62
1 Séquence 1 – MA03 Séquence 1 Dans cette séquence, nous allons nous intéresser à des notions d’arithmétiques qui interviennent dans les problèmes de codages. Pour cela, nous nous baserons sur deux exemples : le problème des clés de contrôle et le problème de chiffre- ment de données. Arithmétique et Problèmes de codages Sommaire 1. Pré-requis 2. Divisibilité dans 3. Division euclidienne 4. Congruence dans 5. Nombres premiers 6. Synthèse © Cned - Académie en ligne

Arithmétique et Problèmes de codages

  • Upload
    lebao

  • View
    253

  • Download
    7

Embed Size (px)

Citation preview

Page 1: Arithmétique et Problèmes de codages

1Séquence 1 – MA03

Séquence 1

Dans cette séquence, nous allons nous intéresser à des notions d’arithmétiques qui interviennent dans les problèmes de codages. Pour cela, nous nous baserons sur deux exemples : le problème des clés de contrôle et le problème de chiffre-ment de données.

Arithmétiqueet Problèmes de codages

Sommaire

1. Pré-requis

2. Divisibilité dans �

3. Division euclidienne

4. Congruence dans �

5. Nombres premiers

6. Synthèse

© Cned - Académie en ligne

Page 2: Arithmétique et Problèmes de codages

3Séquence 1 – MA03

1 Pré-requisNotations

L’ensemble des entiers naturels, que l’on note �, est constitué des entiers positifs ou nul : � = { ; ; ; ...}.0 1 2

Si on enlève zéro, l’ensemble obtenu est noté �* : �*= { ; ; ...}.1 2

L’ensemble des entiers relatifs, que l’on note �, est constitué de tous les entiers, c’est-à-dire des entiers strictement négatifs, de zéro et aussi des entiers strictement positifs : �= − −{... ; ; ; ; ; ; ...}.2 1 0 1 2

Si on enlève zéro, l’ensemble obtenu est noté �* : �*= − −{... ; ; ; ; ; ...}.2 1 1 2

Définition

� �* � \ {0} et �* � \ {0}.

� � �.

� �+ désigne l’ensemble des entiers relatifs positifs ou nuls donc � �+ =

Raisonnement par récurrence

Dans le cours de mathématiques enseignement obligatoire, le raisonnement par récurrence a été étudié. Voici quelques rappels.

1. Principe

Soit une propriété �n dépendant d’un entier naturel n.

Pour démontrer que �n est vraie pour tout entier n n≥ 0 , il suffit de montrer que :

(1) la propriété est vraie au rang n0 ;

(2) pour un entier k quelconque ( ),k n≥ 0 �k vraie entraîne �k +1 vraie.

A

Remarques

B

© Cned - Académie en ligne

Page 3: Arithmétique et Problèmes de codages

4 Séquence 1 – MA03

Ainsi, pour démontrer par récurrence qu’une propriété liée à un entier naturel n est vraie pour tout n n≥ 0 , on procède en trois étapes.

Initialisation : on vérifie la propriété au rang initial n0.

Hérédité : on suppose que la propriété est vraie pour un rang quelconque k ( )k n≥ 0 et on démontre que, sous cette hypothèse, elle est vraie au rang suivant k +1.

On dit alors que la propriété est héréditaire. L’hypothèse « �k vraie » est appe-lée hypothèse de récurrence.

Conclusion : l’axiome ci-dessus permet de conclure que la propriété est alors vraie pour tout n n≥ 0.

2. Exemple

Démontrer par récurrence que, pour tout n ≥ 0, n (n + 1)(2n + 1) est divisible par 6.

On veut démontrer par récurrence que la proposition �n « n (n + 1)(2n + 1) est divisible par 6 » est vraie pour tout entier n ≥ 0.

Initialisation : au rang n = + × + =0 0 0 1 2 0 1 0,  ( )( ) . Or, 0 est divisible par 6 ainsi la proposition �n est vraie au rang n = 0.

Hérédité : on suppose que la proposition « n(n + 1)(2n + 1) est divisible par 6 » est vraie pour un certain rang n k= ; autrement dit, on suppose que pour un entier k positif, k (k + 1)(2k + 1) est divisible par 6.

Regardons la proposition au rang k +1 :

( ) ( ) ( ) ( )( )( )

(

k k k k k k+ + +( ) + +( ) = + + +

=

1 1 1 2 1 1 1 2 2 3

kk k k

k k k

k k k

+ + +

= + + +

= + + +

1 2 7 6

2 9 13 6

2 3

2

3 2

3 2

)( )

( ) (66 12 6

2 3 6 2 1

2

3 2 2

k k

k k k k k

+ +

= + + + + +

)

( ) ( )

Or, k k k k k k( )( ) .+ + = + +1 2 1 2 33 2

Par hypothèse de récurrence, k (k + 1)(2k + 1) est divisible par 6 donc il existe un entier naturel k’ tel que :

k (k + 1)(2k + 1) = 6k‘ soit 2 3 63 2k k k k+ + = ′.

Ainsi,

( ) ( ) ( ( ) ) ( )

(

k k k k k k

k k

+ + +( ) + + = ′ + + +

= ′ +

1 1 1 2 1 1 6 6 2 1

6

2

2 ++ +2 1k ).

L’entier k k k+( ) + +( ) + +( )1 1 1 2 1 1( ) ( ) est divisible par 6 donc la proposition �n « n(n + 1)(2n + 1) est divisible par 6 » est vraie au rang n k= +1 : la pro-priété est héréditaire.

Point méthode

Exercice A

Solution

© Cned - Académie en ligne

Page 4: Arithmétique et Problèmes de codages

5Séquence 1 – MA03

Conclusion : la propriété �n « n (n + 1)(2n + 1) est divisible par 6 » est vraie

pour n = 0 et elle est héréditaire, donc, pour tout n ≥ 0, n(n + 1)(2n + 1) est divisible par 6.

On montre (voir exercice de synthèse VI de la séquence 1 du cours de mathéma-tiques, tronc commun) l’égalité vraie pour tout n ≥ 1 :

kn n n( 1)(2 1)

6.

k

n2

1∑ = + +

=

On retrouve que pour tout n n n n≥ + +1 1 2 1, ( )( ) est divisible par 6 puisque

n(n + 1)(2n + 1) = 6N où N est l’entier naturel N kk

n=

=∑ 2

1.

Tableur et codage de caractère

Le tableur possède des fonctions utiles pour coder et décoder des caractères par des nombres entiers : les fonctions CODE et CAR.

� La fonction CODE convertit le premier caractère du texte en un nombre (sui-vant la table de code active sur l’ordinateur).

Syntaxe : =CODE(“Texte“)

Par exemple, CODE(“Mathématiques“) renvoie le codage du « M » (majuscule) à savoir 77 ; CODE(“mathématiques“) renvoie le codage du « m » (minuscule) à savoir 109.

� La fonction CAR convertit un nombre entier compris entre 1 et 256 en un caractère (suivant la table de code active sur l’ordinateur).

Syntaxe : =CAR(nombre)

Par exemple, CAR(84) renvoie le caractère « T » (majuscule) ; CAR(116) renvoie le caractère « t » (minuscule).

Remarque

C

© Cned - Académie en ligne

Page 5: Arithmétique et Problèmes de codages

6 Séquence 1 – MA03

Fonction partie entière

Tout réel peut être encadré par deux entiers relatifs de la manière suivante.

Pour tout réel x, il existe un unique entier relatif n tel que n x n≤ < + 1.

L’entier n est appelé la partie entière de x et est noté E(x).

Définition

La partie entière d’un réel est donc l’entier relatif qui lui est directement inférieur.

� Calculer les parties entières suivantes : E(10,5), E(5), E(–2,3).

� Dans un repère, représenter la fonction partie entière sur l’intervalle [–4 ; 4].

� On a 10 10 5 11≤ <, donc E(10,5) = 10.

On a 5 5 6≤ < donc E(5) = 5.

Enfin − ≤ − < −3 2 3 2, donc E( , ) .− = −2 3 3

� Si − ≤ < −4 3x alors E( ) .x = −4

Si − ≤ < −3 2x alors E( ) ,x = −3 etc.

On obtient la courbe suivante :

1 2 3 4–4 –3 –2 –1

–1

0

0

–2

–3

–4

3

2

1

point inclus

point exclus

Pour tout entier relatif n, la fonction « partie entière » n’est pas continue en n.

D

Remarque

Exercice B

Solution

Remarque

© Cned - Académie en ligne

Page 6: Arithmétique et Problèmes de codages

7Séquence 1 – MA03

Fonction partie entière et calculatrice

Texas Instrument Casio

Fonction Int Fonction Intg

Fonction partie entière et tableur

Fonction ENT

© Cned - Académie en ligne

Page 7: Arithmétique et Problèmes de codages

8 Séquence 1 – MA03

2 Divisibilité dans �

Objectifs du chapitre

À travers le problème des clés de contrôle, nous allons approfondir la notion de divisibilité dans �.

Pour débuter

Les codes-barres

Les codes-barres sont omniprésents dans la vie courante. Ils trouvent leurs applications dans des domaines aussi variés que la gestion des prêts d’une bibliothèque, les caisses enregistreuses à lecture optique ou le contrôle de la production dans l’industrie.

Les codes EAN 13 (European Article Numbering à 13 chiffres) sont des codes-barres utilisés dans le monde entier sur l’ensemble des produits de grande consommation. Ils comportent 13 chiffres :� les deux premiers chiffres correspondent au pays de provenance du produit ou

à une classe normalisée de produits ;� les quatre chiffres suivants correspondent au codage du fabriquant ;� les six suivants forment le numéro d’article ;� le treizième chiffre est une clé de contrôle calculée en fonction des douze pré-

cédents.

La clé de contrôle sert à la vérification de la bonne saisie du code. Nous allons nous intéresser à son calcul.

� Calcul de la clé de contrôle

Un code-barres est symbolisé par le tableau suivant :

C1 C2

C3 C4

C5 C6

C7 C8

C9 C10

C11 C12 R

où C C C1 2 12, ,..., et R sont les 13 chiffres constituant le code-barres ; R est donc la clé.

Les chiffres C C C1 3 11, ,..., sont ceux de rangs impairs et C C C2 4 12, ,..., désignent les chiffres de rangs pairs.

A

B

Activité 1

© Cned - Académie en ligne

Page 8: Arithmétique et Problèmes de codages

9Séquence 1 – MA03

La clé R est calculée de telle sorte que :

[ (somme des chiffres de rang impair) (somm+ ×3 ee des chiffres de rang pair)+ R] est un multiple de 10.

a) Vérifier que l’on ne détecte pas d’erreur dans le code-barres ci-dessous.

b) Déterminer la clé associée au code-barres suivant :

c) Le système de lecture optique d’une caisse enregistreuse étant défectueux, un employé doit saisir les codes à la main. Parmi les codes saisis, lesquels com-portent à coup sûr une erreur ?9 782940 1996179 782940 1991673 782940 199617

d) Calculer la clé des deux codes suivants :1 672345 6789007 612345 678900

Toutes les erreurs de saisie peuvent-elles être détectées grâce à la clé de contrôle ?

� La clé de contrôle permet de détecter des erreurs de saisie d’un code-barres (l’inversion de deux chiffres consécutifs ou un chiffre erroné par exemple) mais elle ne permet pas de détecter toutes les erreurs (comme celle du d.).

� Le calcul de la clé de contrôle fait appel à la notion de divisibilité.

Cours

1. Définition

Soient a et b deux entiers relatifs quelconques.

On dit que a est un multiple de b ou que b est un diviseur de a s’il existe un entier relatif k tel que a b k= × .

Définition 1

Remarques

C

© Cned - Académie en ligne

Page 9: Arithmétique et Problèmes de codages

10 Séquence 1 – MA03

L’ensemble des multiples de 3 est E = {… ; –12 ; –9 ; –6 ; –3 ; 0 ; 3 ; 6 ; …}.

On écrit encore E = { ; }3k k ∈� ou E = 3�.

Soit b un entier relatif.

L’ensemble des multiples de b coïncide avec l’ensemble des multiples de −b.

La proposition « b divise a » s’écrit symboliquement b | a.

2. Propriétés

Transitivité

Soient a b c, et des entiers relatifs.

Si b divise a et si c divise b, alors c divise a.

Propriété 1

Comme b divise a, il existe un entier k tel que a b k= × .

Comme c divise b, il existe un entier k ’ tel que b c k= × ′.

Ainsi, a b k c k k c k k c K K kk= × = × ′ × = × ′ × = × = ′( ) ( ) où donc c divise a.

Combinaison linéaire entière

Soient a b c, et des entiers relatifs.

Si c divise a et b, alors pour tous les entiers relatifs n et n‘, c divise n a n b' .× + ×

Propriété 2

Autrement dit, si c divise a et b alors il divise toutes les combinaisons linéaires entières de a et b.

Comme c divise a et b, il existe deux entiers k et k ’ tels que a = kc et b = k’c.

Alors :na n b n kc n k c

nk n k cKc K nk n k

' ( ) '( )

( ' )

où '

+ = + ′= + ′= = + ′

et ainsi c divise n a n b' .× + ×

Déterminer l’ensemble de tous les diviseurs de 42.

Exemple

Remarque

Démonstration

Remarque

Démonstration

Exemple 1

© Cned - Académie en ligne

Page 10: Arithmétique et Problèmes de codages

11Séquence 1 – MA03

On a : 42 1 42= × donc 1 et 42 sont des diviseurs de 42 ;

42 2 21= × donc 2 et 21 sont des diviseurs de 42 ;

42 3 14= × donc 3 et 14 sont des diviseurs de 42 ;

42 6 7= × donc 6 et 7 sont des diviseurs de 42.

De plus, 42 n’est divisible ni par 4 ni par 5 donc nous avons trouvé tous les divi-seurs entiers naturels de 42. Il faut compléter la liste des diviseurs positifs de 42 par leur opposé. Ainsi, l’ensemble E des diviseurs de 42 est :

E = {–42 ; –21 ; –14 ; –7 ; –6 ; –3 ; –2 ; –1 ; 1 ; 2 ; 3 ; 6 ; 7 ; 14 ; 21 ; 42}.

Raisonnement par disjonction de cas

En raisonnant par disjonction de cas, démontrer que, pour tout entier k,

l’entier k(k+1) est pair.

1er cas : supposons que k est un entier pair.

Si k est un entier pair, alors il existe un entier n tel que k = 2n.Alors k(k + 1) = 2n(2n + 1) donc k(k + 1), multiple de 2, est donc un entier pair.

2e cas : supposons que k est un entier impair.

Si k est un entier impair, alors il existe un entier n tel que k = 2n + 1. Alors k(k + 1) = (2n + 1)(2n + 1 + 1) = (2n + 1)(2n + 2) = 2(2n + 1)(n + 1) donc

k(k + 1), multiple de 2, est donc un entier pair.

Raisonnement par contraposée

En utilisant un raisonnement par contraposée, démontrer que, pour tout entier n, si n2 est impair alors n est impair.

