30
1 Fretting Fatigue “Etude & prédiction de la durée de vie” S. Fouvry, K. Kubiak, H. Proudhon LTDS, CNRS, Ecole Centrale de Lyon, Ecully , France contact : [email protected] SF2M – Commission Fatigue 29 mars 2012, PARIS “Prise en compte des phénomènes aggravants dans la conception en fatigue” Context and challenges micro displacements [< ± 100 μm] contact pressure blade / disk contacts in turbine engine electrical connectors bridge cables [Bosh] [M. Park et al.] S. Fouvry et al., LTDS, SF2M, 29/03/2012

FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

1

Fretting Fatigue

“Etude & prédiction de la durée de vie”

S. Fouvry, K. Kubiak, H. Proudhon

LTDS, CNRS, Ecole Centrale de Lyon, Ecully , France

contact : [email protected]

SF2M – Commission Fatigue 29 mars 2012, PARIS“Prise en compte des phénomènes aggravants dans la conception en fatigue”

Context and challenges

microdisplacements

[< ± 100 µm]

contact

pressure

blade / disk contacts in turbine engine

electrical connectors

bridge cables

[Bosh]

[M. Park et al.]S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 2: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

2

Normal Force (P)

Cyclic tangential

displacement δδδδ(t)

Damage induced by plain fretting loading

Cyclic tangentialforce Q(t)

Cracking

Small amplitude

Q (N)tangential force

displacementδ (µm)

Hertziancontact

stickzone

Partial Slip

Wear

Surface damages

Gross Slip

displacementδ (µm)

Q (N)tangential force

Large amplitude

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Industrial application : Pressed fitted Wheels-Axles contact

Fretting-Fatigue Loading (Partial Slip)

Question : Are can be predicted the cracking risk ?

Fatigue(R=-1)

Pressure

Fretting(R=-1)

AxleAISI 1034

New Train Speed Record (April 2007)

Fretting-Fatigue Loading

Ultra severe

technological test

Cracking on

the axle

FRETTING

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 3: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

3

Part A : Prediction of the infinite Fretting Fatigue endurance Conditions (No crack nucleation or Crack Arrest conditions)

Part B: Prediction of finite endurance life time under Fretting Fatigue stressing

Part C: Palliatives against Fretting Fatigue

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Part A : Prediction of the infinite Fretting Fatigue endurance Conditions

⇒ Crack Nucleation Boundary

⇒ Crack Arrest Boundary

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 4: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

4

Number of fretting cycles (N)cra

ck length

(µm

)

No nucleation

Nucleation butcrack arrest

Failurepressure

cyclic tangential

force

+

Heterogeneousstress field

Fatigue Loading

)MPa( ±σ

Homogeneous stress field

Fretting Loading

Fretting Fatigue : Stress & Damage evolutions

)MPa( ±σ

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Fretting Fatigue : Fretting – Fatigue Map Concept (Partial Slip)

Fre

ttin

g loadin

g

(Q*/

µP

, R

Q)

Fatigue loading

Failure

domainplain

Fretting

test

Plain fatiguetest

P

Q*

FrettingFatigue

Test

PQ

δδδδ

), ( σσ Ra

Crack arrest boundaryCrack nucleation boundarySafe crack

nucleation

domain

Safe crack

propagation

domain

GROSSSLIP CONTACT

d

a

σ

σ

P.µ

*Q

P : Normal force

Q* : Tangential force amplitude

σa : Fatigue stress amplitude

Fretting Loading

Q (N)

δ (µm)

Q* (N)

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 5: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

5

How can be formalized the Fretting Fatigue

Mapping Concept ?

(i.e. How can be predicted the different damage domains ?)

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Topics of the presentation

Materials

Prediction of the Fretting-Fatigue crack nucleation boundary

Modelling (Contact stressing+ Crack Nucleation + Crack Propagation)

Conclusions

Experimental strategy (combined plain fretting & fretting fatigue tests)

Prediction of the Fretting-Fatigue crack propagation boundary

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 6: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

6

Ferrite - Perlite structure

Material : Low carbon steel (AISI 1034)

600Maximum stress, Rm

(MPa)

350Yield stress, Re 0.2 (MPa)

0.3Poisson coefficient, ν(ratio)

200Young modulus, E (GPa)

Low carbon steelMatériau

Mechanical properties

3.5m exponant (Paris law)

270 MPaFatigue limite (R=1)

2·10-12C coefficient (Paris law)

117

7

Crack propagation (long crack) & fatigue

SIF range threshold, ∆K0

maximum SIF, Kc ( )mMPa ⋅

( )mMPa ⋅

Gros V. , Ph.D Thesis, Ecole Centrale de Paris, France,1996.

