 4 2 2

2

12 4 . 2 2

ff p p p

r

nf f f p p p p p f rp f p p p r f p f p rf f pr

f p p p pr

nf f f p f p p p p f f f p f p p f p f p rrr

2 2

11 3 5 1 11 5 7 14 5 9 25 22 3 14 11 11

2 2

12 5 9 7 14 3 11 24 3 1 9 7 11 9 11 25 9 11 22 12

6 2 2 2 2

2 7 45 66 55 1 9 7 11 3 5 7

25 55 1 11

(2 ) (2 ) ( ). 2

2 2 2

2 4

1 . 2 2

f r f f f f rf f p rf f n r p rp f r p f p

p f f r f p f f r p f f f f p f p p f p p p

f n r f p p p f f f p f r f f

p r p rf f rf

3 5 11 25 11 55

4 2

1 7 24 25 1 9 7 11 3 12 5 7 3 25 3 55

2

25 22 1 11 11 25 11 55 3 5

2 2 2

22 1 9 7 11 3 25 22 11 25 11 22 3 12 7 12

4

0 1 7 22

1

2 2 2

2 1 1

1 1 2

2

f p p r p p

n r f f p p f f f p f p rf f f p f r p

p rp f f r p p r p p f f

n p f f f p f r p rp r p p p p f p f p

f n f f p r n

2

2 4 2 2 3

25 55 1 25 55 25 221p n r p n f n r p r p n r p rp

Where

2 2 2 3 3 2 2 2

15 33 63121 11 142 2 3 2 2 2 2

3 2 2

36 66

2 3 2 2

2

5121 22 2

1( , , , ) ( ) ( ) ( )( )

2

3 1( )( 2 )

2 2 2

1( , , , ) ( ) (

ij

ij

P P PPU U V W W W V V UL U V W P P P

x R x x x x R x x R R x R

P P W V U

R R x x R

PP PUL U V W P

R R x R

2 3 3 2

52 54 25 552 24

2 2 2 2 2 2 3 2

2 2 3 2 2

63 6633 362 2 2

3 3 2

423 41 43 2 2

1)( ) ( ) ( )( )

3 31 3 1( )( ) ( )( 2 )

2 2 2 2

( , , , ) ( )ij

P P P PPV W W W V

R R R R x R R R

P PV U W V UP P

R x R x R R x x R x

PU V WL U V W P P P

x R x x

4 4 3 3 3

45 634 4 2 2 2 2 2 2

4 3 3 3 3 2 4 3

66 51 52 55

2 2 2 2 2 2 2 3 3 2 4 4 3

4

5421 22

2 2 2 2

2 1( ) ( )

2 3 1( 2 ) ( ) ( )

2 2

( )

P PW W V U V

x R x x R R x x

P P P PW V U U V W W V

R x x R x R x R R

PP PU W VW

R x R x R

2 2

2524

2 2 3 2( )

PP W W V

R R

Page 76: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

60

2

1 33 36 66

2

3 12 33 15 36 66

5 15 36 66

2

7 22 55 25

2

9 33 36 66

11 36 24 66 54

4

3 4

2

2

3 9 4

2 3 /

f p p R p R

f p p p p R p R

f p p p R R

f p p R p R

f p p R p R

f p p p R p R R

Matrices 33][ T , 83][ R , and 88][ A are defined as:

/ / /

/

/ / /

cos( ) 0 0

[ ] 0 cos( ) 0

0 0 sin( )

(1, ) , (2, ) , (3, ) 1,2,...,8

(1, ) , (2, ) 1, (3, ) , (4, ) , (5, )

(6, ) , (7, ) , (8, )

i i i

i

i i i

x R x R x R

i i

l Rii i i

l R l R l Rii

n

T n

n

R i e R i e R i e i

A i A i A i A i A i eR

A i e A i e A i e iR

1,2,...8

Expressions L and NL for cylindrical shells are given by:

2

2

2

2 2

2

2

1

1

1

2 3 1

2 2

L

U

x

VW

R

V U

x R

W

x

W V

R

W V U

R x R x R

and;

Page 77: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

61

2 2

2 2

2

1 1 1

2 8

1 1 1

2 8

1

2

0

0

0

NL

W V U

x x R

W V UV

R x R

W W WV

R x x

Matrices pqB and

pqC

/p q x R

pq pqB b e

/p q x R

pq pqC c e

where

1 1 2

2

1 1sin

2 4pq pq pqb a b n

R

1 2

2

1sin cos

4pq pq pqc c c n n

R

with

1

pq p p p q q qa n n

1

pq p qb n n , 1,...,8p q

1

pq p qc n

Matrix 3 8fR

is defined by

0...0

...

0...0

][)/()/( 81 RxiRxi

f eeR

Page 78: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

62

3.11 References

[1] Librescu L. Aeroelastic stability of orthotropic heterogeneous thin panels in the vicinity of the

flutter critical boundary, Part I: Simply supported panels. J. Mec 1965; 4: 51-76.

[2] Librescu L . Aeroelastic stability of orthotropic heterogeneous thin panels in the vicinity of

the flutter critical boundary, Part II: J. Mec 1967; 6:133-152.

[3] Olson MD, Fung YC. Comparing theory and experimental for the supersonic flutter of

circular cylindrical shells. AIAA 1967; 5:1849-1856.

[4] Evensen DA, Olson MD. Nonlinear flutter of a circular cylindrical shell in supersonic flow.

NASA 1967; TN D-4265.

[5] Evensen DA, Olson MD. Circumferentially travelling wave flutter of a circular cylindrical

shell. AIAA 1968; 6: 1522-1527.

[6] Carter LL, Stearman RO. Some aspects of cylindrical shell panel flutter. AIAA 1968; 6: 37-

43.

[7] Barr GW, Stearman RO, Aeroelastic stability characteristics of cylindrical shells considering

imperfections and edge constraint. AIAA 1969; 7:912-919.

[8] Barr GW, Stearman RO. Influence of a supersonic flow-field on the elastic stability of

cylindrical shells, AIAA 1970; 8: 993-1000.

[9] Vol’mir AS, Medvedeva, Investigation of the flutter of cylindrical panels in a supersonic gas

flow. Sov Phys Dokl 1973; 17: 1213-1214.

[10] Amabili, M. Pellicano, (2001), Nonlinear supersonic flutter of circular cylindrical shells,

AIAA J.39, 564-573.

[11] Horn, W, et al. Recent Contributions to Experiments on Cylindrical Shell Panel Flutter.

AIAA Journal 1974; 12(11):1481-1490.

[12] Olson MD, Fung YC. Supersonic flutter of circular cylindrical shells subjected to internal

pressure and axial compression. AIAA 1966; 4: 858-864.

[13] Radwan H, Genin J. Non-linear modal equations for thin elastic shells. International Journal

of Non-linear Mechanics 1975; 10:15-29.

[14] Sanders, J.L. An Improved First-Approximation Theory for Thin Shell. NASA 1959; R-24.

[15] Lakis, A.A, M.P. Paidoussis. Dynamic Analysis of Axially Non-Uniform Thin Cylindrical

Shells. Journal of Mechanical Engineering Science 1972; 14(1):49-71.

Page 79: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

63

[16] H. Ashley and G. Zartarian, Piston Theory-New Aerodynamic Tool for Aeroelastician,

Journal of the Aeronautical Sciences, 23 (1956),1109-1118.

[17] W. Horn et al, Recent Contributions to Experiments on Cylindrical Shell Panel Flutter,

AIAA Journal, 12 (1974), 1481-1490.

[18] E.H. Dowell, Flutter of Infinitely Long Plates and Shells, Part I, AIAA Journal, 4(1966),

1510-1518.

[19] E.H. Dowell, Aeroelasticity of Plates and Shells, Noordhoff International Publishing,

Leyden, 1975.

[20] A. Selmane, and A.A. lakis, Non-Linear Dynamic Analysis of orthotropic Open Cylindrical

Shells Subjected to a Flowing Fluid, Journal of Sound and Vibration, 202(1997), 67-93.