La proposition contraposée de la proposition « A implique B » est « non B implique non A ». Ces deux implications sont équivalentes. Ainsi, pour démontrer qu’une implication est vraie, il suffit de démontrer que sa contraposée l’est : pour montrer que la proposition « A implique B » est vraie en raisonnant par contra-posée, il suffit de prouver que la proposition « non B implique non A » est vraie.

La proposition contraposée de « si n2 est impair alors n est impair » est « si n n’est pas impair alors n2 n’est pas impair » soit « si n est pair alors n2 est pair ».

Supposons donc que n est entier pair. Alors, il existe un entier k tel que n = 2k.

Alors n k k2 2 22 2 2= ( ) = × ( ).

Ainsi, n2 est pair.

Nous avons prouvé que pour tout entier n, si n est pair alors n2 est pair donc, en raisonnant par contraposée, nous avons prouvé que, pour tout entier n, si n2 est impair alors n est impair.

Solution

Exemple 2

Solution

Exemple 3

Remarque

Solution

© Cned - Académie en ligne

Page 11: Arithmétique et Problèmes de codages

12 Séquence 1 – MA03

Divisibilité et calculatrice

À la calculatrice, une méthode pour déterminer si b divise a consiste à regarder

si Eba

ba

= où E désigne la fonction « partie entière ».

Ceci repose sur l’équivalence suivante : b divise a si, et seulement si, Eba

ba

= .

� Écrire un algorithme donnant tous les diviseurs d’un entier N donné.

� Comment utiliser une feuille de calculs pour obtenir les diviseurs d’un entier entré dans la cellule C2 ?

A B C

1 Diviseurs Nombre ?

2 « =1 » « =SI(ENT($C$2/A2)=$C$2/A2) »

3 « =A1+1 »

4

5

On saisit les formules entre « » dans chaque cellule puis on les « copie-glisse » dans les colonnes A puis B.

Remarque

Exemple 4

Solution

© Cned - Académie en ligne

Page 12: Arithmétique et Problèmes de codages

13Séquence 1 – MA03

Exercices d’apprentissage

Vrai/Faux

Justifier les réponses.

a) Si un entier est divisible par 49 et par 35 alors cet entier est divisible par 49 35 1715× = .

b) Si un nombre est divisible par 3 alors il est divisible par 9.

c) Si a divise b et c alors a divise b c− .

d) La somme de deux diviseurs d’un entier est encore un diviseur de cet entier.

e) Le produit de deux entiers pairs est pair.

f) Le produit de deux entiers impairs est impair.

Démontrer que, pour tout entier n, si n2 est pair alors n est pair.

Nombres amis

Deux entiers distincts sont dits « amis » si la somme des diviseurs positifs de A excepté A est égale à B et la somme des diviseurs positifs de B excepté B est égale A.

a) Démontrer que 220 est un nombre ami d’un autre entier.

b) Écrire un programme qui, prenant en entrée une borne, affiche tous les couples de nombres amis entre 1 et cette borne. Implémenter cet algorithme sur Algo-box. (On pourra reprendre et compléter l’algorithme qui calcule la somme de tous les diviseurs positifs d’un nombre donné).

c) Afficher tous les couples de nombres amis compris entre 1 et 1 500.

Sur le catalogue d’une entreprise de vente par correspondance, la référence de chaque article est constituée d’un nombre à cinq chiffres xyztu (le premier de ces chiffres x étant différent de zéro), suivi d’une lettre majuscule choisie entre A et N, à l’exception de la lettre I.

À cette lettre majuscule est associé un nombre appelé «  clé » selon le tableau suivant :

Lettre A B C D E F G H J K L M N

Clé 0 1 2 3 4 5 6 7 8 9 10 11 12

À des fins de contrôle, on impose, pour chaque référence, que la somme du nombre à cinq chiffres et de la clé obtenue grâce au tableau, soit un nombre divisible par 13.

� Les deux références suivantes vérifient-elles la condition précédente ? Justifier.

13587 M 45905 A

D

Exercice 1

Exercice 2

Exercice 3

Exercice 4

© Cned - Académie en ligne

Page 13: Arithmétique et Problèmes de codages

14 Séquence 1 – MA03

� On veut retrouver la lettre d’une référence dont il ne reste que le nombre à cinq chiffres 26014. Déterminer la lettre manquante.

Déterminer tous les couples d’entiers naturels ( ; )a b tels que ( )( ) .a b+ − =4 1 14

Raisonnement par récurrence

En utilisant un raisonnement par récurrence, démontrer que, pour tout entier naturel n, 7 2n n− est un multiple de 5.

Démontrer que, pour tout entier naturel non nul n :

A n n n nn = + + −( )( )...( )( )1 2 2 1 2 est divisible par 2n.

On considère le nombre A n n n= + +( )( ).1 2

a) Démontrer que A est divisible par 2.

b) Démontrer que A est divisible par 3.

c) Si A est divisible par 8, n est-il pair ?

Exercice 5

Exercice 6

Exercice 7

Exercice 8

© Cned - Académie en ligne

Page 14: Arithmétique et Problèmes de codages

15Séquence 1 – MA03

3 Division euclidienne

Objectifs du chapitre

En utilisant à nouveau le problème des clés de contrôle, nous allons approfondir la notion de division euclidienne.

Pour débuter

Numéro d’inscription au répertoire (ou numéro de sécurité sociale)

Toute personne née en France métropolitaine et dans les départements d’outre-mer (DOM) est inscrite au répertoire national d’identification des personnes physiques (RNIPP). L’inscription à ce répertoire entraîne l’attribution du numéro d’inscription au répertoire (NIR) par l’I.N.S.E.E. (Institut National des Statistiques et des Etudes Economiques). Ce numéro est utilisé notamment par les orga-nismes d’assurance maladie pour la délivrance des « cartes vitales ».

Le NIR est communément appelé « numéro de sécurité sociale » ou «numéro INSEE » .

Ce numéro est constitué de 15 chiffres. En lisant de gauche à droite :� le premier chiffre est 1 s’il s’agit d’un homme et 2 s’il s’agit d’une femme ;� les deux chiffres suivants désignent les deux derniers chiffres de l’année de naissance ;� les deux chiffres suivants désignent le mois de naissance ;� les cinq chiffres suivants désignent le lieu de naissance : en général, les deux

chiffres du numéro de département de naissance suivis des trois chiffres réper-toriant la commune de naissance ;

� les trois chiffres suivants désignent le numéro d’inscription sur le registre d’état civil ;

� les deux chiffres suivants résultent d’un calcul.

Nous allons voir comment peut être détectée une erreur dans un numéro de sécurité sociale.

� Voici des numéros de sécurité sociale :

2 77 08 44 109 048 91 1 16 10 17 192 162 26 2 26 04 29 189 222 66votre numéro si vous le connaissez.

A

B

Activité 2

© Cned - Académie en ligne

Page 15: Arithmétique et Problèmes de codages

16 Séquence 1 – MA03

À l’aide de la fonction « MOD » du tableur, calculer le reste r de la division euclidienne des 13 premiers chiffres des numéros de sécurité sociale précé-dents par 97 puis calculer 97-r (enlever les espaces du numéro de sécurité sociale pour faire le calcul). Que constatez-vous ?

� Quel sera le numéro de sécurité sociale d’un garçon né le 26 juillet 2011 dans le département de Seine-et-Marne (77) dans la commune de Meaux (284) et enregistré au registre des naissances de l’état civil sous le numéro 136 ?

� Parmi les numéros de sécurité sociale suivants, déterminer ceux qui ne sont pas corrects :

2 85 07 86 183 084 152 85 07 86 183 048 152 85 07 86 183 049 15

� Les deux derniers chiffres du numéro de sécurité sociale constituent la clé de contrôle du numéro (encore appelée clé). C’est grâce à cette clé que l’on peut détecter des erreurs.

� Ce système ne permet pas de déceler toutes les erreurs mais il détecte les erreurs les plus courantes. Par exemple, l’inversion de deux chiffres ou une erreur sur un chiffre. (L’exercice 26 propose une démonstration partielle de cela).

� Le calcul du numéro de sécurité sociale fait appel à la division euclidienne qui fait l’objet de ce chapitre.

Cours

1. Définition

Division euclidienne dans �

Soient a et b deux entiers naturels avec b non nul. Il existe un unique couple (q ; r ) d’entiers naturels tel que :

a = bq + r et 0 ≤ r < b.

Théorème 1

Division euclidienne dans �

L’entier naturel a est le dividende et b est le diviseur.L’entier naturel q s’appelle le quotient et r s’appelle le reste de la division euclidienne de a par b.

a : dividende b : diviseur. . .

q : quotient

r : reste

Définition 2

Remarques

C

© Cned - Académie en ligne

Page 16: Arithmétique et Problèmes de codages

17Séquence 1 – MA03

� Si r = 0 (reste nul), alors a = bq, donc a est un multiple de b, ce qu’on traduit encore par b est un diviseur de a, ou par a est divisible par b.La réciproque est vraie : si a est divisible par b alors le reste dans la division euclidienne de a par b est nul.

� Observons les écritures suivantes :

343 12 343 12 343 12103 28 103 27 103 26

7 19 31

343 = 12 28 + 7 et 0 7 < 12 343 12 27 + 19 343 = 12 26 + 31

La condition sur le reste n’est vérifiée que dans la première écriture : c’est cette condition qui assure l’unicité du couple (q ; r ).

� Interprétation géométrique :

multiple de b

Nous admettons la propriété suivante :

Dans � , une partie non vide admet un plus petit élément. (*)

Existence de q et r

Premier cas : si 0 ≤ <a b, le couple (0 ; a) convient pour quotient et pour reste.

Second cas : supposons maintenant a b≥ . Les entiers naturels a et b sont alors strictement positifs.

Soit M l’ensemble des multiples de b strictement supérieurs à a. L’entier 2ba appartient à M car 2ba est un multiple de b strictement plus grand que a. L’ensemble M est donc non vide dans � et admet un plus petit élément m d’après (*). L’entier m est tel que le multiple de b précédent est inférieur ou égal à a.Notons n le multiple de b qui précède m.

L’entier m étant strictement positif, n est positif (éventuellement, n peut être égal à 0 qui est bien un multiple de b).

Comme n est un multiple de b, il existe un entier q tel que n = bq et comme n a≤≤ , on a bq a≤≤ et q ∈∈�.

Comme m est le multiple de b qui suit n, m b q= +( ).1

Comme m est strictement supérieur à a, on a a < m et ainsi a b q< +( ).1

Ainsi, il existe un entier q tel que bq a b q≤ < +( ).1

Posons r a bq= − . Comme a, b et q sont des entiers, r est un entier.

De bq < a, on déduit que r ≥ 0 et donc que r ∈�. De a b q< +( ),1 on déduit que a bq b− < et ainsi que r b< .

Remarques

0

a

bq b (q + 1)

Démonstration

© Cned - Académie en ligne

Page 17: Arithmétique et Problèmes de codages

18 Séquence 1 – MA03

On a donc trouvé deux entiers naturels q et r tels que a bq r= − avec 0 ≤ <r b.

Bilan : dans tous les cas, il existe un couple d’entiers naturels (q  ; r ) tels

que a bq r= + et 0 ≤ <r b.

Unicité de q et r

Supposons qu’il existe deux couples d’entiers (q ; r ) et (q’ ; r’ ) tels que :

a bq r bq r= + = ′ + ′ (1), avec r et r ’ tels que 0 ≤ <r b et 0 ≤ ′ <r b (2).

Montrons que ces couples sont égaux.

De (1), on déduit que bq bq r r− ′ = ′ − donc que b q q r r( ) .− ′ = ′ − Comme q q− ′ est un entier, on déduit que ′ −r r est un multiple de b.

De (2), on déduit que − < − ≤b r 0 et donc que − < ′ − <b r r b.

Donc ′ −r r est un multiple de b strictement compris entre –b et b. Il y en a un seul : c’est 0.

Donc ′ − =r r 0 et r r= ′.

On a alors b q q r r( )− ′ = ′ − = 0 d’où b q q( ) .− ′ = 0 Comme b ≠ 0, q q− ′ = 0 et q q= ′.

Il y a donc unicité du couple (q ; r ).

Division euclidienne dans �

La définition précédente s’étend au cas où a et b sont des entiers relatifs avec b non nul.

Il existe un unique couple ( ; )q r avec q ∈� et r ∈� tel que a bq r= + et 0 ≤ <r b| | .

Théorème 2

Ce théorème est admis. La démonstration découle de la démonstration précé-dente.

Effectuer la division euclidienne de 431 par –17 puis de –121 par –9.

On a 431 17 25 6= × +– (– ) avec 0 17≤ < −r | | donc q = − ∈25 � et r = ∈6 �.  

On a − = × +121 9 14 5– avec 0 9≤ < −r | | donc q = ∈14 � et r = ∈5 �.

Quels peuvent être le diviseur et le quotient d’une division euclidienne dont le dividende est 557 et le reste est 85 ?

557 ?

85 ?

Remarque

Exemple 5

Solution

Exemple 6

© Cned - Académie en ligne

Page 18: Arithmétique et Problèmes de codages

19Séquence 1 – MA03

Notons d le diviseur cherché et q le quotient cherché.

Ces nombres doivent vérifier :

557 85= +dq et 85 < d.

Ainsi, dq = =557 85 472– .

On peut procéder par essais successifs :

� Si q = 1 d = 472 on a bien d > 85

� Si q = 2 d = 236 on a bien d > 85

� Si q 3= d ∉N� Si q 4= d 118= on a bien d > 85

� Si q 5= d ∉N� Si q 6= d ∉N� Si q 7= d ∉N� Si q 8= d 59= mais d < 85

Il est inutile de continuer car la condition d > 85 ne sera plus respectée.

Nous avons trouvé trois couples éventuels. Conviennent-ils ?� Division euclidienne de 557 par 472 : 557 472 1 85= × + .� Division euclidienne de 557 par 236 : 557 236 2 85= × + .� Division euclidienne de 557 par 118 : 557 114 4 85= × + .

Les trois couples conviennent.

Les solutions sont donc q = 1 et d = 472  ; q = 2 et d = 236  ; q 4= et d 118=

Ainsi, � = {(1 ; 472) ; (2 ; 236) ; (4 ; 118)}.

Vrai/Faux

Soient n et p deux entiers naturels.

a) Si n a pour reste 2 dans la division euclidienne par 7 alors 2n a pour reste 14 dans la division euclidienne par 7.

b) Si 5 divise np alors 5 divise n et 5 divise p.

c) Si le reste dans la division euclidienne de n par p est 3 alors le reste dans la division euclidienne de n² par p est 9.

a) Faux.

Il existe un unique entier naturel q tel que n = 7q + 2 donc 2 7 2 4n q= × + soit 2 7 4n q= ′ + avec 0 4 7≤ < .

Ainsi, le reste de la division euclidienne de 2n par 7 est 4.

b) Faux.

Voici un contre-exemple : n = 5 et p = 7.

