119
i SKRIPSI PENGARUH ETIKA KERJA ISLAMI PEMIMPIN TERHADAP KINERJA PEGAWAI DAN KOMITMEN ORGANISASI PADA KEMENTERIAN AGAMA BANTAENG ASRIANI ANSAR DEPARTEMEN MANAJEMEN FAKULTAS EKONOMI DAN BISNIS UNIVERSITAS HASANUDDIN 2017

BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 1 sur 65

BACCALAUREAT PROFESSIONNEL

SEN

THEORIE

ELECTRODOMESTIQUE

Page 2: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 2 sur 65

LA DIFFERENCE DE POTENTIEL

1. DEFINITIONS

1.1. Circuit électrique

Les circuits électriques qui vous sont familiers comprennent principalement, un générateur d'énergie (parfois appelé dipôle actif) et un récepteur d'énergie (parfois appelé dipôle passif) reliés par des conducteurs.

1.1.1. Dipôle

Un dipôle est un élément possédant ,chacun pouvant avoir un potentiel. Le potentiel de chacun des pôles est référencé par rapport à un point 0 appelé généralement la masse.

1.1.2. Générateur d'énergie ou dipôle actif

Un générateur d'énergie est un dipôle de l'énergie à un dipôle récepteur d'énergie. Ces générateurs peuvent être des batteries, des piles, le secteur EDF, des alimentations dites régulées ou des générateurs de fonctions...

Le générateur a deux pôles qui ne sont pas électriquement identiques.

1.1.3. Récepteur d'énergie ou dipôle passif

Un récepteur d'énergie est un dipôle absorbant de l'énergie dont une partie se dissipe sous forme de chaleur (effet calorifique). Ce dégagement de chaleur est parfois accompagné d'un effet mécanique ou chimique suivant la fonction remplie par le récepteur. Ces récepteurs peuvent être des éléments résistifs, diode, moteur …

1.2. Différence de potentiel

On appelle différence de potentiel aux bornes d'un dipôle, la différence entre le potentiel d'une borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des caractéristiques du générateur d'énergie.

La différence de potentiel ( ou tension) s'exprime en volt dont le symbole est V.

On la note dans les expressions littérales par des lettres qui indiquent les bornes du dipôle, et sur un schéma par une flèche. On remarquera sur le schéma ci-dessous que l'on peut définir deux différences de potentiel aux bornes d'un dipôle.

dipôle D V - V

A

A

B

Bdipôle D V - V

A

A

B

B

Remarque : le dipôle D peut être un générateur ou un récepteur d'énergie.

Page 3: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 3 sur 65

ETUDE D'UNE DIFFERENCE DE POTENTIEL CONTINUE

Ce signal sera fourni par une Alimentation Régulée (A.R.) On vous demande de

- Fixer la tension de l’A.R. à 6 volts à l’aide du voltmètre intégré dans l’A.R. (numérique ou analogique),

- Contrôler cette tension à l’aide du multimètre numérique MX579 et l’ajuster si besoin,

- Initialiser la trace de l’oscilloscope en plaçant le sélecteur de couplage d’entrée sur GD,

- Appliquer le signal sur la voie A (CH I) de l’oscilloscope en plaçant le sélecteur de

couplage d’entrée sur DC (ou =),

- Observer le signal et relever son oscillogramme puis son chronogramme.

=U 6V

- Placer le sélecteur de couplage d’entrée sur AC, que constatez-vous ? Le signal est centré à 0V Remarque :

Pour observer un signal continu à l’oscilloscope le coupleur d’entrée trois positions doit être placé sur : DC

Conclusion :

Une D.D.P. Continue conserve la même valeur à toutes les dates. Cette valeur est la valeur moyenne du signal ; elle sera notée U.

C’est aussi parce que cette valeur moyenne est constante que nous parlerons de tension continue.

0 1

2

U(V)

t(ms)

- Quelle est la relation ( )tU :

GND 1V

Page 4: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 4 sur 65

ETUDE

D'UNE DIFFERENCE DE POTENTIEL SINUSOÏDALE

1. RELATION DE DEFINITION Afin d'obtenir une différence de potentiel sinusoïdale aux bornes d'un générateur de fonction, il convient de régler d'une part la forme d'onde. D'autre part, le signal est caractérisé par sa valeur maximale et sa périodicité à reprendre les mêmes valeurs. Ces trois éléments se retrouvent au niveau de la relation de définition ci-dessous :

( ) ( )tfUU EMEM ××Π××= 2sinmax

1.1. La forme d'onde

Elle apparaît par la fonction sinus : sin

Les propriétés de la fonction sinus sont que le ( )xsin varie entre (+1) et (-1) de façon périodique et que x représente toujours un angle c’est à dire une grandeur variant entre 0 et Π2 radians (ou 0.

1.2. La valeur maximale

Elle apparaît par le terme (U

EM)

max ; cette valeur est appelée également l'amplitude du signal ;

elle est obtenue lorsque le sinus est maximum et égal à 1. C’est un nombre sans signe.

1.3. La périodicité Elle apparaît par le terme f qui représente la fréquence du signal.

Une relation lie ces deux grandeurs : T

f 1= ou

fT 1=

C'est le nombre de périodes par seconde. C’est une grandeur mesurable. Elle est exprimée en hertz (Hz).

Un signal est périodique s’il se répète identique à lui même au cours d’intervalles de temps successifs de même durée T. Elle est exprimée en seconde (s).

Page 5: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 5 sur 65

2. PHASE EXPERIMENTALE

2.1. Citer les appareils nécessaires à cette expérimentation

2.2. Dessiner le schéma du circuit expérimental

2.3. Au niveau du générateur d’énergie : 2.3.1. Comment allez-vous régler la forme du signal ?

2.3.2. Comment allez-vous régler la fréquence du signal ?

2.3.3. Comment allez-vous régler l'amplitude du signal ?

2.4. Au niveau du récepteur d’énergie : 2.4.1. Donner alors les valeurs des calibres de l'appareil de mesures et la position du

couplage d’entrée, puis relever l’oscillogramme de ( )tU

2.5. Quel est le nom de cette courbe ?

2.6. Ecrire la relation ( )tU ( ) =tU

L'objectif est d'observer une différence de potentiel sinusoïdale, d'amplitude 4 volts et de fréquence 1000Hz:

Page 6: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 6 sur 65

2.7. Quelle est l’amplitude de ( )tU

== maxUU

2.8. Quelle est la fréquence de ( )tU =f

2.9. Compléter le tableau suivant en relevant les valeurs de ( )tU sur l’oscilloscope

( )mst 0 0,25 0,5 0,6 1 1,1 1,65

( )VU

2.10. Calculer en utilisant la relation mathématique de ( )tU et en vous servant de votre

calculatrice les valeurs de U aux mêmes dates que précédemment (3 chiffres significatifs).

( )mst 0 0,25 0,5 0,6 1 1,1 1,65

( )VU

2.11. Comparer les valeurs des deux tableaux :

2.12. Mesurer en utilisant le multimètre numérique MX579 sur fonction V≈ la valeur de la D.D.P. aux bornes du G.F.

== effUU

2.12.1. A quoi correspond cette valeur ?

Il Il existe une relation entre la valeur efficace et l'amplitude du signal qui est :

2maxU

U eff = ou 2max ×= effUU

Cette valeur est appelée la valeur efficace du signal. Elle correspond à une grandeur qui si elle était continue produirait les mêmes effets de dégagement de chaleur au niveau du composant.

Voici la démarche pour rentrer la formule sur la calculatrice : 1 - Calcul de l'angle : tfx ⋅⋅Π= 2

2 - Calcul du sinus de l'angle: ( )xsin en mode radian 3 - Fin du calcul de ( )tU : ( )xU sin×

Page 7: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 7 sur 65

3. TRAVAIL PERSONNEL Pour ce travail, vous devrez justifier toutes les réponses apportées.

3.1. Etude à partir de la relation Soit une différence de potentiel ( ) ( )ttU AM ⋅Π⋅×= 4000sin2 en volt

3.1.1. Quelle est la valeur de l'amplitude du signal ? 3.1.2. Quelle est la valeur de la fréquence du signal ? puis de la période ? 3.1.3. Effectuer le calcul de U

AM pour t égal à 0µs, 62.5µs, 125µs et 187.5µs.

