90
École de Porquerolles 2009 Décrypter le message de la lumière: Notions de spectroscopie et de photométrie G. Comte Observatoire de Marseille - Provence & Laboratoire d'Astrophysique de Marseille Septembre 2009

École de Porquerolles 2009 Décrypter le message de la lumière: Notions de spectroscopie et de photométrie G. Comte Observatoire de Marseille - Provence

Embed Size (px)

Citation preview

École de Porquerolles 2009

Décrypter le message de la lumière:

Notions de spectroscopie et de photométrie

G. Comte Observatoire de Marseille - Provence & Laboratoire d'Astrophysique de Marseille

Septembre 2009

La lumière (au sens large) est le principal, sinon en général l'unique, porteur d'information dont nous disposons pour comprendre les objets célestes. Si l’imagerie classique nous renseigne sur la morphologie des objets, son contenu d’information sur leurs propriétés physiques reste très limité.

Il est donc essentiel de savoir extraire ces informations du signal lumineux émis par les objets. C'est le but de deux disciplines complémentaires :

- La PHOTOMETRIE produit des mesures quantitatives du flux lumineux reçu, (avec son extension moderne, l'IMAGERIE photométrique, capable de cartographier la distribution spatiale du flux dans les objets étendus.

- La SPECTROSCOPIE est l'analyse de la distribution d'énergie du flux lumineux en fréquence ( = longueur d'onde, c.à.d. en énergie des photons !) pour comprendre les propriétés physiques de l'objet, les mécanismes d'émission de la lumière, la composition chimique, etc…

L'instrumentation contemporaine est très souvent conçue pour permettre une synthèse de ces deux méthodes, appelée SPECTROPHOTOMETRIE.

En préalable : lesnotions de base de physique

- les ondes électromagnétiques et les photons - le rayonnement du corps noir

- autres sources de rayonnement à spectre continu : synchrotron, bremstrahlung

- interaction matière - lumière : diffusion, absorption et émission de lumière par un atome

- effet Doppler – Fizeau

- la formation des spectres de raies en milieu « dilué »

- les mécanismes d’élargissement des raies spectrales

- quelques notions très basiques sur les molécules

( Voir en partie le cours de D. Laveder)

Des rayons gamma aux ondes radio, les propriétés fondamentales sont les mêmes, analogues à celles de la lumière visible, et les ondes observées ne diffèrent que par leur fréquence .

En particulier, leur vitesse de propagation dans le vide est une constante fondamentale de la physique,

c = 299 792 km/s

Les échanges d’énergie entre les systèmes atomiques (atomes, ions, molécules) et le milieu extérieur se font essentiellement grâce aux ondes électromagnétiques

A toute onde électromagnétique est associée une particule fondamentale de masse nulle et d’énergie W = h , le photon (« paquet d’énergie »)

Les systèmes atomiques échangent de l’énergie avec l’extérieur par quantités finies correspondant à l’énergie de photons

Les ondes électromagnétiques / les photons

Qu’est-ce que le SPECTRE d’une source de rayonnement ?

C’est la distribution de l’énergie de ce rayonnement en fonctionde la fréquence (ou de la longueur d’onde)

W

()

On peut considérer que c’est l’histogramme en énergie de la distribution des photons !

« continuum »« raie »

Le rayonnement du Corps Noir

« Tout corps chauffé rayonne » : chauffer, c’est augmenter la température, c’est-à-dire l’agitation des atomes ou des molécules du corps que l’on chauffe.

Empiriquement, on constate que

- la distribution d’énergie émise est continue,

- elle est dissymétrique en fréquence de part et d’autre d’un maximum d’émissivité dont la position dans le spectre ne dépend que de la température.

Loi de Planck

Loi de Wien: la position dans le spectre du maximum de la distribution d’énergie électromagnétique rayonnée par un corps noir ne dépend que de la température de celui-ci:

max(m) = 2.90 10 –3 / T (K)

pour le spectre visible et des en nanomètres, on a: max(nm) = 2.90 10 6 / T (K)

Loi de Stefan: l’émissivité d’un corps noir de température T (intégrale de la courbe de Planck sur l’ensemble du spectre) est donnée par :

E = . T4

avec = 5.67 10 –8 W/(m2. K4)

n.b.: pour un corps noir sphérique de rayon r (--> étoile), la puissance rayonnée vers l'extérieur (luminosité) sera :

L = 4 r 2 T 4

Cette relation permet, très simplement, d'évaluer le rayon d'une étoile dont la température de surface est connue en la comparant au Soleil !

Le rayonnement synchrotron

Un électron se déplaçant à grande vitesse (~ c)dans un champ magnétique

parcourt une trajectoire en spirale et émet un rayonnement appelé rayonnement synchrotron

Le rayonnement d’une population d’électrons est alors un continuum couvrant pratiquement l’ensemble du spectre é-m (en astrophysique) à l’exception des très hautes énergies. La distribution en fréquence observée est beaucoup plus « plate » que celle du corps noir!

Le bremstrahlung ou rayonnement free-free

Dans un gaz complètement ionisé (plasma) coexistent des électrons et des ions. (En astrophysique, les ions sont essentiellement des protons H+) La température du gaz (plusieurs milliers de K au moins) fait que ces particules ont des vitesses assez élevées, les électrons, du fait de leur masse faible, étant beaucoup plus rapides que les ions.