[21] M. Amabili, F. Pellicano, M.P. Paidoussis, Non-linear vibrations of simply supported circular

cylindrical shells coupled to quiescent fluid, J. Fluids Struct. 12(1998), 883-918

Page 80: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

64

CHAPITRE 4: ARTICLE 3 - EFFECT OF GEOMETRIC AND FLUID

FLOW NONLINEARITIES ON CYLINDRICAL SHELLS SUBJECTED TO

A SUPERSONIQUE FLOW

Submitted, 07 June 2012 to International Journal of Numerical Methods and Applications

Redouane Ramzi and Aouni Lakis

4.1 Abstract

An analytical model incorporating a combination of the finite element method, Sanders-Koiter

nonlinear shell theory and third-order piston theory is presented in this paper to study the

influence of nonlinearities associated with structure geometry and supersonic fluid flow on the

dynamic and flutter instability behavior of thin anisotropic cylindrical shells. The shell is

subdivided into cylindrical finite elements and the displacement functions are derived from exact

solutions of Sander’s equations for thin cylindrical shells. These functions are treated using the

finite element method, which is developed to determine the linear and nonlinear mass and

stiffness matrices of the structure. The internal and external pressure and axial compression are

taken into account. All expressions of founding matrices are determined by exact analytical

integration. By applying the nonlinear dynamic pressure, which represents the effect of

nonlinearities of supersonic fluid flow on cylindrical shells, the linear and nonlinear matrices for

stiffness, damping and coupling are found. The nonlinear equation of motion is then solved using

a fourth-order Runge-Kutta numerical method. Nonlinear vibrations are determined with respect

to the amplitude of vibrations and thickness ratio for different cases. This approach leads to the

development of a powerful model capable of predicting linear, nonlinear vibrations and flutter

instability of cylindrical shells subjected to external supersonic flow. One specific application of

this model is the aeroelastic design of aerospace vehicles. This research is part of a series of

current studies in the literature that tackle the effects of the nonlinearity of external supersonic

fluid flow on cylindrical shells; an area of study that has been neglected by most research to-date.

4.2 Nomenclature

a∞ Freestream speed of sound

Ai Motion amplitude

Page 81: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

65

[A] Matrix defined in Appendix

[B] Defined by Equation 11

[Cf] Aerodynamic damping matrix of fluid

[CFNL2

] Second order aerodynamic damping matrix of fluid

[CfNL3

] Third order aerodynamic damping matrix of fluid

ap,bp,cp Modal coefficients determined by equation 20

apq,bpq,cpq Coefficients determined by equations in Appendix

a(i)

pq,b(i)

pq,c(i)

pq Coefficients determined by equations in Appendix

Apq, Bpq, Cpq Modal coefficients determined by equations in Appendix

Aprs, Bprs, Cprs Modal coefficients determined by equation 19

Dprs, Eprs

Aprsq, Bprsq, Cprsq Modal coefficients determined by equation (19, 22)

Dprsq, Eprsq

D Membrane stiffness, defined by Equation 3

{ɛ} Deformation vector giving in Appendix

E Young’s modulus

[E] Matrix defined by Equation 23

{Fp} Force vector due to the aerodynamic pressure field

h Shell thickness

K Bending stiffness of shell, defined by Equation 3

[Ks] Global stiffness matrix for a shell

[k] Stiffness matrix for a shell element

[kf] Local aerodynamic stiffness matrix

[kI] Initial stiffness matrix for a shell element

[Kf] Global aerodynamic damping matrix

[KI] Global initial stiffness matrix for a shell

[KNL2

] Nonlinear stiffness matrix of second order

[KNL3

] Nonlinear stiffness matrix of third order

L Shell length

M Mach number

[Ms] Global mass matrix for a shell

Page 82: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

66

n Circumferential number

[m] Mass matrix for a shell element

N Cylindrical shell number

Nx,Nθ,Nxθ Stress resultant for a circular cylindrical shell

xN ,N Stress resultant due to shell internal pressure and axial compression

[N] Defined by Equation 10

pa Aerodynamic pressure

p∞ Freestream static pressure

pm, px Shell internal pressure and axial compression

[P] Elasticity matrix

Qx, Qθ Transverse stress resultant for a circular cylindrical shell

R Shell radius

[Rf] Matrix defined in Appendix

U Axial displacement

Ui Potential energy due to initial strain

V Circumferential displacement

W Radial displacement

x Longitudinal coordinate

δi, δj Displacement at node i and j

λj Complex roots of the characteristic equation

υ Poisson’s ratio

γ Adiabatic exponent

θ Circumferential coordinate

ρ Shell density

ρf Fluid density

ω Oscillation frequency

øxx, øxθ, øn Elastic rotations for a circular cylindrical shell

{σ} Stress vector

Page 83: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

67

4.3 Introduction

The design of modern missiles, military fighter planes, space shuttles and aerospace structures

requires a very advanced, precise and high-performance analytical method capable of

investigating the effects of various parameters that influence the reliability and control of

sensitive functional and safety systems.

These structures are composed of elements of shells and plates subjected to the effects of external

supersonic and hypersonic airflow, which create a phenomenon of dynamic instability.

Cylindrical shells also exhibit this type of aeroelastic instability, and prevention of this behavior

has become a priority in the aerospace and military industry.

The V-2 rocket was the first cylindrical shell known to have experienced the phenomenon of

flutter instability. From the moment the phenomenon was discovered, the study of dynamic

instability and flutter became crucial, especially after the introduction of Piston theory published

by Ashley and Zartarian [1]. Many authors have investigated the stability of shells in supersonic

flow using a linear model of shell and fluid flow through both theoretical and experimental

studies. Most researchers have tried to find an analytical formulation assembling various

parameters of the shell and the fluid flow to develop a predictive model of aeroelastic flutter

characteristics that may describe the reaction of cylindrical shells. Their models were based on

shell theory (linear and nonlinear Donnell thin shell theory) combined with linear and nonlinear

modeling using the piston theory for fluid-structure interaction. The equation of motion is solved

using the Galerkin method. However, the results obtained are not in agreement with those

observed experimentally [2]. After Olson and Fung [3] studied the boundary conditions and the

effects of internal pressure and axial compression, they concluded that cylindrical shells flutter

due to a low-level freestream static pressure as cited by the theory [4]. A nonlinear study to

calculate the limit cycle amplitude of cylindrical shells using four modes for the deflection of the

shell is given by Evensen and Olson [5]. They reached the same result as given in Ref [3],

indicating that flutter is a type of circumferential travelling wave. Also Dowell [6,7] analyzed the

behaviour of cylindrical shells in supersonic flow by studying various parameters of the shell and

flow. Barr and Stearman [8,9] considered the initial geometric imperfections in cylindrical shells.

They noticed that supersonic flow has no effect on the critical buckling load when a small

amount of axial load decreases the speed of the flutter. Amabili and Pellicano [10] studied the

Page 84: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

68

geometric nonlinearities of cylindrical shells in a supersonic regime based on the selection of

expansion modes. In their study [11] they apply pressure derived from nonlinear piston theory on

shells with imperfections in order to study fluid-structure interaction. They conclude that the

nonlinearity has no influence on the onset of flutter. In the literature there are several studies on

the dynamic behavior and instability of cylindrical shell flutter but these are generally either

based on linear analysis of shell and fluid flow, or nonlinearity of the shell and linearity of the

fluid flow, or a condition where both are nonlinear. The case which deals with linear analysis of a

structure subjected to nonlinear fluid flow has not yet been investigated. This current study

consists of an in-depth investigation of the nonlinear dynamic behaviour of structures and their

stability versus the nonlinearity of the fluid flow. It has helped fill the void in this specific area

and advanced the field of design and preventive control of cylindrical shell structures used under

supersonic conditions, which are often found in the aerospace industry. The structural modeling

approach using the finite element method for cylindrical shells is inspired from a Lakis and

Paidoussis study [12]. This methodology is characterized by its accuracy and rapidity with less

numerical difficulties because the displacement functions are derived directly from equations

governing the shell instead of polynomial functions. This study presents the effects of the

nonlinearities of geometry and fluid flow on the dynamic behavior of cylindrical shells under

supersonic airflow. The method is based on a combination of the finite element method, Sanders-

Koiter nonlinear theory [11, 12, 13, 16, 17, 18, 19 and 20] and nonlinear aerodynamics theory.

This method satisfies the finite element method convergence criteria [12] and provides greater

accuracy than polynomial functions, which are typically chosen for this type of analysis.

The treatment of this problem involves two steps:

1. Using linear strain-displacement, stress-strain relationships which were introduced into

Sander’s equation of equilibrium, the modal displacements describing large amplitude

vibration are derived using the developed method seen in the Radwan and Genin study

[21]. Then all the displacement functions are determined by solving the system of

equations. Following this, the linear and nonlinear mass and stiffness matrices for the

finite element are found and assembled for the complete shell.

2. From third-order piston theory [1, 22] we derive an expression for nonlinear pressure as

a function of:

Page 85: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

69

- the nodal displacement of the shell element

- a combination of nonlinear effects.

Using this nonlinear dynamic pressure, we obtain two linear matrices and four nonlinear matrices

from third-order piston theory.