3.1.4. Déterminer alors par déduction et sans calcul les valeurs de UAM

pour t égal à 250µs, 312.5 µs, 375 µs, 500µs et 750µs. Expliquer votre démarche.

3.1.5. Tracer le chronogramme de UAM

sur une durée de deux périodes.

3.2. Étude à partir d'une représentation graphique Soit la représentation graphique ci-dessous :

0

1

UEM

en volt

t

calibre temps par division : 25 ms

3.2.1. Déterminer la valeur de l'amplitude de la différence de potentiel U

EM

3.2.2. Déterminer la valeur de la période du signal 3.2.3. En déduire la valeur de la fréquence du signal 3.2.4. Ecrire la relation mathématique qui lie la différence de potentiel U

EM à t.

3.3. Etude d'une différence de potentiel composite

La représentation graphique de la relation qui lie la date t à la différence des potentiels des bornes S et M est la suivante :

0

15USMen mv

t en ms5

3.3.1. Quelle est la valeur USM entre les dates 0 et 20ms ? 3.3.2. A quelles dates U

SM passe de sa valeur maximale à sa valeur minimale ?

3.3.3. Pourquoi cette différence de potentiel est-elle périodique ? 3.3.4. Déterminer la valeur de la période et de la fréquence de U

SM.

Page 8: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 8 sur 65

EXERCICES AVEC AUTOCORRECTION Exercice I u est une d.d.p. alternative sinusoïdale :

d’amplitude mVÛ 600= et de période msT 25,0= En vous servant de votre calculatrice, déterminer les valeurs de u aux dates suivantes :

t(s) 0 20 100 250 1000

u(mV)

Réponses : 0 ; 289 ; 352 ; 0 ; 0 Exercice II u est une d.d.p. composite analogique :

sa composante continue a une valeur moyenne égale à 2,5 volts, sa composante variable est alternative sinusoïdale :

de valeur efficace VU eff 2= et de fréquence kHzf 5,7= En vous servant de votre calculatrice, déterminer les valeurs de u aux dates suivantes :

t(ms) 0 0,02 0,05 0,1 0,3

u(V)

Réponses : 2,5 ; 4,78 ; 4,49 ; -0,32 ; 5,32 Exercice III On considère le dipôle D de bornes S et M représenté ci-dessous :

CH A : DIVV /2 ; DIVms /1 Soit le chronogramme représenté ci-contre : Caractériser u1

Exercice IV On considère le dipôle D de bornes S et M représenté ci-dessous :

CH 1 : DIVV /5,0 ; DIVµs /50 Soit le chronogramme représenté ci-contre : Caractériser u2 et écrire la relation u2(t) En vous servant de cette relation calculer

u2 aux dates suivantes : 1000320175100250)( =µst

En vous servant du chronogramme vérifier l’exactitude du calcul effectuer à la date

mst 175,0=

u1

t

u2

t

Page 9: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 9 sur 65

ETUDE DU COURANT ELECTRIQUE

Qu'est ce que le courant électrique? Il a été vu précédemment que le courant électrique parcourait un dipôle à partir du moment où il existait un déséquilibre électrique aux bornes de ce dipôle. Pourquoi ? Réalisons un circuit électrique qui est constitué d'un générateur d'énergie et d'un récepteur d'énergie reliés par des fils conducteurs. Le générateur d'énergie va constamment créer le déséquilibre électrique. C'est à dire que sur un des pôles il y aura plus de charges négatives que sur l'autre pôle sur lequel il y aura plus de charges positives. Du fait de l'attraction de ces charges, elles vont commencer à circuler au sein du circuit, c'est le courant électrique. Celui-ci existe tant que le générateur assure le déséquilibre. Remarque : On peut assimiler cette explication sur le courant à une file d'attente derrière un guichet où une place libre est prise immédiatement par une personne et que cette personne libère une place qui va être prise par la personne qui la suivait etc... 1. DEFINITIONS

1.1. Courant électrique

Des dipôles associés à un générateur d'énergie sont, lorsqu'ils sont conducteurs, parcourus (ou traversés) par un courant électrique. Le courant électrique est lié à électriques. La grandeur privilégiée pour caractériser le courant électrique est l'intensité de courant.

1.2. Intensité de courant

Le passage du courant électrique dans un circuit s’accompagne d’effets dont l’importance dépend de l’intensité du courant.

L'intensité est souvent notée i, son unité est l'ampère dont le symbole est A. En électronique on rencontre des intensités de l'ordre du milliampère (10

-3 ampères) voire du

microampère (10-6

ampères). 1.3. Mesure de l’intensité d’un courant

On utilise un ampèremètre connecté en série dans le circuit, la borne + de l’appareil étant dirigée vers le pôle + du générateur. Remarque : En général, les mesures d’intensités sur une carte électronique sont malaisées. On procède alors d’une autre manière à savoir :

- on mesure la D.D.P. aux bornes d’un composant résistif de résistance connue R traversé par l’intensité I du courant à mesurer,

- puis on calcule l’intensité en utilisant la relation : RUI =

I en ampère, U en volt et R en ohm.

1.4. Repère

Page 10: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 10 sur 65

L'intensité de courant est une grandeur algébrique, il convient de choisir un repère pour la définir.

1.4.1. Sur le schéma ci-dessous, nous dirons que i

1 est l'intensité de courant qui circule à

travers le dipôle D de la borne A vers la borne B.

A BDipôle D

i1

1.4.2. Sur le schéma ci-dessous, nous dirons que i2 est l'intensité de courant qui circule à

travers le dipôle D de la borne B vers la borne A.

A BDipôle D

i2

Remarque : Les intensités de courant i

1 et i

2 ci-dessus sont liées par une relation, en effet :

Elles ont pour relation :

i1=

Page 11: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 11 sur 65

ANALYSE DE LA NATURE DE LA RELATION ENTRE LA DIFFERENCE DE POTENTIEL ET L'INTENSITE DE COURANT

Lors de cette séance, nous allons analyser les relations qui permettent de lier une différence de potentiel à une intensité de courant.

Dans la plupart des cas, ces relations sont linéaires ou affines (voir rappel cours de mathématiques). En réalité on peut définir 4 relations dites du premier degré entre les deux grandeurs.

Ces relations sont :- relation linéaire entre u et i, - u est indépendant de i, - i est indépendant de u, - relation affine entre u et i.

Nous allons analyser chacune de ces relations afin d'en déduire dans chaque cas un modèle

électrique. Le modèle électrique aura pour principale application de remplacer un dipôle. Cette

modélisation des circuits est surtout utile pour tous les travaux mathématiques que l'on peut effectuer sur une structure qui s'avère complexe ou inaccessible.

1. RELATION LINEAIRE ENTRE U ET I OU LOI D’OHM

1.1. Définition Un dipôle conçu pour que la relation entre la différence de potentiel à ses bornes et l'intensité de courant qui le parcourt soit linéaire est équivalent à un élément résistif. Cet élément résistif est alors caractérisé par sa résistance que l'on note R.

On peut alors écrire la relation sous la forme : IRU AB ×= . Cette relation s'appelle la loi d'ohm.

Suivant le repère choisi pour l'intensité de courant, la relation peut également s'écrire sous la forme : IRU AB ×−=

1.2. Symbole et unité: L'élément résistif est représenté par le schéma suivant :

RA B

i La grandeur caractérisant l'élément résistif est la résistance notée R (ou r, ou R

AB) et qui s'exprime

en ohm. Le symbole de l'ohm est Ω. La résistance est toujours positive et peut varier de 0 à plusieurs méga ohms (1 MΩ = 10

6 Ω).

Remarque très importante : (faire un schéma)

On considère que )( IRU AB ×+= lorsque I parcourt le dipôle de la borne A vers la borne B.