Un électron qui passe au voisinage d’un ion est attiré par la charge positive de ce dernier et sa trajectoire est déviée. La perte d’énergie cinétique correspondante est rayonnée sous forme d’un photon. Statistiquement, on observe une émission de continuum du plasma, dépendant de la température électronique (vitesse moyenne des électrons) appelé rayonnement de freinage ou free-free .

++

e-

Les échanges d’énergie atomes - photonsAtome à deux niveaux (cas idéal…)

noyau

orbiteélectronique A(énergieminimum)

orbiteélectronique B(énergiemaximum)

Les orbites intermédiaires(entre A et B) sont IMPOSSIBLES

énergie

région interdite

région interdite

niveau permis B

niveau permis A

Atome à 2 niveaux (cas idéal…et simplifié)

Un photon qui interagit avec cet atome supposé dans l’état A ne sera absorbé que si son énergie est égale à la différence W des énergies des niveaux permis A et B. La fréquence d’un tel photon est = W/h, sa longueur d’onde est = c.h / W

De même, l’atome porté à l’état B par le photon ne pourra émettre, pour se désexciter vers l’état A, qu’un photon d’énergie W

W

(ionisation)

énergie

région interdite

région interdite

niveau permis B

niveau permis A

Atome à 2 niveaux (suite) : l’ionisation

W

(ionisation)

Si l’énergie du photon incident est suffisante, supérieure à W’, un électron peut être arraché de son orbite:

l’atome se retrouve IONISE et acquiert une charge positive.

Les réarrangements orbitaux des électrons survivants font que l’ion n’a en général pas les mêmes niveaux d’énergie que l’atome neutre initial.

W’

Note # 1 : Ce schéma reste valable, pour le mécanisme d’émission, si l’atome a été excité sur le niveau supérieur par autre chose qu’un photon !!

En particulier, le transfert d’énergie lors d’une collision, dans un milieu suffisamment dense, avec une autre particule (atome neutre, ion, électron libre, proton libre, etc…) peut conduire à la production de raies spectrales de désexcitation (dites de fluorescence)

Voir plus loin : - raies « interdites » des nébuleuses- raie 21 cm de l’hydrogène neutre atomique

Note # 2 : La présence, dans un spectre, d’une raie donnée, (absorption ou émission) est une signature unique d’un élément, ion, molécule, etc…. On peut donc utiliser la spectroscopie pour inférer la composition chimique de la source ! (Bunsen, Kirchhoff, etc…)

Interaction photons - matière :

Les ondes électromagnétiques rencontrant la matière (atomes, molécules, ions, plasma) y sont réfléchies, diffusées, et absorbées.Ces trois phénomènes sont, vus sous l’angle de la microphysique, des phénomènes quantiques, résultant de l’interaction photons - électrons.

-la réflexion : renvoie l’énergie des ondes dans une direction unique, dépendant de l’angle d’incidence. Le spectre incident (distribution de l’énergie en fréquence) n’est pas affecté.

-la diffusion : renvoie l’énergie des ondes dans un faisceau de directions. Le spectre incident peut être modifié, selon la dimension des particules diffusantes.

-l’absorption : l’énergie des ondes est transmise à la matière absorbante qui va elle-même changer d’état et, généralement, re-rayonner un spectre différent du spectre incident.

En général, ces trois phénomènes coexistent plus ou moins!

Diffusion et absorption sont facilement interprétables par desinteractions photon - électron.

(n.b. 1: Les protons, même dans un gaz - plasma- d’H complètement ionisé, ne sont pratiquement pas en jeu, la « section efficace » d’interaction photon - proton étant 10 6 fois plus faible que celle de l’interaction photon - électron.

n.b. 2 : la diffusion sur un atome ou une molécule peut être accompagnée d’une excitation, une partie de l’énergie du photon pouvant être transférée au diffuseur)

photon incidenténergie W1

photon diffusé(énergie W2 # W1)

atomee-

atomee-

photon incidenténergie W1

excitation(excitation)

DIFFUSION ABSORPTION

La plus simple des diffusions : l’effet Compton et son inverse

(collision inélastique [avec changement d’énergie] d’un photon avec un électron.)

1) effet Compton direct :

2) effet Compton inverse :

photonbasse énergie W1

basse fréquence 1 e-

vitesse V1 ~c

photonW2 > W1

2 > 1

e-vitesse V2 < V1

photonhaute énergie W1

haute fréquence 1

e-vitesse ~nulle

photonW2 < W1

fréquence 2 < 1

e-vitesse V de recul

Émission et absorption dans les milieux dilués.

Source thermiqueidéale (corps noir)

Spectre d’absorption

Spectre continu Spectre d’émission

Selon la direction d’observation, le spectre

qui résulte de l’interaction entre la matière et le

rayonnement n’est pas le même!

Absorption et ré-émission des photons :

les spectres de raies.

Et les molécules ???…

L'association d'atomes en molécules par accouplement des électrons périphériques dans des "liaisons chimiques" enrichit considérablement les possibilités d'interaction avec l'environnement. Les molécules, soumises à la fois à des excitations par collisions et à des rayonnements électromagnétiques deviennent des OSCILLATEURS à au moins 2 degrés de liberté:

- elles jouent à la toupie (rotation)- elles font du saut à l’élastique (vibration)- elles s’amusent à interagir avec les photons qui passent …

(transitions électroniques + excitation des deux autres modes)

vibration

rotation

Comme les molécules sont des objets quantiques, l’oscillateur rotatif (rotation) et l’oscillateur linéaire (vibration) ne peuvent être que dans un certain nombre d’« états » correspondants à des niveaux d’énergie parfaitement définis. Le passage d’un état à l’autre se fait par des transitions, en absorption de lumière lorsque la molécule gagne de l’énergie, en émission lorsqu’il y a retour à un état de moindre énergie (perte) .