Solution

Exemple 7

Solution

© Cned - Académie en ligne

Page 19: Arithmétique et Problèmes de codages

20 Séquence 1 – MA03

On a 5 divise 5 7 35× = donc 5 divise np ; 5 divise 5 donc divise n mais 5 ne divise pas 7 donc ne divise pas p.

c) Faux.

La condition 0 9≤ < p n’est pas toujours vérifiée.

Voici un contre-exemple : n = 17 et p = 7.

La division euclidienne de 17 par 7 donne 17 2 7 3= × + avec 0 3 7≤ < .

Mais la division euclidienne de 17² par 7 donne 17 289 41 7 22 = = × + avec 0 2 7≤ < (et non pas 17 289 40 7 92 = = × + car 9 7≥ ).

2. AlgorithmiqueL’algorithme qui suit permet d’obtenir le quotient q et le reste r de la division euclidienne d’un entier naturel a par un entier naturel b non nul.

� Langage naturel

Entrées : a ; bInitialisation : q = 0

r a=

Traitement : Tant que r b≥ faire

Mettre q + 1 dans q

Mettre r b− dans r

Fin du Tant que

Tant que le reste est supérieur ou égal au diviseur :

– on augmente le quotient de 1

– on soustrait le diviseur du reste

Sorties : Afficher q et r.

� Algobox

© Cned - Académie en ligne

Page 20: Arithmétique et Problèmes de codages

21Séquence 1 – MA03

� Langages « calculatrice »La plupart des calculatrices ne permettent pas de déterminer directement le quo-tient et le reste dans la division euclidienne d’un entier a par un entier b.

On peut remédier à cela en implémentant l’algorithme précédent sur calculatrice :

Texas Instrument Casio

� Sur une calculatrice, un moyen beaucoup plus rapide pour déterminer le quotient et le reste d’une division euclidienne consiste à utiliser la fonction

« Partie Entière » : qba

=

E et r = a – bq.

� Sur le tableur, on peut utiliser les fonctions ENT pour obtenir le quotient et MOD pour obtenir le reste.

� Sur le logiciel Algobox, on peut utiliser % : x%y nous donne le reste de la divi-sion euclidienne de x par y.

Remarques

© Cned - Académie en ligne

Page 21: Arithmétique et Problèmes de codages

22 Séquence 1 – MA03

3. Codages : chiffrement de César et chiffrement de Vigenère

Chiffrer : écrire un message en un code conventionnel et secret.Crypter : réaliser une opération par laquelle un message est rendu inintelligible à quiconque ne possède pas la clé permettant de retrouver la forme initiale.Déchiffrer : traduire en clair.Décrypter : traduire en clair un message chiffré dont on ignore la clé.Clé de chiffrement : paramètre (nombre, mot …) qui permet de chiffrer et/ou déchif-frer un message.

Définition 3

« Le monde arabe connaît la cryptographie consistant à permuter les lettres de l’alphabet ; Al Kindi (vers 805-873) explique qu’il est facile de déchiffrer des mes-sages si on connaît la fréquence de chaque caractère dans la langue d’écriture du message (la résolution de l’énigme de la superbe nouvelle, Le scarabée d’or, d’Edgar Poe (1809-1849) est basée sur la même idée).

Gabriel de Lavinde, secrétaire d’un pape d’Avignon, imagine en 1379 la première nomenclature : coder les mots par des nombres arbitraires ; le système de Lavinde chiffrait une vingtaine de mots essentiels (pape, etc.) et laissait le reste du texte en clair ; on le perfectionna en augmentant le nombre de mots chiffrés. Autour de 1900, les nomenclatures formaient des dictionnaires avec une centaine de mots chiffrés par page ; en cas de vol par l’ennemi, tout était à refaire.

Alberti (1404-1472) eut une autre idée : changer de temps en temps la permu-tation des lettres de l’alphabet. Systématisé par Bellaso (né en 1505), le sys-tème aboutit à la grille de Vigenère (1523-1596) où la permutation est changée à chaque lettre en fonction des lettres d’un mot clé, seul à mémoriser entre cor-respondants. Ce système, un peu difficile à appliquer sans erreur, fut longtemps considéré comme indéchiffrable, jusqu’à ce qu’on invente des méthodes pour le casser dans les années 1850. »

Revue Diagonales, Cryptographie, no 1, 2009-2010, Cned

a) Chiffrement de César

Le chiffrement de César est une méthode de chiffrement qui fonctionne par déca-lage des lettres de l’alphabet.

Partie A Chiffrement

Étudions le chiffrement de César sur un exemple :

Étape 1Choisissons un décalage, par exemple 3 et un mot à chiffrer, par exemple HYPOTHESE.

Étape 2La lettre H est décalée de 3 vers la droite et devient K.

© Cned - Académie en ligne

Page 22: Arithmétique et Problèmes de codages

23Séquence 1 – MA03

La lettre Y est décalée de 3 vers la droite et devient B (on considère que notre alphabet est circulaire c’est-à-dire après la lettre Z, on a la lettre A), etc.On obtient ainsi le code : KBSRWKHVH

A BC

D

E

F

G

H

I

J

KLMNO

PQ

R

S

ZYX

W

V

U

T

EC

I

GH

M

KL

RN

OPQS

VU

WXY

DB F

J

T

AZ

A BC

D

E

F

G

H

I

J

KL

MNOP

QR

S

ZYX

W

V

U

T

QO

U

ST

Y

WX

DZ

ABCE

HG

IJK

PN R

V

F

ML

En utilisant un décalage de 15, chiffrer le message suivant : CHIFFREMENT DE CESAR

La lettre C est décalée de 15 vers la droite et devient R.

La lettre H est décalée de 15 vers la droite et devient W, etc.

Texte clair C H I F F R E M E N T D E C E S A R

Texte chiffré R W X U U G T B T C I S T R T H P G

On obtient ainsi le code :

RWXUUGTBTCISTRTHPG

Partie B Déchiffrement

On utilise le même principe pour déchiffrer en effectuant un décalage des lettres vers la gauche.

Décoder le message suivant sachant que le décalage est de 15 : YTIGPKPXAATATHBPIWTBPIXFJTH.

La lettre Y est décalée de 15 vers la gauche et devient J.La lettre T est décalée de 15 vers la gauche et devient E, etc.

Texte chiffré

Y T I G P K P X A A T A T H B P I W T B P I X F J T H

Texte déchiffré

J E T R A V A I L L E L E S M A T H E M A T I Q U E S

Exemple 8

Solution

Exemple 9

Solution

© Cned - Académie en ligne

Page 23: Arithmétique et Problèmes de codages

24 Séquence 1 – MA03

En utilisant un décalage de 15, coder le message BONJOUR sur le tableur. À chaque lettre, on associera sa position dans l’alphabet (A : 0 ; B : 1, etc.) et on pourra utiliser la fonction MOD.

b) Chiffrement de Vigenère

Partie A Chiffrement

Étudions le chiffrement de Vigenère sur un exemple.

Étape 1Choisissons un mot pour clé de chiffrement, par exemple le mot CODE, et un mot à chiffrer, par exemple HYPOTHESE.

Étape 2Faisons coïncider le texte et la clé de chiffrement en répétant la clé autant de fois que nécessaire :

Texte H Y P O T H E S E

Clé C O D E C O D E C

Étape 3 À une lettre de l’alphabet correspond un nombre selon le tableau suivant :

Lettre A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Nombre 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Étape 4Comme à la lettre C correspond le nombre 2, la 1re lettre du code (H) sera décalée de 2 lettres vers la droite. Ainsi H devient J.Comme à la lettre O correspond le nombre 14, la 2e lettre du code (Y) sera déca-lée de 14 lettres vers la droite (on considère que notre alphabet est circulaire i.e. après la lettre Z, on a la lettre A). Ainsi Y devient M.Comme à la lettre D correspond le nombre 3 , la 3e lettre du code (P) sera décalée vers la droite de 3 lettres. Ainsi P devient S etc.On obtient ainsi le code : JMSSVVHWG.

� Dans cet exemple, la lettre E est chiffrée différemment suivant sa position dans le texte : ceci rend plus difficile le décryptage du code par un ennemi.

� Deux lettres différentes peuvent être chiffrées par une même lettre. Dans l’exemple, le S chiffre à la fois le P et le O.

Exemple 10

Solution

Remarques

© Cned - Académie en ligne

Page 24: Arithmétique et Problèmes de codages

25Séquence 1 – MA03

En utilisant pour clé le mot CODE, chiffrer le message suivant : CHIFFREMENT DE VIGENERE

On pourra compléter le tableau suivant :

Texte clair C H I F F R E M E N T D E V I G E N E R E

Clé

Décalage

Texte chiffré

Texte clair C H I F F R E M E N T D E V I G E N E R E

Clé C O D E C O D E C O D E C O D E C O D E C

Décalage 2 14 3 4 2 14 3 4 2 14 3 4 2 14 3 4 2 14 3 4 2

Texte chiffré E V L J H F H Q G B W H G J L K G B H V G

Partie B Déchiffrement

On utilise le même principe pour déchiffrer en effectuant un décalage des lettres vers la gauche :

Comme à la lettre C correspo nd le nombre 2, la 1re lettre du code J sera décalée de 2 lettres vers la gauche. Ainsi J devient H…

Texte chiffré

J M S S V V H W G

Clé C O D E C O D E C

Décalage 2 14 3 4 2 14 3 4 2

Texte clair H Y P O T H E S E

Déchiffrer le texte suivant en utilisant la clé CODE : LSVYKGHRVSUQKBDPGOn pourra compléter le tableau suivant :

Texte chiffré L S V Y K G H R V S U Q K B D P G

Clé

Décalage

Texte clair

Texte chiffré L S V Y K G H R V S U Q K B D P G

Clé C O D E C O D E C O D E C O D E C

Décalage 2 14 3 4 2 14 3 4 2 14 3 4 2 14 3 4 2

Texte clair J E S U I S E N T E R M I N A L E

Exemple 11

Solution

Exemple 12

Solution

© Cned - Académie en ligne

Page 25: Arithmétique et Problèmes de codages

26 Séquence 1 – MA03

Afin de faciliter le chiffrement et le déchiffrement d’un message, Vigenère a mis au point le tableau ci-dessous.

Par exemple, en reprenant le codage du H précédent, on repère la ligne corres-pondant au H et à la colonne correspondant au C.

À l’intersection, on obtient la lettre codée à savoir le J.

LettresA B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A A B C D E F G H I J K L M N O P Q R S T U V W X Y ZB B C D E F G H I J K L M N O P Q R S T U V W X Y Z AC C D E F G H I J K L M N O P Q R S T U V W X Y Z A BD D E F G H I J K L M N O P Q R S T U V W X Y Z A B CE E F G H I J K L M N O P Q R S T U V W X Y Z A B C DF F G H I J K L M N O P Q R S T U V W X Y Z A B C D EG G H I J K L M N O P Q R S T U V W X Y Z A B C D E FH H I J K L M N O P Q R S T U V W X Y Z A B C D E F GI I J K L M N O P Q R S T U V W X Y Z A B C D E F G HJ J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

Clé K K L M N O P Q R S T U V W X Y Z A B C D E F G H I JL L M N O P Q R S T U V W X Y Z A B C D E F G H I J KM M N O P Q R S T U V W X Y Z A B C D E F G H I J K LN N O P Q R S T U V W X Y Z A B C D E F G H I J K L MO O P Q R S T U V W X Y Z A B C D E F G H I J K L M NP P Q R S T U V W X Y Z A B C D E F G H I J K L M N OQ Q R S T U V W X Y Z A B C D E F G H I J K L M N O PR R S T U V W X Y Z A B C D E F G H I J K L M N O P QS S T U V W X Y Z A B C D E F G H I J K L M N O P Q RT T U V W X Y Z A B C D E F G H I J K L M N O P Q R SU U V W X Y Z A B C D E F G H I J K L M N O P Q R S TV V W X Y Z A B C D E F G H I J K L M N O P Q R S T UW W X Y Z A B C D E F G H I J K L M N O P Q R S T U VX X Y Z A B C D E F G H I J K L M N O P Q R S T U V WY Y Z A B C D E F G H I J K L M N O P Q R S T U V W XZ Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Remarque

© Cned - Académie en ligne

Page 26: Arithmétique et Problèmes de codages

27Séquence 1 – MA03

c) Comparaison des deux méthodes de chiffrement précédentes

Voici une approximation en pourcentage de la fréquence d’apparition théorique des lettres de l’alphabet en français :

A0

2

4

6

8

10

12

14

16

B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Fréquence d’apparition des lettres en français

© Cned - Académie en ligne

Page 27: Arithmétique et Problèmes de codages

28 Séquence 1 – MA03

Un même texte en français a été chiffré en utilisant le chiffrement de César puis le chiffrement de Vigenère. Voici le résultat obtenu et la fréquence d’apparition des différentes lettres de l’alphabet :

