27
The Dilepton Probe in Heavy-Ion Collisions Hendrik van Hees Justus-Liebig Universit¨ at Gießen September 11, 2009 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik van Hees (JLU Gießen) Dileptons in HICs September 11, 2009 1 / 22

The Dilepton Probe in Heavy-Ion Collisionshees/publ/dubna09.pdfin-med r+w+f 4p mix QGP DY total total (no bar r) Pb(158 AGeV)+Au ´10-6 =335 p t >0.2GeV 2.1

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • The Dilepton Probein Heavy-Ion Collisions

    Hendrik van Hees

    Justus-Liebig Universität Gießen

    September 11, 2009

    Institut für

    Theoretische Physik

    JUSTUS-LIEBIG-

    UNIVERSITÄT

    GIESSEN

    Hendrik van Hees (JLU Gießen) Dileptons in HICs September 11, 2009 1 / 22

  • Outline

    1 Electromagnetic probes in heavy-ion collisionsElectromagnetic probes and vector mesonsChiral symmetry and dileptonsThermal sources of dileptonsNon-thermal sources of dileptons

    2 Comparison to Heavy-Ion dataInvariant-mass spectraSensitivity to Tc and hadro-chemistryIMR: Parton- or hadron-dominated source?

    3 Conclusions and Outlook

    Hendrik van Hees (JLU Gießen) Dileptons in HICs September 11, 2009 2 / 22

  • Electromagnetic probes in heavy-ion collisions

    γ, `±: no strong interactions

    reflect whole “history” of collision:

    from pre-equilibrium phasefrom thermalized mediumQGP and hot/dense hadron gasfrom VM decays after thermalfreeze-out

    ρ/ω γ∗ e−π, . . .

    e+

    γ

    0 1 2 3 4 5

    M [GeV/c]

    J/

    Drell−Yan

    DD

    Low− Intermediate− High−Mass Region> 10 fm > 1 fm < 0.1 fm

    ψ ’

    π0, η Dalitz decays

    dN

    /(d

    y d

    m)

    ρ/ω

    Φ

    Ψ

    Fig. by A. Drees

    Hendrik van Hees (JLU Gießen) Dileptons in HICs September 11, 2009 3 / 22

  • Electromagnetic probes and vector mesons

    photon and dilepton thermal emission rates given by sameelectromagnetic-current-correlation function (Jµ =

    ∑f Qf ψ̄fγµψf )

    [L. McLerran, T. Toimela 85, H. A. Weldon 90, C. Gale, J.I. Kapusta 91]

    Π

  • Chiral symmetry

    In vacuum: Spontaneous breaking of chiral symmetry

    ⇒ mass splitting of chiral partners

    qq-excitations of the QCD vacuum

    π

    ρ ω

    φ

    (140)

    (770) (782)

    (1260)

    (1020)

    (1285)

    (400-

    1200)

    a f

    f

    f

    1 1

    1

    0

    Energy (MeV)

    P-S, V-A splitting

    in the physical vacuum

    (1420)

    0 1 2 3

    s [GeV2]

    0

    0.02

    0.04

    0.06

    0.08

    −Im

    ΠV

    ,A/(

    πs)

    [d

    im.−

    less

    ]

    V [τ −> 2nπ ντ]

    A [τ −> (2n+1)π ντ]ρ(770) + cont. a

    1(1260) + cont.

    Hendrik van Hees (JLU Gießen) Dileptons in HICs September 11, 2009 5 / 22

  • Hadronic many-body theory

    HMBT for vector mesons [Ko et al, Chanfray et al, Herrmann et al, Rapp et al, . . .]

    ππ interactions and baryonic excitations

    ρ ρ

    π

    π B , a , K ,...*1 1

    π,...N, K,

    ρ ρ

    +corresponding vertex corrections ⇔ gauge invarianceBaryon (resonances) important, even at RHIC with low net baryondensity nB−nB̄reason: nB+nB̄ relevant (CP inv. of strong interactions)

    Hendrik van Hees (JLU Gießen) Dileptons in HICs September 11, 2009 6 / 22

  • In-medium spectral functions and baryon effects

    [R. Rapp, J. Wambach 99]

    baryon effects important

    large contribution to broadening of the peakresponsible for most of the strength at small M

    Hendrik van Hees (JLU Gießen) Dileptons in HICs September 11, 2009 7 / 22

  • Dilepton rates: Hadron gas ↔ QGP

    in-medium hadron gas matcheswith QGP

    similar results also for γ rates

    “quark-hadron duality”!?