Ordre de grandeur des écarts énergétiques entre niveaux en rotation: quelques milli - électrons-volts :

---> les transitions de rotation sont dans le domaine radio millimétrique (parfois centimétrique)

entre niveaux en vibration : quelques centi - à déci - électrons-volts:

---> les transitions de vibration sont dans le domaine IR moyen à lointain.

Vibration et rotation affectent la molécule en tant qu’objet doué de masse (système « mécanique »): ce sont les variations de moment d’inertie qui permettent de calculer les spectres pour ces modes.

Les molécules poly-atomiques : des spectres d’une complexité extrême!

3 atomes:déjà plusieursmodes de vibration-rotation possibles,et tout de mêmeune molécule plane!

4 atomes, plane:ça se gâte… ex. HCHO (formaldéhyde)

4 atomes, non plane:bonjour les calculs…ex. NH3 (ammoniac)

et ça peut être BIEN pire!www.uqac.ca/chimie/Chimie_theorique

Les molécules sont pour la plupart des édifices fragiles:

facilement dissociées par les rayonnements énergétiques (UV, X), par la température (collisions trop énergétiques avec atomes ou ions), par des réactions chimiques avec d’autres molécules (chimie de contact sur les grains de poussière, réactions en phase gazeuse), détruites par les particules du rayonnement cosmique (électrons relativistes, protons, muons,…)

On les trouve en abondance dans - les atmosphères des planètes géantes froides, - les comètes, -le gaz interstellaire froid, (très nombreuses espèces moléculaires parfois très complexes :

aldéhydes, cétones, alcools, …)- les atmosphères des étoiles pas trop chaudes :(CN, CH, C2, MgH et FeH dans le Soleil, TiO, ZrO, VO, etc… dans

les taches solaires, TiO2 dans les étoiles M les plus froides).- les enveloppes circumstellaires d’étoiles évoluées

n.b. : 1 - de nombreuses molécules à peu près impossibles à conserver au laboratoire sont présentes en abondance dans les objets célestes 2 – de nombreuses « molécules ioniques » ( ex. HCO+ ) existent dans les objets célestes

3 – l’eau (H2O), le solvant idéal pour nos formes de vie, est une molécule fréquente et abondante. (résultats d’ISO)

Les transitions électroniques des molécules :

Toute molécule, dont le cortège électronique provient de la « fusion » des cortèges de ses atomes constitutifs, possède une gamme de niveaux d’énergie spécifique pour ce cortège, niveaux bien sûr quantifiés, et n’ayant plus rien à voir avec les niveaux des atomes constitutifs.

Des interactions photon - cortège électronique moléculaire peuvent avoir lieu sous les conditions quantiques habituelles:

énergie du photon = différence d’énergie de deux niveaux --> absorption

désexcitation --> émission d’un photon d’énergie égale à la différence entre deux niveaux)

Ordre de grandeur des différences entre niveaux d’énergie électroniques: plusieurs électrons-volts !!!

Les transitions électroniques des molécules ont essentiellement lieu dans les domaines visible et surtout ultraviolet !!!

Comme pour les atomes, l’excitation collisionnelle est toujours possible - et fréquemment observée, lorsque le milieu devient suffisamment dense.

La molécule d’hydrogèneest bien entendu la plus abondante,mais …

elle est TRES difficile à observer !

H H

H2

Pour tout savoir sur la spectroscopie moléculaire, un superbe site:

www.uqac.ca/chimie/Chimie_theorique

Une très bonne introduction d’une page aux mœurs peu conviviales (pour les astronomes) de H2:wwwusr.obspm.fr/~lamap/pages_perso/callejo/these.html

La condition essentielle pour qu’une molécule soit « visible »:la dissymétrie

O

CO

H2 : molécule parfaitement symétrique dans les conditions normales ; le « nuage » électronique ne se déforme pas facilement : pas de spectre de rotation et vibration. On observe par contre ses transitions électroniques dans l’ultraviolet lointain (spatial : FUSE)

OH : extrêmement dissymétrique ; le nuage électronique subit de grandes déformation lors des oscillations. Emission intense et très facile à observer (radio, IR …). Utilisé comme traceur de H2 . Sa variante isotopique OD est aussi observée

CO : peuple les mêmes régions que H2, avec une abondance faible, mais est facilement observable en rotation (raies à 2,6 mm et à 1,6 mm et à plus haute fréquence). Utilisé comme traceur de H2 . Ses variantes isotopiques sont aussi observées ( 13CO, C17O, C18O)

L'effet Doppler - Fizeau

fréquence 0

long. d'onde

fréquence

long. d'onde < 0

fréquence <

(référentiel)

V

V

long. d'onde > 0

Les spectres des étoiles

Le spectre du Soleil dans le visible

Ca+ Mg0 Na0

CN CH FeH MgH

H H H (atm)

La plupart des innombrables raies très fines sont dues à des métaux (Fe0, Ni0, Ti0, Co0 etc…)