Chiffrement de César Chiffrement de Vigenère

TMAWQ ZUIZQ MMABD MVCMU MKPMZ KPMZM BUILM UIVLM AQRMD WCTIQ AUMUI ZQMZI DMKMT TMRIQ LQBYC MKMTI UMBIQ BMOIT MBYCM VWCAX WCZZQ WVATM NIQZM AQMTT MTMDW CTIQB MTTMI DWCTC AIDWQ ZITWZ AAQRM TIQUI QARIQ ZMXWV LCKWU UMRMT IDIQA LMRIN IQBCV MNWQA YCMKM TIVMA QOVQN QIQBZ QMVUI QAYCM AIVAL WCBMR MVMTI QUIQA XIAXW CZYCW QUMXW CAMZI TWZAI BMTTM LQBRM TCQIQ MFXTQ YCMYC MKMTI VIDIQ BICKC VMQUX WZBIV KMMBY CMAQM TTMTM LMAQZ IQBVW CAXWC DQWVA VWCAU IZQMZ LIQTT MCZAK MBIQB MTTMY CQTML MUIVL IQBMB UWQRM UMKWV BMVBI QALML QZMWC QMTTM IWJAM ZDMIT WZAYC MTMUI ZQIOM MBIQB CVMKP WAMOZ IDMRI QZMXW VLCVW VMTTM AMABB CMCVU WUMVB MBMTT MUIZM OIZLM MVAQT MVKMX CQAMT TMIXI ZTMMT TMDWC TIQBA QUXTM UMVBA IDWQZ AQRIC ZIQAI KKMXB MTIUM UMXZW XWAQB QWVDM VIVBL CVMIC BZMNM UUMIY CQRMA MZIQA IBBIK PMLMT IUMUM NIKWV RIQLQ BVIBC ZMTTM UMVBM TTMAM ABLMU IVLMI TWZAA QMTTM UIQUI QBMBU WQRMV MXWCD IQAZQ MVAID WQZAC ZKMXW QVBIX ZMACV ICBZM UWUMV BLMAQ TMVKM MTTMI UCZUC ZMYCM RMBIQ AJQHI ZZMYC MTTMU IQUIQ BAIVA LWCBM IKICA MLMKM TIUIQ AYCMX MCBMB ZMCVR WCZRM TILMO WCBMZ IQAXW CZTMA UMUMA ZIQAW VAKWU UMRMU MBIQA IQAVI GIVBZ QMVII RWCBM ZMTTM UIXZQ ATMJZ IAMVA WCZQI VBMBM TTMIL MKTIZ MYCMT TMDWC TIQBA MUIZQ MZIDM KUWQR IQZMX WVLCY CMVWC ATMNM ZQWVA LMAYC MTTMT MDWCL ZIQBR MTCQI QXIZT MITWZ ALMTI XZWXW AQBQW VLCXI BZWVM BUIZQ MUILQ BYCMT TMIQU MZIQB KWVVI QBZMX IZQAR MTCQI QIXXZ QAYCM RGIDI QADMK CLIVA CVBMU XAMBM TTMUI LMUIV LMKWU UMVBK MBIQB RMTCQ IQLQB KMABA ITMQT GILMA XQOMW VAMBL MAKWC ZAVWQ ZMATM AOMVA WVBTI XMICJ TIVKP MXCQA VWCAI DWVAU IZKPM MBBZI DMZAM TIDQT TMXIZ AMAOZ IVLMA ZCMAT MANMU UMAMB IQMVB JMTTM AMBRI QLMUI VLMIU IZQMA QMTTM TMZMU IZYCI QBMTT MUILQ BYCMW CQMBY CMTTM UMKWU XZMVI QBXMV LIVBC VUWUM VBVWC AVIDW VAXTC AXIZT MRMDW CTIQA KMXMV LIVBY CMTTM ZMABM IDMKU WQMBR MTCQI QLQBY CMVWC AXWCD QWVAL QVMZM VAMUJ TMKPM HKMTM ABMMT TMMVI DIQBJ QMVMV DQMUI QAMTT MIDIQ BINIQ ZMVWC AMBQW VAXZM ALMKP MHUWQ MBRMT CQIQL QBICZ MDWQZ MTTMU IZMOI ZLMBC VMDMC FXIAA IDWQZ KMYCM RIQIN IQZMR MDWCT IQAJQ MVTMA IDWQZ UIQAR MVGID IQAXI AXMVA MMBKM ABKMY CMTTM IDIQB TIQZL MUMZM XZWKP MZITW ZALMD IVBUW VIQZM UXMBZ MMTTM IMVKW ZMZQM BMTTM IMCDM ZAUWQ CVUWC DMUMV BLMBW CBTMK WZXAX WCZUM BMVLZ MAIJW CKPM

LYTCC KPUEU SQWGO NRMYU WTLXF WYRVZ XDSOE BLNJI WBSIH SMFIA EUWMM RZGYE MGGXL TXUEU HUXUW PCXPM QRMRW NKKSF VEUME OZYDP AYIYI ZRLLM YDMKS MBIWL VPWKW LLTQH RCLTI YSYEY LOPTN VEOSJ WKXNX TTMEV IYDEA AIBOE FBCWE XIWXP MZNBN HVBLJ SZHWU IWGML ZYWGR EAVWE WTSZT VTAXX WRSXE ZKEOW DEFGO SCEXX YGINE BFEKZ PLWJF MRFJI GMMIG OJQFI PHJGP ISDLM WIFXR LPINK IBINP QKYUZ SKWBU RJZSM GTUKM FSVSG OEWSB WJJEU WLSCH DFVXS QZAAR GMCRG YJGOC NTSFV RBNKV EWMVD DIAWP WJFAP KLDIG WWPWF IKSIV HQMBQ PIGXT XCVSI YIVSA WEVLT WMWIQ BZIFJ WYCEV ICNHL VMHUD CCWYF IEHQC VBTKM ZKEAL YBTCX IWUAZ LHIME DVVHO VWUPV NUFPI HIWWX FYGVQ FQNNB PEMPO YEASP KDLQG SDMQW PNIIQ FIFGS TSUSU EOIFC TWYSP PRZXE MEBLG TSVKW SNSKI AAYAC VNBBA KOEGV LPLAR SXTDD HOMJH CHQPR ZOZXQ NWISO BJVJX AGVNU PMAWD EGLIY EXMJG TIVYT SYMEE RATQU NRKHB TVTEY DIXPI OPNMI XPRLV GNJIE UEOIS LPCWD IQPCL MLMFA QMHXF CCCIY EGSMK IZSKQ SAJAK WLVWN VVSJT NRXDT JIKJR TCMVW HOSYR LMIEI CGUCM WWPRT QGVZN MIHMP NWKOK ZFZRE KAIIY RELME MWZFZ HFTFW JCHYP ETSIM WOIUS WEULB GKNIR INMIV YEFRD FMRYT FYDMZ GOKQF IMLHC JGZWS UXMQG EADSB PWGHO TEZYQ JHIAI UMBRS CNGTZ AWBNG AOHWW FYQQP QCWRC VDYSD OFZVK OAVRE FXVKE TDPEV HGYTJ NUZIC XEDGF PSXHA RSSUI RJLZW RAQPN SLVQD BCDHJ UPBBD WXIYI ELOVK WSMJY RETIC TJILW IIWFY LPLLU ADLVT PEERV UHXEE XMFTG KMHXO DXYFU BCARH XHEIA EUTDK AQKYP PTEMP ICUUB GFRWA QECMT DLASK PPXCN KOFJZ TDQAI KJAIC PAJYF OQDRT LVLHQ KWVKI XPWYA FLAIE HWUSO DMFIC MXNBC JMXUZ CPHTH PKLXE PDECM MUWHM CUUQS ALNXV YAUFY KGHFV VZWCW DGTYS URXEJ TQEMV TSZKZ EBUZU USLUE OOVLX EDGTI IVERT ZQVFX COPOP DYGLV KETRV LNPIJ YUPWE EAYHQ FSMXX LIVRL QMCLX ASGAA XLHQE GHXOG FWMIV MWPDT PXZXQ SMQAU MLNPX EDCKI BIFIB NMQXD NZPCW XIUFA RYIES MMYIF HNGTC FYCZJ EHAHM WTOIT YWGDI MHLVD SUIDZ NZUBW EIIXR FHNEU OVDLT GYQTM TNYTY CQIMB SAJWS ILBTC IRNJU FRSYO KVNIX MSSZW DMIVF DIPAE HUWZR YKERO DSYSF GEKAB CHFYE HWRHI ASKPU ISZRZ TIXLM JHRBN KNXNS EEPZW DHWRV MMSGL EGBPP MXOKK MLDYD SIDIE XLWSZ JVQKT VQHTC FXJYN BCTAW RKCCI VVYIQ YHMRI UAFPN MGSNO EKWUB IVGVW SNSWG MQCWZ YVJMZ DMNTR KPMGS GLTSY WXRIU XIWFQ IZRMC LITCL IPYJE QCSFB RTOBI ZDOEB EOEMB PHQFY PJRWV FVTDH EZRTF VQVAQ TGSZM RIMNI TJUGX UVQBN EEUQN KFLXZ IGRXG AGHSJ PILFH NRZRD IFTKS MWPW

Exemple 13

© Cned - Académie en ligne

Page 28: Arithmétique et Problèmes de codages

29Séquence 1 – MA03

A0

2

4

6

8

10

12

14

16

18

B C D E F G H I J K L M N O P Q R S T U V Y X Y Z A0

2

4

6

8

10

12

14

16

18

B C D E F G H I J K L M N O P Q R S T U V Y X Y Z

� Que constatez-vous ? Quel semble être le code le plus robuste ?

� Quelle lettre semble coder le « E » dans le texte chiffré par le code de César ? En déduire la longueur du décalage et déchiffrer la première ligne.

� Facultatif : copier le code de César dans une feuille de traitement de texte et le déchiffrer en remplaçant chaque lettre du texte chiffré par la lettre qu’elle code en minuscule. Pour cela, on pourra utiliser la fonction « remplacer » du traitement de texte.

� Avec le chiffrement de César, il y a une grande différence de fréquence d’ap-parition des différentes lettres (de 0 à 18,5 %) alors qu’avec le chiffrement de Vigenère cette fréquence est comprise entre 2,6 et 6,7 % pour toutes les lettres. Le code de César sera plus facile à décrypter.

� En utilisant la fréquence d’apparition théorique des lettres de l’alphabet en français, on peut supposer que la lettre « M » chiffre le « E » dans le code de César : d’où un décalage de 8 lettres.LE SOIR MARIE EST VENUE ME CHERCHER ET M A DEMANDE (Extrait de L’Étranger, Albert Camus).

La clé du code de Vigenère est la suivante :AU BOUT D UN MOMENT JE SUIS RETOURNE VERS LA PLAGE ET JE ME SUIS MIS A MARCHER C ETAIT LE MEME ECLATEMENT ROUGE SUR LE SABLE LA MER HALETAIT DE TOUTE LA RESPIRATION RAPIDE ET ETOUFFEE DE SES PETITES VAGUES JE MARCHAIS LENTEMENT VERS LES ROCHERS ET JE SENTAIS MON FRONT SE GONFLER SOUS LE SOLEIL TOUTE CETTE CHALEUR S APPUYAIT SUR MOI ET S OPPOSAIT A MON AVANCE ET CHAQUE FOIS QUE JE SENTAIS SON GRAND SOUFFLE CHAUD SUR MON VISAGE JE SERRAIS LES DENTS JE FERMAIS LES POINGS DANS LES POCHES DE MON PANTALON JE M ETENDAIS TOUT ENTIER POUR TRIOMPHER DU SOLEIL ET DE CETTE IVRESSE OPAQUE QU IL ME DEVERSAIT A CHAQUE EPEE DE LUMIERE JAILLIE DU SABLE D UN COQUILLAGE BLANCHI OU D UN DEBRIS DE VERRE MES MACHOIRES SE CRISPAIENT J AI MARCHE LONGTEMPS

Solution

Remarque

© Cned - Académie en ligne

Page 29: Arithmétique et Problèmes de codages

30 Séquence 1 – MA03

Exercices d’apprentissage

a) Quand on le divise par 6, le reste est 5, mais quand on le divise par 7, le reste est 3 et le quotient reste inchangé. Quel est ce nombre ?

b) Le reste de la division euclidienne de l’entier naturel a par 45 est 9. Quel est le reste de la division euclidienne de a par 15 ? par 9 ? par 5 ? par 3 ?

c) Dans la division euclidienne de 394 par l’entier naturel non nul b, le quotient est 17 et le reste r. Quelles sont les valeurs possibles pour b et r ?

d) Dans une division euclidienne, on augmente le dividende de 36 et le diviseur de 3 ; le quotient et le reste sont alors inchangés. Quelle est la valeur du quotient ?

Déterminer les entiers naturels n tels que n + 3 divise 2 3n − .

La division euclidienne d’un entier naturel a par 64 donne le quotient q et le reste q 3.

Quels sont les nombres de � qui possèdent cette propriété ?

Le code ISBN (International Standard Book Number) est un nombre à 9 chiffres abcdefghi suivi d’une clé K.

Pour déterminer la clé, on calcule le nombre N = 10a + 9b + 8c +7d + 6e + 5f + 4g + 3h + 2i puis le reste R de la division euclidienne de N par 11. Si R = 0, alors K = 0 ; si R = 1, alors on remplace K par la lettre X, sinon K r= −11 .

a) Calculer la clé des codes 204730284, 221984028 et 204396892.

b) Vérifier que le code 247684123 7 est erroné.

c) Proposer un algorithme permettant de déterminer la clé à partir de la donnée des 9 chiffres a, b, ... et i.

Déterminer reste de 2 22n n− + par 2n selon les valeurs de l’entier naturel n.

DExercice 9

Exercice 10

Exercice 11

Exercice 12

Exercice 13

© Cned - Académie en ligne

Page 30: Arithmétique et Problèmes de codages

31Séquence 1 – MA03

4 Congruence dans �

Objectifs du chapitre

Nous allons étudier la notion de congruence dans � qui sera utilisée dans des problèmes de codage.

Pour débuter

Le 1er janvier 2012 était un dimanche.

� Quel jour de la semaine était-on n jours plus tard pour n = 1, 2, 3, ..., 20 (on regroupera ces résultats dans un tableau, la 1re colonne correspondant au lundi...).

� Que peut-on dire de deux nombres d’une même colonne ?

� Quel jour de la semaine sera-t-on 1 000 jours après le 1er janvier 2012 ?

� Quel jour sera-t-on le 1er janvier 2020 ?

Cours

1. Définition

Soit n un entier naturel non nul donné, et soient x et y deux entiers relatifs quel-conques.On dit que x est congru à y modulo n si la différence x y− est un multiple de n.

Dans ce cas, on note :x y n≡ mod ou encore x y n≡ [ ] ou encore x y n≡ ( )

et on lit « x congru à y modulo n ».

Définition 4

A

B

Activité 3

C

© Cned - Académie en ligne

Page 31: Arithmétique et Problèmes de codages

32 Séquence 1 – MA03

� Si x y– est un multiple de n, y x− est aussi un multiple de n.

Donc, si x y n≡ [ ] on a aussi y x n≡ [ ]  : la relation de congruence est symé-trique.

� On a toujours x x n≡ [ ] : la relation de congruence est réflexive.

� On a toujours x y≡ [ ].1 (La congruence modulo 1 ne présente donc pas grand intérêt.)

Un nombre est congru à 0 modulo n si, et seulement si, c’est un multiple de n. Tout nombre pair est congru à 0 modulo 2  ; tout nombre impair est congru à 1 modulo 2. Tout nombre est congru à son chiffre des unités modulo 10.

Conséquences

� Conséquence immédiate de la définition.

� Soit n un nombre pair. Le nombre n est divisible par 2 donc n ≡ 0 [2].

Soit n un nombre impair. Le nombre n −1 est donc divisible par 2 ce qui prouve que n ≡ 1 [2].

� Soit n un nombre entier. Écrivons n a a a am m= −1 1 0... où a0 représente le chiffre des unités de n, a1 représente le chiffre des dizaines de n, etc. Ainsi,

n a a a amm

mm= × + × + + × +−

−10 10 1011

1 0... .

L’entier n a a a amm

mm− = × × + × + +

− −0

1 2110 10 10 ... est donc divisible par 10

ce qui prouve n a≡ 0 [10].  

La barre dans la notation a a a am m−1 1 0... sert à différencier l’écriture avec le chiffre des unités, le chiffre des dizaines etc., de l’écriture du produit a a a am m× × ×−1 1 0... .

a) Les nombres –13 et –8 sont-ils congrus modulo 5 ?

b) Les nombres 7 et 8 sont-ils congrus modulo 5 ?

a) On a : –13 – (–8) = –5. Le nombre –5 est un multiple de 5 donc –13 et –8 sont congrus modulo 5 :

− ≡ −13 8 5[ ].

b) On a : 7 – 8 = –1. Le nombre –1 n’est pas un multiple de 5 donc 7 et 8 ne sont pas congrus modulo 5 :

− /≡ −13 8 5[ ].

Les règles d’un jeu sont les suivantes :

Un joueur A propose un nombre entier entre 1 et 4, le joueur B ajoute à ce nombre 1, 2, 3 ou 4 et à tour de rôle, les joueurs A et B ajoutent 1, 2, 3 ou 4 au nombre obtenu. Le 1er qui arrive à 87 a gagné.