    indirect evidence forchiral-symmetry restoration

    Hendrik van Hees (JLU Gießen) Dileptons in HICs September 11, 2009 8 / 22

  • Sources of dilepton emission in heavy-ion collisions

    1 initial hard processes: Drell Yan2 “core” ⇔ emission from thermal source [McLerran, Toimela 1985]

    1qT

    dN (thermal)

    dMdqT=∫

    d4x∫

    dy∫Mdϕ

    dN (thermal)

    d4xd4qAcc(M, qT , y)

    3 “corona” ⇔ emission from “primordial” mesons (jet-quenching)4 after thermal freeze-out ⇔ emission from “freeze-out” mesons

    [Cooper, Frye 1975]

    N (fo) =∫

    d3qq0

    ∫qµdσµfB(uµqµ/T )

    Γmeson→`+`−Γmeson

    Acc

    additional factor γ = q0/M compared to thermal emissionphysical reason

    thermal source rate ∝ τmedΓmeson→`+`−

    γ

    decay of mesons after fo: rate ∝ Γmeson→`+`−ΓmesonHendrik van Hees (JLU Gießen) Dileptons in HICs September 11, 2009 9 / 22

  • CERES/NA45 dielectron spectra

    good agreement also for dielectron spectra in 158 GeV Pb-Auallows further check of low-mass tail from baryon effects down toM → 2me

    0 0.2 0.4 0.6 0.8 1 1.2M

    ee [GeV]

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    (dN

    ee/d

    M)

    / <

    Nch>

    [100 M

    eV

    /c2]-

    1

    CERES ’00

    in-med ρ+ω+φ

    4π mixQGP

    DY

    total

    total (no bar ρ)

    Pb(158 AGeV)+Au

    ×10−6

    =335

    pt>0.2GeV

    2.10.2GeV

    2.1

  • NA60 acceptance-corrected mass spectra

    ZD: [K. Dusling, D. Teaney, I. Zahed 2007], RR: [J. Ruppert, T. Renk et al 2008], RH: [HvH, R. Rapp 2008]Hendrik van Hees (JLU Gießen) Dileptons in HICs September 11, 2009 11 / 22

  • Importance of baryon effects

    Baryonic interactions important!

    in-medium broadening

    low-mass tail!

    10-9

    10-8

    10-7

    10-6

    10-5

    0.2 0.4 0.6 0.8 1 1.2 1.4

    (1/N

    ch)

    d2N

    µµ/(

    dM

    ) (2

    0 M

    eV)-

    1

    M (GeV)

    all qT

    Tc=Tch=175 MeV, at=0.1 c2/fm

    +ω-t extotal

    ω-t exωφ

    DY4π mix

    FO ρprim ρ

    QGPin-med ρ

    NA60

    10-9

    10-8

    10-7

    10-6

    10-5

    0.2 0.4 0.6 0.8 1 1.2 1.4

    (1/N

    ch)

    d2N

    µµ/(

    dM

    ) (2

    0 M

    eV)-

    1

    M (GeV)

    all qT

    Tc=Tch=175 MeV, at=0.1 c2/fm

    +ω-t extotal

    ω-t exωφ

    DY4π mix

    FO ρprim ρ

    QGPin-med ρ

    NA60

    Hendrik van Hees (JLU Gießen) Dileptons in HICs September 11, 2009 12 / 22

  • Sensitivity to Tc and hadro-chemistry

    recent lattice QCD: Tc ' 190-200 MeV or Tc ' 150-160 MeV?thermal-model fits to hadron ratios: Tchem ' 150-160 MeV

    0.11

    0.12

    0.13

    0.14

    0.15

    0.16

    0.17

    0.18

    0.19

    0.2

    0 1 2 3 4 5 6 7

    T (

    GeV

    )

    t (fm/c)

    tfo=6.7 fm/c

    EoS-A

    EoS-B

    EoS-C

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0 1 2 3 4 5 6 7

    µπ (

    GeV

    )t (fm/c)

    tfo=6.7 fm/c

    EoS-A

    EoS-B

    EoS-C

    EoS-A: Tc = Tchem = 175 MeVEoS-B: Tc = Tchem = 160 MeVEoS-C: Tc = 190 MeV, Tchem = 160 MeV

    Tc ≥ T ≥ Tchem: hadron gas in chemical equilibriumkeep fireball parameters the same (including life time)

    Hendrik van Hees (JLU Gießen) Dileptons in HICs September 11, 2009 13 / 22

  • EoS-B

    0

    500

    1000

    1500

    2000

    0.2 0.4 0.6 0.8 1 1.2 1.4

    dN

    µµ/d

    M (

    counts

    )

