13
27/11/2013 1 1 RAFA 2013 (Prague, 5 November 2013) Vincent Baeten, Juan Antonio Fernández Pierna, Philippe Vermeulen, Pierre Dardenne Département Valorisation des Productions Agricoles Unité Qualité des Produits Walloon Agricultural Research Centre (CRA-W, Belgium) [email protected] BASICS OF INFRARED AND RAMAN SPECTROSCOPY 2 nd RAFA workshop on : Infrared spectroscopy, Raman spectroscopy and chemometrics for monitoring of food and feed products, lab-to- the-sample 2 RAFA 2013 (Prague, 5 November 2013) Nickolay Lamm Source : http://www.lesoir.be/ 3 RAFA 2013 (Prague, 5 November 2013) - 1 st generation Example : Kjeldahl chemical reaction + physical separation - 2 nd generation Example : chromatography techniques physical separation + physical detection - 3 rd generation Example : spectrometer/sensor physical detection + data treatment/chemometrics Evolution of analytical solutions 4 RAFA 2013 (Prague, 5 November 2013) Pará, Brasil (30/12/2012) Look, a rainbow!

BASICS OF INFRARED AND RAMAN SPECTROSCOPY · NIR spectrum Spectroscopy: instrumentation 31 RAFA 2013 (Prague, 5 November2013) Dispersive instruments (NIR, MIR & Raman) (Williams and

  • Upload
    others

  • View
    25

  • Download
    0

Embed Size (px)

Citation preview

27/11/2013

1

1

RAFA 2013 (Prague, 5 November 2013)

Vincent Baeten, Juan Antonio Fernández Pierna, Philippe Vermeulen, Pierre Dardenne

Département Valorisation des Productions Agricoles

Unité Qualité des Produits

Walloon Agricultural Research Centre

(CRA-W, Belgium)

[email protected]

BASICS OF INFRARED AND RAMAN SPECTROSCOPY

2nd RAFA workshop on : Infrared spectroscopy, Raman spectroscopy

and chemometrics for monitoring of food and feed products, lab-to-

the-sample

2

RAFA 2013 (Prague, 5 November 2013)

Nickolay Lamm

Source : http://www.lesoir.be/

3

RAFA 2013 (Prague, 5 November 2013)

- 1st generation

Example : Kjeldahl

chemical reaction + physical separation

- 2nd generation

Example : chromatography techniques

physical separation + physical detection

- 3rd generation

Example : spectrometer/sensor

physical detection + data treatment/chemometrics

Evolution of analytical solutions

4

RAFA 2013 (Prague, 5 November 2013)

Pará, Brasil

(30/12/2012)

Look, a rainbow!

27/11/2013

2

5

RAFA 2013 (Prague, 5 November 2013)

Violet: 400 - 420 nm

Indigo: 420 - 440 nm

Blue: 440 - 490 nm

Green: 490 - 570 nm

Yellow: 570 - 585 nm

Orange: 585 - 620 nm

Red: 620 - 780 nm

The rainbaw colours … 7 … are you sure?

Source : wikipedia, http://teaching.shu.ac.uk/hwb/chemistry/tutorials (2012)

Wavelength (nm)

6

RAFA 2013 (Prague, 5 November 2013)

Discovery of Near InfraRed Radiation

• 17 March 1800

• William Herschel,Astronomer Royal attemptsto find out the spectralregion responsible for heatformation in his telescope.

•The NIR is discovered.

•Philosophical Transactionsof the Royal Society 90:255-83

(Source : Ian Murray, 2012)

The electromagnetic spectrum …

7

RAFA 2013 (Prague, 5 November 2013)

The electromagnetic spectrum …

8

RAFA 2013 (Prague, 5 November 2013)

� Absorption occurs when energy from the radiative source is absorbed by the material. (e.g. infrared absorption, UV and DAD detectors)

� Reflection occurs when incident radiation is reflected by a material. (i.e. internal reflection)

� Emission occurs when radiative energy is released by the material. (e.g. Fluorescence, fluorescence detector)

� Elastic scattering occurs when incident radiation is scattered by a material. (e.g. Rayleight scattering, ELSD detector)