Remarques

Démonstration

Remarque

Exemple 14

Solution

Exemple 15

© Cned - Académie en ligne

Page 32: Arithmétique et Problèmes de codages

33Séquence 1 – MA03

� Déterminer le reste de la division euclidienne de 87 par 5.

� Comment le joueur A peut-il s’y prendre pour gagner à coup sûr ?

� On a 87 17 5 2= × + et 0 2 5≤ < donc le reste de la division euclidienne de 87 par 5 est 2.

� Pour être sûr de gagner, A peut commencer par le nombre N = 2 puis, après le coup de B, il s’arrange pour que le nombre obtenu soit congru à 2 modulo 5 (en fait, si B ajoute x, il ajoute ensuite 5 – x).

À tout moment, A proposera ainsi un nombre congru à 2 modulo 5 et B un nombre congru à 3, 4, 0 ou 1 modulo 5.

En théorie des jeux, on dit que, pour ce jeu, les nombres congrus à 2 modulo 5 constituent un ensemble de situations gagnantes :

le nombre 87 est une situation gagnante ; à partir d’une situation qui n’est pas gagnante, on peut toujours jouer de telle sorte d’être à la suite du coup en situation gagnante ; à partir d’une situation gagnante, on se retrouve, après avoir joué, forcé-ment en situation perdante.

La situation initiale (N = 0) n’est pas gagnante donc le joueur A a une stratégie gagnante (toujours proposer un nombre congru à 2 modulo 5).

2. Lien entre congruence et division euclidienne

Tout nombre est congru modulo n au reste de sa division euclidienne par n.

Propriété 3

Si on effectue la division euclidienne de x par n, on sait qu’il existe q apparte-nant à � et r appartenant à � tels que x qn r= + avec 0 ≤ <r n.

On a alors x r qn− = donc x r− est un multiple de n et ainsi x est congru à r modulo n.

Modulo n, tout nombre est congru à un nombre r tel que 0 1≤ ≤ −r n .

Si a r n n≡ ≤  [ ] et 0 <r  alors r est le reste de la division euclidienne de a par n.

Conséquences

À quel entier naturel inférieur à 27 le nombre 523 est-il congru modulo 27 ?

Par division euclidienne de 523 par 27, on obtient : 523 19 27 10= × + donc

523 10 27≡ [ ].

Solution

Démonstration

Exemple 16

Solution

© Cned - Académie en ligne

Page 33: Arithmétique et Problèmes de codages

34 Séquence 1 – MA03

3. Propriétés

Transitivité

La relation de congruence modulo n est transitive c’est-à-dire que si on a :

x y n≡ [ ] et y z n≡ [ ] alors on a : x z n≡ [ ].

Propriété 4

La congruence x y n≡ [ ] se traduit par : il existe un entier k tel que x y kn− = ; la congruence y z n≡ [ ] se traduit par : il existe un entier k’ tel que y z k n− = ′ .

Or, x z x y y z− = − + − = kn + k’n = (k+k’ )n donc x z n≡ [ ].

Addition et soustraction de congruences de même module

La relation de congruence modulo n est compatible avec l’addition et avec la sous-traction dans � ; c’est-à-dire que si on a : x y n≡ [ ] et ′ ≡ ′x y n[ ] alors on a aussi : x x y y n+ ′ ≡ + ′ [ ]et : x x y y n− ′ ≡ − ′ [ ].

Propriété 5

Cela veut dire que si on a deux congruences modulo n, on peut les ajouter membre à membre ou les retrancher membre à membre et on obtient encore une congruence modulo n.

La congruence x y n≡ [ ] se traduit par x y− multiple de n.

La congruence ′ ≡ ′x y n[ ] se traduit par ′ − ′x y multiple de n.

On en déduit que la « somme » ( ) ( )x y x y− + ′ − ′ est encore un multiple de n, c’est-à-dire ( ) ( )x x y y+ ′ − + ′ est multiple de n  ; ceci veut dire que x x y y n+ ′ ≡ + ′ [ ] .

On raisonne comme précédemment en remplaçant la somme par la différence pour obtenir x x y y n− ′ ≡ − ′ [ ].

On a − ≡ −13 8 5[ ] et 46 21 5≡ [ ].

En utilisant la propriété 5, on obtient : 33 13 29≡ ≡ −[5] et –59 [5].

Multiplication de congruences de même module

La relation de congruence modulo n est compatible avec la multiplication dans � ; c’est-à-dire que si on a : x y n≡ [ ] et ′ ≡ ′x y n[ ] alors on a aussi : xx yy n′ ≡ ′ [ ].

Propriété 6

Démonstration

Démonstration

Exemple

© Cned - Académie en ligne

Page 34: Arithmétique et Problèmes de codages

35Séquence 1 – MA03

Cela veut dire que si on a deux congruences modulo n, on peut les multiplier membre à membre et on obtient encore une congruence modulo n.

On ne peut pas diviser par un même nombre les deux membres d’une congruence.

Par exemple, 15 5≡ [10] mais 3 1/≡ [10].

On a x y n≡ [ ] donc il existe k de � tel que x y kn− = d’où x y kn= + .

On a ′ ≡ ′x y n[ ] donc il existe ′k de � tel que ′ − ′ = ′x y k n d’où ′ = ′ + ′x y k n.

On a donc :xx y kn y k n

yy n ky k y kk n′ = + ′ + ′= ′ + ′ + ′ + ′

( )( )

( ).

Posons K ky k y kk n= ′ + ′ + ′( )  ; K appartient à � et xx yy Kn′ − ′ = .

Ainsi, xx yy n' ' [ ].≡

Multiplication par un entier

Si x y n≡ [ ] alors, pour tout k appartenant à �, on a : kx ky n≡ [ ].

Propriété 7

On applique la propriété 7 à x y n≡ [ ] et k k n≡ [ ].

� Dresser la table de multiplication modulo 7.

� Déterminer un entier n tel que 52n congru à 1 modulo 7.

� Soient a et b deux entiers naturels inférieurs ou égaux à 6.

On calcule le reste dans la division euclidienne de ab par 7. Par exemple, 3 4 12 12 5× = ≡et [7].

À l’aide de la fonction MOD du tableur, en saisissant en B2 la formule =MOD($A2*B$1;7) puis en la « copiant-glissant », on obtient la table suivante :

� On a 52 3≡ [7]. En utilisant la table ci-dessus, on voit que 3 5 1× ≡ [7] et ainsi n = 5 convient.

Remarque

Démonstration

Démonstration

Exemple 17

Solution

© Cned - Académie en ligne

Page 35: Arithmétique et Problèmes de codages

36 Séquence 1 – MA03

Élévation à une puissance

Si x y p≡ [ ] alors, pour tout entier naturel n non nul, on a : x y pn n≡ [ ].

Propriété 8

Cette propriété est une conséquence de la propriété 6 ; on l’établit en faisant un raisonnement par récurrence.

Considérons la proposition définie pour tout entier naturel n non nul, «  si x y p≡ [ ] alors x y pn n≡ [ ] ».

Initialisation : au rang n = 1, la proposition s’écrit x y p1 1≡ [ ]. Cette proposition est vraie par hypothèse. Ainsi la propriété est vraie au rang n = 1.

Hérédité : on suppose que la proposition « si x y p≡ [ ] alors x y pn n≡ [ ] » est vraie pour un certain rang n = k, autrement dit, on suppose que « si x y p≡ [ ]

alors x y pk k≡ [ ] ».

Regardons la propriété au rang k +1.  

Comme x y p≡ [ ] et x y pk k≡ [ ], appliquons leur la propriété 6 :

xx yy pk k≡ [ ] soit x y pk k+ +≡1 1 [ ].

Donc, la proposition « si x y p≡ [ ] alors on a : x y pn n≡ [ ] » est vraie au rang n = k +1: la proposition est héréditaire.

Conclusion : la propriété « si x y p≡ [ ] alors on a : x y np p≡ [ ] » est vraie pour n = 1 et elle est héréditaire donc, pour tout entier naturel n non nul, si x y p≡ [ ] alors x y pn n≡ [ ].

a) Montrer que 7 1 54 ≡ [ ].

b) En déduire que le reste de la division euclidienne de 7 72012 2013 et  par 5.

a) On sait que 7 2 5≡ [ ].

Donc 7 2 52 2≡ [ ] c’est-à-dire 7 4 52 ≡ [ ] ou encore 7 1 52 ≡ − [ ].

De même, 7 2 53 3≡ [ ] c’est-à-dire 7 83 ≡ [5] ou encore 7 33 ≡ [5].

Et 7 2 54 4≡ [ ] c’est-à-dire 7 16 54 ≡ [ ] ou encore 7 1 54 ≡ [ ].

Pour cette dernière ligne, on peut aussi procéder de la façon suivante :

de 7 1 52 ≡ − [ ], on déduit ( ) ( ) [ ]7 1 52 2 2≡ − c’est-à-dire 7 1 54 ≡ [ ].

b) Comme 2012 503 4 74 503= × = ( ), 72012 et ainsi 7 12012 ≡ [5].

Comme 7 1 1 52012 ≡ ≤ <[5] et 0 , 1 est le reste de la division euclidienne de

72012 par 5.

On a 7 7 72013 2012= × d’où 7 7 1 7 22013 2013≡ × ≡[5] soit [5].

Comme 7 2 2 52013 ≡ ≤ <[5] et 0 , 2 est le reste de la division euclidienne de 72012 par 5.

Démonstration

Exemple 18

Solution

© Cned - Académie en ligne

Page 36: Arithmétique et Problèmes de codages

37Séquence 1 – MA03

Cette dernière idée est importante : si a n a np p≡ − ≡ −( )1 1[ ] alors [ ].

Déterminer le reste de la division euclidienne de 62013 par 7.

Comme

6 1 1 1≡ − ≡ −( ) ≡ −[7], 6 [7] soit 62003 2003 2003 [[7] ou encore 6 [7].2003 ≡ 6

Comme 0 6 7≤ < , le reste de la division euclidienne de 62013 par 7 est 6.

3. Exemples d’utilisations des congruences

a) Déterminer le reste de la division euclidienne de 2012 2011 2010× × par 7.

b) Déterminer le reste de la division euclidienne de 2012104 par 7.

c) Quel est le chiffre des unités de 2013104  ?

a) On a : 2012 3 7 2011 2 7 2010 1 7≡ ≡ ≡[ ] ; [ ] ; [ ].

Par compatibilité avec la multiplication, on a

2012 2011 2010× × ≡ × × ≡3 2 1 7[ ] 6 7[ ].

Comme 0 6 7≤ < , le reste de la division euclidienne de 2012 2011 2010× × par 7 est 6.

b) 2012 3 7≡ [ ] donc, par compatibilité des puissances, 2012 3 7104 104≡ [ ].

Cherchons alors k tel que 3k soit congru à 1 ou –1 modulo 7.

Comme 3 3 7≡ [ ], on a : 3 9 72 ≡ [ ] soit 3 2 72 ≡ [ ]  ; 3 3 3 2 72× ≡ × [ ]

soit 3 13 ≡ − [7].

Ainsi, ( ) ( ) [ ]3 1 73 2 2≡ − soit 3 1 76 ≡ [ ].

Ce résultat a des conséquences importantes :

k

(3 ) 1 1[7]

(3 ) 1 1[7]

(3 ) 1 1[7] pour toutk k

6 2 2

6 3 3

6

≡ ≡

≡ ≡

≡ ≡ ∈On effectue la division euclidienne de 104 par 6 :

104 17 6= × + 2 donc 2012104 = 201217 6 2× +

donc 2012 3 3 3 7104 17 6 2 6 17 2≡ ≡ ×× + ( ) [ ].

Ainsi, 2012 1 3 2 7104 17 2≡ × ≡ [ ].

Comme 0 2 7≤ < , le reste de la division euclidienne de 2012104 par 7 est 2.

c) Déterminons à quel nombre compris entre 0 et 9 est congru 2013104 modulo 10. Le nombre 2013 est congru à son chiffre des unités modulo 10 donc

Remarque

Exemple 19

Solution

Exemple 20

Solution

© Cned - Académie en ligne

Page 37: Arithmétique et Problèmes de codages

38 Séquence 1 – MA03

2013 3 10≡   [ ] et 2013 3104 104≡ [10].

Comme 3 9 12 = ≡ −, 3 [10].2

Ainsi,3 3

1 10

1 10

104 2 52

52

= ( )≡ −≡

( ) [ ]

[ ].

Ainsi 2013104 est congru à 1 modulo 10 et le chiffre des unités de 2013104 est 1.

Critère de divisibilité par 11

On note abcd a b c d= + + +1000 100 10 l’écriture d’un nombre (en base dix) dont les chiffres sont a, b, c et d.

Par exemple, 5432 = 1000 5+100 4+10 3+2.× × ×

a) Déterminer le reste de la division euclidienne de 100 par 11, puis de 1000 par 11.

b) Montrer que si un nombre entier n vérifie n = 10 11[ ] alors on peut aussi écrire n = −1 11[ ].

c) En déduire que abcd est divisible par 11 si, et seulement si, −a +b −c +d est divisible par 11.

a) On a 100 9 11 1= × + donc 100 1 11≡ [ ]  ; 1000 90 11 10= × +

donc 1000 10 11≡ [ ].

b) Si n ≡ ≡ −10 1[11] alors comme 10 [11], on a par ttransitivité [11].n ≡ −1

Ainsi, 1000 1 11≡ − [ ].

c) Comme abcd a b c d= + + +1000 100 10 et 1000 1 11≡ − [ ]  ; 100 1 11≡ [ ]  ; 10 1 11≡ − [ ] on a :

abcd a b c da b c

≡ + + +≡ − + − +

1000 100 10 11

1 1 1

[ ]

dda b c d

[ ]

[ ].

11

11≡ − + − +

Donc, abcd est divisible par 11 si, et seulement si, −a +b −c +d est aussi divisible par 11.

Clé de RIB

Le R.I.B. (Relevé d’Identité Bancaire) est un nombre N constitué de gauche à droite de la façon suivante :

Code de la banque Code du guichet Numéro du compte Clé

5 chiffres 5 chiffres 11 chiffres 2 chiffres

Exemple 21

Solution

Exemple 22

© Cned - Académie en ligne

Page 38: Arithmétique et Problèmes de codages

39Séquence 1 – MA03

Pour calculer la clé de contrôle d’un RIB, on considère le nombre a formé par les 21 premiers chiffres ; on calcule le reste r de la division euclidienne de N a= ×100par 97 ; la clé RIB est 97 − r.

Calculer à l’aide de la calculatrice la clé du RIB suivant (l’écriture décimale de N comportant « trop de chiffres » pour la calculatrice, on pourra se demander com-ment les congruences peuvent nous aider à mener ce calcul) :

Code de la banque Code du guichet Numéro du compte Clé

12345 25896 35715942681 ?

On a : N = ×100 123

12 3

452 589 635 715 942 681

    = 45 2588 963 571 594 268 100.