Spectre du Soleil - © NOAO - Kitt Peak Observatory

Na I D2 et D1

Spectre du Soleil - © NOAO - Kitt Peak Observatory

Les raies spectrales sont une mine d'information:

1) position en longueur d'onde pour un élément (atome, ion, isotope … donné): - effet Doppler --->> vitesse radiale de la source par rapport à l'observateur

2) identification des éléments chimiques contenus dans la source, et de leurs dérivés (ions, molécules…)

3) énergie prélevée au continuum pour les raies d'absorption :

- abondance de l'élément ou du corps dérivé dans la zone absorbante

- conditions thermodynamiques dans la zone absorbante (T, pression)

4) rapports d'intensités des raies d'un même élément ou ion :- conditions thermodynamiques, degré d'ionisation, profondeur de

formation des raies dans la source

5) analyse détaillée du profil des raies : conditions thermodynamiques et hydrodynamiques

6) effets spéciaux dus au champ magnétique, etc…

u.v. violet bleu vert jaune rouge proche i.r.

Ca+ H H H Mg0 Na0 H

O5

B0

B5

A1

A5

F0

G0

K0

K5

M0

M5

Ca0 CH TiO TiO TiO TiO TiO

Les types spectraux pour les étoiles de séquence principale (naines)

He0 He0 He+ He+ He0

T* / TSoleil

Les types spectraux des étoiles : une affaire de température de surface

L’observation de nombreux spectres stellaires permet de dégager les grands principes qui ont guidé la construction du système de classification universellement adopté, dit MK (Morgan-Keenan)

- raies de l’hydrogène : présentes dans les étoiles très chaudes, ont leur maximum de visibilité vers 10 000 K de température de surface (Véga, Sirius…)

- raies de l’hélium : ne sont facilement visibles que dans les spectres des étoiles très chaudes. (T >= 12000 - 40000 K) (Rigel)

- raies métalliques: surtout Fe, Ti, Cr, etc., leur nombre est très grand dans les étoiles de type solaire et plus froid. La présence d’ions de plus ou moins fort potentiel permet une classification fine en température ( Fe+ versus Fe0, Ti+ versus Ti0 etc…

- bandes et raies moléculaires: d’autant plus nombreuses que l’étoile est froide: CN et CH et même C2 sont présents dans le spectre du Soleil, mais TiO et surtout TiO2 comme VO et VO2 n’apparaissent qu’à plus basse température. H2O n’est visible que pour T< 2000 K (naines brunes).

n.b.: les taches solaires, nettement plus froides que leur environnement, montrent la présence locale de molécules (oxydes et hydrures métalliques) qui ne survivraient pas dans la photosphère solaire normale.

(redshift z)

observateur

galaxie

Spectre des populations stellaires

1) Les spectres des étoiles individuelles s’additionnent en intensité lumineuse

2) Chaque étoile est animée d’un mouvement par rapport à l’observateur. La composante radiale de la vitesse décale le spectre de chaque étoile par effet Doppler. L’addition de ces raies décalées donne un spectre à raies élargies (brouillage par dispersion des vitesses)

3) Le décalage (redshift) dû à l’expansion de l’Univers, agit « en bloc » sur le spectre « brouillé »

Spectre étoile témoin

Spectre observé

Le spectre de la matière interstellaire :

I -le gaz ionisé « tiède »

Messier 42, la grande nébuleuse d’Orion, prototype des régions HII

Le spectre d’émission de la nébuleuse d’Orion, Messier 42

Le spectre d’émission des régions d’hydrogène ionisé

Les régions HII émettent un rayonnement complètement dominé, dans le domaine visible et infrarouge proche, par un spectre de raies d’émission.

On y reconnaît d’une part les raies de l’hydrogène et de l’hélium, identiques à celles que l’on peut reproduire au laboratoire dans des lampes spectrales (tubes à gaz raréfié excité par une décharge électrique)

D’autre part, on observe aussi des raies, non reproductibles au laboratoire, dont l’origine est longtemps restée mystérieuse, qui sont des raies « interdites » produites par des éléments lourds comme l’oxygène, l’azote, le soufre, le néon, l’argon, … à divers états d’ionisation.

Les raies d’émission du gaz dans le visible

Mécanisme de formation du spectre d’émission de l’hydrogènedans les « régions HII » (« capture – cascade »)

Énergiede l’atome H

n

1

2

3

4

56

Raies de la série de Lyman (uv)

Raies de la série de Balmer(visible)

Raies de la série dePaschen(ir proche)

(ionisation : 13,6 eV)

Dans le plasmaionisé de la région HII, les protons capturent des électrons sur tous les niveaux d’énergiepossibles. Les électrons perdent leur énergiepar émission de quanta de rayonnement (processus« capture-cascade »).Les atomes ainsi recombinés sont immédiatementré-ionisés par les photons ultraviolets lointains émis parl’étoile excitatrice

On n’a représentéque les trois premièresraies des trois premièresséries, notées

Mécanisme de formation des raies «interdites» des ions lourds

niveau fondamental

Ion O+ Ion O++niveaux métastablesE

xcitation

par

collisions

(En rouge sombre:transitions IR lointainde structure fine)

Le mécanisme de formation des raies « interdites » (historiquement, jusqu’aux années trente, ces raies étaient attribuées à un élément inconnu baptisé « nébulium »!) est représenté schématiquement sur la diapo suivante.(Ce mécanisme rappelle celui du « pompage » de certains lasers, bien qu’il ne s’agisse pas ici d’émission stimulée).