S. Fouvry et al., LTDS, SF2M, 29/03/2012

P

σσσσext

δδδδ

Q*

σσσσext

δδδδ

σσσσext

δδδδ

σσσσext

δδδδ

σσσσext

δδδδ

σσσσext

δδδδ

Fretting Fatigue Test

δδδδδδδδ

P

P

δδδδ

δδδδ

P

δδδδ

Q*

Plain Fretting Test(fretting wear test)

Fretting Experiments : Coupling Between Plain Fretting & Fretting Fatigue tests

Acquisition systemdisplacement normal force

tangential force temperature

humidity

FRETING CYCLE(Partial Slip)

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 7: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

7

Fn

ext

δδδδ

Q*

ext

δδδδ

ext

δδδδ

ext

δδδδ

ext

δδδδ

σσσσext

δδδδ

fatigue loading(R=-1)

iso-fretting loading(R=-1)

δδδδ

P

δδδδ

Q*

- Friction behavior (Tribology)- Crack nucleation- Short crack propagation

(systematic crack arrest conditions)

- Crack propagation (short & long)- Crack arrest condition- Lifetime endurance

This combined Plain Fretting and Fretting Fatigue test allow us to dissociatethe impact of contact and bulk cyclic loading on the fretting fatigue damage

AISI 1034

P= 230 N/mm

R= 40 mm

p0H= 450 MPa , aH = 320 µm

52100

Similar contact condition

Fretting Experiments : Coupling Between Plain Fretting & Fretting Fatigue tests

Plain Fretting Test Fretting Fatigue Test

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Plain Fretting Wear Test →→→→ Friction analysis

Coefficient of Friction (µt) = 0.85

cycles

Q[N]

δ[µm]

Fretting Cycles

Am

plitu

de v

alu

es

incremental method

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

displacement amplitude δ* (µm)

Energy discontinuity

*Q..4

EA

g

d

δ=P

*Q

Partial

Slip

GTµ

P

*Q≠µ

Gross Slip

en

erg

y r

atio A

,

tan

gential fo

rce r

atio,Q

*/P

coefficient of frictionat the sliding transition

Displacement

Gross

Slip Tangential forcePartial

Slip

Recorded cycle

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 8: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

8

Analytical description of Plain Fretting and Fretting Fatigue contacts

P

Q

X=x/a

Y=y/a

+1-1

)X(p

surfacepressure field

)X(q

Loadingshear stress

field (+Q*)

p0

slidingzones

-c/a c/astickingzone

Unloadingshear stress

field (-Q*)

)X(q

Plain Fretting Contact

Maximum loading locatedsymetrically at the contact

borders

Mindlin et al, 1949

-1 +1

a

e

-1 +10

+Q*

)(Xq

slidingzones

)(Xp

Trailing edge

Loading

Tangential

force

a

e0

-Q*

)(Xq

)(Xp

Unloading

Tangential

force

Compression

ac /2

ac /2

aσ−

aσ+

Tension

X=x/a

X=x/a

Fretting-Fatigue Contact

Maximum loading locatedat the trailling edges (at the

Loading state)

Nowell et al, 1989

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Contact modeling: Stress field analysis

FEM ANALYSIS

Can include plasticity

Long and fastidious (inappropriate to developA mapping investigation !!)

X

p(X)

Analytical formulation: Green’s functionsSuperposition of piecewise-lineOverlapping triangular elements(K.L. Johnson, 1985)[Elastic Half Space Hypothesis]

Σ=Σ t)(M,

Very fast !!S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 9: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

9

Crack Nucleation Analysis

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Plain Fretting Wear Test →→→→ Friction Identification of the crack nucleation

2c 2a

A

A

2c 2a

A

A

Surface observation

stick zone sliding zone

b

Cross section observation: measure of thecrack length

Fretting Test : Q*=± 200 N/mm, 106 cycles

0

20

40

60

80

0 100 200 300 400

tangential force amplitude, Q* (N/mm)

cra

ck len

gth

, b (

µm

)

Crack

nucleation

threshold

*

CNQ

P=230N/mm, µ=0.85

(106 cycles, p0= 450 MPa)

mm/N100Q*CN =

106 cycles

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 10: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

10

Application of the Dang Van’s (multiaxial criteria)

determination of the loading path

computation of the

cracking risk (Dang Van)

Σ(M,t)0- c- a c a

ZX

PQ (t)

stick domain slidingdomain

M

Surface (X=x/a)

Subsurface (Y=y/a)

DVd

Cra

ckin

g r

isk

Plain Fretting

Cracking at the contact borders

3

3

d

ddC

σ

σ−τ=α

dτ: alternating bending fatigue limit

: alternating shear fatigue limit.