4.4 Structural model development

4.4.1 Masse and stiffness matrices for linear structural model

The equations of motion of an anisotropic cylindrical shell in terms of U, V, and W (axial,

tangential and radial displacements) (Figure 4.1) are written as follows:

0),,,( ijJ PVWUL

Where ( 1,2,3)J JL are three linear partial differential equations (given in Appendix) and ijp are

elements of the elasticity matrix for anisotropic shells which is given by:

11 12 14 15

21 22 24 25

33 36

41 42 44 45

51 52 54 55

63 66

0 0

0 0

0 0 0 0[ ]

0 0

0 0

0 0 0 0

p p p p

p p p p

p pP

p p p p

p p p p

p p

For the isotropic case,

0 0 0 0

0 0 0 0

(1 )0 0 0 0 0

2[ ]

0 0 0 0

0 0 0 0

(1 )0 0 0 0 0

2

D D

D D

D

PK K

K K

K

where,

3

212(1 )

EhK

Bending stiffness,

21

EhD

Membrane stiffness

The displacement functions associated with the circumferential wave number are assumed in the

normal manner, as:

(2)

(1)

(3)

Page 86: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

70

( , ) cos

( , ) cos

( , ) sin

x

R

x

R

x

R

U x Ae n

W x Be n

V x Ce n

Figure 4.1: Finite element discretization and nodal displacement

where n is the circumferential mode,

Note that this approach treats closed cylindrical shells based on the circumferential wave number,

not on the longitudinal wave number.

Substituting (4) into the equations of motion (1), a system of three homogeneous equations, linear

functions of constants A, B, C, are obtained. For the solution to be non-trivial, the determinant of

this system must be equal to zero. This brings us to the following characteristic equation:

8 6 4 2

8 6 4 2 0Det H f f f f f

The values of coefficients if in this eighth-degree polynomial are given in Appendix.

Each root of this equation yields a solution to the linear equations of motion (1). The complete

solution is obtained by adding the eight solutions independently with constants Ai, Bi and Ci

(i = 1,2,….,8). These constants are not independent. We can therefore express Ai and Bi as a

function of Ci, as follows:

i i i

i i i

A C

B C

(4)

W

U

W

V

un

dwn/dx

wn

xj=l

xi=0

(5)

(6)

Page 87: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

71

The values of i and i can be obtained from system (1) by introducing relation (6). To

determine eight iC constants, it is necessary to formulate eight boundary conditions for the finite

elements. The axial, tangential and radial displacements will be specified for each node. The

following relation defines the element displacement vector at the boundaries:

{ } { }

CAj

i

where the elements of matrix [A] are given in Appendix.

Multiplying Eq.(8) by [A]-1

and substituting the result into Eq.(4), we obtain:

j

iN

,xW

,xV

,xU

where [N] represents the shape function matrix given in this form:

and [T], [R], [A] are described in Appendix.

The constitutive relation between the stress and deformation vector of a cylindrical shell is given

as:

j

iBP

]][[

The mass and stiffness matrices for each element are derived using the classic finite element

procedure and can then be expressed as:

(11)

1N T R A

(10)

(7)

(8)

(9)

Page 88: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

72

dA]B][P[]B[]k[

dA]N[]N[h]m[

TL

T

Where is the density of the shell, h its thickness and dA Rdxd . The matrices [m] and [k] are

obtained analytically by carrying out the necessary matrix operations over x and θ in the

equation. The global matrices sM and sK may be obtained, respectively, by assembling the

mass and stiffness matrices for each individual finite element.

4.4.2 Stiffness matrices for nonlinear structural model

The coefficients of the modal equations are obtained using the Lagrange method in the same way

developed by Radwan and Genin [21], paying attention to geometric non-linearities. Following

this, the second and third non-linear stiffness matrices corresponding to geometric non-linearities

are computed and superimposed on the linear system.

Shell displacements (u, v, w) are expressed as sums of generalized product coordinates iq t and

spatial functions U, V, W (see Eq. (4)).

,

,

,

i i

i

i i

i

i i

i

u q t U x

v q t V x

w q t W x

The deformation vector is written as a function of the generalized coordinates by separating the

linear part from the non-linear part.

, ,2 , , ,2T

L NL xx x xx x

Where subscripts ``L`` and ``NL`` mean ``linear`` and ``non-linear``, respectively, and L and

NL are defined in Appendix.

(12)

(13)

(14)

Page 89: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

73

The Lagrange’s equations of motion in generalized coordinates iq t are found using Hamilton’s

principle and Eq. (13):

iiii

Qq

V

q

T

q

T

dt

d

where T is the total kinetic energy, V is the total elastic strain energy of deformation and the iQ ’s

are the generalized forces.

Using the vector deformation given by (14), the developed formulation for total kinetic and strain

energy and inserting these into the Lagrange equation (15), the following non-linear modal

equations are obtained after a long development of equations:

( ) ( 2) ( 3) 0

1,2,....

L NL NL

pr r pr r prs r s prsq r s q

r r r s r s q

m k k k

p

where prm , L

prk are terms of the mass and linear stiffness matrices given by Equation (12).

The terms )NL(

prsk 2 and

)NL(prsqk

3 represent the second and third-order non-linear stiffness and

are given by the following integrals for the case of an isotropic closed cylindrical shell:

dACp)ED(pBpApK prsprsprsprsprs)NL(

prs 331222112

and

( 3)

11 22 12 33( )NL

prsq prsq prsq prsq prsq prsqK p A p B p D E p C dA

Where dA Rdxd , ijp are the terms of the elasticity matrix [P], and the terms

Aprs,Bprs,Cprs,Dprs,Eprs and Aprsq,Bprsq,Cprsq,Dprsq,Eprsq represent the coefficients of the modal

equations. These coefficients are given by the following equations:

(15)

(16)

(17)

(18)

Page 90: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

74

Aprs=ap Ars+ar Asp+as Apr Aprsq=2Apq Ars

Bprs=bp Brs+br Asp+bs Bpr Bprsq=2Bpq Brs

Cprs=cp Crs+cr Csp+cs Cpr Cprsq=2Cpq Crs

Dprs=ar Bsp+as Bpr+bp Ars Dprsq=2Apq Brs

Eprs=br Asp+bs Apr+as Brs Eprsq=2Bpq Ars

with;

ap = Up,x , bp= 1/R ( Vp,θ + Wp ), cp= 1/2 ( Up,θ / R + Vp,x )

Apq =1/8 R2 ( R Vp,x – Up,θ ) . ( R Vq,x – Uq,θ ) + 1/2 Wp,xWq,x

Bpq = 1/8 R2 ( R Vp,x – Up,θ ) . ( R Vq,x –Uq,θ ) + 1/2 R

2 ( Wp,θ - Vp ) . ( Wq,θ - Vq )

Cpq = 1/4 R ( Wp,x Wq,θ – Wq,x Wp,θ ) – 1/4 R ( Vp Wq,x + Vq Wp,x )

Where U, V and W are spatial functions determined by Equation (4).

In Equations (16) - (20), the subscripts ‘p,q’, ’p,r,s’ and ‘p,r,s,q’ represent the coupling

between two, three and four modes, respectively.

Let us illustrate the development of the expression for the (p,q) term of matrices Apq and Apqrs.

The expression Apq is given by:

/p q x R

pq pqA a e

and Apqrs is:

8 8( ) /

1 1

p r s q x R

prsq rs pq rs

r s

A a a e

rs is the term (r,s) of matrix [E],where [E] represents a matrix of constants defined by

1T

E A A , and

(19)

(20)

(21)

(22)

(23)

Page 91: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

75

1 22 2

2

1 1sin cos

2 4pq pq pqa a n a n

R

with

1

pq p p p q q qa n n

2

pq p qa

Similarly, the matrices [Bpq]… [Eprsq] can be written as a function of α, β, λ, x and θ. The (p, q)

terms of these matrices are described in Appendix. For details of the basis of the presented

method, consult reference [21].