Les électrons du plasma  d’hydrogène entrent en collision avec des ions «métalliques» d’éléments lourds. Certains de ces ions (O+, O++, N+, S+, S++, Ne++, Ar+

+, etc…) ont des configurations électroniques telles que l’ion va être excité sur un niveau d’énergie supérieur au fondamental.

Ce niveau est dit «métastable», c’est-à-dire qu’il est facilement désexcité par une autre collision. Mais les conditions de densité du milieu interstellaire sont telles que les collisions sont rares et qu’une désexcitation radiative par émission de photon de raie est possible.

Certains niveaux excités ont une structure fine ou hyperfine en 2 ou 3 sous-niveaux. Des transitions radiatives sont également possibles (si elles ne sont pas interdites par les règles habituelles de sélection de la mécanique quantique). Ces transitions, de faible différence d’énergie, produisent des raies spectrales intenses dans l’infrarouge lointain.

Le spectre de raies « interdites » est un puissant agent de refroidissement des régions HII, et de maintien de leur équilibre énergétique.

La Rosette de Monoceros:composite Ha, [SII] et [OIII]

(cl. NOAO/AURA - Kitt Peak Nat. Obs.)

L’émission de raies spectrales par les régions HII fournit un puissant outil de diagnostic en astrophysique extragalactique, même à de très grandes distances (grands redshifts) :

* mesure des décalages spectraux (redshifts) à grande précision,

* mesure des taux de formation stellaire, à différentes époques de l’histoire de l’Univers (selon le redshift)

* mesure des abondances de He, O, N, Ar, dans le milieu interstellaire,

* bilan énergétique du milieu interstellaire dans les galaxies qui sont actives en formation stellaire

* physique des régions émettrices, analyse des populations d’étoiles massives, etc…

n.b.: les noyaux actifs (quasars, galaxies de Seyfert, radiogalaxies et objets apparentés) sont le siège de processus d’excitation différents (synchrotron rediffusé) qui coexistent avec la photoionisation par des étoiles. L’analyse du spectre est beaucoup plus difficile.

Le spectre de la matière interstellaire :

II - l’hydrogène atomique froid et la raie 21 cm

Spins antiparallèles:énergie minimum

L’hydrogène neutre atomique interstellairefroid et la raie à 21 cm:

Spins parallèles:énergie légèrement

supérieure

e-

p+

Une simple collision à très basse énergie (avec un autre atome « froid ») suffit à exciter l’atome sur l’état « spins parallèles »…

Le niveau excité est «métastable»: il se désexcite facilement par une nouvelle collision. Mais dans les conditions de densité très faible du milieu interstellaire neutre et froid (quelques atomes par cm3), le temps moyen entre deux collisions est de 100 000 ans environ, très supérieur au temps correspondant à l’inverse de la probabilité de désexcitation par transition radiative. La plupart du temps, le retour des atomes d’hydrogène à l’état fondamental se fait par émission de rayonnement. La différence d’énergie entre les deux états de spin étant très faible, le quantum émis est un photon du domaine radio centimétrique, à la fréquence de 1420 MHz

( = 21 cm)

Sans cesse dans l’Univers, des myriades d’atomes d’hydrogène interstellaire passent d’un état d’énergie à l’autre:

- excitation par collisions- désexcitation par émission de rayonnement radio à 21 cm

n.b. l’absorption 21 cm est également possible, et observée, lorsque des nuages HI froids et denses sont projetés devant une source de continuum radio brillante (quasar, radiogalaxie)

Le gaz se Le gaz rapproche s’éloignede l’observateur de l’observateur

La rotation des galaxies spirales vue en raie 21 cm

Longueur d’onde Longueur d’onde plus petite plus grande

NGC 253 en lumière visible

Cliché © R. Jay GaBany

L’utilisation de la raie 21 cm pour « peser » les galaxies ( déterminer leur courbe de rotation)

NGC 253: spirale dans le groupe du Sculpteur

Distribution de l ’hydrogène Champ de vitesse de ce gaz en neutre interstellaire (raie 21cm) raie 21 cm : rotation du disque de NGC 253

Observations effectuées avec l ’Australia Telescope

L’avantage stratégique essentiel de la raie 21 cm :

le milieu interstellaire est pratiquement transparent pourcette radiation !

On peut donc l’utiliser pour sonder l’espace à la recherche de galaxies riches en gaz, même à travers de fortes épaisseurs de matière interstellaire locale (zone d’ «évitement» Galactique)

ou pour étudier la cinématique du gaz dans des galaxies proches affectées d’absorption importante en optique.

La raie 21 cm donne accès à l’une des composantes fondamentales du milieu interstellaire des galaxies.

La galaxie difficilement visible de Circinnus

Distribution de l’hydrogène Champ de vitesse de ce gaz en neutre interstellaire (raie 21cm) raie 21 cm : rotation du disque (brillance) (carte Doppler)

Observations effectuées avec l’Australia Telescope

Le spectre de la matière interstellaire :

III - la matière froide : poussière et molécules

Nuage absorbant F.-S. 1-457 (cliché Univ. Massachusetts/ CalTech-IPAC)

Le Soleil vu à travers de la fumée

(Rappel : expérience à faire AILLEURS qu'à Porquerolles !!!)