α−τ

τ

(t)p̂.

t),n( ˆ max=d

dnt,DV

r

r

if dDV>1 cracking

$ ( ) * ( )σ ρt t= +Σ

point M fixed

shakedown

( ) ( )α τ σ σ= −d d d2 3/

$ ( , )τrn t

shear$ ( )p tH

tension

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Surface (X=x/a)

Subsurface (Y=y/a)

DVd

Cra

ckin

g r

isk

Application of the Dang Van (Quantitative Prediction)

0

20

40

60

80

0 100 200 300 400

tangential force amplitude, Q (N/mm)

crack

leng

th, b

m)

Crack

nucleation

threshold

*

CNQ

P=227N/mm, µ=0.85

(106 cycles, p0= 450 MPa)

mm/N100Q*CN =

Overestimation of the cracking risk !!

1dDV =

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 11: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

11

“Non local approach” to capture stress gradient effects

S. Fouvry et al., LTDS, SF2M, 29/03/2012

“Non local approach” to capture stress gradient effects

nucleation process

volume approach nucleation process

surface approach

Critical distance

method

)MPa(Σ

a

y

2D plane straincondition

(cylinder/plane)

contact steep

stress gradient( )y,xD3RΣ

D3l

( )xD2RΣ

D2l

Averagingover a constantsquare volume

Averagingover a line

( )xD1RΣ

D1l

Stress analysisAt a critical distancefrom the “Hot point”

Non local fatigue approaches

« Hot point »

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 12: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

12

Identification of representative length scales (Dang Van)

length scale parameter,

maxi

mum

Dang V

an v

alu

e : m

ax(

dC)

0.0

1.0

2.0

3.0

4.0

0 30 40 60 80 100 120

µm 60 D3 =l

)(d D3)Q(DV*CN

l

(µm) D3l

( )y,xD3RΣ??D3l

D3l( )*CNQΣ

)Q(DV *CN

d

1d)Q(DV *

CN=

untilReverse approach

µm 60 D3 =l µm 75 D2 =l µm 28 D1 =l

2 D1

2DD3

lll ≈≈

Consistent with notchdescription (Taylor and al)

3.44

1 - What is the stability of the different “averaging approaches” regarding Fretting – Fatigue stressing ?

2 - Is the length scale parameters defined from Plain Fretting configuration can be extrapolated to predict crack nucleation under Fretting Fatigue ?

Questions ?

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 13: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

13

Fretting – Fatigue Experiments : Identification of the crack nucleation Fretting Fatigue map

NO CRACK78120

CRACK91120

NO CRACK62100

NO CRACK80100

CRACK100100

CRACK110100

CRACK115100

NO CRACK8250

CRACK9250

Cross section

Examination

Tangential

force

amplitude

Q* [N/mm]

(R=-1)

Fatigue

stress

amplitude :

σa [MPa]

(R=-1)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1norm

aliz

ed f

rettin

g loadin

g: Q

*/µ

P, (R

=-1

)

normalized fatigue loading: σa/σd, (R=-1)

safe cracknucleation

failure

crack

no crack

PF threshold

106 cycles

Low influence of fatigue stress amplitude in the low fatigue stress range !(Conventional idea : crack nucleation is controlled by fretting)

S. Fouvry et al., LTDS, SF2M, 29/03/2012

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

crack

no crack

PF threshold

safe cracknucleation

failure

norm

aliz

ed f

rettin

g load

ing: Q

*/µ

P, (R

=-1

)

normalized fatigue loading: σa/σd, (R=-1)

1dDV =Theoretical prediction of the

Fretting Fatigue crack

nucleation boundary

µm 60 D3 =l

Similar tendencies !!

µm 28 D1 =l

Pessimistic (i.e. secure) prediction of the safe crack nucleation domain from Plain Fretting identification !

Correlation Experiments // Modelling (Dang Van)

µm 75 D2 =l

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 14: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

14

Comparison between Multiaxial Criteria (Crossland)

Deviatoric

Plane

)t(Σ

)t(S

Φgeneral

stress pathduring fatigue

loading

Deviatorictensor

D

2

D

2

1a =ζ

Deviatoric

Plane

)t(Σ

)t(S

Φgeneral

stress pathduring fatigue

loading

Deviatorictensor

D

2

D

2

1a =ζ

dmaxhCa P τ<⋅α+ξ

Crossland Criterion

Σ=

∈))t((trace

3

1maxP

Ttmaxh

Hydrostatic pressure

−−=ξ

∈∈

21

00TtTt

a ))t(S)t(S(:))t(S)t(S(2

1maxmax

2

1

0

)t(J2component

3

3

d

ddC

σ

σ−τ=α

maxhCd

aC

Pd

⋅α−τ

ξ=

- If is greater than or equal to 1, there is a risk of cracking;

- If remains less than 1, there is no risk of cracking.