Par contre )( IRU AB ×−= lorsque I parcourt le dipôle de la borne B vers la borne A.

Exercice : Ecrire les mêmes relations mais en considérant cette fois UBA

(faire un dessin).

Page 12: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 12 sur 65

RESISTANCE D’UN FIL CONDUCTEUR :

R = ρ. ls

avec ρ la résistivité du conducteur s’exprimant en ohm par mètre.

avec l la longueur du fil conducteur s’exprimant en mètre. avec s la section du fil conducteur s’exprimant en mètre carré.

Exercice : Soit un câble de cuivre de longueur 500m, de résistivité 1,7.10-8Ω/m et de rayon 1mm, calculer la résistance de ce câble. / Les résistances spéciales :

5-1/ Les thermistances CTN et CTP CTP : Ce sont des résistances dont la valeur varie en fonction de la

température. CTN : Résistance à coefficient de température négatif. Quand la température augmente, la valeur ohmique de la résistance diminue. CTP : Résistance à coefficient de température positif. Quand la température augmente, la valeur ohmique de la résistance augmente.

5-2/ Les varistances VDR :

Ce sont des résistances dont la valeur ohmique varie en fonction de la tension à ses bornes.( si la tension augmente fortement alors la résistance diminue fortement → protection contre les surtensions)

Ro

θ en °C

Ro

V

°C

Page 13: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 13 sur 65

ASSOCIATION DE DIPÔLES

ET

RELATIONS MATHEMATIQUES

1. ASSOCIATION EN SERIE

Des dipôles sont associés en série s’ils sont parcourus par la même intensité de courant.

Exemple sur le schéma ci-dessous:

dipôle

D

D1 D2

D3

D4

A

B E

DC

i 2. ASSOCIATION EN DERIVATION

Des dipôles sont associés en dérivation s’ils ont mêmes bornes.

Exemple sur le schéma ci-dessous:

dipôle

D

D1 D2

D3

D4

A

B E

DC

D4

D5

Quels sont les dipôles associés en dérivation ?

Page 14: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 14 sur 65

3. RELATIONS MATHEMATIQUES

3.1. Relation de Chasles ou loi des branches

Cette relation permet d'exprimer une différence de potentiel en fonction de plusieurs différences de potentiel et ceci sur n'importe quel circuit possédant au moins 3 éléments.

Un ensemble d’éléments en série compris entre deux nœuds de courant constituent une branche.

Soit le circuit suivant :

dipôle

D

D1 D2

D3

D6

A

B E

DC

D4

D5

On peut exprimer UAB

par la relation :

U = U + U + U + UAB AC CD DE EB

Exprimez les différences de potentiel UAC

, puis UDC

et enfin UBD

en fonction des autres différences de potentiel.

Page 15: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 15 sur 65

3.2 Loi des nœuds

Cette relation permet d'exprimer une ou plusieurs intensités de courant en fonction d'une ou plusieurs autres intensités de courant. Elle s'applique à un nœud de conducteur.

Qu'est ce qu'un nœud de conducteur ?

Un nœud de conducteur est un point du circuit où est connecté plus de deux éléments. Comme on peut le voir sur le schéma ci-dessous, il y a séparation du courant en ce point.

Loi des nœuds : Somme des courants entrants = Somme des courants sortants Exercice: Soit le schéma ci-dessous :

dipôle

D

D1 D2

D3

D6

A

B E

DC

D4

D5

i1

i6

i2 i3

i4

i5

1 Il vous est demandé de calculer les différences de potentiels U

CD et U

BC.

2 Quelle est la valeur de U

AA?

3 Déterminer la valeur de l'intensité de courant i

4.

4 Quelle est la valeur de i

1?

5 Sachant que les caractéristiques des dipôles D

3 et D

4 sont parfaitement identiques, quelles sont les

valeurs de i2 et i

3?

6 Comparez les sommes i

2 + i

3 et i

4 + i

5? Conclure.

données: U

BE= -3 v , U

ED=-2 v , U

AB= 10 v et UAC= 3 v

i6= -6 mA et i

5= 1.10

-3 A

Exercice . (Nœud dans un circuit électrique) Quelle est la valeur de l'intensité I manquante ? (Vous devez écrire l'unité.)

Page 16: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 16 sur 65

Exercice I : A BC

R1 R2

I=220mA

U = 20V

U1 = ? U2 = -5V

1) Calculer U1, R1 et R2. Exercice II :

R1 R2

R3 R4 R5

R6

R7

AB

CD

E

I4

I5

I2

I1I3

I6

I7 I1=0.09A I4=4mA I5=5 . 10 -3 A I6=7 . 10-3 A

1) Calculer tous les courants

Page 17: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 17 sur 65

Exercice III :

R1

R2

R3

R4

I1 I2

I3

I4

I5I6

A B

C D

I

I=0A I4=10mA I5=4mA I6=3mA R1=10kΩ

1) Calculer toutes les intensités des courants électriques 2) Dessiner les ddp UAB, UCA, UCD

Exercice IV :

E1=7V E2=5V

U3=2V

R1 R2

R3

I1 I2

I3=1.6mA

U1 U2

Courant dans R2 = 1mA

1) Calculer U1 et U2 2) Calculer I1, R1, R2 et R3

Page 18: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 18 sur 65

ASSOCIATION D’ELEMENTS RESISTIFS

1. PHASE THEORIQUE

1.1. Association en série

Des éléments résistifs associés en série peuvent être remplacés par un élément résistif équivalent. Cet élément équivalent aura pour résistance la somme de toutes les résistances des éléments résistifs qu'il remplace.

R1 R2

R3

R4

E

M F

DC

i

Req

M

Ei

1.2. Association en dérivation

Des éléments résistifs associés en dérivation peuvent être remplacés par un élément résistif équivalent. Cet élément équivalent aura une résistance qui obéira à la relation ci-dessous.

A

BReq

B

Ai

R1 R2 R3

ou

4321 RRRRReq +++=

321

1111RRRReq

++= 321

1111

RRR

Req

++=

Page 19: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 19 sur 65

2. EXERCICES Déterminez les résistances des éléments résistifs équivalents aux extraits de circuit ci dessous. Données : R1 = 1kΩ , R2 = 2 kΩ , R3 = 4,7 kΩ , R4 = 470 Ω , R5 = 10 kΩ , R6 = 1 MΩ

2.1.

R1 R2

R3

R4

A

B E

DC

i

2.2.

R1 R2

R3

R4

A

B E

DC

R4

R5

2.3.

R1 R1

R2

A

B E

DC

R2

R1

R1

G

F

2.4.

R1 R6

A BC

2.5.

R6

A

B

C

R1

Page 20: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 20 sur 65

EXERCICES D'APPLICATION

DU DIVISEUR DE TENSION

Exercice 1:

R1=15kΩ R2=10kΩ R3=10kΩ UAB=30V

1°- Exprimer UAC et UCB en fonction de UAB. 2°- Calculer UAC et UCB. _____________________________________________________________________ Exercice 2:

R=1KΩ U1=30V

1°- Exprimer U2, U3 et U4 en fonction de U1. 2°- Puis calculer U2, U3 et U4. _____________________________________________________________________ Exercice 3:

UAB=15V R=10kΩ R1=5kΩ

1°- Exprimer U en fonction de UAB et de α. 2°- Calculer U quand α=1, puis α=1/4 et α=3/4.

