minProc10

  • Upload
    aghilif

  • View
    220

  • Download
    0

Embed Size (px)

Citation preview

  • 8/13/2019 minProc10

    1/23

    Magnetic separation

  • 8/13/2019 minProc10

    2/23

    N

    S

    nadawa

    koncentratodpad

    Principle of magnetic separationUtilized feature:

    magnetic

    susceptibility

  • 8/13/2019 minProc10

    3/23

    B0= 0H

    0magnetic permeability of vacuum (4107Vs/(Am)= H/m

    In vacuum:

    H- magnetic field intensity (A/m)

    B0- magnetic induction in vacuum (Vs/m

    2

    = T)

    In any medium (e.g. particle):

    B

    =H

    B= 0(H+M) =B0+ 0M

    vacuum imput

    particle input

  • 8/13/2019 minProc10

    4/23

    Vector of magnetic induction B in a particle is difefrent from

    that of in vacuum. Therefore:

    = (BB0)/B0= ( 0)/ 0= 0M/B0

    is the volumetric dimensionless magnetic susceptibility

    MATERIALS

    paramagnetics diamagnetics

    + -

  • 8/13/2019 minProc10

    5/23

    Ways of expressing magnetic susceptibility

    volume

    (dimensionless)

    mass (specific)

    (cm3/g)

    w= /molar

    (cm3/mol)

    M = w M

    x

    HH

    x

    HH

    x

    HHmF zz

    y

    yx

    xwx 0

    generally:

    x

    H

    HmFx

    xwx 0

    N

    S

    feed

    concentrate tailing

  • 8/13/2019 minProc10

    6/23

    true paramagnetics

    ferromagnetics

    ferri- and antyferromagnetics

    diamagnetics

    magnetic field, H

    magnetisation

    ,M

    0

    Classification of materials

  • 8/13/2019 minProc10

    7/23

    m

    agneticsusceptibility

    temperature

    diamagnetics

    antyferromagnetics

    paramagneticsferromagnetics

    Nel point

    Curie point

    Influence of temperature

  • 8/13/2019 minProc10

    8/23

  • 8/13/2019 minProc10

    9/23

    Paramagnetics

    -true paramagnetics

    -antyferromagnetics

    -ferrimagnetics

    -ferromagnetics

    True paramagneticsTable 8.5. Magnetic susceptibility of selected true parmagnetics at room temperature

    ParamagneticSusceptibility,w(SI)

    cm3/g*

    ParamagneticSusceptibility, M(SI)

    cm3/mol**

    FeCO3 1000 200106 UO2 2965710

    6

    CuSO45H2O 76,710

    6

    KMnO4 251,310

    6

    FeSO4 844106 Pt 2537106

    NiSO47H2O 201106

    NiS 2388106

    MnO 860106 MoO3 37,7106

    CoS 2827106 Al 207,3106

    *wafter Svoboda (1986/87).

    **Mafter CRC (1987).

  • 8/13/2019 minProc10

    10/23

    Antyferromagnetyki

    Table 8.6. Selected antyferromagnetics and their Nel point (temperature) N,when they become true paramagnetics having

    constant magnetic susceptibility at a given temp. and obeying the CurieWeissa equation = C/(T + p))

    (after CRC, 1986/87)

    Antyferromagnetic M(cgs) N(K) p(K), dla T> N

    Hematite, Fe2O3 3586106

    (1033 K) 950 2000

    Bunsenite, NiO 533650 ~2000

    Pirrhotite, FeS* 1074106

    (293 K) 613 857

    Cr2O3 1960106

    (300 K) 318

    Tenorite, CuO 238,6106

    (289 K) 230

    Alabandite, MnS 3850106(293 K) 165 528

    Pirolusite, MnO2 2280106(293 K) 84

    Ilmenite, FeTiO3 68

    Siderite, FeCO3 11300106

    (293 K) 57

    * FeS is a bertolid (non-stoichiometric) compound and its properties depend on composition. FeS1,10and FeS1,14is a ferrimagnetic

  • 8/13/2019 minProc10

    11/23

    Ferrimagnetyki

    Table 8.7. Magnetic susceptability of ferrimagnetic magnetite

    as a function of field intensity

    (after Svoboda, 1986/87)

    Intensity of

    magnetic field

    H, kA/m

    Specific (mass)

    magnetic susceptibility,

    w(SI), cm3/g

    Magnetite

    2 1,40

    4 1,658 2,75

    16 2,25

    24 1,80

    32 1,53

    48 1,11

  • 8/13/2019 minProc10

    12/23

    Ferromagnetics

    Table 8.8. Selected ferromagnetic materials with significant remanence (Br)

    and energy product (BH)

    MaterialBr

    (Tesla)

    (BH)max

    (kJm3)

    Alnico 12 (13,5Ni; 8Al; 24,5Co; 2Nb) 1,20 76,8PrCo5 1,20 286

    NdCo5 1,22 295

    Sm(Co0,65Fe0,28Cu0,05Zr0,02)7,7 1,20 264

    Fe; 23Cr; 15Co; 3V; 2Ti 1,35 44

  • 8/13/2019 minProc10

    13/23

    a

    +H+Hc

    B

    +Br

    -Br

    -Hc

    -H H

    c

    c

    ba domeins orientation

    b decreasing fieldc hysteresis

    field intensity, H

    magneticind

    uction,

    B

  • 8/13/2019 minProc10

    14/23

    Paramagnetyk Podatno

    w(SI), cm3/g

    Paramagnetyk Podatno

    w(SI), cm3/g

    Getyt, FeOOH 250380106 malachit, Cu2(OH)2CO3 100200106

    Hausmanit, Mn3O4 500760106 monacyt, (Ce,La,Dy)PO4 12025010

    6

    Ilmenit, (Fe, Mn)TiO3 2001500106 syderyt, FeCO3 380150010

    6

    Limonit, Fe2O3.H2O 25076010

    6 wolframit, (MnFe)WO4 3801200106

  • 8/13/2019 minProc10

    15/23

    S

    S

    S

    N

    N

    N

    Ma netic

    Feed

    N

    S

    Nonmagnetic

    dry separation

    drum separator

  • 8/13/2019 minProc10

    16/23

    Feed

    Magnetic

    permanent magnets

    Nonmagnetic

    Wet separation

    (drum separator)

  • 8/13/2019 minProc10

    17/23

    Magnetic separation

    Magnetic

    N

    Nonmagnetic

    Feed

    S

    Semiproduct

    Drum with easy and

    difficult to magnetise

    discs (IIIIII)

    Induction type separator

  • 8/13/2019 minProc10

    18/23

    Magnetic Nonmagnetic

    Semiproduct

    Feed

    belt type separator

  • 8/13/2019 minProc10

    19/23

    Magnetic

    Feed

    Nonmagnetic

    cross-belt separator

  • 8/13/2019 minProc10

    20/23

    Kriostat

    Magnet

    Feed

    Magnet

    MagneticNonmagnetic

    Supercoducting

  • 8/13/2019 minProc10

    21/23

    Feed

    N S

    Cycle I

    Filling

    WaterCycle II

    Magnetic

    particles

    Magneticparticles

    Nonmagnetic

    particles

    HGMS, peridical

  • 8/13/2019 minProc10

    22/23

  • 8/13/2019 minProc10

    23/23

    Fw=

    Fgsin

    Coils

    Tray with particles

    Isodynamic filed

    H dH/dx = const.

    Fm

    Fg

    Fm= Fw

    mgsin = o wm H dH/dxV

    ertic

    al

    Horizontal

    Magnetic particle

    ISD