After integration, we obtain:

2 21 1TNL NL

prsk A J A

3 31 1

28

TNL NL

prsqk A J AR

The (p,q) term in matrix 2

,

NL

p qJ

and 3

,

NL

p qJ

are written as:

8 8

1 1

2

8 8

1 1

1 , 1

0,

1 ,

0

p q rsr R

l s p q r

NL p q r

sr

k l

p q r

G p q e

ifJ p q

G p qR

if

and

(24)

(25)

(26)

(28)

(29)

(27)

Page 92: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

76

8 8

1 1

3

8 8

1 1

2 , 1

0,

2 ,

0

p q r ssr R

k l p q r s

NL p q r s

sr

k l

p q r s

G p q e

ifJ p q

G p qR

if

where G1(p,q) and G2(p,q) are coefficients in conjunction with α, β, λ and elements pij in matrix

[P]. The general expressions of G1(p,q) and G2(p,q) are given by :

1 1 1 1 1 11 1 1

11 1

1 2 1 2 1 21 1 1

11 2

1 2 1 2 1 21 1 1

22 1

1 1 1 1 1 11 1 1

33 1

1 11

12 1

G1(p,q) = p rs r sp s pr

p rs r sp s pr

p rs r sp s pr

p rs r sp s pr

r sp

p II a A a a A a a A a

p II a A a a A a a A a

p II b A b b A b b A b

p II c A c c A c c A c

p II a A b

1 1 1 11 1

1 21

12 2

1 1 1 1 1 11 1 1

12 1

1 2 1 21 1

12 2

s pr p rs

p rs

r sp s pr p rs

r sp s pr

a A a b A a

p II b A a

p II b A a b A a a A b

p II b A a b A a

where,

3

1

sin 2

3

nII

2

2

sin(2 )(2 cos (2 ))

3

n nII

n

and

(30)

(31)

(32)

(33)

Page 93: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

77

1 1 2 2 1 1

11 22 12 11 22

2 1 1 2 2 1 1 2

12 11 12

1 1 1 1

12 22

1 1 2 2 2 1 1 2

33

32( , ) 2 3

16

1

4

3

4

1

4

pl kq pl kq pl kq

pl kq pl kq pl kq pl kq

pl kq pl kq

pl kq pl kq pl kq pl kq

G p q p p p a a p a a p b b

p a b b a p p a a a a

p p a b b a

p c c c c c c c c

where the terms 1

a and

2a are given by Equations (25-26). Terms b

(1)…, c

(1)…and c

(2) are

coefficients appearing in expressions for the elements of matrices [Bpq] and [Cpq] defined in

Equations (20). These coefficients are given in Appendix.

4.5 Initial stress matrix

The potential energy is given as

dxRdNNNNUl

nxxxxi

0

2

0

222 )(2/1

where;

RpN

R

pN

m

xx

2

xN , N are stress resultants due to shell internal pressure mp and axial compression xp

respectively, l is the element length, is about the normal to the x plane, xx is the strain

rotation about x , and n is the rotation about the normal to a shell element.

This rotation vector is expressed as [14],

)1

(2

1

)(1

x

VU

R

WV

R

x

W

n

xx

(34)

(35)

(37)

(36)

Page 94: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

78

Upon insertion of displacements (U,W,V) given in Equation (8), the potential energy is rewritten

in terms of the nodal degrees of freedom, which leads to the initial stiffness matrix for each

element in the following form:

dxRdNC

NN

N

N

CNkl

TT

x

x

TT

I

0

2

000 ][][

00

00

00

][][][

where;

xR

R

x

C

2

10

2

1

01

0

00

][ 0

4.6 Aerodynamic model development

The pressure on the body surface is approximated by the pressure experienced by a piston

moving in the flow with a velocity equivalent to the superposition of the velocity due to the

changing of body shape and the velocity due to the rigid-body motion of the body [1, 22].

12

211

/

a/

p

p

where;

p is the aerodynamic pressure,

p∞ is the freestream static pressure,

γ is the adiabatic exponent,

a∞ is the freestream speed of sound

ω is the velocity of the piston.

The piston velocity ω is given by:

(40)

(39)

(38)

Page 95: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

79

x

WU

t

W

is the freestream velocity and W is the radial displacement.

Considering the linear terms in the binomial expansion of Equation (40), we obtain:

2

3

1 1 1

4

1 1

12

a

W W W WM M

x a t x a tp p

W WM

x a t

The form of the radial displacement assumed is the same as that considered by Lakis and

Paidoussis in [12]:

8

1

8

1 j

j

j

)tR

x(i

W)ncos(eWj

where; j is the j

th root of the characteristic equation, is the natural angular frequency and n

is the circumferential wave number.

Substituting Eq. (43) into Eq. (42), we obtain the equation for the aerodynamic pressure on the

cylindrical shell wall:

333

1 1 3 1

2223

1

2

1 1

12

1

4

i i ij j

a f f f

j jj

i ij

f

j j

i ip p M T R A T R A M T R A

R a R

MT R A

a R

2 3

3 31 1

2 3

1 1

4 12

i i ij

f f

j j j

iMT R A T R A

Ra a

Then the damping and stiffness for fluid flow are obtained by substituting Equations (9) and (44)

into the integral (45),

[ ] { }T

p aF N p dA

The linear matrix of aerodynamic damping [Cf] and stiffness matrix [Kf] are given as follows

(42)

(45)

(43)

U

(41)

(44)

Page 96: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

80

1 1T

f fC A D A 1 1

33

T

f fnlNLC A D A

1 1

T

f fK A G A 1 1

33

T

f fnlNLK A G A

2 1 1

331

T

f f fnlNLK C A H A

2 1 1

332

T

f f fnlNLK C A H A

where ,

dxRRrPa

Dl

fT

f

0

dxRRrMPr

iG f

lTj

f

0

where fD , fG , 3fnlD , 3fnlG , 31fnlH , 32 fnlH are given in Appendix.

4.7 Nonlinear numerical analysis

The motion of a cylindrical shell subjected to an external supersonic flow is governed by the

equation of motion which may be presented as follows:

2 3 3 2

3 3 2( 2)

2

i i i i i i i iL L L NL NL NL NLNL

s f f f f

j j j j jj j j

NL NL

f f

M C K K K K K C

K C

2 3

30

i i iNL

f

j j j

C

where subscripts s and f refer to the shell in vacuo and in fluid flow respectively, and is the

degrees of freedom vector for the total nodes.

Further useful expressions are:

L L

s I fK K K K

(50)

(51)

(48)

(49)

(47)

(46)

Page 97: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

81

dxRdNC

NN

N

N

CNK TT

x

xl

TTI

0

0

2

0

0

00

00

00

T

sK B P B dA

1 1T

L

f fK A G A

where

T Tk

f f

iG p M R T T R dA

R

Let us set:

q

where represents the square matrix for eigenvectors of the linear system and q is a time-

related vector. Substituting Equation (55) into system (50) and pre-multiplying the whole

equation by T

, we obtain;

2 32 3

3 23 2

2 32 30

D D D T TL L L NL NL

s f

T TNL NL

f f f

T TNL NL

f f f

M q C q K q K q K q

K q K C q q

K C q q C q

where;

D TL L

s sM M

, D TL L

f fC C

, D TL L

K K

D denotes diagonal, and the matrices quantifying the fluid contribution to the matrix equations of

motion are non-symmetric. To facilitate the analysis, therefore, we consider only the symmetric

portion of the matrices. This simplifying hypothesis is valid since the original and simplified

systems have comparable dynamic behavior.

(52)

(54)

(55)

(56)

(57)

(53)

Page 98: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

82

By neglecting the cross-product in 2

q …of Equation (56), we obtain;

2 3 3 2 2 32 3 3 2 2 3

1

0NREDUC

Lf L NL NL NLf NLf NLf NLf

ii i ii i ii i ij j ij j ij j ii ij j j ii ij j j ij j

j

m q c q k q K q K q K q K C q q K C q q C q

Here we have ‘‘NREDUC’’ simultaneous equations of the form of Equation (58).

At first, we limit ourselves to solving Equation (56) by taking into account only the diagonal

terms of the products 22T NL

K

and 33T NL

K

, therefore Equation (58) is written

in this form:

2 3 3 2 2 32 3 3 2 2 3 0L L NL NL NLf NLf NLf NLf

ii i ii i ii i ii i ii i ii i ii ii i i ii ii i i ii im q c q k q K q K q K q K C q q K C q q C q

Setting

i i iq A f

with 10 if and 00 if

Equation (59) becomes, after the iA simplification and dividing by iim ,

2 2

2 2 3 3

2 2

2 2 2

2 2 3

2 2 20

i i i

ii i i i i i i i i i i

i i i

i i i i i i i i

A A Af f f f f f

t t t

A A Af f f f f

t t t

where;

ii

L

iii

m

c ;

ii

L

iii

m

k2 ;

2NL

ii

i

ii

Kt

m ;

3

2

NL

ii

i

ii

Kt

m ;

3

2

NLf

ii

i

ii

Kt

m ;

2

2

NLf

ii ii

i

ii

K Ct

m ;

2

2

NLf

ii ii

i

ii

K Ct

m ;

3

2

NL

ii

i

ii

Ct

m

and t represents the shell thickness. The square root of coefficient /ii iik m represents the ith

linear

vibration frequency of system. The solution if of these ordinary nonlinear differential

equations which satisfies the initial conditions (60) is approximated by a fourth-order Runge-

Kutta numerical method. The linear and non-linear natural angular frequencies are evaluated

(61)

(59)

(60)

(58)

(62)

Page 99: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

83

using a systematic search for the if roots as a function of time. The /NL L ratio is expressed

as a function of the non-dimensional ratio /iA t , where iA is the vibration amplitude.