R1 R2

R3

A B C

UAB

UCB

UAC

I1I2

I

RR

R

R

U1

U2 U3

U4

R

R1

UAB

U

αR

Page 21: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 21 sur 65

NOTION DE POTENTIEL ET DE DIFFERENCE DE POTENTIEL

1. Exprimer les d.d.p. aux bornes de chaque dipôle :

Un interrupteur fermé

un interrupteur ouvert

un court-circuit

un fil

un fusible

Potentiel de la terre

Potentiel de la phase

Potentiel du neutre

Voici le schéma sur lequel va se concentrer notre étude

2. Détermination de la différence de potentiel UDM Indiquer une convention pour les intensités : UDM = f ( R3 ; I ) I = f (R3 ; R4 ; R2 ; UAM ) justifier le mode d’association des éléments résistifs Déduire UDM

A

D C

M B

R2

R3

R1

R4 E

Page 22: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 22 sur 65

3. Détermination de la différence de potentiel UEC UEC = f ( R2 ; I )

I = f ( R3 ; R4 ; R2 ; UAM ) Déduire UEC

4. Détermination du potentiel en E

Etablir une relation de Chasles UEM = f ( UEC ; UCD ; UDM )

5. A l'aide de surligneurs, faites apparaître les potentiels de la phase en rouge, du neutre en bleu. 6. De plus complétez le tableau des mesures en dynamiques de différence de potentiel: UAM UBM UEA UDM UAC UCM

230 V

7. Finir par la prévision des mesures en statique en complétant le dernier tableau.

REC RBC RAB RAE RCD RCM

Phase neutre ouvert

60 Ω 60 Ω 30 Ω 30 Ω

Mode d’association des éléments

Phase neutre en court circuit

Mode d’association des éléments

Page 23: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 23 sur 65

NOTION DE POTENTIEL ET DE DIFFERENCE DE POTENTIEL

8. A l'aide de surligneurs, faites apparaître les potentiels de la phase en rouge, du neutre en bleu et les autres en vert, dans les 4 cas qui suivent:

9. De plus complétez le tableau des mesures en dynamiques de différence de potentiel:

UAM UBM UCD UDM UAC UCM

CAS 1 230 V

CAS 2 230 V

CAS 3 230 V

CAS 4 230 V

10. Finir par la prévision des mesures en statique en complétant le dernier tableau.

RAC RBC RBD RAM RCD RCM

CAS 1 60 Ω 60 Ω

CAS 2

CAS 3

CAS 4 30 Ω

D

C C A

C

D M

D C A M B

B

B

B D

R1

R2

R2

R2 R3

R2

CAS 1

R1

R1

R3

R3

R3 R1

CAS 2

CAS 3 CAS 4

M

M

A

A

Page 24: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 24 sur 65

définir les potentiels aux bornes des éléments chauffants.

Donner la démarche pour définir les potentiels aux bornes des éléments chauffants.

Page 25: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

Page 25 sur 65

APPROCHE DU CONDENSATEUR

DEFINITION : Le condensateur est un dipôle passif composé de deux armatures conductrices séparées par un isolant appelé diélectrique. La grandeur physique d’un condensateur est la capacité. L’unité de cette grandeur est le Farad (noté F). La valeur de cette capacité ( C ) est fonction de :

• La surface des armatures (s) • L’espace des armatures (e) • La nature du diélectrique (ε)

CIRCUIT DE MISE EN EVIDENCE DU PHENOMENE DE CHARGE ET DE DECHARGE D’UN CONDENSATEUR. Evolution de la ddp aux bornes d’un condensateur : Le condensateur étant un dipôle passif, il doit être relié à un dipôle actif . Quand le circuit est fermé, il y a un transfert de charges. Pendant cette phase, nous observons une accumulation de charges positives sur l’armature liée au potentiel le plus élevé, et une accumulation de charges négatives liée au potentiel le plus bas, jusqu’à ce que la différence de potentiel soit égale à la f.e.m. de la source de tension. A ce moment là, l’intensité de courant de montage s’annule. Donc UAE= U au bout d’une durée de 5 x R x C ou (5τ). On enlève le condensateur chargé du circuit et, nous le connectons à un dipôle passif. Dans cette configuration, les charges positives accumulées sur l’armature A vont se diriger vers l’armature E à travers le dipôle passif R’. UAE tendera vers 0v au bout d’une durée de 5 x R’ x C ou (5τ).

Représentation : Armatures conductrices connexions

Isolant

U

R

C

A

E

R’ C

A

E

Page 26: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

SEN Electrodomestique Page 26 sur 65

EVOLUTION DE LA D.D.P. AUX BORNES D UN CONDENSATEUR. Le condensateur est relié à un dipôle actif : La force électromotrice de la source de tension du dipôle actif est U. MODELISATION CHRONOGRAMME Le condensateur chargé est relié à un dipôle passif : MODELISATION CHRONOGRAMME (Le produit τ =RC s’exprime en seconde)

REMARQUES

• l’impédance d’un élément capacitif est Z=1/Cω • Le courant électrique ne traverse jamais un condensateur. • Le courant électrique est lié à un transfert de charges. • La charge élémentaire est la charge de l’électron. • qA est la charge portée par l’armature A exprimée en coulomb.

LA CHARGE DU CONDENSATEUR EST DEFINIE PAR

qA=C.UAE et qE=C.UEA La charge du condensateur est définie par qA=qE

ASSOCIATION D’ELEMENTS

• L’association en dérivation de deux condensateurs de capacité C1 et C2, forme une capacité C telle que : C = C1 + C2

• L’association en série de deux condensateurs de capacité C1 et C2, forme une capacité C telle que : 1/C = 1/C1 + 1/C2

EN ELECTROMENAGER • Les commandes sensitives des plaques électriques utilisent le principe d’élément capacitif. • le capteur d’humidité est un condensateur dont la caractéristique du diélectrique est fonction du

taux d’humidité de l’air ambiant. • Un condensateur dans un micro-onde servant au doubleur de tension est susceptible d’être

chargé à 2000 V. • Un condensateur dans un moteur asynchrone permet de déphaser deux différences de potentiel

au démarrage.

0 5τ t(s)

U

R C

A

E

On peut déterminer à chaque date la valeur de UAE pour la relation : Vraie pour UAE =0 v à t = 0 s Vraie pour UAE tendant vers U.

UAE (v)

U

0 5τ t(s)

Pour chaque date, la détermination de la valeur numérique de UAE est donnée par la relation : Vraie pour UAE =U à t = 0 s Vraie pour UAE tendant vers 0 v

UAE (v)

U

R’ C

A

E

q = i.t = c.u

W= 0,5 C U2

Page 27: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

SEN Electrodomestique Page 27 sur 65

TRACAGE DU CHRONOGRAMME D’UNE D.D.P. AUX BORNES D’UN CONDENSATEUR.

LE CONDENSATEUR EN CHARGE :

1. Rappeler l’expression de la relation mathématique reliant UAE à t dans ce cas.

2. Pour tracer ce diagramme, vous choisirez 10 valeurs de dates, à inscrire dans le tableau. Et vous calculerez les valeurs de UAE correspondantes.

Dates (μs)

0 2 4 6 8 10 15 20 25 26

Valeurs de UAE (v)

3. Tracer le chronogramme avec en abscisse 1 cm = 2 μs et en ordonnée 1 cm = 0,5 v.

DECHARGE D’UN CONDENSATEUR :

4. Rappeler l’expression de la relation mathématique reliant UAE à t dans ce cas.

5. Pour tracer ce diagramme, vous choisirez 10 valeurs de dates, à inscrire dans le tableau. Et vous calculerez les valeurs de UAE correspondantes.

Dates (μs)

0 2 4 6 8 10 15 20 25 26

Valeurs de UAE (v)

6. Tracer le chronogramme avec en abscisse 1 cm = 2μs et en ordonnée 1 cm = 0,5 v.

U

R C

A

E

Valeurs numériques C=500pf ; R=10kΩ ; U=5v.