Extinction interstellaire

Le changement d'aspect du Soleil : (diminution d'éclat + couleur rougeâtre) lorsqu'il est vu à travers la fumée est dû à la diffusion de la lumière par des particules (de carbone + gouttelettes de vapeur d'eau et de goudrons) très petites (taille de qq fractions de microns à qq microns).

Cette expérience très simple illustre bien le phénomène de l'extinction interstellaire:

L’espace interstellaire n’est pas vide : il contient de la matière (gaz et poussières) qui absorbe le rayonnement incident et en transforme le spectre.

Deux effets : - rougissement :la source a une couleur trop « rouge » si on la compare à

une source de propriétés identiques non absorbée.

- extinction : le flux de la source est affaibli

La poussière est constituée de silicates, de graphite, de glace d’eau et de « PAH » ou hydrocarbures polycycliques aromatiques. Les « grains » constitutifs de la poussière ont un « spectre de taille » allant de moins du micron à la dimension de petits cailloux. Les seules particules qui ont un effet significatif sur la lumière sont celles dont la dimension est de l’ordre de grandeur de celle de la longueur d’onde:

- elles diffusent le rayonnement des étoiles : cette diffusion favo--rise les courtes longueurs d’onde : le spectre de la lumière diffusée a une couleur plus bleue que celui de la lumière incidente (nébuleuses parréflexion)

- elles absorbent le rayonnement des étoiles : cette absorption est plus forte aux courtes longueurs d’onde : le rayonnement d’une étoile vue à travers un nuage de poussière est affaibli (extinction) et sa

couleur est plus rouge que celle du rayonnement incident (rougissement)

En absorbant le rayonnement provenant des étoiles, la poussière acquiert de l’énergie: les mailles des cristaux de silicates entrent en vibration, les molécules de PAH changent d’état d’énergie, et les grains, d’une manière générale, s’échauffent.

Les nuages de grains vont alors produire deux phénomènes:

- ils vont se comporter comme des corps noirs portés à diverses températures (selon les conditions locales) et émettre un rayonnement de corps noir. Les températures atteintes à l’équilibre étant assez faibles, ce rayonnement ne sera observable que dans l’infrarouge moyen ou lointain.

- ils vont émettre des radiations spécifiques des cristaux et molécules qui les constituent, sous forme de raies et de bandes d’émission, essentiellement dans l’infrarouge moyen (du fait des faibles écarts entre niveaux d’énergie mis en jeu)

La poussière est ainsi un transformateur de l’énergie du champ de rayonnement des étoiles en énergie de rayonnement diffus infrarouge

Spectre des bandesd’émission de la poussièreinterstellaire « tiède »observée par ISO dans la direction du nuage de rho Oph(silicates, PAHs)

comparaison avec lespectre continu de la poussière interplanétaire froidedu Système Solaire(lumière zodiacale)observée avec le même instrument.

La région HII M20 « Trifide » en Ha et en IR moyen

Anti-coïncidence presque parfaite entre H+ et la poussière chauffée associée aux molécules interstellaires, fragiles vis-à-vis de la photodissociation

L’émission continue des poussières peut être détectée à de très grands redshifts, le maximum du corps noir correspondant étant très plat et les distributions spectrales d’énergie devenant peu dépendantes du redshift vers 300-800 .

On peut alors espérer observer les galaxies « primitives » à l’époque de la formation de ces poussières (évolution chimique initiale très rapide, création des métaux par les premières générations d’étoiles) si on fait de l’imagerie à haute résolution angulaire vers ces longueurs d’onde

Images SCUBA de galaxies actives vers z=2.5 prises à 450 avec le télescope JCMT

La molécule CO dans le cœur de la galaxie spirale IC 342

(interféromètre millimétrique de NobeyamaJapan National Observatory)

La molécule CO, traceur de H2, précurseur de formation d’étoiles

Japan National Observatory,

Nobeyama

Exemple de détection par FUSE de HD interstellaire

sur la ligne de viséed’une étoile chaude

affectée par l’extinctionGalactique

(Ferlet et al. 2000, ApJ 538, L73)

H2

Richter et al., 2001, ApJ 549, 281

La matière interstellaire moléculaire de la Voie Lactée et du Grand Nuage

de Magellan analysée par FUSE sur une ligne de vue commune

Nuage H2 de la Voie Lactée

(vitesse Doppler ~0 km/s)

Nuage H2 du Grand Nuage(vitesse Doppler ~ +280 km/s)

Étoile du Grand Nuage

Le spectre de la matière interstellaire:

IV - les plasmas d’électrons libres

Les populations diffuses et étendues d’électrons libres sont très fréquentes dans l’Univers : partout où il existe des sources d’énergie suffisantes pour ioniser l’hydrogène diffus et maintenir le flux ionisant, ces plasmas apparaissent.

Les sources d’énergie sont variées :

- rayonnement ultraviolet des étoiles massives, responsable de la formation des « régions HII ».

- les chocs (propagation de matière « chaude » dans un milieu « froid » à une vitesse supersonique pour ce milieu froid)

- sources non stellaires de rayonnement ionisant (disques d’accrétion par ex : quasars, étoiles binaires accrétantes)

Deux modes de production principaux du rayonnement observable :

- 1) dans tous les cas, le bremstrahlung se produira.