Fatigue material component

S. Fouvry et al., LTDS, SF2M, 29/03/2012

norm

aliz

ed f

rettin

g loadin

g: Q

*/µ

P, (R

=-1

)

normalized fatigue loading: σa/σd, (R=-1)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

safe cracknucleation

failure

Comparison between Multiaxial Fatigue Criteria

crack

no crack

PF threshold

Crosslandµm 45 D3 =l

Dang Vanµm 60 D3 =l

( )y,xD3RΣ

D3l

Plain Fretting

No differences between multiaxial fatigue criteria

(Quasi uniaxial stress loading state at the contact border)

Selected “Non local Fatigue approach” => “Crossland +square averaging “S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 15: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

15

How to prediction the Crack Arrest ?

S. Fouvry et al., LTDS, SF2M, 29/03/2012

SIF modeling at the fretting crack tip (decouple approach)

21

21 2( ) 1 * *

t tM t t m m

h h

− = + +

cylinder

hW

H

t

σ(t)

P

Q

∫ σ⋅π

= dt)t()t(M2

1K

∫ τ⋅π

= dt)t()t(M2

2K

τ(t)

SIF integration method by Weight Functions

1

2

2

2

yy

yx

K

r

K

r

σπ

σπ

=

=

x 21

21 2( ) 1 * *

t tM t t m m

h h

− = + +

cylinder

hW

H

t

σ(t)

P

Q

∫ σ⋅π

= dt)t()t(M2

1K

∫ τ⋅π

= dt)t()t(M2

2K

τ(t)

SIF integration method by Weight Functions

1

2

2

2

yy

yx

K

r

K

r

σπ

σπ

=

=

x 0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140 160 180 200

K1, M

pa.v

m

K1max_P540_Q283

a0=170µm

Weight Functionsstraight crack (0º)

Short crack domain (a<a0)

crack length, µm

Evolution of SIF (mode I)

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140 160 180 200

K1, M

pa.v

m

K1max_P540_Q283

a0=170µm

Weight Functionsstraight crack (0º)

Short crack domain (a<a0)

crack length, µm

Evolution of SIF (mode I)

Q*= 125 N/mm

P= 230 N/mmFretting Wear

condition

surface

" the crack length increase

but the contact stress field

is decreasing very fast"

Stress field extraction (FEM) +

Weigth Functions (WF)

Other approaches : Distributed Dislocations

Dubourg et al. Nowell et al;

(Bueckner H.F.)

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 16: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

16

Comparison : Couple (FEM: contact+crack) // Decouple FEM(contact) + WF

Couple approach (FEM: contact+crack)

"Crack box"- Automatic remeshing

Crack length

Couple approach

(FEM: Contact+Crack)

0 50 100 150 200 250 300 350 400 450 500 550 600

Uncouple approach

(FEM+WF)

KImax

0 50 100 150 200 250 300 350 400 450 500 550 600

Crack length

Couple approach

(FEM: Contact+Crack)

0 50 100 150 200 250 300 350 400 450 500 550 600

Uncouple approach

(FEM+WF)

KImax

0 50 100 150 200 250 300 350 400 450 500 550 600

Selected “SIF computation” => “ FEM + Weigth Functions “S. Fouvry et al., LTDS, SF2M, 29/03/2012

0

2

4

6

8

0 40 80 120 160 200

KIm

ax,

MP

a√m

crack length, b(µm)

the crack length increase

but the contact stress field

is decreasing very fast

Q*= 125 N/mm

P= 230 N/mm

Plain Frettingcondition

Evolution of the SIF below the contact: Non monotonic evolution !

Increase of the crack

length

Decrease of the contact

Stress field

The crack stops ! (situation of plain fretting condition)

Plain Fretting

The crack stops !

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 17: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

17

Determination of the effective SIF (combining mode I and II)

2IIeff

2Ieffeff KKK ∆+∆=∆General formulation

I_effK∆ )1µc(mixed_effK =∆ )0µc(mixed_effK =∆< <

Mode I Mode II

Mixed Mode A (Crack edge with high friction)2

axImI

2

axIm)µc(mixed_eff KKK +=∆ 0K inImI =0c >>µ

Mixed Mode B (Crack edge friction free)

2inImIaxImI

2

axIm)0µc(mixed_eff )KK(KK −+=∆ = inImIK

0c =µ

Pure mode I (Usual hypothesis)

axImI_eff KK =∆ Because R=-1 (closure effect)0K inIm =

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Identification of the crack arrest approach : KT’s formulation

Q*= 125 N/mm P= 230 N/mm

Crack arrest approach

based on the Kitagawa-Takahashi

diagram

Specific behavior of the crack arrest condition for the small crack !!!

0

2

4

6

8

10

0 50 100 150 200 250 300

Propagationarea

8

10

0 50 100 150 200 250 300

crack length b, µm

crack arrestboundary

short crack

long crack

2

f

00

H

K1b

⋅σ

π=

if short crack (b<b0)0

0thb

bKK ⋅∆=∆

if long crack (b>b0) 0th KK ∆=∆

b0 = 170µm

Araujo J.A., Nowell D., Int. J. of. Fatigue, 1999, 21

∆K

eff

_m

ixe

d(µ

c=

0), M

Pa√m

non propagation

area0b

MPa 120max =σ

Stop!