� Inelastic scattering occurs when the is an exchange of energy between the radiation and the matter that shifts the wavelength of the scattered radiation. (e.g. Raman scattering)

� … (Coherent, resonance, impedance, …)

Nature of the interation of radiation with

materials (molecules)

27/11/2013

3

9

RAFA 2013 (Prague, 5 November 2013)

Greenglass

Internal

reflected ray

Transmitted ray

red-blue

attenuated(Source : Ian Murray, 2012)

Nature of the

interation of

radiation with

materials

(molecules)

10

RAFA 2013 (Prague, 5 November 2013)

Greenglass

i i

r

reflection refraction dispersion absorption

r

iRI

sin

sin=

Aλ = log1/T ∝ conc*path

(Source : Ian Murray, 2012)

Nature of the interation of radiation with materials (molecules)

11

RAFA 2013 (Prague, 5 November 2013)

groundgreenglass

Indicatrix of diffuse+specularreflected light

scattering

No lightAλ= log1/R ∝ conc*path

(Source : Ian Murray, 2012)

Nature of the interation of radiation with materials (molecules)

12

RAFA 2013 (Prague, 5 November 2013)

Ia

I0

Ir

ABSORBANCE oABSORBANCE or optical densityr optical density

====

R

1LogA

REFLECTANCEREFLECTANCE IrR=

I0Opaque samplesPowdersNIR & MIR (Raman)

TRANSMITANCETRANSMITANCE ItT=

I0Clear samplesGases, liquidsNIR & MIR (Raman)

Ia

I0

It

====

T

1LogA

ABSORBANCE ABSORBANCE or or opticaloptical densitydensity

Mode of measure of spectra

27/11/2013

4

13

RAFA 2013 (Prague, 5 November 2013)

• If vibration changes the dipole moment then bond can absorb photons

• A photon of exactly the right frequency is absorbed & excites the bond to a higher vibrational state

• Frequency = qualitative analysis:IDENTITY

• Amplitude = quantitative analysis:AMOUNT

C H

• Covalent bonds share electrons between atoms in a molecule

E=hν

1.09 Å

• Bonds have length, strength & direction unique to each pair of atoms

• Bonds act like springs joining atoms

• Bonds vibrate at unique frequencies due to atomic masses & ‘stiffness’

C H

+_

(Source : Ian Murray, 2012)

Nature of the covalent bond

14

RAFA 2013 (Prague, 5 November 2013)

(So

urc

e : I

an M

urr

ay, 2

012)

Potential energy associated to a molecule

15

RAFA 2013 (Prague, 5 November 2013)

UV VIS IR Microwave Radio

Frequency

Wavelength (nm)

Wavenumber (cm-1)

800 2500

4000 400

� Near-infrared spectroscopy

(NIR)

� Mid-infrared spectroscopy

(MIR)

Fundamental vibrationsOvertone and

combination vibrations

∂ µ /∂q ≠ 0 ∂ µ /∂q ≠ 0

12500

25000

Energy

The electromagnetic spectrum …

16

RAFA 2013 (Prague, 5 November 2013)

• Organic compound exposed to electromagnetic radiation, can absorb energy of only certain wavelengths (unit of energy)– Transmits or scatters energy at other wavelengths

• Changing frequencies to determine which are absorbed and which are transmitted produces an absorption spectrum

• Energy absorbed is distributed internally in a distinct and reproducible way

Mid-infrared (MIR/IR) spectroscopy - theory

27/11/2013

5

17

RAFA 2013 (Prague, 5 November 2013)

An example of near infrared (NIR) spectra

18

RAFA 2013 (Prague, 5 November 2013)

0,3

0,8

1,3

1,8

1.100 1.300 1.500 1.700 1.900 2.100 2.300 2.500A

bso

rba

nce

(Lo

g 1

/R)

Wavelength (nm)

Wheat (15.8 %)

Wheat (21.3 %)

Water (100 %)

NIR spectra : main spectral bands

19

RAFA 2013 (Prague, 5 November 2013)

0

0,5

1

1,5

2

1.100 1.300 1.500 1.700 1.900 2.100 2.300 2.500

Ab

sorb

an

ce (

Log

1/R

)