R’ C

A

E

Valeurs numériques : C=500pf ; R=10kΩ UAE=5v à t=0 s

Page 28: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

SEN Electrodomestique Page 28 sur 65

APPLICATIONS IMMEDIATES

1. Un condensateur de 100 μF est chargé sous une tension de 30 V.

Quelle est la quantité d’électricité emmagasinée ? Rép. : 30 m C ; 3 m C ; 0,3 m C

2. Un condensateur de 100 μF est placé en série avec un condensateur de 25μF. Calculer la capacité équivalente. Rép. : 125 μF ; 62,5 μF ; 20 μF

3. Un condensateur de 100 μF est placé en dérivation avec un condensateur de 25 μF. Calculer la capacité équivalente. Rép. : 125 μF ; 62,5 μF ; 20 μF

4. Un condensateur de 100 μF est chargé sous une tension de 30 V. Quelle est l’énergie électrique emmagasinée ? Rép. : 45 m J ; 90 m J ; 1.5 m J

5. Un condensateur de 100 μF est chargé au travers d’une résistance de 10 kΩ. Quelle est la constante de temps du circuit ? Rép. : 1 s ; 0,1 s ; 5 s

6. Un condensateur de 50 μF est alimenté par une tension de 10 V au travers d’une résistance de 10 kΩ.

Calculer le courant de début de charge. Rép. : 0,5 mA ; 1 mA ; infini ; nul

7. On dispose de trois condensateurs identiques, de capacité 100 μF et de tension de service 25V. Déterminer la capacité et la tension de service du groupement des trois condensateurs :

a) En série. b) En dérivation.

8. On dispose de quatre condensateurs de capacité 500 μF et de tension de service 25 V. a) Déterminer les groupements à réaliser pour obtenir une capacité de : 250 μF ; 1500 μF ; 1250 μF b) Calculer la tension de service de chaque groupement.

9. Un condensateur de 4.7 μF initialement chargé sous une tension de 12 V est déchargé au

travers d’une résistance de 10 kΩ. Calculer :

a) L’énergie dissipée pendant la décharge. b) La durée de cette décharge c) Le courant circulant dans la résistance au début de la décharge. d) Le courant après 20 ms de décharge.

Page 29: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

SEN Electrodomestique Page 29 sur 65

Page 30: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

SEN Electrodomestique Page 30 sur 65

LA DIODE

La diode est un élément non linéaire parce que la relation liant le courant Id et la tension Ud est non linéaire Pour une diode de base le courant Id ne peut traverser la diode que dans le sens anode vers cathode. CARACTERISTIQUE DE LA FONCTION DE TRANSFERT

Condition de conduction

VD est la tension dite de seuil donné par le constructeur et propre à chaque diode. Exemple de seuil de tension la diode 1N4148 Vd=0.6v la diode AK du micro-onde Vd=9v

MODELISATION DE LA DIODE MODELE IDEALE

Si Id existe alors la diode est équivalente à un court-circuit Si Id = 0A alors la diode est équivalente à un circuit ouvert MODELE SIMPLIFIE

Si Id existe alors la diode est équivalant à une source de tension de tension VD Si Id = 0A alors la diode est équivalant à un circuit ouvert MODELE COMPLET

Si Id existe alors la diode est équivalant à une source de tension de tension VD en série avec une résistance Si Id = 0A alors la diode est équivalant à un circuit ouvert

DIODE ELECTROLUMINESCENTE

dite diode L.E.D (light electric diode) La modélisation de cette diode peut se faire par les trois type :idéal, simplifié et complet.

DIODE ZENER

C’est une diode de régulation en tensionCaractéristique de la fonction de transfert D’après sa caractéristique c’est une diode normale. Cependant lorsque la ddp à ses bornes est en inverse et au-dessus de la valeur VZ alors elle conduit et devient une source de tension de valeur VZ. (si Vka ≥ Vz alors Vz existe)

DAK VV ≥Si alors Id existe la diode s’illumine Si alors Id = 0A la diode est éteinte DAK VV <

DAK VV ≥

A (anode) K cathode) Id

VAK

Id

A K A K

Id

VZ 0 Vd VAK

A (anode) K (cathode) Id

VAK

A (anode) K (cathode) Vz

A Vd K A K

A Vd K r A K

Page 31: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

SEN Electrodomestique Page 31 sur 65

I ) Etude de la fonction alimentation : PH CP3 DR1 12V Ualim

s -VREF DZ4 DZ2 DZ3 N Question E1a-1 : Compléter le tableau de l’état des diodes ci-dessous en rayant le mot inutile

Alternance DR1 DR2 DZ2 DZ3 DZ4

positive bloquée passante

bloquée passante

bloquée passante

bloquée passante

bloquée passante

négative bloquée passante

bloquée passante

bloquée passante

bloquée passante

bloquée passante

Question E1a-2 : Tracer les diagrammes temporels de -VREF en rouge et de U DZ4 en vert en fonction de la tension d’alimentation. Les trois diodes zener DZ2, DZ3 et DZ4 sont identiques de tension de zener de 12V.

R9

R9R9

DR2

/ 9

Ualim

230√2

Page 32: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

SEN Electrodomestique Page 32 sur 65

Page 33: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

SEN Electrodomestique Page 33 sur 65

LE TRIAC

Le thyristor est un élément composé de deux thyristors mis tête bêche. Ce composant se comporte comme un thyristor bi-directionnel toujours commandé en courant par la gâchette Ig.

CARACTERISTIQUE DE LA FONCTION DE TRANSFERT

Chaque triac possède son courant minimal d’amorçage et la durée minimale d’amorçage. Cette conduction n’est possible que si l’impulsion Ig est en rapport avec l’alternance.

MODELISATION DU TRIAC MODELE IDEALE

Si le triac est amorcé alors U est négligeable. Sans amorçage à chaque alternance alors le courant du triac est nul.

Utilisation du TRIAC Celui-ci est le plus utilisé comme un interrupteur commandé de puissance. En électroménager on le trouve pour la commande de moteur, de pompe de vidange, etc. Comme beaucoup de composant de puissance il est protégé contre les surtensions, bien souvent avec une VDR. C’est un élément dont la résistance varie avec la tension à ses bornes.

Ig G (gâchette) A2 (anode) A1 (anode) Id U

Id Etat conducteur Amorçage car Ig existe (impulsion) Tension inverse de claquage 0 U Etat bloqué Etat conducteur

A1 A2 . A1 A2

• Ig existe quelque instant pour amorcer la conduction

• Impulsion positive pour une ddp positive entre Anode (U)

• Impulsion négative pour une ddp négative entre Anode (U)

Conditions de conduction :

Gâchette Ig Id Anode Anode

VDR

Page 34: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

SEN Electrodomestique Page 34 sur 65

IV) Etude du moteur d’entraînement du tambour : Question E1a – 10 : En vous aidant du schéma électrique contenu dans le dossier technique, représenter le schéma de principe de ce moteur à partir de l’alimentation 230Ven y mettant l’élément TC1: Question E1a – 11 : Donner le nom, le symbole de l’élément TC1 et expliquer son fonctionnement :

Page 35: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

SEN Electrodomestique Page 35 sur 65

Question E10a – 12: Représenter la tension U aux bornes du moteur d’entraînement du tambour en ayant un angle d’amorçage du triac à 45° : Question E1a – 13 : La tension U n’ayant plus la même valeur efficace, que peut-on en déduire sur la vitesse de rotation du moteur et donc du tambour :

Ualim

230√2

Page 36: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

SEN Electrodomestique Page 36 sur 65

LES TRANSISTORS

Il existe plusieurs types de transistors. Les plus communs sont nommés PNP ou NPN. Ce sont les transistors qui sont à la base de toute amplification, on les utilise soit en commutation soit en amplification. Les caractéristiques de chaque composant sont données par les constructeurs dans la documentation technique. On a souvent besoin des valeurs suivantes : • Le coefficient d’amplification en courant : β ou hfe ou h21 • La ddp entre émetteur et collecteur lorsque le transistor sature : Vce sat souvent petit • la tension de seuil Vd souvent proche de 0.6v voici leurs fonctionnements :

TRANSISTOR DE TYPE NPN

REGIME DE SATURATION :

REGIME LINEAIRE :

TRANSISTOR DE TYPE PNP

REGIME DE SATURATION :

REGIME LINEAIRE :

DETERMINATION DU REGIME DE FONCTIONNEMENT Pour constater l’état du fonctionnement du transistor : régime de saturation ou d’amplification, nous sommes obligés de passer par une comparaison. Il faut comparer l’intensité Ib calculée dans le circuit avec celle qu’il y aurait pour un début de saturation.