MPa 150max =σ

propagation

0K∆

0

0thb

bKK ⋅∆=∆

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 18: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

18

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

crack arrest

failure

norm

aliz

ed f

rettin

g load

ing: Q

*/µ

P, (R

=-1

)normalized fatigue loading: σa/σd, (R=-1)

broken125160FF18

broken125150FF17

broken125140FF16

broken100130FF15

broken125130FF14

broken145130FF13

59100120FF12

290125120FF11

344145120FF10

Maximum

crack

length

expertised :

b (µm)

Tangential

force

amplitude

Q*

[N/mm]

(R=-1)

Fatigue

stress

amplitude

:

σa [MPa]

(R=-1)

Fretting

Fatigue

Test

(107

cycles)

107 cycles

Fretting – Fatigue Experiments : Identification of thecrack arrest Fretting Fatigue map

failure

non failure

Low influence of fretting stressing on the crack arrest boundary !(Conventional idea : crack propagation is controlled by fatigue)

S. Fouvry et al., LTDS, SF2M, 29/03/2012

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

crack arrest

failure

norm

aliz

ed f

rettin

g load

ing: Q

*/µ

P, (R

=-1

)

normalized fatigue loading: σa/σd, (R=-1)

Comparison between experiments & Model (KT’s hypothesis of Crack arrest process)

I_effK∆

Pure mode I

)0µc(mixed_effK =∆

Mixed mode(Crack edge without friction)

Not predicted !

Provide too much optimistic prediction of the crack arrest boundary (non conservative)

Mixed mode(Crack edge with friction)

)µc(mixed_effK∆

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 19: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

19

Crack arrest approach

based on the El Haddad et al approach

Specific behavior of the crack arrest condition for the small crack !!!

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300

propag

ation

area

crack arrest

boundary

propagation

0

0thbb

bKK

+⋅∆=∆

Crack Boundary

0

0thbb

bKK

+⋅∆=∆

non propagationarea

El Haddad approach

crack length b, µm

∆K

eff

_m

ixe

d(µ

c=

0), M

Pa√m

Continuous evolution of the crack arrest boundary (more conservative)

Alternative crack arrest approach : El Haddad et al. formulation

0K∆

S. Fouvry et al., LTDS, SF2M, 29/03/2012

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

crack arrest

failure

norm

aliz

ed f

rettin

g load

ing: Q

*/µ

P, (R

=-1

)

normalized fatigue loading: σa/σd, (R=-1)

CAFFM: Comparison between experiments & Modelling(EH et al. hypothesis of Crack arrest process)

I_effK∆

Pure mode I

Mixed mode(Crack edge with friction)

)µc(mixed_effK∆

failure

non failure

)0µc(mixed_effK =∆

Mixed mode

(Crack edge without friction) +El Haddad’s Short crack

Arrest

Most representative &

conservative prediction

of the Crack arrest boundary

Mixed mode(Crack edge without friction)

)0µc(mixed_effK =∆

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 20: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

20

0

2

4

6

8

10

0 100 200 300 400 500 600

Crack lenght, µm

Fretting Fatigue (107 cycles)

Plain Fretting (106 cycles)

El Haddad et al. formulation provides a more conservative predictionof maximum crack length relate to crack arrest

crack arrest formulation KT

KT

∆K

eff

_m

ixe

d(µ

c=

0), M

Pa√m

Comparison of the crack arrest condition based on the crack length prediction

crack arrest formulation EH

EH

S. Fouvry et al., LTDS, SF2M, 29/03/2012

crack arrest boundary

(El Haddad approximation)

)0µ(mixed_eff CK =∆

dDV=1 µm 60 D3C =l

crack nucleation boundary

(Dang Van)

no crack crack

cross section expertise (106 cycles)

failure no failure

very long test (107 cycles)

crack nucleation threshold identified

from plain fretting condition

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

normalized fatigue loading: σa/σd, (R=-1)

norm

aliz

ed f

rettin

g load

ing: Q

*/µ

P, (R

=-1

)

failure domain

safe crack nucleationdomain

crackarrest

domain

CAtha _σ

FFM: Synthetic Fretting Fatigue Map

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 21: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

21

Conclusions

- A Fretting-Fatigue Mapping is introduced to formalize the cracking damages(Relative impacts of contact fretting & fatigue loadings are quantified)

- The crack nucleation boundary can be predicted combining a Multiaxialfatigue approach (Dang Van , Crossland, etc ….) but taking into account stress gradient effects(Length scale identification from plain fretting test is validated : safe predictionof the crack nucleation boundary)

- The crack arrest boundary can be predicted combining mixed modecrack edge friction free estimation of the effective SIF range and a El Haddaddescription of the short crack arrest description.