Wavelength (nm)

Honey (Rapeseed)

Saccharose

Water

NIR spetra : honey spectrum

20

RAFA 2013 (Prague, 5 November 2013)

0

0,1

0,2

0,3

0,4

05001.0001.5002.0002.5003.0003.5004.000

Ab

sorb

an

ce (

Log

1/R

)

Wavenumber (cm-1)

Mid-IR

Mid-IR

Example of mid infrared (IR, MIR) spectra

27/11/2013

6

21

RAFA 2013 (Prague, 5 November 2013)

Raman theory : Raman effect

22

RAFA 2013 (Prague, 5 November 2013)

1

3

hνν νν

RA

Y

hνν νν

R(S

t)

hνν νν

R(a

St)

2

1

0

E

1st

electronic

excited state

Virtual

states

Ground

electronic state

hνν νν 0

hνν νν 0

hνν νν 0

hνν νν I

R

Figure : Energy level diagram showing the basic transitions involved in

infrared, Rayleigh & Raman effects. (Adapted from Nakamoto, 1986;

Baranska, 1987 and Bulkin, 1991)

Raman scattering

Raman theory : Raman effect

23

RAFA 2013 (Prague, 5 November 2013)

Raman scattering

� Origin = same type of vibrations as infrared spectroscopy

� Appears when a molecule irradiated with a monchromatic light

– some photons scattered at same frequency (Rayleigh scattering)

– some photons scattered at different frequencies (Raman scattering)

– Rayleigh scattering frequency – Raman scattering frequen cy = corresponds to energy of vibrational transition

� Some characteristics : any monochromatic light can be used, Raman effect is instantaneous (vibrational absorption is fast but slower thanRaman)

Raman theory : Raman effect

24

RAFA 2013 (Prague, 5 November 2013)

0

0,1

0,2

0,3

0,4

0,5

0,60

0,1

0,2

0,3

0,4

0,5

0,6

0 500 1.000 1.500 2.000 2.500 3.000 3.500 4.000

Ab

sorb

an

ce (

Log

1/R

)

Wavenumber (cm-1)

Mid-IR

Raman

Sca

tte

rin

g i

nte

nsi

ty

Example of mid infrared (NIR) and Raman spectra

27/11/2013

7

25

RAFA 2013 (Prague, 5 November 2013)

Mathematical

model+

Data-base

Reference

values

Spectrum

Mathematical

modelPredicted

values+

Quantitative analysis

26

RAFA 2013 (Prague, 5 November 2013)

Feed & Feed ingredients

Large spectroscopic and microscopic data-bases

Merging data-bases :

CRA-W (BE) & AUNIR

(UK) data-bases

Network of Network of

instruments instruments

27

RAFA 2013 (Prague, 5 November 2013)

Quality control for different companies

- Cereals based companies (e.g. flour, bread or beer

producers)

- Reception stage - During the production stages (on-line)- Final products

- Bioethanol companies

- Screening tool to optimize the segregation of raw material - Track the fermentation and conversion - Rapid analysis of by-products

- Breeding programs

- Unique tool that allow the analysis of the cereals in the field

- Able to handle the huge number of samples

28

RAFA 2013 (Prague, 5 November 2013)

Norm : example

for seeds and

kernels (Cereals,

Oil seeds, …)

EN 15048

“Cereals - moisture

and protein -

Near-Infrared-Spectr

oscopy in whole

kernels”

27/11/2013

8

29

RAFA 2013 (Prague, 5 November 2013)

See FEED module of the course

Norm : example

for seeds and

kernels (Cereals,

Oil seeds, …)

30

RAFA 2013 (Prague, 5 November 2013)

Wavelengthselector

Sample

Wavelengthselector

Detector

Source

Source Sample

Detector

Detector

a) Transmission mode

b) Reflection mode

Polychromatic radiation

Polychromatic radiation

Wavelength (nm)

NIR spectrum

Spectroscopy : instrumentation

31

RAFA 2013 (Prague, 5 November 2013)

Dispersive instruments (NIR, MIR & Raman)