• si (-0.6v) le transistor est saturé donc Vce = Vcesat ≈ 0.2v • Si Ib=0A • ou si Vbc>0v alors le transistor est bloqué donc Ic=0A • ou si Vbe >Vd (-0.6v)

DBE VV ≤

• si (0.6v) le transistor est saturé donc Vce = Vcesat (≈ 0.2v) • Si Ib=0A • ou si Vbc<0v alors le transistor est bloqué donc Ic=0A • ou si Vbe <Vd (0.6v)

DBE VV ≥

DBE VV ≥il faut Vbc>0v ainsi que (0.6v) , et 0<Ib<Ib sat alors

Ic existe et sa valeur dépend de Ib par une relation linéaire Ic= β .Ib Et Vbe impose 0.6v . (β coefficient d’amplification d’un transistor)

Ic C collecteur Ib B

base

E émetteur

il faut Vbc>0v ainsi que (-0.6v) et 0<Ib<Ib sat alors

Ic existe sa valeur dépend de Ib par une relation linéaire Ic =β . Ib Et Vbe impose - 0.6v

DBE VV ≤

Ic C collecteur Ib B

base E émetteur

Page 37: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

SEN Electrodomestique Page 37 sur 65

II ) Etude de la commande de chauffage : Le thermoplongeur est alimenté sous 230V si le contact KL1 est fermé. +5V +5V 0V Micro- contrôleur Ib PA5 Ie

DS6 KL1 -12v Question E1a – 3: Quels sont les types des transistors TR11 et TR12 (rayer la mauvaise solution) TR11 : PNP NPN TR12 : PNP NPN Question E1a – 4 : Quel est le rôle de la diode DS6 ? …………………………………………………………………………………………………………………………………………………………………………………………………………………………………… Question E1a – 5 : Pour que le contact KL1 soit fermé , donner l’état des éléments du tableau ci-dessous en rayant le mot inutile.

Relais KL1 TR12 TR11 PA5 alimenté

non alimenté bloqué saturé

bloqué saturé

niveau haut niveau bas

Question E1a - 6 : Sachant que le transistor TR12 est caractérisé par les valeurs suivantes : Vcesat = 0,3 V, Ib courant de base est négligeable devant les courants Ic et Ie et que la bobine du relais à une résistance de 120 Ω. Calculer l’intensité du courant Ie traversant la bobine du relais KL1 ; pour cela représenter la maille utilisée. (Calcul littéral suivi de l’application numérique). Question E1a - 7 : Sachant que le transistor TR11 est caractérisé par les valeurs suivantes : Vcesat = - 0,3 V, Ib = 0.81 mA , Calculer la valeur de R76, pour cela représenter la maille utilisée. (Calcul littéral suivi de l’application numérique).

/ 14

R 7 7

R 7 4

R76TR111

TR122

KL

Page 38: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

SEN Electrodomestique Page 38 sur 65

Page 39: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

SEN Electrodomestique Page 39 sur 65

Page 40: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

SEN Electrodomestique Page 40 sur 65

Page 41: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

SEN Electrodomestique Page 41 sur 65

REGIME D'UTILISATION DES AMPLIFICATEURS INTEGRES LINEAIRES

Les amplificateurs intégrés linéaires sont utilisés suivant deux régimes : REGIME LINEAIRE et REGIME DE SATURATION. Ceci est dû à la caractéristique de transfert du composant.

REGIME LINEAIRE : VSM est compris entre - U et + U, correspondant aux potentiels de l'alimentation du composant.

La sortie VSM = K.ε sachant que le coefficient K est de plusieurs millions cela signifie que ε est à négliger, en régime linéaire, car ε = VSM / K. Ce régime est obtenu uniquement si la structure est organisée avec une boucle de réaction de la sortie de l'amplificateur intégré linéaire sur l'entrée négative

REGIME DE SATURATION si ε n'est plus négligeable, la différence de potentiel de sortie sera fonction de ε et ne pourra prendre que les valeurs de l'alimentation de l’A.I.L tel que :

VSM = + U si ε > 0 VSM = -U si ε < 0.

Ce régime est obtenu en comparant deux différences de potentiel directement sur les entrées de l'amplificateur intégré linéaire (structure de comparaison). Cette comparaison est également obtenue si la structure est organisée avec une réaction de la sortie de l'amplificateur intégré linéaire sur son entrée positive.

CAS PARTICULIER D’A.I.L A COLLECTEUR OUVERT La sortie de ce composant est câblée avec le collecteur d’un transistor. ε n'est plus négligeable, la différence de potentiel de sortie sera fonction de ε et ne pourra prendre que les valeurs de l'alimentation de la résistance de tirage tel que : SI ε > 0 LE TRANSISTOR EST BLOQUE IC=0A DONC VSM = + VSS si ε < 0 le transistor est saturé Vce≠0v donc VSM = 0v La particularité de ce composant est indiquée par ce signe sur la broche de sortie.

-U

ε

Régime linéaire Régime de

saturation

Régime de saturation

CARACTERISTIQUE DE TRANSFERT D'UN AMPLIFICATEUR INTEGRE LINEAIRE.

+Vss

S Vsm

+U

+e ε -e

C B

E

+U I=0A e+ s ε e- Vsm

+ -

+U

Page 42: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

SEN Electrodomestique Page 42 sur 65

Page 43: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

SEN Electrodomestique Page 43 sur 65

Page 44: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

SEN Electrodomestique Page 44 sur 65

Page 45: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

SEN Electrodomestique Page 45 sur 65

LE FILTRAGE

BESOIN : agir sur la grandeur physique entrante pour obtenir en sortie la partie souhaitée du signal d’entrée. Le filtrage s’effectue le plus souvent en fonction de la fréquence du signal d’entré. Il est possible de déterminer leurs utilités, de façon rapide mais grossière :

• Soit à l’aide de la fonction de transfert du filtre, par le calcul la valeur de l’amplitude de sortie en fonction d’une fréquence choisie.

• Soit par l‘étude du diagramme de BODE définissant le gain du filtre. • Soit par l’étude du schéma de câblage.

On peut ainsi déterminer l’allure du signal de sortie et l’utilité du filtre. Analyse par la fonction de transfert : Méthode : déduire la valeur de T en fonction de f par calcul pour les fréquences suivantes :

si f=0 Hz (en continue la fréquence est nulle) si f=fc (fréquence dite de coupure liée à chaque filtre et définie par un calcul) si f=+∞ (fréquence dite infinie HF haute fréquence ou son présent les parasites)

analyse par le schéma structurel : Méthode : déterminer le modèle des impédances aux différentes valeurs de fréquences. Valeurs particulières :

éléments Valeur de l’impédance en continue f = 0 Hz

Valeur de l’impédance à haute fréquence f =+∞

Modélisation de l’élément

Elément résistif R

Elément capacitif 1 . Cω

Elément inductif Lω

Analyse par les courbes de gain : Méthode : pour les fréquences suivantes déterminer graphiquement le gain en décibel (dB), puis en déduire le rapport entre l’entrée et la sortie.

f=fc/10 f=fc f=10.fc

FILTRAGE Fonction de transfert

( )TG

TouVeVsT

G

log20

10...... 20

×=

==⎟⎠

⎞⎜⎝

Gain (dB)

Ve Vs = T. Ve

Page 46: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

SEN Electrodomestique Page 46 sur 65

Travail personnel Faire l’étude des fonctions de transfert pour définir le filtre aux quelles elles appartiennent

1. Déduire la valeur de T ou G en fonction de f, par calcul pour les fréquences suivantes : si f=0 Hz si f=fc si f=+∞

2. Déduire pour ses trois valeurs de fréquence le rapport entre le signal d’entré et de sorti. 3. Par l’analyse indiquer le type de filtre et son utilité. Faire le schéma équivalant obtenue avec les impédances équivalents suihant la valeurs de la fréquence Circuits Continu f=0Hz

Schéma équivalent : f=+∞Hz Schéma équivalent :

Valeur de Vs Type de filtre Et son activité

( ) ( )( )

( )⎟⎟⎟

⎜⎜⎜

⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+×=

⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+

=⋅⋅⋅⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛+=⋅⋅⋅⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+=

22

22

3

22

2

22

1 1log20...