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Part B : Prediction of the Finite

Endurance Behaviour

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 22: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

22

0

50

100

150

200

250

300

0 2.E+06 4.E+06 6.E+06 8.E+06 1.E+07

number of cycles

fatig

ue s

tress a

mplit

ud

e (

R=

-1),

MP

a

Fatigue Limit σd = 270 MPa

Fretting Fatigue LimitσFF=120 MPa

Identification of the Fretting Fatigue Wohler curve for a constantfretting loading : "Iso fretting fretting-fatigue analysis"

Modelling of the Endurance curve ?

2 - Infinite endurancereduction?

Fretting loading

P = 230 N/mm

Q* = 125 N/mm

R (cylinder) = 40 mm

S. Fouvry et al., LTDS, SF2M, 29/03/2012

2 - Short crack propagationNS- Fretting cycles in short crack

propagation (a<a0)Dowling N.E. et al. ASTM-STP- 637Vormwald M. IJF, 28

3 - Long crack propagation

NL- number of cycles in long

crack propagation regime (a>a0) Loi de Paris

CylinderP

Q

Fatigue Load

(homegeneous)

1- Nucleation

NN : Fretting Cycle Related

to the crack nucleation

aS

aL

Kmax > Kc

rupture

a0= 170 µm

short crack domain

long crack domain

aN=10µm

W

Fretting Load

(heterogeneous)

( )∫ ∆=

a

a 'mFC0 J'C

daN

Finite endurance formulation

( )∫ ∆⋅=

a

a mFL0 KeffC

daN

Paris Law

NTotal=NN+NS+NL

Fretting FatigueEndurance

Modeling strategy

2

f

00

H

K1a

⋅σ

π=

shortcrack

transitionS. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 23: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

23

Identification of the finite endurance behavior (reverse identification of plain fretting tests)

Plain Fretting Experiments

Q*15kC0

10

20

30

40

50

60

70

80

80 100 120 140 160 180 200

N=15000

N=25000

N=35000

N=50000

N=75000

N=100000

Fretting Cycles

tangential force amplitude, Q* (N/mm)

maxim

um

cra

ck len

gth

, l (N

/mm

)

0

20

40

60

80

100

120

140

160

180

200

0 25000 50000 75000 100000 125000

tangentialfo

rce a

mplit

ude, Q

* (N

/mm

)

crack nucleation fretting cycles NN (l=10 µm)

mN *)Q.(KN =

K=6.1013

m=-4.2

P= 230 N/mm

R= 40 mm

p0H= 450 MPa , aH = 320 µm

δδδδ

P

δδδδ

Q*

S. Fouvry et al., LTDS, SF2M, 29/03/2012

mN *)Q.(KN =

K=6.10-13, m=-4.2

Plain Fretting Test condition

P= 230 N/mm

R= 40 mm

p0H= 450 MPa , aH = 320 µm

Identification of the finite endurance behavior (NN computation)

0

50

100

150

200

250

300

350

0 25000 50000 75000 100000 125000

crack nucleation fretting cycles NN (l=10 µm)

( )nC_eqN .HN σ=

H= 7.6710-16

n= -5.13

Crack nucleation master curve

Identified fromPlain fretting tests

)( D3Crossland_eq lσ

Fretting Fatigue

)Fatigue Fretting(NN

)( D3Crossland_eq lσ

µm45D3 =l

maxhCaCrossland_eq P⋅α+ξ=σ

Plain Fretting

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 24: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

24

Identification the short crack kinetics (a < a0)

0

20

40

60

80

100

0 0.5 1.0 1.5 2.00

fretting cycles (x106)

maxim

um

cra

ck l

en

gth

m)

crack arrest

Q*= 125 N/mm P= 230 N/mm

Plain Fretting Experiments

reverse indentification of the

Vormwald law integration !!!

(da/dN=c’∆Jm’ )

1E-12

1E-11

1E-10

1E-06 1E-04 1E-02 1E+00

log

(da/d

N)

(m/c

yc

les

)

1E-08

917.0)J(7e3.2

dN

da∆⋅−=

log(∆J)

Short crack propagationunder fretting

1E-12

1E-11

1E-10

1E-06 1E-04 1E-02 1E+00

log

(da/d

N)

(m/c

yc

les

)

1E-08

917.0)J(7e3.2

dN

da∆⋅−=

log(∆J)

Short crack propagationunder fretting

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Identification of the crack arrest approach

Specific behavior of the crack arrest condition for the small crack !!!