    M (GeV)

    semicentral In-In

    all qTTc=Tch=160 MeV

    sum

    DY

    4π mix

    FO + prim ρ

    QGP+DD

    in-med ρ

    NA60

    0

    200

    400

    600

    800

    1000

    0.2 0.4 0.6 0.8 1 1.2 1.4

    dN

    µµ/d

    M (

    counts

    )

    M (GeV)

    semicentral In-In

    qT1.0 GeV

    Tc=Tch=160 MeV

    sum

    DY

    4π mix

    FO + prim ρ

    QGP+DD

    in-med ρ

    NA60

    103

    104

    105

    106

    107

    108

    0 0.5 1 1.5 2 2.5

    1/q

    T d

    µ/(

    dq

    T d

    y)

    (counts

    )

    mT-M (GeV)

    semicentral In-In

    0.4 GeV

  • EoS-C

    0

    500

    1000

    1500

    2000

    0.2 0.4 0.6 0.8 1 1.2 1.4

    dN

    µµ/d

    M (

    counts

    )

    M (GeV)

    semicentral In-In

    all qTTc=190 MeV

    Tch=160 MeV

    sum

    DY

    4π mix

    FO + prim ρ

    QGP+DD

    in-med ρ

    NA60

    0

    200

    400

    600

    800

    1000

    0.2 0.4 0.6 0.8 1 1.2 1.4

    dN

    µµ/d

    M (

    counts

    )

    M (GeV)

    semicentral In-In

    qT1.0 GeV

    Tc=190 MeV

    Tch=160 MeV

    sum

    DY

    4π mix

    FO + prim ρ

    QGP+DD

    in-med ρ

    NA60

    103

    104

    105

    106

    107

    108

    0 0.5 1 1.5 2 2.5

    1/q

    T d

    µ/(

    dq

    T d

    y)

    (counts

    )

    mT-M (GeV)

    semicentral In-In

    0.4 GeV

  • Inverse-slope analysis

    to extract Teff fit to1qT

    dNdqT

    =1mT

    dNdmT

    = C exp(−mTTeff

    )fit of theoretical qT spectra: 1 GeV < qT < 1.8 GeV

    100

    150

    200

    250

    300

    0.2 0.4 0.6 0.8 1 1.2 1.4

    Teff

    (M

    eV

    )

    M (GeV)

    EoS-A

    EoS-B

    NA 60

    NA 60 LMR

    NA 60 IMR no DY 100

    150

    200

    250

    300

    0.2 0.4 0.6 0.8 1 1.2 1.4

    Teff

    (M

    eV

    )

    M (GeV)

    EoS-A

    EoS-C

    NA 60

    NA 60 LMR

    NA 60 IMR no DY

    standard fireball acceleration: too soft qT spectralower Tc in EoS-B and EoS-C helps (higher hadronic temperatures)NB: here, Drell Yan contribution taken out

    Hendrik van Hees (JLU Gießen) Dileptons in HICs September 11, 2009 16 / 22

  • Inverse-slope analysis

    100

    150

    200

    250

    300

    0.2 0.4 0.6 0.8 1 1.2 1.4

    Teff

    (M

    eV

    )

    M (GeV)

    EoS-B

    EoS-B, a⊥

    =0.1c2/fm

    NA 60

    NA 60 LMR

    NA 60 IMR no DY 100

    150

    200

    250

    300

    0.2 0.4 0.6 0.8 1 1.2 1.4

    Teff

    (M

    eV

    )

    M (GeV)

    EoS-C

    EoS-C, a⊥

    =0.1c2/fm

    NA 60

    NA 60 LMR

    NA 60 IMR no DY

    enhance fireball acceleration to a⊥ = 0.1c2/fmeffective at all stages of fireball evolution

    agreement in IMR not spoiled ⇔ dominated from earlier stagesEoS-B harder ⇔ relative contribution of harder freeze-out ρ decaysvs. thermal ρ’s larger

    Hendrik van Hees (JLU Gießen) Dileptons in HICs September 11, 2009 17 / 22

  • IMR: QGP vs. multi-pion radiation

    0

    50

    100

    150

    200

    0.9 1 1.1 1.2 1.3 1.4

    dN

    µµ/d

    M (

    cou

    nts

    )

    M (GeV)

    semicentral In-In

    all pT

    QGP (EoS-A)QGP (EoS-B)QGP (EoS-C)

    4π (EoS-A)4π (EoS-B)4π (EoS-C)