(Williams and Norris, 2001)32

RAFA 2013 (Prague, 5 November 2013)

Dispersive NIR instruments

27/11/2013

9

33

RAFA 2013 (Prague, 5 November 2013)

Fourier Transform (FT) NIR instruments

(NIR, MIR & Raman)

(Williams and Norris, 2001)

34

RAFA 2013 (Prague, 5 November 2013)

Fourier Transform (FT) NIR instruments

(NIR, MIR & Raman)

35

RAFA 2013 (Prague, 5 November 2013)

http://www.perkinelmer.com/

Fourier Transform (FT) NIR instruments

(NIR, MIR & Raman)

36

RAFA 2013 (Prague, 5 November 2013)

Fourier Transform (FT) NIR instruments

(NIR, MIR & Raman)

27/11/2013

10

37

RAFA 2013 (Prague, 5 November 2013)

Fourier Transform (FT) NIR instruments

(NIR, MIR & Raman)

38

RAFA 2013 (Prague, 5 November 2013)

200-1100 nm1100-2500 nm

STATIONARY GRATING

Diode array instruments

Data treatment

sabs

λ

InGaAs detector

128 diodes

GratingSource

39

RAFA 2013 (Prague, 5 November 2013)

Diode array instruments

40

RAFA 2013 (Prague, 5 November 2013)

Step3

Step4

Step5

Step1

Step2

27/11/2013

11

41

RAFA 2013 (Prague, 5 November 2013)

At-line, on-line & in-line instruments

Sébastien Gofflot, CRA-W

42

RAFA 2013 (Prague, 5 November 2013)

Source : Kaiser

optical systems

www.kosi.com

Ethanol bio-transformation – on-line Raman

43

RAFA 2013 (Prague, 5 November 2013)

Schematic of the n-around-1 fiber-optic probe.

(Mc Creery, 2000)

At-line, on-line & in-line instruments

44

RAFA 2013 (Prague, 5 November 2013)

http://www.perkinelmer.com

At-line, on-line & in-line instruments

27/11/2013

12

45

RAFA 2013 (Prague, 5 November 2013)

At-line, on-line & in-line instruments

46

RAFA 2013 (Prague, 5 November 2013)

NIR

GPS

Field application

Dr Georges Sinnaeve, CRA-W

47

RAFA 2013 (Prague, 5 November 2013)

0 200 m100100

Protein (% DM)

11.25-11.5011.51-11.7511.76-12.0012.01-12.2512.26-12.5012.51-12.7512.76-13.0013.01-13.2513.26-13.50

Dr Georges Sinnaeve, CRA-W

Field application

48

RAFA 2013 (Prague, 5 November 2013)

And more instruments …

27/11/2013

13

49

RAFA 2013 (Prague, 5 November 2013)

TruScan* Handheld Raman for Material Identification

http://www.thermoscientific.com

And more instruments …

50

RAFA 2013 (Prague, 5 November 2013)

Intensity information

(i.e. absorbance)

Frequency information

(i.e. wavelengths)

Spatial information

And more instruments …

51

RAFA 2013 (Prague, 5 November 2013)

At your service …

52

RAFA 2013 (Prague, 5 November 2013)

A team at your service

Dr Vincent Baeten Mrs Claudine Clement

Dr Juan A. Fernández Pierna Mrs Anne Mouteau

Ir Philippe Vermeulen Ms Sandrine Mauro

Ing Bernard Lecler Ms Emma Mukandoli

Dr Ouissam Abbas Mr Marie Collard

Dr Pascal Veys Mr Nicolas Crasset

Dr Marie-Caroline Lecrenier Ms Marianne Flahaut

Ing Olivier Minet Mr Quentin Arnould

Ir Quentin Ledoux Mr Benoît Scaut

Mr Alexandre Quoitot Mr Nicaise Kayoka Mukendi

Ir Damien Vincke Mr Stéphane Brichard

Dr Pierre Dardenne (Head of the Department)

Dr Georges Sinnaeve, Ir Frédéric Dehareng, Ir Clément Grelet (U14)

Dr Gilbert Berben, Dr Olivier Fumière (U16)