Araujo J.A., Nowell D., Int. J. of. Fatigue, 1999, 21

Crack arrest approach

based on the El Haddad et al approach

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300

propag

ation

area

crack arrest

boundary

propagation

0

0thbb

bKK

+⋅∆=∆

Crack Boundary

0

0thbb

bKK

+⋅∆=∆

non propagationarea

crack length b, µm

∆K

eff

_m

ixe

d(µ

c=

0), M

Pa√m

Continuous evolution of the crack arrest boundary (more conservative)

0K∆

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 25: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

25

EnduranceNT

Algorithm to identify the fretting fatigue endurance

a+∆a < a0

∆KI & ∆KII extraction at the crack tip

Paris law integration (da/dN=C.∆Keff m)

short crack

propagation ∆∆∆∆NS

NT = NT+∆∆∆∆NS

long crack propagation ∆NL

NT = NT+ ∆∆∆∆NL

Vormwald law integration (da/dN=c’∆Jm’ )

a+∆a

∆KI < ∆Kth YesCrackarrest !

a+∆a > a0

Keff> Kc Yes failure

a+∆a < a0

∆KI & ∆KII extraction at the crack tip

Paris law integration (da/dN=C.∆Keff m)

short crack

propagation ∆∆∆∆NS

NT = NT+∆∆∆∆NS

long crack propagation ∆NL

NT = NT+ ∆∆∆∆NL

Vormwald law integration (da/dN=c’∆Jm’ )

a+∆a

YesCrackarrest !

a+∆a > a0

Yes failure

Nucleation Initial imput

nD3Crossland_eqN ))(.(HN lσ=

Ntotal= NNucleation+ N Propgation (Short Crack) +N Propagation (Long Crack)

theff KK ∆<∆

ICaxIm KK >

Propagation Stage

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Fatigue Limit σd=270 MPa

0

50

100

150

200

250

300

0 5.E+06 1.E+07 2.E+07

number of cycles

fati

gu

e lo

ad

am

pli

tud

e,M

Pa

Fretting Fatigue LimitσFF=120 MPa

Experimental points

modelised curve

Overrun tests

%55)N(

)N()N((%)K

dF

dFFdF)N(FF =

σ

σ−σ=

Material limit reduction factor under

fretting fatigue loading

RESULTS : Prediction of the endurance and infinite life

Crack Arrest !

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 26: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

26

Conclusions

- Combined Fretting Wear and Fretting Fatigue analysis appears aspertinent approach to quantify the different stages of the fretting fatigue damages

- It is shown that applying a reverse analysis of Fretting Wear crack length data it is possible to determine the short crack propagation kinetics but the fretting fatigue cycles to crack nucleation

- By summing successively the cycles related to the crack nucleation, short crack propagation and long crack propagation, a good approximation of the total fretting-fatigue endurance is achieved

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Part C : Materials and Palliative Strategies

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 27: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

27

Impact of material properties : ratio ∆∆∆∆K0/σσσσd

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

failure

domain

safe crack

nucleation

domain

crack arrest

domain

CAtha _σ

normalized fatigue loading: σa/σd(AISI 1034) (R=-1)

norm

aliz

ed fre

ttin

g loadin

g: Q

*/µ

P, (R

=-1

)

TA6V : ∆K0= 5 MPa√m, σd=450 MPa

Very limited crack arrest domain:A designing based on a crack

nucleation prediction is unstable.A damage tolerance approach appearsmore conservative than a crackNucleation strategy !!!

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

CAtha _σ

failure

domain

safe crack

nucleation

domain

crack

arrest

domain

normalized fatigue loading: σa/σd(AISI 1034) (R=-1)

norm

aliz

ed fre

ttin

g loadin

g: Q

*/µ

P, (R

=-1

)AISI 1034 : ∆K0= 7 MPa√m, σd=270 MPa

A designing based on a cracknucleation prediction is securedby the presence of an extendedCrack arrest domain

Crack nucleation

boundary

Crack arrest boundary

S. Fouvry et al., LTDS, SF2M, 29/03/2012

0 10

1

normalized fatigue loading,

σa/σd(AISI 1034) (R=-1)

norm

aliz

ed f

rettin

g load

ing,

Q*/

µP

, (R

=-1

)

crack

arest

domain

safe crack

nucleation

domain

CAth_aσ

failure

domain

Increase of the Safe Crack Nucleation domain

Pb. : Wear of Coating ?

-Hard coating inducing very high andStable compressive stresses on top surface

(ex. TiN, etc ..)

- Soft coating : capacity to accommodateThe deformation by plasticity (Thick CuNiIn, Aluminum, Bronze, etc … )

Coatings !

No crackwith WC-Co

Surf. & Coat. Technology, 201, 2006

Plain Fretting experiments

Plain steel

Shot peening

WC-Co

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 28: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

28

0 10

1

normalized fatigue loading,

σa/σd(AISI 1034) (R=-1)

norm

aliz

ed f

rettin

g load

ing,

Q*/

µP

, (R

=-1

)

crack

arest

domain

safe crack

nucleation

domain

failure

domain

CAth_aσ

Increase of the Crack Arrest Domain

Pb. : Relaxation of residual stresses ?

Surf. & Coat. Technology, 201, 2006

Don’t modifythe crackNucleation!