Le nombre N est trop grand (23 chiffres alors que l’affichage de la calculatrice en montre entre 9 et 12) pour que l’on puisse utiliser la calculatrice ; on peut, par exemple, utiliser les puissances de 10 et leur congruence modulo 97.

On a :

10 10 = ≡donc 10 1 mod 970 ;

10 10 101 = ≡donc 10 mod 97 ;1

10 =100=1 97+3 donc 10 3 mod 97.2 2× ≡

Utilisons la compatibilité des congruences avec la multiplication :

10 =10 10 donc 10 10 3 mod 97 soit 10 30 m3 1 2 3 3× ≡ × ≡ ood 97.

10 =10 10 donc 10 3 mod 97 soit 10 mod4 2 2 4 4× ≡ × ≡3 9 97  ;

on obtient ainsi le tableau suivant :

Puissance de 10 100 101 102 103 104 105 106 107 108 109 1010

1 10 3 30 9 90 27 76 81 34 49

Puissance de 10 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

5 50 15 53 45 62 38 89 17 73 51 25

Écrivons par exemple :

N = × + × + × + ×1234 10 525896 10 357159426 10 81 1019 13 4 2.

On obtient alors par compatibilité des congruences avec l’addition

N ≡ × + × + × + ×1234 17 525896 15 357159426 9 81 3 97mod soit

N ≡ 3222344495 mod 97.

Comme 3222344495 97 33220046 33≡ × + , on en déduit que N ≡ 33 97mod et

que la clé du RIB est 64 car 97 33 64− = .

Solution

10 97n ≡ ...mod

10 97n ≡ ...mod

© Cned - Académie en ligne

Page 39: Arithmétique et Problèmes de codages

40 Séquence 1 – MA03

4. Application : écriture des nombres en base b (résultats non exigibles)

a) Introduction

Notre système de numération est de base 10. Cela tient à la façon de compter les éléments.

Supposons que l’on dispose d’une certaine collection d’objets. On les regroupe par 10. On obtient q1groupes de 10 objets et u objets que l’on n’a pas pu inclure dans un groupe (u < 10). On appelle groupement du 1er ordre ces groupes de 10 objets. Supposons, par exemple, que pour notre collection, u = 3.

On regroupe alors par 10 ces q1 groupements du 1er ordre. On obtient alors q2 groupements du 2e ordre (c’est-à-dire un groupe de 10 groupements du 1er ordre) et il reste d groupements du 1er ordre isolés. Supposons, par exemple, que d = 7.

On regroupe alors ces groupements du 2e ordre par 10. Supposons qu’il reste c = 6 groupements du 2e ordre et que l’on ait obtenu m = 5 groupements du 3e ordre (on ne peut donc pas faire de « groupement du 4e ordre »).

Notons N le nombre d’objets de la collection. On peut décrire les regroupements précédents par les divisions euclidiennes suivantes :

N q u= +10 1 , q q d1 210= + et q m c2 10= + .

On en déduit :

N q u q d u m c d u= + = × +( )+ = × × +( )+( )+

=

10 10 10 10 10 101 2

     mm c d u× + × + × + =10 10 10 56733 2 .

On dit que m, c, d et u sont les chiffres composant l’écriture en base 10 du nombre N (u : chiffre des unités, d des dizaines, c des centaines et m des milliers).

On regroupe maintenant les objets par 8, on obtient q1′ 8-groupements du 1er ordre et e objets isolés.

Comme 5 673 8 709 1= × + , on a q1 709′= et e = 1.

On regroupe alors les q1′ 8-groupements du 1er ordre par 8. On obtient q2′ 8-groupements du 2e ordre et d 8-groupements du 1er ordre isolés.

Comme 709 8 88 5= × + , on a q2 88′ =  et d = 5.

On regroupe alors les q2′ 8-groupements du 2e ordre par 8. On obtient q3′ 8-groupements du 3e ordre et c 8-groupements du 2e ordre isolés.

Comme 88 8 11 0= × + , on a q3 11′ =  et c = 0.

On regroupe alors les q3′ 8-groupements du 3e ordre en q4′ 8-groupements du 4e ordre et b 8-groupements du 3e ordre isolés.

Comme 11 8 1 3= × + , on a q4 1′=  et b = 3.

On ne peut pas effectuer de regroupement d’ordre supérieur avec le groupement du 4e ordre restant (a = 1). On déduit des précédentes divisions euclidiennes :

© Cned - Académie en ligne

Page 40: Arithmétique et Problèmes de codages

41Séquence 1 – MA03

N a b c d

q

q

= × × × +( )+

+

8 8 8 8

3

2

��� ��

� ��� ���

+ = × + × + ×

′q

e a b c

1

8 84 3

� ����� �����

88 82 + × +d e.

On dit que abcde8est l’écriture en base 8 de N. Ici : 5673 13051

8= .

b) Définition

Soit b élément de N \ ; .0 1{ }Tout entier naturel n peut s’écrire d’une manière unique :

n n b n b n b n bpp

pp= + + + +−

−1

11

10

0...

avec np ≠ 0 et pour tout i de 0 0; 1 ; ... ; p n bi{ } ≤ <, .

Propriété 9 admise

Soit b élément de N \ ; .0 1{ }Si l’entier naturel n s’écrit n n b n b n b n bp

pp

p= + + + +−−

11

11

00... , avec np ≠ 0 et

pour tout i de 0 0; 1 ; ... ; p n bi{ } ≤ <, , alors :

l’écriture en base b de n est n n n np pb

−1 1 0...  ;

les nombres n n n np p, , ..., et−1 1 0 sont les chiffres de l’écriture en base b de n.

Définition 5

La barre que l’on met au-dessus n’a qu’un seul rôle : c’est celui de faire com-prendre que les chiffres sont écrits côte à côte dans l’ordre donné. Sans la barre, on pourrait croire que les xi se multiplient entre eux, et ici ce n’est pas le cas.

Écrire x = 4027

en base 10.

x = = × + × + ×= × +

=

402 4 7 0 7 2 7

4 49 2

198

7 2 1 0

(=198110

).

Remarque

Exemple 23

Solution

© Cned - Académie en ligne

Page 41: Arithmétique et Problèmes de codages

42 Séquence 1 – MA03

Dans le système décimal (base dix) les chiffres sont : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Dans le système binaire (base deux) les chiffres sont : 0, 1.

Au-delà de la base 10, on complète par d’autres symboles pour avoir le nombre de « chiffres » voulus.

Dans le système de base onze, les onze chiffres sont : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, α.

Dans le système de base douze (duodécimal), les douze chiffres sont : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, α β, .

Écrire 534 en base 8.

Méthode 1

On cherche la plus grande puissance de 8 inférieure ou égale à 534.

On a : 8 534 8 534 40963 4≤ < ≤ <(soit 512 ).

On cherche maintenant la plus grande puissance de 8 inférieure ou égaleà 534 8 223− = .

On a : 8 22 81 2≤ < .

On cherche maintenant la plus grande puissance de 8 inférieure ou égale à 22 8 141− = .

On a : 8 14 81 2≤ < .

On cherche maintenant la plus grande puissance de 8 inférieure ou égale à 14 8 61− = . On a 6 < 8, on s’arrête alors et on a :

14 8 6, 22= 8 14 8 8 6,

534 8 22 8 + 8 8 6

      8 + 2 8 6 donc 534 1 8 0 8 2 8 6.

1 1 1 1

3 3 1 1

3 1 3 2 1

= + + = + +

= + = + +

= × + = × + × + × +

On déduit de la dernière égalité : 534 10268= .

Méthode 2

On s’inspire des calculs effectués dans l’introduction.

On a :

534 8 66 6= × + (donc 6 éléments isolés) ;

66 8 8 2= × + (donc 2 groupements du 1 ordre isoléer ss) ;

8 8 1 0= × + (donc 0 groupements du 2 ordre isolé)e ;;

1 groupement du 3e ordre.

Cela nous donne bien 534 10268= .

Remarques

Exemple 24

Solution

© Cned - Académie en ligne

Page 42: Arithmétique et Problèmes de codages

43Séquence 1 – MA03

On peut présenter les calculs précédents de la façon suivante :

534 86 66 8

2 8 80 1 8

1 0 Condition d’arrêt

c) Critères de divisibilité

Soit le nombre n x x x xp p= −1 1 010

... (il s’agit de l’écriture avec les chiffres écrits

les uns à côté des autres).

Critère de divisibilité par 2

On a n x x x xp p= × +−1 1 010... or 10 0≡ [2] donc n x≡ 0 2[ ].

Il en résulte que n est divisible par 2 si, et seulement si, son chiffre des unités est divisible par 2, c’est-à-dire s’il se termine par 0, 2, 4, 6 ou 8.

Critère de divisibilité par 3

On a n x x x xpp

pp= + + + +−

−10 10 1011

11

0... or 10 1≡ [3] donc, pour tout

k k∈ ≡�, [ ].10 1 3

Ainsi, n x x x xp p≡ + + + +−1 1 0 3... [ ].

Il en résulte que n est divisible par 3 si, et seulement si, la somme de ses chiffres est divisible par 3.

Critère de divisibilité par 5

On a n x x x xp p= × +−1 1 010... or 10 0≡ [5] donc n x≡ 0 5[ ].

Il en résulte que n est divisible par 5 si, et seulement si, son chiffre des unités est divisible par 5, c’est-à-dire s’il se termine par 0 ou 5.

Critère de divisibilité par 9 et « preuve par 9 »

On a n x x x xpp

pp= + + + +−

−10 10 1011

11

0... or 10 1≡ [9] donc, pour tout

entier k, 10 1 9 10 1k k k≡ ≡[ ] soit [9].

Ainsi, n x x x xp p≡ + + + +−1 1 0... [9].

Il en résulte que n est divisible par 9 si, et seulement si, la somme de ses chiffres est divisible par 9.

© Cned - Académie en ligne

Page 43: Arithmétique et Problèmes de codages

44 Séquence 1 – MA03

Le fait qu’un nombre soit congru modulo 9 à la somme des chiffres de son écri-ture décimale permet d’obtenir facilement et « de tête » le reste de la division euclidienne d’un entier naturel par 9. C’est cette idée qui est à l’origine de la preuve par 9 qui permet aux jeunes élèves apprenant la multiplication de « véri-fier un calcul ».

456 238 795 613 = 362 998 884 894

46

1

4

On a :

456 238 4+5+6+2+3+8 28 2+8 10 1 [9]≡ ≡ ≡ ≡ ≡  donc 456 238 a pour reste 1 dans la division euclidienne par 9 ;

795 613 7+9+5+6+1+3 31 3+1 4 [9]≡ ≡ ≡ ≡ donc 795 613 a pour reste 4 ;

456 238 795 613 1 4 4 [9]× ≡ × ≡ donc le produit a pour reste 4 dans la division euclidienne par 9.

362 998 884 894 6 [9]≡ donc 362 998 884 894 a pour reste 6 et ne peut donc

pas être égal au produit.

Bien sûr, la preuve par 9 ne peut pas nous prouver qu’un calcul est exact.

Critère de divisibilité par 10

On a n x x x xp p= × +−1 1 010... donc n x− 0 est divisible par 10

donc n x≡ 0 10[ ].

Il en résulte que n est divisible par 10 si, et seulement si, son chiffre des unités est divisible par 10, c’est-à-dire s’il se termine par 0.

Exercices d’apprentissage

a) À quel entier naturel inférieur à 11 le nombre 7 654 est-il congru modulo 11 ?

b) Les nombres 14 533 et 6 742 sont-ils congrus modulo 7 ?

Sans utiliser la calculatrice, déterminer le reste dans la division euclidienne :

a) de1473 1474 1475 1476× × × par 7 ;

b) de 19328 par 3 ;

c) de 7202 par 5.

Exemple

DExercice 14

Exercice 15

© Cned - Académie en ligne

Page 44: Arithmétique et Problèmes de codages

45Séquence 1 – MA03

Démontrer que, pour tout entier naturel n, 7n – 2n est un multiple de 5.

� a) Montrer que 1999 est congru à 4 modulo 7. b) Déterminer le plus petit nombre entier naturel congru à 2007 modulo 7.

� Soit n un nombre entier naturel congru à 5 modulo 7.

a) Déterminer un nombre entier naturel congru à n3 modulo 7.

b) En déduire que ( )n3 1+ est divisible par 7.

� Montrer que si n est un nombre entier naturel congru à 4 modulo 7 alors ( )n3 1− est divisible par 7.

� On considère le nombre A = +1999 20073 3 .

Sans calculer A, montrer en utilisant les résultats précédents que A est divi-sible par 7.

� Quel est le reste de la division euclidienne de 5 par 8 ? Quel est le reste de la division euclidienne de 52 par 8 ?

� Quel est le reste de la division euclidienne de 586 par 8 ? Quel est le reste de la division euclidienne de 587 par 8 ?

� Quel est le reste de la division euclidienne de 96587 par 8 ?

� Soit n un entier naturel. Montrer que 5 5 22 1 2n n+ + + est un multiple de 8.

� Donner l’écriture de 32104

en base 10.

� Donner l’écriture décimale (en base 10) de AD7816

.

� Donner l’écriture de 1001012

en base 10.

� Donner l’écriture de 31 427 en base 8.

� Donner l’écriture de 1 792 en base 2.

Arthur et Wilson sont deux jumeaux qui ont l’habitude de communiquer à l’aide de messages codés. Ils réalisent toujours leur chiffrement de la façon suivante :

Chaque lettre de l’alphabet munie de son numéro d’ordre n est remplacée par la lettre de l’alphabet munie du numéro d’ordre p ( 1 26≤ ≤p ) obtenu à l’aide de la formule p n≡ × +3 7 26[ ].

Par exemple, la forme chiffrée de L est Q car 3 12 7 43 43 17 26× + = ≡et [ ].

� Compléter la table de chiffrement donnée ci-dessous.

Lettre A B C D E F G H I J K L M

n 1 2 3 4 5 6 7 8 9 10 11 12 13

p 17

Forme chiffrée

Q

Exercice 16

Exercice 17

Exercice 18

Exercice 19

Exercice 20

© Cned - Académie en ligne

Page 45: Arithmétique et Problèmes de codages

46 Séquence 1 – MA03

Lettre N O P Q R S T U V W X Y Z

n 14 15 16 17 18 19 20 21 22 23 24 25 26

p

Forme chiffrée

� Arthur a envoyé le message suivant à Wilson : MIJUZ CZRI OJ IVRLLHOV.

Retrouver la forme déchiffrée du message.

� Wilson désire lui répondre : MERCI.

Donner la forme chiffrée de ce message.

� a) Montrer que si p n≡ +3 7 [26] alors n p≡ +9 15 [26].

b) En déduire une façon de retrouver une lettre à partir de sa forme chiffrée.

� Soit a un entier, en étudiant les différents restes possibles dans la division euclidienne par 5, montrer que a a5 − est divisible par 5. En déduire le chiffre des unités de a a5 − ?

� Étudier les différents restes possibles des carrés modulo 4. En déduire que 2015 n’est pas la somme de deux carrés.