Si le plasma est à très haute température, (1 000 000 – 2 000 000 K), l’émission du bremstrahlung se fait surtout dans le domaine X (souvent appelé « rayonnement thermique », ce qui est un abus de langage !

Si le plasma est à « basse » température (10 000 K) l’émission est observable dans les radiofréquences (continuum centimétrique court)

- 2) Partout où il existe des champs magnétiques pouvant accélérer les électrons, il y a production de rayonnement synchrotron.

Son observation est particulièrement facile en radio, où il domine le spectre aux grandes longueurs d’onde.

Les sites privilégiés sont les restes d’explosions de supernovae (liés, entre autres, aux phénomènes de formation d ’étoiles massives à courte durée de vie et mort violente) et les « environnements » (souvent à très grandes distances!) des noyaux actifs de galaxies

Le bremstrahlung et le synchrotron sont souvent « mélangés » et, en plus, peuvent subir des rediffusions par la poussière, ce qui complique énormément l’interprétation des données…

L’émission X diffuse des amas de galaxies : dominée par le bremstrahlung d’un plasma très dilué à 1 - 2 millions de K

Amas RDCS 1252.9-2927© P. Rosati et al.

CXC/NASA (Chandra Obs.), ESO - VLT

Amas de Centaurus© Sanders & Fabian(IoA Cambridge) & NASA

Abell 2390

MS 2137-2353

Images © NASA / Hubble Space telescope et NASA / CXC - Chandra

Centaurus A et ses jets radio© NRAO - Very Large Array

3C 438© système MERLIN

3C 31 = NGC 383© NRAO/AUI

Very Large Array

PKS 2356-61© CSIRO –Australia Telescope

Panaches radio synchrotron de galaxies actives

La Voie Lactée en lumière visible ...

...et en radio à 90 cm (émission synchrotron pure)

La nébuleuse du Crabe :un objet TRES compliqué

Filaments de continuum synchrotron optique, émission X centrale intense (synchrotron + bremstrahlung), diffusion du tout par des poussières, et spectre de raies dans les filaments…

© ESO - VLT

Le spectre « intégré » d’une galaxie distante (non « résolue » par l’instrument

C’est le résultat de l’addition (en flux lumineux) :

spectre de sa population stellaire (addition des spectres individuels des étoiles brouillés par la dispersion des vitesses)

+spectre de sa matière interstellaire (raies d’émission essentiellement dans le visible et le proche IR)

L’ensemble est affecté du décalage cosmologique (redshift).

Dans l’infrarouge moyen et lointain ( > 10 ) le spectre est complètement dominé par celui de la matière interstellaire (émission des poussières, raies IR interdites de structure fine des régions HII) !

S’il y a un noyau actif (quasar), sa luminosité domine tout et on voit le spectre très particulier du quasar (continuum très bleu et raies d’émission très larges).

n.b. : des raies d’absorption du milieu interstellaire sont parfois visibles - galaxies très rougies : m.i.s; de l’objet; - quasars de grand redshift : m.i.s. d’objets d’avant-plan

Galaxie àsursaut:

spectre «HII»

Galaxie « normale »dominée par lalumière des étoilesévoluées géantes rouges

Sloan

Digital

Sky

Survey

Flux de photonsdu corps noir cosmologique

Spectre entrant:T = 2. 718 K

Spectre sortant:T > 2.718 K

Gaz très chaud (2 millions de K):

plasma de protons et d’électrons relativistes,

Les photons incidents se « réchauffent » par Compton

inverse sur les électrons

L’effet Sunyayev – Zel’dovich: un exemple de Compton inverse

Les amas de galaxies : plein de phénomènes à la fois

Gaz diffusà 2 106 Kémet en X(bremstrahlung)

Galaxies: étoiles émettant dans le visible,poussières dans l’IRlointain (corps noir)

Photons du corps noircosmologique

Compton inverse sur lese- du gaz diffus qui«réchauffe» lespectre du corpsnoir cosmologique(effet Sunyayev-Zeldovich)

Radiosource centrale(super-trou noir accrétant): émission radio synchrotron,X,

Quelques brèves notions de photométrie

Si on n’a pas les moyens de faire de la spectroscopie, on se

contente de faire de la photométrie, c’est la

spectroscopie du pauvre …

La Photométrie astronomique :Photométrie : mesure du flux lumineux émis par une source astronomique (étoile, nébuleuse, galaxie, fond du ciel …)

Ce flux est une PUISSANCE ( dimension: [W] / [t] ) (==> J.s-1 )

Sa mesure passe par celle d’un flux REÇU sur un détecteur, à travers un instrument d’optique, éventuellement après la traversée de l’atmosphère terrestre.

Cette mesure ne se fait, avec un détecteur donné, et pour des raisons d’intérêt scientifique, que dans des fenêtres spectrales bien délimitées, isolées par des filtres.

L’ échelle des flux à mesurer :

- l’étoile la plus brillante donne environ 10-11 W / cm2

- les galaxies les plus faibles accessibles au Hubble Space Telescope: 10 14 fois moins d’énergie, soit environ 10-25 W / cm2

L’échelle des « magnitudes apparentes » utilisée en astronomie

D’où l’usage d’une échelle logarithmique :

m filtre = -2.5 log10 (F filtre) + Cste

Remarques : - échelle relative. La constante Cste dépend des filtres utilisés, du détecteur et de la définition de F

- C’est la constante Cste qui va permettre de « rattacher » un flux observé à une échelle de flux calibrés en énergie

- pourquoi -2.5 ? : raison historique !!!