1

111c

c

c

c ffG

ff

TTffT

ωω

R Ve Vs C

C Ve R Vs

_

C R Ve Vs

L Ve R Vs

Page 47: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

SEN Electrodomestique Page 47 sur 65

Analyse du filtre par son diagramme de bode L’axe des abscisses n’est plus une graduation linéaire, mais une graduation logarithmique. Il n’y a pas de zéro et peut se graduer comme ceci : D’après les filtres qui suivent faites leur étude : 1. Lire la valeur de G en fonction de f, graphiquement pour les fréquences suivantes :

si f=fc/10 si f=fc si f=10fc 2. Déduire pour ses trois valeurs de fréquence le rapport entre le signal d’entrée et de sortie.

E

SG

VV

T ==⎟⎠⎞

⎜⎝⎛

2010

3. Par l’analyse des résultats, indiquer le type de filtre et son utilité.

Echelles logarithmiques 2 3 4 5 6 7 8 9 20 30 40 50 60 80 1 10 70 100 log(f)

Fc/100 fc/10 fc 10f 100fc

Echelle linéaire 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

GAIN G1 Fc/100 fc/10 fc 10fc 100fc 0 5 10 20 30 40

GAIN G2 Fc/100 fc/10 fc 10fc 100fc 0 dB 5 10 20 30 40

Page 48: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

E.LUCIEN : SEN Electrodomestique Page 48 sur 65

ANALYSE VECTORIELLE OU REPRESENTATION DE FRESNEL

Une représentation vectorielle est l'association d'une grandeur sinusoïdale à un vecteur:

• L'amplitude ou valeur efficace correspond à la norme du vecteur • La phase à l'origine correspond à l'angle du vecteur

Page 49: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

49

1. Compléter le tableau suivant

Degré

0 30° 45° 120° 180° 270° Radian

π/6 π/3 π/2 2π Fraction de période

T/8 T/6 T/3 3T/4 T

2. Faites la représentation vectorielle des grandeurs sinusoïdales suivantes,puis donnez l’équation de la ddp :

3. ECHELLES 1V=1CM SASCHANT QUE LA REPRESENTATION EST A L’ECHELLE POUR L’AMPLITUDE.

4. A l’aide des équations suivantes, déterminer graphiquement les intensités puis donnez leurs équations à 50 Hz : ECHELLES 1A=1CM

)4

32sin(63

)2

2sin(52

)2sin(31

ππ

ππ

ππ

+=

+=

−=

fti

fti

fti

• I4=I1+I2

• I6=I1+I2+I3

• I5=I1-I3

• I7=I3-I1-I2

Page 50: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

50

NOTION DE DIFFERENCE DE PHASE La différence de phase entre deux grandeurs électriques de même fréquence exprime la durée pour laquelle les signaux seront dans la même situation. Cela peut exprimer aussi la différence de phase à l’origine. On associe une période T à 2π rd soit une rotation de 360°.

Circuit R : purement resistifs Résistance

Circuit L : purement inductif Bobine

Circuit C : purement capacitif condensateur

La ddp u est synchrone avec l’intensité i pour un élément résistif La différence de phase entre u et i de +0 rd

La ddp u est en avance de ¼ de période par rapport à i pour un élément inductif. donc à ¼ de période en avance correspond à une différence de phase entre u et i de +π/2 rd

La ddp u est en retard de ¼ de période par rapport à i pour un élément capacitif. donc à ¼ de période en retard correspond à une différence de phase entre u et i de +π/2 rd

Impédance : RI

UZ RR == Impédance ωL

IUZ L

L == Impédance ωCI

UZ CC

1==

Diagramme de FRESNEL UR

ϕU/I= 0rd I

Diagramme de FRESNEL

UL ϕU/I=+π/2rd

Diagramme de FRESNEL I

UC ϕU/I=-π/2rd

Circuit RL : resistifs et inductif (bobine et élément resistif)

Circuit RC : résistif et capacitif (condensateur élément résistif)

La ddp URL est en avance d’une valeur de période par rapport à i pour un élément inductif associé à un élément résistif. L’avance dépend des valeurs de résistance et d’inductance

La ddp URC est en retard d’une valeur de période par rapport à i pour un élément capacitif associé à un élément résistif. Le retard dépend des valeurs de résistance et d’inductance

( ) ( )( ) ( )22

22

ωLRZ

réactivepartieresistivepartiZ

IUZ

RL

RL

RLRL

+=

⋅+⋅==

=

( ) ( )

( )2

2

22

1⎟⎠⎞

⎜⎝⎛+=

⋅+⋅==

=

ωCRZ

réactivepartieresistivepartiZ

IUZ

RC

RC

RCRC

Diagramme de FRESNEL URL UL UR La phase de URL se mesure par l’angle obtenu. L’amplitude ou la valeur efficace se mesure par la longueur du vecteur.

Diagramme de FRESNEL La phase de URC se mesure par l’angle obtenu. L’amplitude ou la valeur efficace se mesure par la longueur du vecteur. UR URC UC

Page 51: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

51

Page 52: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

52

Page 53: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

53

Page 54: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

54

Page 55: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

55

Page 56: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

56

Page 57: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

57

1cm = 20 V

Page 58: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

58

SYSTEMES TRIPHASES EQUILIBRES

Pour beaucoup de raison le régime électrique triphasé est plus économique que le monophasé.

QU’EST-CE QUE LE TRIPHASE ? C’est un ensemble de 3 potentiels (ou phases) qui forment, associés au neutre, 3 différences de potentiel monophasé, presque identiques. Ces ddp ont des phases à l’origine différentes, chacune en retard de 2π/3 rd avec la précédente (soit 120°). Le système est dit équilibré lorsque les valeurs efficaces de chaque ddp sont identiques.

TENSIONS SIMPLES : Chaque ddp obtenue entre un potentiel de phase et de neutre constitue une tension simple : Noté Vx, l’indice correspond au potentiel lié à une des phases.

RELATIONS MATHEMATIQUES

REPRESENTATION

DES TENSIONS SIMPLES OSCILLOGRAMME

DIAGRAMME DE FRESNEL

V : Valeur efficace 2V : Amplitude

ω : Pulsation f : Fréquence

32π

− : Phase à l’origine retarde de 120° par rapport

à la ddp de référence

32π

+ : Phase à l’origine retarde de 2*120=240°

par rapport à la ddp de référence

( )

⎟⎠⎞

⎜⎝⎛ +=

⎟⎠⎞

⎜⎝⎛ −=

=

322

322

2

3

2

1

πω

πω

ω

tSINVV

tSINVV

tSINVV

32

34

32

32 ππππ

+→−=−− ou

0 rd

V

V3

t

-4π/3 d

+2π/3

-2π/3 rd

-4π/3=+2π/3

-2π/3

2π rd

V1 V2 V3

L1 L2 L3

Page 59: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

59

TENSIONS COMPOSEES : Chaque ddp obtenue entre deux potentiels de phase constitue une tension composée : Noté Uxy, les

indices correspondent aux potentiels associés.

RELATIONS MATHEMATIQUES REPRESENTATION DES TENSIONS COMPOSEES A PARTIR DES TENSIONS SIMPLES

SYSTEME DIRECT OU INDIRECT Un tel ensemble de potentiel donne un système direct lorsque les ddp V1, V2 et V3 sont en retard de phase respectivement de 120° puis de 240°. Un système indirect donne des ddp V1, V2 et V3 en retard de phase respectivement de 240° puis de 120°.