4.8 Calculation and Discussion

The influence of nonlinearities associated with the wall of the shell and with supersonic fluid

flow on closed cylindrical shell vibrations is expressed by Equation (59). For a given set of shell

characteristics, we first present results for convergence of the model and the ratio Wnl/Wl of linear

and nonlinear frequency is graphically represented with respect to the non-dimensional ratio Ai/t.

The shell and flow properties are given by:

6 10 2

2 4 3

16 10 / (11 10 / )

0.35

0.0040 (0.0001015 )

15.4 (0.381 )

8.00 (0.203 )

0.000833 / (8900 / )

3.00

8400 / (213 / )

s

E lb in N m

h in m

L in m

R in m

lb s in kg m

M

a in s m s

4.8.1 Convergence of the method for different modes

A first calculation was focused on determining the required number of finite elements for a

precise determination of results, which is very important in finite element analysis. Calculations

were made for a closed circular cylindrical shell subjected to supersonic flow for the number of

finite elements N = 2, 4, 6, 8...25. The shell is simply supported at both ends. The results for n =

23 and for m = 1, 2 and 3, are shown in Figure 4.2. Convergence of natural frequency is reached

for 20 elements.

Page 100: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

84

Figure 4.2: Naturel frequency vs Number of elements

4.8.2 Onset of flutter predictions for cylindrical shells subjected to a

supersonic flow

Figure 4.3 shows the eigenvalues associated with the longitudinal modes and n = 23 (critical

circumferential wave number) versus freestream static pressure p∞, knowing that the real part of

the eigenvalues gives the oscillation frequency and the imaginary part gives the damping for

positive values and instability for negative values. Flutter starts where the imaginary parts cross

the zero and become negative. It is seen that the shell loses stability at pcr = 0.75 psi, which is

called the critical freestream static pressure. This instability is known as coupled-mode flutter.

220

240

260

280

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

1st mode

2nd mode

3rd mode

Number of elements

Fre

qu

ency

(H

z)

Page 101: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

85

Figure 4.3: a) Real part and b) Imaginary part of eigenvalues of the system

vs freestream static pressure p∞, n = 23, pm = 0.5 psi, px = 0.0 psi.

4.8.3 Validation of model

In Figure 4.4, validation of our model is shown based on the effects of both geometric

and supersonic flow nonlinearities which are modeled by a combination of the Koiter-

Sanders nonlinear theory for large amplitude vibrations of circular cylindrical shells and third-

order of piston theory for describing fluid-structure interaction in supersonic regime. This results

show good agreement between the study developed in this paper and Olson research [3]. These

results also show that the variation ratio of the nonlinear frequency and linear frequency with

respect to increasing of the mean amplitude of the first longitudinal mode (m=1) coincide for first

order piston theory (linear) and third order Piston theory (nonlinear). This reveals that the effect

of the nonlinearity of supersonic flow is negligible compared to the effect of geometric

nonlinearity of circular cylindrical shells subjected to supersonic flow. It is also noted

that the nonlinearity is always the softening type, a result which is in quite good agreement with

previously published work.

548

549

550

551

552

553

554

555

556

557

558

0 0,2 0,4 0,6 0,8 1 1,2

Freestream Static Pressure (psi)

Rea

l ei

gen

val

ue

(Hz)

-1

0

1

2

3

4

5

6

7

8

0 0,2 0,4 0,6 0,8 1

Freestream Static Pressure (psi) Im

agin

ary e

igen

val

ue

(Hz)

Page 102: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

86

Figure 4.4: Flutter frequency vs amplitude, pec=0.66 psi.

4.8.4 Effect of circumferential wave mode

Two circumferential wave numbers n = 23 and n = 24 are considered in this section for studying

the effect of circumferential mode on the flutter frequency and flutter amplitude for the same

physical and mechanical data of the closed circular cylindrical shell described in the previous

sections. On one hand, Figure 4.5 shows a more pronounced variation of flutter amplitude versus

flutter frequency at n =24. On the other hand, no difference is observed between linear (1storder)

and nonlinear (3rd order) modeling for both circumferential modes in this study. The same

behavior is observed for other circumferential modes.

0

0,2

0,4

0,6

0,8

1

1,2

0,96 0,97 0,98 0,99 1 1,01

Olson

linear piston

nonlinear Piston

Nondimensional flutter frequency, Wnl/Wl

Mae

n a

mp

litu

de

of

firs

t m

od

e, A

Page 103: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

87

Figure 4.5: Amplitude flutter vs frequency flutter at n=23 and n=24.

4.8.5 Effect of internal pressure

Circular cylindrical shells subjected to internal pressure are analyzed here. The goal is to

determine how nonlinear behavior changes the onset of flutter, taking into account the effect of

linear or nonlinear supersonic flow. Figure 4.6 shows that curves illustrating the response of

two linear and nonlinear approximations of the onset of flutter (characterized by pcr =0.75 psi )

coincide. This means that the effect of the nonlinearity of supersonic flow is still negligible at the

critical pressure value (at which the flutter begins).

It is also seen that, due to the internal pressure, the frequency ratio does not change as the

variation in flutter amplitude increases. However, at a larger value of fluid pressure

pec = 2.0 psi, variation of flutter amplitude is smaller, and the nonlinear frequency tends toward

the value of the linear frequency. This demonstrates the stabilizing effect of internal pressure

during the flutter of circular cylindrical shells. The same results were observed in my previous

studies on linear flutter in the supersonic regime and also in Amabili [10], and Olson and Fung

[3].

0

0,5

1

1,5

2

2,5

0,93 0,94 0,95 0,96 0,97 0,98 0,99 1 1,01

n=24 , linear Piston

n=24, nonlinear Piston

n=23, linear Piston

n=23, nonlinear Piston

Nondimensional flutter frequency, Wnl/Wl

Flu

tter

am

pli

tud

e, A

/t

Page 104: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

88

Figure 4.6: Effect of internal stress during the flutter, n=25, pec =0.75 psi.

4.8.6 Effect of supersonic flow regimes in flutter of circular cylindrical shells

Figure 4.7 shows a comparison between unpressurized circular cylindrical shells under different

conditions: empty shells (no fluid flow), linear supersonic flow and nonlinear supersonic flow.

A gradual decrease of the flutter frequency as flutter amplitude increases is very evident in the

case of nonlinear supersonic flow compared to the other cases. The nonlinear effect of the

supersonic flow is almost constant (Wnl / Wl = 1). This expresses that the fluid plays its usual

role of vibration damping for different amplitudes of wall movement for the cylindrical panels.

0

0,5

1

1,5

2

2,5

0,92 0,94 0,96 0,98 1 1,02

1st order,pm=0,pec=0.75psi

3rd orde, pm=0.5psi

3rd order, pm=0

3rd order, pm=0, pec=2.0 psi

Nondimensional flutter frequency, Wnl/Wl

Flu

tter

am

pli

tud

e ,

A/t

Page 105: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

89

Figure 4.7: Flutter amplitude vs frequency flutter for different L/R.

4.8.7 Nonlinear flutter behavior for different longitudinal modes

Figure 4.8 presents the behavior of nonlinear flutter for circular cylindrical shells subjected

to supersonic fluid flow at different longitudinal wave numbers m = 2, ..., 7. It is seen that each

curve corresponds to two longitudinal modes because the flutter phenomenon is created by the

coalescence of the real parts of successive complex frequencies of two modes. This was seen

in Figure 4.3a, and can be predicted by linear analysis of cylindrical shells in the supersonic

regime. It can also be predicted by nonlinear analysis using the model presented in this paper.

Furthermore the nonlinearities are of the softening type, and the trend of the curves is the same

for all three cases of flutter considered in this study, including a slightly

pronounced deviation for the case m = 2,3 at high values of vibration amplitude.