- attention ! la source la plus brillante en apparence a la magnitude apparente la plus petite !

Formule de Pogson :

Pour deux sources A et B, le rapport des flux mesurés dans une même bande

spectrale (= filtre identique) est FA / FB

en magnitudes apparentes:

mA = -2.5 log10 (FA) + Cste

mB = -2.5 log10 (FB) + Cste

mA - mB = -2.5 log10 ( FA / FB )

deux sources dont l’éclat est en rapport de 1 à 10 ont unedifférence de 2.5 magnitudes (et 5 mag pour un rapport de 1 à 100 …)

4000 6000 8000 10000

u g r i z

Le système SDSS

Le système

Johnson-Cousins

Deux systèmes de filtres très utilisés dans le visible

Ursa Major aux jumelles (magnitudes V)

Lambda Bootis (magnitudes V)

4.5

7.2

15.0

18

Images par permission de l’Observatoire de Paris

La notion de couleur en photométrie :

Spectre quelconque: distribution de l’énergie d’un rayonnement en fonction de la fréquence (ou de la longueur d’onde)

W

()filtre 1 filtre 2

La photométrie mesure le flux intégré des sources à travers des bandes spectrales isolées par des filtres

F1 F2

Couleur :

C12 = -2.5 log10 (F1/F2)

nm

6000K

4000K

Flux du CN à 6000 K :intégrale en violetbande 400-500 nm :

F1,6000K ~ 500

bande 800-900 nm :

F2,6000K ~ 280

Flux du CN à 4000 K :intégrale en vertbande 400-500 nm :

F1,4000K ~ 30

bande 800-900 nm :

F2,4000K ~ 60

C12,6000K = - 0.63 C12,4000K = + 0.75

Filtre 1 Filtre 2

Magnitudes, couleurs et physique du rayonnement

Les étoiles peuvent être assimilées, en première approximation, à des corps noirs. Les écarts au spectre du corps noir sont dus aux absorptions par des ions et atomes présents dans les couches très superficielles de l’étoile.

- la magnitude d’un corps noir est minimale dans une bande spectrale correspondant à son maximum de rayonnement;

- la couleur d’un corps noir chaud observé dans le spectre visible est d’autant plus bleue que ce CN a une température élevée, et plus rouge que ce CN a une température basse;

- un système de filtres adéquats doit permettre d’estimer la température des corps noirs observés en mesurant les divers indices de couleurs entre bandes spectrales. Plus les filtres sont nombreux et étroits, plus la précision est grande, mais moins grand est le signal lorsqu’il s’agit de mesurer des étoiles !

L'information de base fournie par la photométrie des étoiles en bandes larges est

la TEMPERATURE DE SURFACE :

Couleur BLEUE <=====> étoile CHAUDE

Couleur ROUGE <=====> étoile FROIDE

On peut penser qu’on a un moyen de faire la classification spectrale des étoiles simplement en mesurant leur flux dans une série de filtres bien choisis, ce qui est bien sûr beaucoup plus rapide et économique en temps d’observation que d’en faire les spectres. Oui, mais…

Le piège, c’est

l' EXTINCTION INTERSTELLAIRE ….

Extinction interstellaire

Deux effets : - rougissement : C12 observé = C12 intrinsèque + E12

mesuré par un « excès de couleur » (i.e. la source a une couleur trop « rouge » si on la compare à une

source de propriétés identiques non absorbée.

- extinction : m observé = m intrinsèque + A

le flux de la source est affaibli --> sa magnitude augmente

Magnitude "absolue"

La grandeur physique intéressante lorsqu'on mesure l'éclat d'une étoile est le flux intrinsèque de puissance émis par la source (luminosité).

L’ « éclat apparent » - la magnitude apparente - ne contient cette information que couplée avec la distance de l'étoile à l'observateur!

On choisit ARBITRAIREMENT une distance - étalon, identique pour tous les objets célestes. Si on observait l'objet à cette distance, son éclat apparent serait mesuré par une MAGNITUDE, directement liée à sa LUMINOSITE (puisque la distance est fixée)

Cette magnitude est dite MAGNITUDE ABSOLUE

et la distance -étalon est de 10 PARSECS (soit 32,6 a.l.)

- Le Soleil nous paraît extrêmement brillant (magnitude apparente V = - 26.8) c’est parce qu’il est très près de nous : sa magnitude absolue V n’est que de + 4.83.

- Les étoiles supergéantes les plus lumineuses atteignent V = - 9, soit 1 million de fois la luminosité du Soleil.

- Une supernova Ia atteint V = - 19 soit plusieurs milliards de fois la luminosité du Soleil !

Annexe : Le parsec, unité de distance en astronomie

1 sec d'arc

Les distances astronomiques sont exprimées par les professionnels en PARSEC ( pour PARallaxe d'une SEConde d'arc )

C'est la distance depuis laquelle on verrait le rayon (moyen) de l’orbite de la Terre autour du Soleil (1 U.A. soit 150 millions de km) sous un angle d'une seconde d'arc

(1 parsec = 3,26 années de lumière)

l’étoile la plus proche se trouve à environ 1.3 pc du Soleil,

la distance du Soleil au centre de la Voie Lactée est de 8000 pc

la galaxie proche M31 d ’Andromède est à 800 000 pc du Soleil