EXERCICE POUR UN SYSTEME TRIPHASE 400V, 50HZ. 1. Déterminer les grandeurs suivantes : ddp Valeur

efficace Amplitude pulsation Fréquence Période Phase à

l’origine V1 230v 325v 314 rd/s 50 Hz 20ms 0 rd V2 230v 325v -2pi/3 V3 230v 325v +2pi/3 U12 400v 565v 0 rd U23 400v 565v -2pi/3 U31 400v 565v +2pi/3

COUPLAGE DE SYSTEME TRIPHASE

Un couplage est le résultat de la connexion des potentiels avec 3 éléments récepteurs. On dit que le récepteur est équilibré si les 3 éléments sont identiques.

( ) ( )

⎟⎠⎞

⎜⎝⎛ +=

⎟⎠⎞

⎜⎝⎛ −=

==

322

322

232

31

23

12

πω

πω

ωω

tSINUU

tSINUU

tSINVtSINUU

1331

3223

2112

VVUVVUVVU

−=−=−=

3VU =

U23

U31

U12

Page 60: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

60

COUPLAGE ETOILE

Pour ce type de couplage chaque élément est placé aux bornes d’une tension simple. Tous les recepteurs sont identiques; donc les intensités de courant seront presque identiques avec leurs phases respectivement retardées.

A l’aide de la loi des nœuds et grâce à FRESNEL : In = I1 + I2 + I3 = 0A

COUPLAGE TRIANGLE Pour ce type de couplage chaque élément est placé aux bornes d’une tension composée.

123

312

231

jjijjijji

−=−=−=

3ji =

CABLAGE TRIANGLE OU ETOILE Souvent les récepteurs ont leurs bornes disposées pour faciliter le câblage. Il se fait avec des barres conductrices :

PUISSANCES Puissance active ( )ϕCOSIUP ×××= 3 (W) Puissance réactive ( )ϕSINIUQ ×××= 3 (VAR)

Puissance apparente 3××= IUS (VA) Facteur de puissance ( )SPCOSK == ϕ

ϕ est la différence de phase entre U et I

L1 I1 J3 U31 U12 J2 I2 J1 L3 L2 I3 U23

( )0231 +== tSINZV

ZVI ω

Z Z Z

Couplage étoile couplage triangle L1 L2 L3 L1 L2 L3

N

L1 > I1 L2 I2 L3

I3

V1 V2 V3

( )32222 πω +== tSINZ

VZVI

( )32233 πω −== tSINZ

VZVi

Page 61: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

61

EXERCICES TRI

A. Cocher la (les) bonne(s) réponse(s) Quelle est la valeur efficace d’une tension simple d’un réseau triphasé 230 V ?

230 V 133 V 400 V 690 V Quelle est la valeur efficace de la tension composée du réseau précédent ?

230 V 133 V 400 V 690 V Trois résistances R=100 Ω, associées en étoile, sont alimentées par le réseau précédent. Quelle est l’intensité efficace du courant les traversant ?

1.33 A 4.0 A 6.9 A 2.3 A Les trois résistances précédentes sont montées en triangle et alimentées par le réseau précédent. Quelle est l’intensité efficace du courant les traversant ?

1.33 A 4.0 A 6.9 A 2.3 A Quelle est l’intensité efficace du courant en ligne dans le cas précédent ?

1.33 A 4.0 A 6.9 A 2.3 A Un récepteur triphasé, de facteur de puissance 0.85, est alimenté par un réseau triphasé 400 V. L’intensité efficace du courant en ligne est 5.1 A. Quelles est la puissance active consommée par ce récepteur ?

5.2 kW 1.73 kW 3.0 kW 4.0 kW Un réseau triphasé, de pulsation 377 rad/s, alimente trois bobines dont les axes sont décalés de 120°. Quelle est la fréquence de rotation du champ tournant créé par ces bobines ?

50 tr/s 25 tr/s 60 tr/s 30 tr/s B. Un réseau triphasé équilibré 400 V, 50 Hz alimente un récepteur équilibré couplé en étoile dont

chaque dipôle est l’association en dérivation d’une résistance R et d’un condensateur de capacité C.

1. Le système des tensions simples étant indirect, écrire les équations horaires de v1, v2, v3 et tracer le diagramme de FRESNEL correspondant.

2. Sachant que l’intensité efficace du courant en ligne est de 2 A et que chaque intensité i est en avance de pi/6 rad par rapport à la tension simple v qui lui correspond, tracer le diagramme de FRESNEL correspondant à i1, i2, i3 ; déduire les valeurs de R sachant que C=14µf.

3. Calculer la puissance active, réactives et apparente de ce récepteur. C. Une réseau triphasé 400 V, 50 Hz, alimente trois récepteurs identiques couplés en étoile, chacun de

résistance R = 20Ω en série avec une inductance L = 0.1 H. 1. Calculer l’impédance complexe de chaque récepteur. 2. Tracer le diagramme de FRESNEL des tensions simples et des intensités des courants en ligne. 3. On couple les récepteurs précédents en triangle. Tracer le diagramme de FRESNEL des tensions

composées et des intensités traversant les récepteurs. 4. Calculer la puissance active, réactive et apparente de ce récepteur pour les deux couplages

envisagés.

Page 62: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

62

D. Une installation triphasée, alimentée par un réseau triphasé équilibré 400 V, 50 Hz, comporte

quatre récepteurs triphasés équilibrés inductifs dont les caractéristiques sont : Récepteur 1 : P1 = 12 kW ; Q1 = 10 kvar Récepteur 2 : P2 = 15 kW ; Q2 = 15 kvar Récepteur 3 : P3 = 20 kW ; facteur de puissance 0.6. Récepteur 4 : P4 = 10 kW ; intensité efficace du courant en ligne : 18 A. 1. Calculer la puissance active totale reçue par cette installation. 2. Calculer la puissance réactive totale reçue par cette installation. 3. Déduire des réponses précédentes la puissance apparente de cette installation. 4. En déduire l’intensité efficace du courant en ligne et le facteur de puissance de l’installation.

D . Soit un récepteur triphasé constitué de trois branches, comme sur le schéma ci-dessous. On désire alimenter ce récepteur avec un couplage étoile, puis triangle. Indiquer comment il faut réaliser les connexions.

E . La plaque à bornes des récepteurs triphasés se présente souvent sous l'aspect ci-dessous, avec six bornes correspondant aux extrémités des trois branches du récepteur.

Indiquer les liaisons à effectuer pour obtenir un couplage :

- étoile - triangle

Page 63: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

63

F . Un réseau triphasé 400 V/50 Hz alimente un récepteur monté en triangle, dont chaque branche est constituée d'un résistance de 25Ω.

1. Déterminer la valeur efficace J du courant dans une branche, I du courant en ligne, ainsi que la valeur de l'angle de déphasage ϕ de i sur v.

2. Tracer le diagramme de Fresnel des tensions composées.

3. Quelles sont les valeurs de la puissance active P, de la puissance réactive Q et de la puissance apparente S?

G . Un réseau triphasé 230V/50 Hz alimente un récepteur monté en étoile, dont chaque branche est constituée d'un résistance de 25Ω.

1. Déterminer la valeur efficace du courant en ligne, ainsi que la valeur de l'angle de déphasage ϕ de i sur v.

2. Tracer le diagramme de Fresnel des tensions composées.

3. Quelles sont les valeurs de la puissance active P, de la puissance réactive Q et de la puissance apparente S?

H . Un réseau triphasé 400V/50 Hz alimente un récepteur monté en triangle, dont chaque branche est constituée d'un condensateur de capacité C = 50 µF.

1. Déterminer la valeur efficace J du courant dans une branche, I du courant en ligne, ainsi que la valeur de l'angle de déphasage ϕ de i sur v.

2. Tracer le diagramme de Fresnel des tensions et intensités.

3. Quelles sont les valeurs de la puissance active P, de la puissance réactive Q et de la puissance apparente S?

Page 64: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

64

Page 65: BACCALAUREAT PROFESSIONNEL SEN - Freeelectroniqueveynes.free.fr/IMG/pdf/Cours_et_exercices.pdf · borne du dipôle et le potentiel de l'autre borne du dipôle. Elle est l'une des

65