0

0,5

1

1,5

2

2,5

0 0,2 0,4 0,6 0,8 1 1,2

without flow

1st order Piston theory

3rd Piston theoryF

lutt

er a

mp

litu

de

, A

/t

Nondimensional flutter frequency, Wnl/Wl

Page 106: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

90

Figure 4.8: Flutter amplitude vs flutter frequency for different longitudinal modes

4.9 Conclusion

The method developed in this paper demonstrates the influence of geometric nonlinearity

associated with the wall of the shell and nonlinear supersonic fluid flow (3rd

order of Piston

theory) on the frequency and amplitude of flutter of closed cylindrical shells subjected to external

supersonic flow. It is a hybrid method based on Sanders-Koiter nonlinear thin shell theory, and

nonlinear aerodynamic piston theory and the finite element method. The method combines the

advantages of finite element analysis which deals with complex shells, and the precision of a

formulation in which the use of displacement functions derived from shell and fluid theories

allows fast and efficient convergence of the calculations. The results show better agreement with

experimental and theoretical results published in the literature. The numerical results provide the

nonlinear behaviors for circular cylindrical shells subjected to supersonic flow beyond the onset

of flutter. These results cannot be determined by linear analysis. Several parameters that are

dependent on geometry and fluid flow are studied, and in all cases nonlinearity of the softening

type is dominant. Mild flutter instability and the stabilizing effect of internal pressure has been

0

0,2

0,4

0,6

0,8

1

1,2

0,975 0,98 0,985 0,99 0,995 1 1,005

m=2,3

m=6,7

m=4,5

Nondimensional flutter frequency, Wnl/Wl

Flu

tter

am

pli

tud

e ,

A/t

Page 107: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

91

demonstrated. The effect of geometric nonlinearities associated with the walls is non-negligible

and should be taken into account when calculating the nonlinear flutter of a shell-fluid flow

system. In contrast the nonlinearity of supersonic fluid flow can be neglected when the amplitude

of vibration is larger than the thickness of the shell.

Page 108: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

92

4.10 Appendix

Sander’s linear equations for thin cylindrical shells in terms of axial, tangential and

circumferential displacements are

- The coefficients of characteristic Equation (5) are given by

2928 11 44 14

22 2 2 2

26 9 1 44 11 45 11 66 5 14 7 11 44 14 11 11 3 44 3 11 14

9 11 24 14 12

42

24 1 7 44 9 11 55 45 66 1 9 7 11 3 25 55 3 14 11 11

2 4 2 2

2

12 4 . 2 2

ff p p p

r

nf f f p p p p p f rp f p p p r f p f p rf f pr

f p p p pr

nf f f p f p p p p f f f p f p p f p f p rrr

2 2

11 3 5 1 11 5 7 14 5 9 25 22 3 14 11 11

2 2

12 5 9 7 14 3 11 24 3 1 9 7 11 9 11 25 9 11 22 12

6 2 2 2 2

2 7 45 66 55 1 9 7 11 3 5 7

25 55 1 11

(2 ) (2 ) ( ). 2

2 2 2

2 4

1 . 2 2

f r f f f f rf f p rf f n r p rp f r p f p

p f f r f p f f r p f f f f p f p p f p p p

f n r f p p p f f f p f r f f

p r p rf f rf

3 5 11 25 11 55

4 2

1 7 24 25 1 9 7 11 3 12 5 7 3 25 3 55

2

25 22 1 11 11 25 11 55 3 5

2 2 2

22 1 9 7 11 3 25 22 11 25 11 22 3 12 7 12

4

0 1 7 22

1

2 2 2

2 1 1

1 1 2

2

f p p r p p

n r f f p p f f f p f p rf f f p f r p

p rp f f r p p r p p f f

n p f f f p f r p rp r p p p p f p f p

f n f f p r n

2

2 4 2 2 3

25 55 1 25 55 25 221p n r p n f n r p r p n r p rp

2 2 2 3 3 2 2 2

15 33 63121 11 142 2 3 2 2 2 2

3 2 2

36 66

2 3 2 2

2

5121 22 2

1( , , , ) ( ) ( ) ( )( )

2

3 1( )( 2 )

2 2 2

1( , , , ) ( ) (

ij

ij

P P PPU U V W W W V V UL U V W P P P

x R x x x x R x x R R x R

P P W V U

R R x x R

PP PUL U V W P

R R x R

2 3 3 2

52 54 25 552 24

2 2 2 2 2 2 3 2

2 2 3 2 2

63 6633 362 2 2

3 3 2

423 41 43 2 2

1)( ) ( ) ( )( )

3 31 3 1( )( ) ( )( 2 )

2 2 2 2

( , , , ) ( )ij

P P P PPV W W W V

R R R R x R R R

P PV U W V UP P

R x R x R R x x R x

PU V WL U V W P P P

x R x x

4 4 3 3 3

45 634 4 2 2 2 2 2 2

4 3 3 3 3 2 4 3

66 51 52 55

2 2 2 2 2 2 2 3 3 2 4 4 3

4

5421 22

2 2 2 2

2 1( ) ( )

2 3 1( 2 ) ( ) ( )

2 2

( )

P PW W V U V

x R x x R R x x

P P P PW V U U V W W V

R x x R x R x R R

PP PU W VW

R x R x R

2 2

2524

2 2 3 2( )

PP W W V

R R

Page 109: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

93

where;

2

1 33 36 66

2

3 12 33 15 36 66

5 15 36 66

2

7 22 55 25

2

9 33 36 66

11 36 24 66 54

4

3 4

2

2

3 9 4

2 3 /

f p p R p R

f p p p p R p R

f p p p R R

f p p R p R

f p p R p R

f p p p R p R R

- Matrices 33][ T , 83][ R , and 88][ A are defined as

/ / /

/

/ / /

cos( ) 0 0

[ ] 0 cos( ) 0

0 0 sin( )

(1, ) , (2, ) , (3, ) 1,2,...,8

(1, ) , (2, ) 1, (3, ) , (4, ) , (5, )

(6, ) , (7, ) , (8, )

i i i

i

i i i

x R x R x R

i i

l Rii i i

l R l R l Rii

n

T n

n

R i e R i e R i e i

A i A i A i A i A i eR

A i e A i e A i e iR

1,2,...8

- Matrix 3 8fR

is defined by;

0...0

...

0...0

][)/()/( 81 RxiRxi

f eeR

Page 110: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

94

- Expressions L and NL for cylindrical shells are given by:

2

2

2

2 2

2

2

1

1

1

2 3 1

2 2

L

U

x

VW

R

V U

x R

W

x

W V

R

W V U

R x R x R

and

2 2

2 2

2

1 1 1

2 8

1 1 1

2 8

1

2

0

0

0

NL

W V U

x x R

W V UV

R x R

W W WV

R x x

- Matrices pqB and pqC

/p q x R

pq pqB b e

/p q x R

pq pqC c e

Page 111: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

95

where;

1 1 2

2

1 1sin

2 4pq pq pqb a b n

R

1 2

2

1sin cos

4pq pq pqc c c n n

R

with;

1

pq p p p q q qa n n

1

pq p qb n n , 1,...,8p q

1

pq p qc n

- Matrices for Equations (46-47)

T T

f f

pD R T T R dA

a

T Tk

f f

iG p M R T T R dA

R

3

33

3 3

1

12

T Tkfnl f

iG M R T T R dA

R

33

3

3 3

11

4

T Tkfnl f

iMH R T T R dA

a R

3

3 2

12

4

T Tkfnl f

iMH R T T R dA

a R

3

3 3

1 1

12

T T

fnl fD R T T R dAa

Page 112: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

96

4.11 References

[1] H. Ashley and G. Zartarian, Piston Theory-New Aerodynamic Tool for Aeroelastician, Journal

of the Aeronautical Sciences, 23 (1956),1109-1118.

[2] W. Horn et al, Recent Contributions to Experiments on Cylindrical Shell Panel Flutter, AIAA

Journal, 12 (1974), 1481-1490.

[3] M.D. Olson and Y.C. Fung, Supersonic Flutter of Circular Cylindrical Shells Subjected to

Internal Pressure and Axial Compression, AIAA Journal, 4(1966), 858-864.

[4] M.D. Olson and Y.C. Fung, Comparing Theory and Experiment for Supersonic Flutter of

Circular Cylindrical Shells, AIAA Journal, 5(1967), 1849-1856.

[5] D.A. Evensen and M.D. Olson, Nonlinear Flutter of a Circular Cylindrical Shell in

Supersonic Flow, NASA TND - 4265, 1967.

[6] E.H. Dowell, Flutter of Infinitely Long Plates and Shells, Part I, AIAA Journal, 4(1966),

1510-1518.

[7] E.H. Dowell, Aeroelasticity of Plates and Shells, Noordhoff International Publishing, Leyden,

1975.