Exercice 21

© Cned - Académie en ligne

Page 46: Arithmétique et Problèmes de codages

47Séquence 1 – MA03

5 Nombres premiersObjectifs du chapitre

Nous allons définir ce qu’est un nombre premier.

Pour débuter

� Voici un algorithme : Algorithme 1

Entrée : N (entier naturel supérieur ou égal à 2)

d (entier naturel)

Traitement : Demander N Pour d allant de 2 à N – 1 faire

Si d divise N afficher d et s’arrêter

Sinon d prend la valeur d +1

Fin du SiFin du Pour

a) Implémenter et tester l’algorithme pour N = 143 ; N = 147 et N = 149. (Le logiciel Algobox ne permet pas de quitter une boucle : on pourra alors utiliser la fonction Pause et arrêter).

b) Que fait cet algorithme ? Que peut-on en déduire lorsqu’aucun résultat ne s’affiche ?

� Voici un deuxième algorithme : Algorithme 2

Entrée : N (entier naturel supérieur ou égal à 2)

d (entier naturel)

Traitement : Demander N Pour d allant de 2 à E N( ) faire

Si d divise N afficher d et s’arrêter

Sinon d prend la valeur d +1

Fin du SiFin du Pour

A

B

Activité 4

© Cned - Académie en ligne

Page 47: Arithmétique et Problèmes de codages

48 Séquence 1 – MA03

a) Implémenter et tester l’algorithme ci-dessus pour N = 143  ; N = 147 et N = 149 et comparer aux résultats obtenus avec l’algorithme 1.

b) Quelle amélioration apporte cet algorithme par rapport à l’algorithme 1 ?

� Modifier l’algorithme 2 pour obtenir la liste de tous les diviseurs de l’entier N compris entre 1 et N .

Cours

1. Nombres premiers

Un nombre entier naturel n est un nombre premier lorsqu’il admet exactement deux diviseurs positifs distincts qui sont 1 et n.

Définition 6

Les nombres 2, 3, 5 et 7 sont des nombres premiers.Le nombre 6 n’est pas un nombre premier car 1, 2, 3 et 6 divisent 6.L’entier naturel 1 n’est pas un nombre premier car 1 n’admet qu’un seul diviseur positif.

Soit n un entier naturel strictement supérieur à 1.

L’entier naturel n admet au moins un diviseur premier.

Si n n’est pas premier, n admet au moins un diviseur premier p tel que p n≤ .

Propriété 10

� Si n est premier, la propriété est vérifiée.

� Si n n’est pas premier, c’est qu’il admet dans � d’autres diviseurs que 1 et n. Soit p le plus petit diviseur de n tel que : 1 < p < n.Raisonnons par l’absurde.Si p n’est pas un nombre premier, alors il admet lui-même au moins un diviseur p’ tel que 1 < p’ < p. Mais comme p’ divise p, p’ divise aussi n, et ceci est en contradiction avec le fait que p est le plus petit diviseur de n compris strictement entre 1 et n. D’où p est premier.Conclusion : n entier et n > 1 admet au moins un diviseur premier.

� Soit n > 1 un entier non premier ; on appelle p le plus petit diviseur de n tel que 1 < p < n. On a vu dans la démonstration précédente que p est premier. De plus, il existe un entier k tel que n = kp. Ainsi, k est un diviseur de n supé-rieur ou égal à p d’où n pk p= ≥ 2 donc n p≥ .

C

Exemple

Démonstration

© Cned - Académie en ligne

Page 48: Arithmétique et Problèmes de codages

49Séquence 1 – MA03

Il existe une infinité de nombres premiers.

Théorème 3

Raisonnons par l’absurde.

Soit P l’ensemble des nombres premiers. Supposons que P est fini et que P contient n éléments p p pn1 2, , ,... .

Considérons l’entier naturel k p p pn= × × × +1 2 1... .

On a k ≥ 2 donc k possède au moins un diviseur premier q.

Le nombre q est l’un des pi donc q divise p p pn1 2× × ×... , par suite q divise k p p pn− × × ×1 2 ... donc q divise 1 donc q = 1. Ceci est impossible car 1 n’est pas premier.

L’hypothèse « P fini » a conduit à une impossibilité donc P est infini.

2. Méthode de recherche des nombres premiers

a) Crible d’Erastothène (mathématicien, astronome et philosophe grec du IIIe siècle avant J.-C.)

Recherche des nombres premiers inférieurs à 100

On écrit la liste de tous les entiers de 0 à 99.

À chaque étape de la recherche, on supprime de la liste tous les multiples d’un entier donné. À la fin, il ne reste dans la liste que les entiers qui ne sont multiples d’aucun entier, c’est-à-dire des nombres premiers.

On commence par surligner 0 et 1 qui ne sont pas premiers.

Le nombre 2 est premier et on surligne tous ses multiples, c’est-à-dire les entiers pairs à partir de 4.

Le premier nombre non surligné suivant est 3 ; il est premier ; on surligne alors tous les multiples de 3 qui sont encore en présence.

L’entier suivant non surligné est 5 ; il est premier ; on surligne alors tous les mul-tiples de 5 qui sont encore en présence.

Et ainsi de suite jusqu’à 10. En effet, d’après la propriété précédente, si n n’est pas premier, n admet au moins un diviseur inférieur ou égal à n.

Ici, n = 100 donc n = 10.

Démonstration

© Cned - Académie en ligne

Page 49: Arithmétique et Problèmes de codages

50 Séquence 1 – MA03

0 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 1920 21 22 23 24 25 26 27 28 2930 31 32 33 34 35 36 37 38 3940 41 42 43 44 45 46 47 48 4950 51 52 53 54 55 56 57 58 5960 61 62 63 64 65 66 67 68 6970 71 72 73 74 75 76 77 78 7980 81 82 83 84 85 86 87 88 8990 91 92 93 94 95 96 97 98 99

On obtient ainsi la liste des nombres premiers inférieurs à 100.

b) Déterminer si un nombre donné est premier

Les nombres 367 et 511 sont-ils premiers ?

Nous allons utiliser la contraposée de la proposition « si n n’est pas premier, n admet au moins un diviseur premier p tel que p n≤ » à savoir « si n n’admet pas de diviseur premier p tel que p n≤ »alors n est premier ».

On a 367 19 2≈ , . Les nombres premiers inférieurs à 367 sont 2, 3, 5, 7, 11, 13, 17 et 19.Le nombre 2 ne divise pas 367 qui est un nombre impair.De plus, 3 ne divise pas 367 car 3 ne divise pas la somme de ses chiffres :

3 + 6 + 7 = 16 et 1 + 6 = 7 non divisible par 3et 5 ne divise pas 367.

On a :

367 7 52 3= × + donc 7 ne divise pas 367 ;

367 11 33 4= × + donc 11 ne divise pas 367 ;

367 13 28 3= × + donc 13 ne divise pas 367 ;

367 17 21 10= × + donc 17 ne divise pas 367 ;

367 19 19 6= × + donc 19 ne divise pas 367.

Il n’existe aucun nombre premier inférieur à 367 qui soit un diviseur de 367 donc 367 est un nombre premier.

On a  511 22 61≈ , . Les nombres premiers inférieurs à 511 sont 2, 3, 5, 7, 11, 13, 17 et 19.Le nombre 2 ne divise pas 511 qui est un nombre impair.De plus, 3 ne divise pas 511 car 3 ne divise pas la somme de ses chiffres :

3 + 6 + 7 = 16 et 1 + 6 = 7 non divisible par 3et 5 ne divise pas 511.

On a 511 7 73= × donc 7 divise 511 donc 511 n’est pas un nombre premier.

Exemple 25

Solution

© Cned - Académie en ligne

Page 50: Arithmétique et Problèmes de codages

51Séquence 1 – MA03

3. Décomposition en produit de facteurs premiers

Tout entier naturel n, strictement supérieur à 1, peut s’écrire comme un produit de nombres premiers. Cette décomposition en facteurs premiers est unique à l’ordre des facteurs près.

Théorème 4

� Unicité : admise.

� Existence.

Soit n un entier naturel strictement supérieur à 1 donc n admet un diviseur pre-mier p1 : n p n= ×1 1 avec 1 1≤ <n n.

Si n1 1= , la démonstration est terminée.

Sinon, n1 admet un diviseur premier p2 et n p n1 2 2= × où 1 2 1≤ <n n .

Ainsi n p p n= × ×1 2 2.

Si n2 1= , la démonstration est terminée.

Sinon, n2 admet un diviseur premier p3 et n p n2 3 3= × où 1 3 2≤ <n n .

Et ainsi de suite ...

On fabrique deux suites (éventuellement finies) d’entiers naturels pi( ) et ni( )telles que n p p p nk k= × × × ×1 2 ... .

La suite d’entiers naturels ni( ) étant strictement décroissante est finie donc le processus s’arrête pour un entier k tel que nk = 1.

Les termes de la suite des entiers naturels pi( ) ne sont pas tous nécessairement distincts. En regroupant les éléments égaux, on obtient une décomposition du type : n p p pN N= × × ×1 21 2α α α... où p p pN1 2, , ... et sont des nombres pre-miers distincts et α α α1 2, , ... et N des entiers naturels non nuls.

� Décomposer 300 en produit de facteurs premiers.� Décomposer 280 en produit de facteurs premiers. En déduire le nombre de

diviseurs de 280.

� On peut présenter de la manière suivante en épuisant successivement tous les diviseurs premiers de 300 :

300 2150 275 325 55 51

Ainsi 300 2 2 3 5 5 2 3 52 5= × × × × = × × .

Démonstration

Exemple 26

Solution

condition d’arrêt

© Cned - Académie en ligne

Page 51: Arithmétique et Problèmes de codages

52 Séquence 1 – MA03

Ainsi 280 2 5 73= × × .

Liste des diviseurs de 280 :

1 est un diviseur de 280.

Diviseurs premiers : 2, 5 et 7 ;

Diviseurs produits de deux facteurs premiers :

2 2 4 2 5 10 2 7 14 7 35× = × = × = × =, , , 5 ;

Diviseurs produits de trois facteurs premiers :

2 2 2 8 2 2 5 20 2 2 7 28 2 5 7 70× × = × × = × × = × × =, , et  ;

Diviseurs produits de quatre facteurs premiers :

2 2 2 5 40 2 2 2 7 56 2 2 5 7 140× × × = × × × = × × × =, et ;

Diviseurs produits de cinq facteurs premiers : 2 2 2 5 7 280× × × × = .

Ainsi, 280 possèdent 16 diviseurs.

Ce qui précède se généralise et on a le théorème suivant :

Soit n un entier naturel strictement supérieur à 1 dont la décomposition en produit de facteurs premiers est :

n p p pk k= × × ×1 21 2α α α... .

Alors les diviseurs de n dans N sont les entiers naturels p p pk k1 21 2β β β× × ×...

où pour tout 1≤ ≤i k , 0 ≤ ≤β αi i .

Théorème 5

� Les entiers naturels de la forme N = p p pk k1 21 2β β β× × ×... où pour tout 1≤ ≤i k , 0 ≤ ≤β αi i sont des diviseurs de n.

En effet, si ′ = × × ×N p p pk k1 21 2γ γ γ... où pour tout 1≤ ≤i k , γ α βi i i= −alors :

= × × × = × × ×+ + +p p p p p pk k

k k k1 2 1 2

1 1 2 2 1 2β γ β γ β γ α α α... ...

= n .

280 2140 270 235 57 71 condition d’arrêt

Démonstration

N N p p p p p pk kk k× ′ = × × ×( ) × × × ×( )1 2 1 2

1 2 1 2β β β γ γ γ... ...

© Cned - Académie en ligne

Page 52: Arithmétique et Problèmes de codages

53Séquence 1 – MA03

� Montrons que tous les entiers naturels de n sont de la forme voulue.

Soit d un diviseur de n, on peut donc écrire n d d= × ′. Celle-ci étant unique, la décomposition en produit de facteurs premiers de n est le produit des décompo-

sitions de d et de d ’ de sorte que d est bien de la forme p p pk k1 21 2β β β× × ×...où pour tout 1≤ ≤i k , 0 ≤ ≤β αi i .

Déterminer l’ensemble des diviseurs de 308.

On a : 308 2 7 112= × × . L’arbre suivant nous donne alors les diviseurs positifs de 308.

20 � 70 � 110 = 1110

20 � 70 � 111 = 111170

7110

7711171

20

2110

2211170

14110

15411171

21

4110

4411170

28110

30811171

22

Plus généralement, en appliquant un raisonnement similaire, on a le corollaire suivant.

Soit n un entier naturel strictement supérieur à 1 dont la décomposition en produit de facteurs premiers est :

n p p pk k= × × ×1 21 2α α α... .

Alors le nombre de diviseurs positifs de n est α α α1 21 1 1+( ) × +( ) × × +( )... .k

Corollaire

Quel est le nombre de diviseurs positifs de 102014  ?

La décomposition en produit de facteurs premiers de 102014 est 2 52014 2014× .

Il admet donc 2014 1 2014 1 4+( )× +( ) = 060 225.

Exemple 27

Solution

Exemple 28

Solution

© Cned - Académie en ligne

Page 53: Arithmétique et Problèmes de codages

54 Séquence 1 – MA03

Exercices d’apprentissage

� Décomposer 45 045 en produit de facteurs premiers. En déduire le nombre de diviseurs de 45 045.

� Décomposer 24 206 en produit de facteurs premiers.

� Simplifier 45 04524 206

.

Soit f la fonction définie sur � par f x x x( ) .= + +2 41

� Pour 1 15≤ ≤n , calculer f (n ). Que constatez-vous ?

� Le nombre f (n) est-il premier pour tout n de N?

Déterminer tous les nombres premiers p tels que 11p + 1 soit le carré d’un entier.

Soit n un entier naturel non nul. Montrer que n est un carré d’entier si, et seu-lement si, il admet un nombre impair de diviseurs positifs (on pourra écrire la décomposition en produit de facteurs premiers de n).

Soit N le nombre formé par les 15 chiffres du numéro INSEE. Ce numéro se décompose en 13 premiers chiffres qui forment un nombre n et en deux derniers chiffres qui constituent la clé c de N (revoir l’activité 2 pour le calcul de la clé). Le but de l’exercice est de montrer que, s’il y a un chiffre erroné dans le numéro INSEE, alors le numéro n’est pas valide.

� Soit M le nombre M = N + c. Montrer que, pour tout numéro INSEE correct, M est divisible par 97.

� Soit N un numéro INSEE et N ’ le numéro erroné dont un chiffre diffère de celui de N (on supposera que N > N ’).a) Calculer M – M ’. b) Justifier que 97 ne divise pas M – M ’.c) Conclure.

D

Exercice 22

Exercice 23

Exercice 24

Exercice 25

Exercice 26

© Cned - Académie en ligne

Page 54: Arithmétique et Problèmes de codages

55Séquence 1 – MA03

6 SynthèseSynthèse de la séquence

1. Divisibilité dans ��

Soient a et b deux entiers relatifs quelconques.On dit que a est un multiple de b ou que b est un diviseur de a s’il existe un entier relatif k tel que a b k= × .  