… but reduceThe crack extension !

Plain Fretting experiments

Plain steel

Shot peening

WC-Co

Solution: Shot peening, laser Peening !

Introduction of compressive residualStresses which block the crackPropagation…

S. Fouvry et al., LTDS, SF2M, 29/03/2012

0 10

1

normalized fatigue loading,

σa/σd(AISI 1034) (R=-1)

norm

aliz

ed f

rettin

g load

ing,

Q*/

µP

, (R

=-1

)

crack

arest

domain

safe crack

nucleation

domain

failure

domain

CAth_aσ

Combined approach : crack nucleation & crack Arrest domains extension

Ex. : Shot peening + WC-Co (HVOF) !

Suf. & Coat. Technology, 201, 2006

Fretting Fatigue experimentsPlain steel

Shot peening

Shot peening +WC-Co

Fretting Fatigue Experiments

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 29: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

29

CONCLUSIONS

Different strategies are now effectives to

predict the finite endurance

induced by fretting fatigue loadings

0

50

100

150

200

250

300

0 5.E+06 1.E+07 2.E+07

number of cycles

fati

gu

e lo

ad

am

plitu

de,

MP

a

But also to identified the Fretting – Fatigue

loading region where no crack can be nucleated

Or at least are supposed to stop !

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

σa/σd, (R=-1)

Q*/

µP

, (R

=-1

) failure domain

safe crack nucleationdomain

crackarrest

domain

CAtha _σ

Adequate strategies can be developed to select

Pertinent palliatives

0 10

1

σa/σd(AISI 1034) (R=-1)

Q*/

µP

, (R

=-1

)

crackarest

domain

safe cracknucleation

domain

failuredomain

CAth_aσ

Fretting Fatigue

- Non local fatigue approach

- Short Crack Arrest pproach

S. Fouvry et al., LTDS, SF2M, 29/03/2012

S. Fouvry et al., LTDS, SF2M, 29/03/2012

Page 30: FF 29 03 2012s550682939.onlinehome.fr/Fatigue/fichier/gt7/Fretting Fatigue - S... · Q* 100 N/mm CN = 10 6 cycles S. Fouvry et al., LTDS, SF2M, 29/03/2012 . 10 Application of the

30

References (LTDS => Send a Email for copy : [email protected])

S. Fouvry, Ph. Kapsa, L. Vincent, K. Dang Van, "Theoretical analysis of fatigue cracking under dry friction forfretting loading conditions", WEAR, 195, (1996), p.21-34

S. Fouvry, Ph. Kapsa, F. Sidoroff, L. Vincent, "Identification of the characteristic length scale for fatigue crackingin fretting contacts”, J. Phys. IV France 8 (1998), Pr8-159-166.

S. Fouvry, Ph. Kapsa, L. Vincent, “A Multiaxial Fatigue Analysis of Fretting Contact Taking into Account the Size Effect”, Fretting Fatigue 1998,ASTM STP 1367, 2000, p.167-182.

H. Proudhon, S. Fouvry, and G.R. Yantio "Determination and prediction of the fretting crack initiation:introduction of the (P, Q, N) representation and definition of a variable process volume", International Journal of Fatigue, Volume 28, Issue 7, 2006, Pages 707-713.

S. Muñoz, H. Proudhon, J. Domínguez and S. Fouvry "Prediction of the crack extension under fretting wear loading conditions" International Journal of Fatigue, Volume 28, Issue 12, December 2006, Pages 1769-1779.

Kubiak K., S. Fouvry S., Marechal A.M., Vernet J.M, " Behaviour of shot peening combined with WC–Co HVOF coating under complex fretting wear and fretting fatigue loading conditions ", Surface & Coatings Technology 201 (2006) p. 4323-4328.

Proudhon H., Buffière J-Y. and Fouvry S., Three-dimensional study of a fretting crack using synchrotron X-ray micro-tomography, Engineering Fracture Mechanics, Volume 74, Issue 5, March 2007, Pages 782-793.

S. Fouvry, D. Nowell, K. Kubiak and D.A. Hills, Prediction of fretting crack propagation based on a short crack methodology, Engineering Fracture Mechanics, Volume 75, Issue 6, April 2008, Pages 1605-1622.

S. Fouvry, K. Kubiak, Introduction of a fretting-fatigue mapping concept: Development of a dual crack nucleation– crack propagation approach to formalize fretting-fatigue damage, International Journal of Fatigue (2009), 31, 250-262.

S. Fouvry, K. Kubiak, Development of a fretting–fatigue mapping concept: The effect of material properties and surface treatments, Wear (2009), 267, 2186–2199

S. Fouvry et al., LTDS, SF2M, 29/03/2012

JP2012 : Fretting Fatigue & Fatigue de ContactParis 23 – 24 mai 2012

www.sf2m.asso.fr/JP2012/JP2012.htm