[8] G.W. Barr and R.O. Stearman, Aeroelastic Stability Characteristics of Cylindrical Shells

Considering Imperfections and Edge Constraint, AIAA Journal, 7(1969), 912-919.

[9] G.W, Barr and R.O. Stearman, Influence of a Supersonic Flow-field on the Elastic Stability of

Cylindrical Shells, AIAA Journal, 8(1970), 993-1000.

[10] M. Amabili, and F. Pellicano, Nonlinear Supersonic Flutter of Circular Cylindrical Shells,

AIAA Journal, 39(2001), 564-573.

[11] M. Amabili and F. Pellicano, Multimode Approach to Nonlinear Supersonic Flutter of

Imperfect Circular Cylindrical Shells, Journal of Applied Mechanics, Transactions ASME,

69(1976), 423-435.

[12] A.A. Lakis and M.P. Paidoussis, Dynamic Analysis of Axially Non-Uniform Thin

Cylindrical Shells, Journal of Mechanical Engineering Science, 14(1972), 49-71.

[13] M. N. Bismarck-Nasr, Finite Element Method Applied to the Supersonic Flutter of Circular

Cylindrical Shells, International Journal for Numerical Methods in Engineering, 10(1976), 423-

435.

Page 113: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

97

[14] D.A. Evensen, Nonlinear flexural vibrations of thin-walled circular cylinders, NASA

Technical Note, Langley Research Center, NASA- TN D-4090,1967.

[15] D.A. Evensen, Nonlinear vibrations of an infinitely long cylindrical shell. American Institute

of Aeronautics and Astronautics Journal. 6(1968), 1401-1403.

[16] F. Sabri and A.A. Lakis, Finite Element Method Applied to Supersonic Flutter of Circular

Cylindrical Shells, AIAA Journal, 48 (2010), 73-81.

[17] A. Selmane, and A.A. lakis, Non-Linear Dynamic Analysis of orthotropic Open Cylindrical

Shells Subjected to a Flowing Fluid, Journal of Sound and Vibration, 202(1997), 67-93.

[18] A.A. Lakis and A. Laveau, Non-Linear Dynamic Analysis of Anisotropic Cylindrical Shells

containing a Flowing Fluid, International Journal of Solids and Structures, 28(1991),1079-1094.

[19] J.L. Sanders, An Improved First-Approximation Theory for Thin Shell, NASA R-24, 1959.

[20] M.H. Toorani, and A.A. Lakis, General equations of Anisotropic Plates and Shells Including

Transverse shear Deformations, Rotary Inertia and Initial Curvature Effects, Journal of Sound

and Vibration, 237(2000), 561-651.

[21] H.R. Radwan and J. Genin, Non-linear vibrations of thin cylinders. Journal of Applied

Mechanics, 43(1976), 370-372.

[22] H. Krumhaar, The Accuracy of Linear Piston Theory When Applied to Cylindrical Shells,

AIAA Journal, 1(1963), 1448-1449.

[23] R. Rougui and F. Moussaoui and R. Benamar, Geometrically non- linear free and forced

vibrations of simply supported circular cylindrical shells: A semi-analytical approach,

International Journal of Non-linear Mechanics. 42(2007), 1102-1115.

[24] M. Amabili, F. Pellicano, M.P. Paidoussis, Non-linear vibrations of simply supported circular

cylindrical shells coupled to quiescent fluid, J. Fluids Struct. 12(1998), 883-918

[25] M. Ganapathi and T.K. Varadan, Large amplitude vibrations of circular cylindrical shells,

Journal of sound and vibration, 192(1996), 1-14.

Page 114: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

98

CHAPITRE 5 : DISCUSSION GÉNÉRALE

Cette étude représente l’analyse de flottement et la vibration non linéaire des coques cylindriques

circulaires vides et soumises à un écoulement supersonique. L’étude des différentes coques

analysées dans la littérature, aux nombres d’onde circonférentielle faible ou élevée, nous a permis

de savoir exactement le comportement complet de ces structures et de clarifier le désaccord entre

les chercheurs dans ce domaine d’aéroélasticité. Plusieurs paramètres ont été analysés à

différentes conditions limites et modes axiaux. Dans tous les cas, on a conclu que le degré de la

non-linéarité dépend de l’épaisseur, du rayon, de la longueur et des modes circonférentiels et

axiaux considérés. Le type de non-linéarité (Softening ou Hardening) est déterminé par un

paramètre nommé le rapport d’aspect.

Dans le cas où les coques cylindriques circulaires sont soumises à l’écoulement supersonique, le

modèle développé se consacre à la combinaison de la non-linéarité des coques (grandes

amplitudes de vibration des parois) analysées largement dans le premier article et l’écoulement

supersonique externe sous sa forme linéaire. Les résultats numériques fournissent le

comportement linéaire de ce type de panneaux pour différentes conditions limites et prédisent le

début du flottement et aussi le comportement non linéaire au-delà du début du flottement

caractéristique qui ne peut être prélevé par une analyse linéaire. Plusieurs paramètres dépendant

de la géométrie de la coque et de l’écoulement du fluide sont analysés. La non-linéarité la plus

dominante est de type softening et une faible instabilité de flottement est détectée, l’instabilité

dynamique est produite sous forme de flottement de modes couplés. La pression interne entraine

une stabilisation des coques et retarde le flottement en comparaison des cas de coques soumises à

aucune pression interne. Dans la dernière partie, on a essayé d’analyser l’effet des non-linéarités

de la structure et de l’écoulement supersonique du fluide afin de présenter une étude complète et

profonde non linéaire de ce type de structure. Le même type de non-linéarité, effet stabilisant de

la pression interne, et l’instabilité de flottement légère ont été remarqués sur tous les résultats

trouvés, aucune différence dans la variation des paramètres testés n’a été observée avec la

considération de la non-linéarité de l’écoulement supersonique du fluide exprimée par l’équation

de la théorie de Piston de troisième ordre. Ceci nous permet de conclure que l’effet d’une telle

non-linéarité n’a aucune influence sur les calculs et on peut la négliger devant la non-linéarité

géométrique (grande amplitude de vibration), ce qui est en bon accord avec les moindres

publications dans ce sujet.

Page 115: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

99

CONCLUSIONS ET RECOMMANDATIONS

Cette recherche nous permet de développer un code efficace basé sur les éléments finis hybrides

traitant l’analyse linéaire et non linéaire d’aéroélasticité des coques cylindriques. Ce logiciel peut

être utilisé efficacement pour le design avancé de structures aérospatiales et la prédiction du

comportement des différents stages de flottement des coques soumises à l’écoulement

supersonique pour différentes conditions limites complexes et différents paramètres de la

géométrie et de fluide.

Ce logiciel développé permet :

- la modélisation linéaire et non linéaire des coques cylindriques par la méthode des

éléments finis hybride;

- la modélisation de l’effet de contraintes créé par la pression interne et la compression

axiale;

- la modélisation de la pression aérodynamique externe supersonique linéaire et non

linéaire donnée par la théorie de Piston

et est capable :

- de faire l’analyse dynamique linéaire et non linéaire des coques vides et soumises à

l’écoulement supersonique;

- de prédire le début du flottement et le comportement après le début de flottement;

- effet des contraintes initiales sur la stabilité linéaire et non linéaire aéroélastique.

Ce logiciel, résultat d’un travail analytique-numérique performant, précis et moins coûteux au

sens du temps de calcul, est considéré plus efficace que des programmes couplés en MEF et

CFD.

Les futurs travaux seront focalisés sur l’étude de l’effet de la température, qui est sûrement un

paramètre très important au niveau du design des structures aérospatiales et qui entre dans la

discipline d’ingénierie d’aérothermoélasticité. Les structures d’aujourd’hui font face à la

température élevée qui peut influencer la stabilité de ces structures à travers la distribution de la

Page 116: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

100

température dans l’épaisseur des parois et aussi sur l’étude des différentes géométries des

panneaux utilisés dans l’industrie aérospatiale : les coniques, les plaques courbées,…afin

d’aboutir à la modélisation et l’analyse aérothermoélastique d’un véhicule complet, soit dans le

domaine fréquentiel ou temporel, soumise à un écoulement supersonique.

Page 117: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

101

BIBLIOGRAPHIE

Bishlinghoff, R. L., Ashley, H. and Halfman R. L. (1955). Aeroelasticity, Addison-Wesley

publishing Company, Inc.

Dowell, E. H. (1975). Aeroelasticity of Plates and Shells, Noordhoff, International Publishing,

Lyden, The Netherlands.

Librescu, L. (1975). Elastostatics and Kinetics of anisotropic and Heterogeneous Shell-type

Structures. Noordhoff International Publishing, Lyden.