Définition

Transitivité

Soient a b c, et des entiers relatifs.

Si b divise a et si c divise b, alors c divise a.

Propriété

Combinaison linéaire entière

Soient a b c, et des entiers relatifs.

Si c divise a et b, alors pour tous les entiers relatifs n et n‘, c divise n a n b' .× + ×

Propriété

2. Division euclidienne

Division euclidienne dans �Soient a et b sont des entiers relatifs avec b non nul.

Il existe un unique couple ( ; )q r avec q ∈� et r ∈� tel que a bq r= + et 0 ≤ <r b| | .

Définition et théorème

A

© Cned - Académie en ligne

Page 55: Arithmétique et Problèmes de codages

56 Séquence 1 – MA03

3. Congruence

Soit n un entier naturel non nul donné, et soient x et y deux entiers relatifs quel-conques.

On dit que x est congru à y modulo n si la différence x y− est un multiple de n.Dans ce cas, on note x y n≡ mod ou encore x y n≡ [ ] ou encore x y n≡ ( ) et on lit « x congru à y modulo n ».

Définition

Un nombre est congru à 0 modulo n si, et seulement si, c’est un multiple de n.Tout nombre pair est congru à 0 modulo 2  ; tout nombre impair est congru à 1 modulo 2.Tout nombre est congru à son chiffre des unités modulo 10.

Conséquences

Tout nombre est congru modulo n au reste de sa division euclidienne par n.

Propriété

Transitivité

La relation de congruence modulo n est transitive  c’est-à-dire que si on a : x y n≡ [ ] et y z n≡ [ ] alors on a : x z n≡ [ ].

Propriété

Addition, soustraction et multiplication de congruences de même module

La relation de congruence modulo n est compatible avec l’addition, avec la sous-traction et avec la multiplication dans � ; c’est-à-dire que si on a : x y n≡ [ ] et ′ ≡ ′x y n[ ] alors on a aussi : x x y y n+ ′ ≡ + ′ [ ], x x y y n− ′ ≡ − ′  [ ] et xx yy n'   ' [ ].≡Cela veut dire que si on a deux congruences modulo n, on peut les ajouter membre à membre, les retrancher membre à membre ou les multiplier membre à membre et on obtient encore une congruence modulo n.

Propriété

© Cned - Académie en ligne

Page 56: Arithmétique et Problèmes de codages

57Séquence 1 – MA03

Multiplication par un entier

Si x y n≡ [ ] alors, pour tout k appartenant à ,� on a : kx ky n≡ [ ].

Propriété

Élévation à une puissance

Si x y p≡ [ ] alors, pour tout entier naturel n, on a : x y pn n≡ [ ].

Propriété

4. Nombres premiers

Un nombre entier naturel n est un nombre premier lorsqu’il admet exactement deux diviseurs positifs qui sont 1 et n.

Définition

Soit n un entier naturel strictement supérieur à 1 :

n admet au moins un diviseur premier.

n n’est pas premier, n admet au moins un diviseur premier p tel que p n≤ .

Propriété

Il existe une infinité de nombres premiers.

Théorème

Tout naturel n, strictement supérieur à 1, peut s’écrire comme un produit de nombres premiers. Cette décomposition en facteurs premiers est unique à l’ordre près.

Théorème

© Cned - Académie en ligne

Page 57: Arithmétique et Problèmes de codages

58 Séquence 1 – MA03

Soit n un entier naturel strictement supérieur à 1 dont la décomposition en produit de facteurs premiers est :

n p p pk k= × × ×1 21 2α α α... .

Alors les diviseurs de n dans N sont les entiers naturels p p pk k1 21 2β β β× × ×...où pour tout 1≤ ≤i k , 0 ≤ ≤β αi i .

Théorème

Soit n un entier naturel strictement supérieur à 1 dont la décomposition en produit de facteurs premiers est :

n p p pk k= × × ×1 21 2α α α... .

Alors le nombre de diviseurs positifs de n est α α α1 21 1 1+( ) × +( ) × × +( )... .k

Corollaire

Exercices de synthèse

On appelle (E) l’ensemble des entiers naturels qui peuvent s’écrire sous la forme 9 2+ a où a est un entier naturel non nul ; par exemple 10 9 12= + ;

13 9 22= + etc.

On se propose dans cet exercice d’étudier l’existence d’éléments de (E) qui sont des puissances de 2, 3 ou 5.

� Étude de l’équation d’inconnue a : a n2 9 2+ = où a ∈N, n n∈ ≥N, .4

a) Montrer que si a existe, a est impair.

b) En raisonnant modulo 4, montrer que l’équation proposée n’a pas de solu-tion.

� Étude de l’équation d’inconnue a : a n2 9 3+ = où a n n∈ ∈ ≥� �, , .3

a) Montrer que, pour tout entier naturel n, si 3n est congru à 1 ou à 3 modulo 4.

b) Montrer que si a existe, a est pair et en déduire que nécessairement n est pair.

c) On pose n p= 2 où p est un entier naturel, p ≥ 2. Déduire d’une factorisa-

tion de 3 2n a− , que l’équation proposée n’a pas de solution.

� Étude de l’équation d’inconnue a : a n2 9 5+ = où a n n∈ ∈ ≥� �, , .2

a) En raisonnant modulo 3, montrer que l’équation n’a pas de solution si n est impair.

B

Exercice I

© Cned - Académie en ligne

Page 58: Arithmétique et Problèmes de codages

59Séquence 1 – MA03

b) On pose n = 2p. En s’inspirant du 2 c démontrer qu’il existe un unique

entier naturel a tel que a2 9+ soit une puissance entière de 5.

� Cette question constitue une restitution organisée de connaissances

a) Soient a, b, c et d des entiers relatifs. Démontrer que :

si a b≡ 7mod c d≡et 7mod alors ac bd≡ 7mod .

b) En déduire que pour a et b entiers relatifs non nuls :

si a b≡ mod 7 alors pour tout entier naturel n, a bn n≡ mod 7.

� Pour a = 2 puis pour a = 3, déterminer un entier naturel n non nul tel que

an ≡ 1mod 7.

� Soit a un entier naturel non divisible par 7.

a) Montrer que : a6 1≡ mod 7.

b) On appelle ordre de a mod ,7 et on désigne par k, le plus petit entier naturel non nul tel que ak ≡ 1mod 7. Montrer que le reste r de la divi-sion euclidienne de 6 par k vérifie ar ≡ 1 7mod . En déduire que k divise 6. Quelles sont les valeurs possibles de k ?

c) Donner l’ordre modulo 7 de tous les entiers a compris entre 2 et 6.

� À tout entier naturel n, on associe le nombre Ann n n n n= + + + +2 3 4 5 6 .

Montrer que A2012 6≡ mod 7.

Partie A

� Démontrer que pour tout entier naturel non nul n : 10 1 9n ≡ mod .

� On désigne par N un entier naturel, on appelle S la somme de ses chiffres.

Justifier que N peut s’écrire de la façon suivante :

N a a a akk

kk= + × + + × + ×−

−0 1 1

110 10 10... avec :

0 9 0 9 0 9 0 90 1 1≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤−a a a ak ket; ; ... ; .

� Démontrer que N est divisible par 9 si, et seulement si, S est divisible par 9.

Partie B

Sur les billets de banque en euros figure un code de 11 chiffres précédé d’une lettre. On remplace la lettre par son rang dans l’alphabet habituel comportant 26 lettres. On obtient ainsi un nombre à 12 ou 13 chiffres et on cherche le reste de la division euclidienne de ce nombre par 9. Ce reste est le même pour tous les billets authentiques et vaut 8.

Exercice II

Exercice III

© Cned - Académie en ligne

Page 59: Arithmétique et Problèmes de codages

60 Séquence 1 – MA03

Code : X27385267637Rang dans l’alphabet de la lettre X : 24Nombre obtenu : 2427385267637Reste pour ce billet : 8

� Le code u01308937097 figure sur un billet de banque.

a) Donner le nombre à 13 chiffres correspondant à ce code.

b) Calculer le reste de la division euclidienne par 9 de la somme des 13 chiffres de ce nombre.

c) Que peut-on dire de ce billet ?

� Sur un billet authentique figure le code s0216644810x, x pour le dernier chiffre illisible. Montrer que x + 42 est congru à 8 modulo 9. En déduire x.

� Sur un autre billet authentique, la partie du code formé par les 11 chiffres est 16122340242, mais la lettre qui les précède est effacée. On appelle n le rang dans l’alphabet de la lettre effacée.

a) Déterminer les valeurs possibles de n.

b) Quelles sont les possibilités pour la lettre effacée ?

« La lutte incessante entre concepteurs et briseurs de codes a permis une série de remarquables percées scientifiques. Les concepteurs ont cherché à élaborer des codes toujours plus sophistiqués pour protéger les communications, alors que les décrypteurs imaginaient perpétuellement des méthodes plus performantes pour les attaquer... Leur travail a accéléré le développement technologique, notam-ment dans le cas de l’ordinateur... L’art de la communication secrète, aussi appelé cryptographie, fournira à l’âge de l’information ses verrous et ses clefs. »

Simon Singh, Histoire des codes secrets, Livre de Poche, 2001.

Le code ASCII (American Standard Code for Information Interchange) en informa-tique, permet d’associer à chaque caractère (lettre, signe de ponctuation, chiffre...) un nombre entier n , compris entre 0 et 255.

� Compléter le tableau ci-dessous à l’aide de la fonction CODE du tableur pour obtenir le code ASCII attribué aux lettres de l’alphabet :

Lettre A B C D E F G H I J K L M

code ASCII 66

Lettre N O P Q R S T U V W X Y Z

code ASCII

Exemple

Exercice IV

© Cned - Académie en ligne

Page 60: Arithmétique et Problèmes de codages

61Séquence 1 – MA03

� « Chiffrement » à clé utilisant l’arithmétique :Le procédé suivant permet de masquer le mot initial : à chaque nombre n, du Code ASCII correspondant à une lettre donnée, on associe le reste de la division euclidienne de 7n par 256.

Considérons la lettre B, son code ASCII est 66.

On a 7 66 = 462× et 462 = 256 1+206.× Donc la lettre B est codée par : 206.

De même, le mot BONJOUR sera codé :

MOT B O N J O U R

Code ASCII 66 79 78 74 79 85 82

Nouveau codage 206 41 34 6 41 83 62

Chiffrer le mot CLE.

� « Déchiffrement » :

Soit x le nouveau code de la lettre à découvrir et n son code ASCII avec

0 255≤ ≤n .

a) Justifier que x n≡ 7 256mod .

b) En déduire que 183 256x n≡ mod .

c) Décoder le mot suivant :

234 255 34

On note 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, α β, les chiffres de l’écriture d’un nombre en base 12.

Par exemple : βα7 11 12 10 12 7 1

11 144 10 12 7

12 2= × + × + ×= × + × +

(=1711= 171110

).

� Soit N1 le nombre s’écrivant en base 12 : N112

1= β α . Déterminer l’écriture

de N1en base 10.

� Soit N2 le nombre s’écrivant en base 10 : N2 1131= .

Déterminer l’écriture de N2 en base 12.

Dans toute la suite, un entier naturel N s’écrira de manière générale en base

12 : N a a a an n= −1 1 012

... .

� a) Démontrer que N a≡ 0 [3]. En déduire un critère de divisibilité par 3 d’un nombre écrit en base 12.

b) À l’aide de son écriture en base 12, déterminer si N2 est divisible par 3.

Confirmer avec son écriture en base 10.

Exemple

Exercice V

© Cned - Académie en ligne

Page 61: Arithmétique et Problèmes de codages

62 Séquence 1 – MA03

� a) Démontrer que N a a a an n≡ + + + +−1 1 0... [11]. En déduire un critère de divisibilité par 11 d’un nombre écrit en base 12.

b) À l’aide de son écriture en base 12, déterminer si N1 est divisible par 11.

Confirmer avec son écriture en base 10.

� Un nombre N s’écrit x y412

. Déterminer les valeurs de x et de y pour les-

quelles N est divisible par 33.

À tout n entier naturel (n > 1), on applique l’algorithme suivant :

Si n = 1 le processus s’arrête, sinon :

n est pair, on le transforme en n2

;

n est impair, on le transforme en 3n + 1.

On note à nouveau n le résultat obtenu et on ré-applique l’algorithme à ce n.

Lorsque, pour l’entier n, l’algorithme aboutit à 1, on appelle « suite de Syracuse associée à n » la suite (finie) des entiers rencontrés pour passer de n à 1.

On note L(n) le nombre d’entiers de cette suite finie. Le nombre L(n) est la lon-gueur de la suite de Syracuse associée à n.

Pour n = 5 on obtient successivement les nombres 5−16−8−4−2−1 et donc L(5) = 6.

� a) À l’aide d’un tableur, appliquer cet algorithme aux entiers compris entre 1 et 10.

b) Compléter alors la feuille de calcul en donnant les suites de Syracuse des 100 premiers entiers.

c) Préciser les valeurs de L(26) et L(27).

d) Écrire l’algorithme qui prend en entrée un entier n et qui renvoie le nombre L(n). L’implémenter sur une calculatrice.

� Étude de quelques résultats particuliers relatifs aux longueurs des suites L(n) pour n entier naturel.

a) Quelle est la longueur des suites de Syracuse associées aux nombres de la forme 2p pour p entier naturel non nul ?

b) Que peut-on conjecturer quant aux longueurs des suites de Syracuse asso-

ciées aux nombres de la forme 8k + 4 et 8k + 5 pour k ∈�* ?

c) Démontrer conjecture émise en 2.b.

� Démontrer que si le reste de la division euclidienne de n par 4 est 0, 1 ou 2, alors l’algorithme amène nécessairement, au bout d’un certain nombre d’étapes, à un entier strictement inférieur à n.

La conjecture de Syracuse affirme que pour tout entier non nul n le processus aboutit à 1. La longueur de la suite, quant à elle, n’est pas, à l’heure actuelle prévisible, en toute généralité.

Exercice VI

Exemple

Remarque

© Cned - Académie en ligne

Page 62: Arithmétique et Problèmes de codages

63Séquence 1 – MA03

Nombres de Mersenne (érudit et mathématicien français du XVIIe siècle)

On appelle nombre de Mersenne tout nombre Mn de la forme Mnn= −2 1 où n

est un entier supérieur ou égal à 2.

� a) Calculer les nombres de Mersenne pour n compris entre 2 et 11.

b) Quels sont ceux qui sont premiers ?

c) À quelles valeurs de n correspondent-ils ? Émettre une conjecture.

� Les entiers naturels p et q étant non nuls, quel est le reste de la division eucli-

dienne de 2pq par 2 1p −  ? En déduire que 2 1pq − est divisible par 2 1p −( )

et par 2 1q −( ).� a) Démontrer que si Mn est premier, alors n est premier.

b) La réciproque de cette propriété est-elle vraie ?

Montrer que si 7 divise x y2 2+ alors 7 divise x et 7 divise y.

Exercice VII

Exercice VIII

© Cned - Académie en ligne