Fung, Y. C. (1960). A summary of the theories and Experiments on Panel Flutter. AFSOR TN

60-224. Guggenheim Aeronautical Lab. California Institute of technology, Pasadena, CA.

Johns, D. J. (1961). The Present Status of Panel Flutter. AGARD Report 484. Advisory Group

for Aeronautic Research and Development

Johns, D. J. (1965). A Survey on Panel Flutter, Advisory report 1, Advisory Group for

Aeronautic& Research and Development

Dowell, E. H. (1970). Panel Flutter: A Review of the Aeroelastic stability of Plates and Shells.

AIAA Journal, 8(3), 385-399.

Mei, C., Abdel-Motagaly, K., and Chen, R. (1999). Review of Nonlinear panel flutter at

Supersonic and Hypersonic speeds. Applied Mechanics reviews, 52(10), 321-332.

Gray, C. E. And Mei, C. (1993). large Amplitude Finite element Flutter analysis of Composites

panels in hypersonic Flow. AIAA Journal, 31(6), 1090-1099.

McIntosh, S. C., Reed, R. E. and Rodden, W. P. (1981). Experimental and theoretical study of

nonlinear flutter. Journal of Aircraft, 18, 1057-1063.

Reed, W. H. (1967). Review of Propeller-Rotor Whirl Flutter, NASA TR R-264.

Bismarck-Naser. (1978).Finite element method applied to the supersonic flutter of circular

cylindrical shells. International journal for numerical method in engineering, 10( 4), 423-435.

Bismarck-Naser. (1977). Finite element method applied to the flutter of two parallel elastically

coupled flat plates. International journal for numerical method in engineering, 11(7), 1977,1188-

1193.

Page 118: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

102

Zhou R C, Xue D Y, Mei C. (1994). A finite element time domain-modal formulation for

nonlinear flutter of composite panels. AIAA J, 32(10), 2044–2052.

Hedgepeth, J. and Widmayer, E. (1963). Dynamic and Aeroelastic Problems of Lifting Re-Entry

Bodies. Aerospace Engineering, pp.148-153.

Dugundji, J. (1958). Effect of Quasi-Steady Air Forces on Incompressible Bending–Torsion

Flutter, Journal of the Aeronautical Sciences, 25( 2), 119–121

Cunningham, H.J., Batina, J .T., and Yang, H.T. (1991). Aeroelastic Analysis of Wings Using the

Euler Equations with a Deforming Mesh. Journal of Aircraft, 28, 778-788.

Timoshenko, S., Woinowsky-Krieger, S. (1959).Theory of Plates and Shells, New York:

McGraw-Hill.

Eisley, J. G. (1956). The flutter of a Two- Dimensional Buckled Plate with Clamped edges in a

supersonic flow, OSR-TN-56-296.

Houboult, J. C. (1958). A Study of several Aerothermoelastic problems of Aircraft structures in

High-Speed Flight. Ph.D Thesis. The Swiss Federal Institute of Technology. Zurich:

Eidenossischen technischen Hochschule.

Fung, Y.C. (1958). On Two-Dimensional panel flutter. Journal of the Aeronautical sciences, 25,

145-160.

Bolotin, V. V. (1963). Nonconservative Problems of the Theory of Elastic Stability. New York:

McMillan Co, pp. 199-312.

Chu, H.N. And Herrmann, G. (1956). Influence of Large Amplitudes on Free Flexural Vibration

of rectangular elastic Plates. Journal of applied Mechanics, 23, 532-540.

Ashley, H. And Zaratarian, G. (1965). Piston Theory - A New Aerodynamic Tool for the

Aeroelastician. Journal of Aeronautical science, 23(10), 1109-1118.

Dowell, E. H., and Voss, H. M. (1965). Experimental and theoretical panel flutter Studies in

mach Number range 1.0 to 5.0. AIAA Journal, 3(12), 2292-2304.

Dowell, E, H. (1966). Nonlinear Oscillation of a fluttering Plate I. AIAA Journal, 4(7), 1267-

1275.

Page 119: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

103

Dowell, E. H. (1967). Nonlinear Oscillation of a Fluttering Plate II. AIAA Journal, 5(10), 1856-

1862.

Fralich, R. W. (1965). Postbuckling effects on the flutter of simply supported rectangular panels

at Supersonic speed. NASA TN D-1615.

Ventres, C.S. (1970). Nonlinear flutter of Clamped Plates. Ph.D, Dissertation. Princeton

University.

Librescu, L. (1965). Aeroelastic stability of orthotropic heterogeneous thin Plates in the Vicinity

of flutter critical Boundary. Journal de Mecanique, 4(1), 51-76.

Kobayashi, S. (1962). Flutter of Simply Supported Rectangular Panels in a Supersonic Flow-

Two- Dimensional Panel Flutter, I- Simply supported panel, II- Clamped Panel. Transaction of

Japan Society of Aeronautical and Space Sciences, 5, 79-118.

Yuen, S. W., and Lau, S. L. (1991). Effect of in- Plane load on nonlinear Panel Flutter by

Incremental Harmonic Balance Method. AIAA Journal, 29(9), 1472-1479.

Eslami, H. (1978). Nonlinear flutter and Forced Oscillations of Rectangular Symmetric Cross-Ply

and Orthotropic Panels using harmonic balance and Perturbation Methods, Ph.D. Dissertation.

Old Dominion University.

Morino, L. (1969). A Perturbation Method for Treating Nonlinear Panel Flutter problems. AIAA

Journal, 7(3), 405-410.

Morino, L, and Kuo, C. C. (1971). Detailed extensions of perturbation Methods for Nonlinear

Panel flutter. ASRL TR 164-2, M.I.T. Cambridge.

Kuo, C. C., Morino, L., and Dugundji, L. (1972). Perturbation and harmonic balance for Treating

Nonlinear Panel Flutter. AIAA Journal, 10(11), 1479-1484.

Olson, M. D. (1967). Finite element Approach to Panel Flutter. AIAA Journal, 5(12), 226-227.

Appa, K. and Somashekar, B. R. (1969). Application of Matrix Displacement Methods in the

study of Panel Flutter. AIAA Journal, 7(1), 50-53.

Sander, G., Bon, C. and Geradin, M. (1973). Finite element Analysis of supersonic Panel Flutter,

International Journal for Numerical Methods in Engineering, 7(3), 379-394.

Page 120: UNIVERSITÉ DE MONTRÉAL COMPORTEMENT DYNAMIQUE NON … · are solved by fourth order Runge-Kutta numerical method. The linear and nonlinear frequencies are then determined as a function

104

Yang, t. Y. and Sung, S H. (1977). Finite element in three- Dimensional supersonic Unsteady

Potential Flow. AIAA Journal, 15(12), 1677-1683.

Mei, C. (1977). Finite Element in Approach for Nonlinear Panel Flutter. AIAA Journal, 15(8),

1107-1110.

Mei, C. and Rogers, J. L. (1976). Application of Nastran to large Deflexion supersonic Flutter of

Panel. NASA TM X-3428, 67-98.

Rao, K. S. and Rao, G. V. (1980). Supersonic Flutter of Panels Elastically Restrained Against

Rotation. Computer and Structures, 11, 197-201.

Mei, C. and Weidman, D. J. (1977). Nonlinear Panel Flutter – A finite element Approach,

Computational Method for Fluid-Structure Interaction Problems, T.Belytsechke and T.L.Geers,

ASME, New York, 26, 944-951.

Mei, C. and Wang, H. C. (1982). Finite Element Analysis of Large Amplitude Supersonic Flutter

of Panels. Proceedings of international conference on Finite Element Methods. Shanghai, China,

Gordon and Breach Science Publishers, Inc. 944-251.

Han, A. D. and Yang, T. Y. (1983). Nonlinear Panel Flutter using High Order Triangular Finite

Element. AIAA Journal, 21(10), 1453-1461.

Green, P. D. and Killey, A. (1997), Time Domaine Dynamic Finite Element Modelling in

Acoustic Fatigue Design, in Proc., 6th

International Conference on Structural Dynamic, ISVR, 11,

1007-1026.

Robinson, J. H. (1990). Finite Element Formulation and Numerical Simulation of the large

deflection Random Vibration of Laminated composite Plates. MS Thesis. Old Dominion

University.

Chandiramani, N. K. and Plaut, R. H, and Librescu, L. L. (1995). Nonperiodic Flutter of a

Buckled Shear deformable Composite Panel in a high-supersonic Flow. International Journal of

Non-Linear Mechanics. 30(2), 149-167.