    EoS-B: QGP dominates over multi-pion radiationopposite in EoS-A and EoS-Cmulti-pion radiation dominantly from high-density hadronic phase

    reason :dNll/dMdT ∝ Im Πem(M,T ) exp(−M/T ) T−5.5

    radiation maximal for T = Tmax = M/5.5hadronic and partonic radiation “dual” for T ∼ Tccompatible with chiral-symmetry restoration!inconclusive whether hadronic or partonic emission in IMR!Hendrik van Hees (JLU Gießen) Dileptons in HICs September 11, 2009 18 / 22

  • Hadron spectra

    analysis of “cocktail”: hadron-mT spectra

    comparison to fireball evolution

    “sequential freeze-out” due to different coupling strength

    103

    104

    105

    106

    107

    0 0.5 1 1.5 2 2.5

    (1/m

    T)

    dN

    /dm

    T (

    a.u.)

    mT-M (GeV)

    ω (semicentral)

    Tc=175 MeV, Tch=160 MeV

    aT=0.1 c2/fm, tfo=5 fm

    prim+fofo

    primNA60 ω

    103

    104

    105

    106

    107

    0 0.5 1 1.5 2 2.5

    (1/m

    T)

    dN

    /dm

    T (

    a.u.)

    mT-M (GeV)

    φ (semicentral)

    Tc=175 MeV, Tch=160 MeV

    aT=0.1 c2/fm, tfo=4 fm

    prim+fofo

    primNA60 φ

    Hendrik van Hees (JLU Gießen) Dileptons in HICs September 11, 2009 19 / 22

  • M spectra (in pT slices)

    EoS-A: Tc = Tch = 175 MeVtransverse acceleration: a⊥ = 0.1c2/fm

    10-9

    10-8

    10-7

    10-6

    10-5

    0.2 0.4 0.6 0.8 1 1.2 1.4

    (1/N

    ch)

    d2N

    µµ/(

    dM

    ) (2

    0 M

    eV)-

    1

    M (GeV)

    all qT

    Tc=Tch=175 MeV, at=0.1 c2/fm

    +ω-t extotal

    ω-t exωφ

    DY4π mix

    FO ρprim ρ

    QGPin-med ρ

    NA60

    10-9

    10-8

    10-7

    10-6

    10-5

    0.2 0.4 0.6 0.8 1 1.2 1.4(1

    /Nch

    ) d

    2N

    µµ/(

    dM

    ) (2

    0 M

    eV)-

    1

    M (GeV)

    0.2 GeV

  • M spectra (in pT slices)

    EoS-A: Tc = Tch = 175 MeVtransverse acceleration: a⊥ = 0.1c2/fm

    10-9

    10-8

    10-7

    10-6

    10-5

    0.2 0.4 0.6 0.8 1 1.2 1.4

    (1/N

    ch)

    d2N

    µµ/(

    dM

    ) (2

    0 M

    eV)-

    1

    M (GeV)

    0

  • M spectra (in pT slices)

    EoS-A: Tc = Tch = 175 MeVtransverse acceleration: a⊥ = 0.1c2/fm

    10-9

    10-8

    10-7

    10-6

    10-5

    0.2 0.4 0.6 0.8 1 1.2 1.4

    (1/N

    ch)

    d2N

    µµ/(

    dM

    ) (2

    0 M

    eV)-

    1

    M (GeV)

    0.4 GeV

  • M spectra (in pT slices)

    EoS-A: Tc = Tch = 175 MeVtransverse acceleration: a⊥ = 0.1c2/fm

    10-9

    10-8

    10-7

    10-6

    10-5

    0.2 0.4 0.6 0.8 1 1.2 1.4

    (1/N

    ch)

    d2N

    µµ/(

    dM

    ) (2

    0 M

    eV)-

    1

    M (GeV)

    0.8 GeV

  • M spectra (in pT slices)

    EoS-A: Tc = Tch = 175 MeVtransverse acceleration: a⊥ = 0.1c2/fm

    10-9

    10-8

    10-7

    10-6

    10-5

    0.2 0.4 0.6 0.8 1 1.2 1.4

    (1/N

    ch)

    d2N

    µµ/(

    dM

    ) (2

    0 M

    eV)-

    1

    M (GeV)

    1.2 GeV

  • M spectra (in pT slices)

    EoS-A: Tc = Tch = 175 MeVtransverse acceleration: a⊥ = 0.1c2/fm

    10-9

    10-8

    10-7

    10-6

    10-5

    0.2 0.4 0.6 0.8 1 1.2 1.4

    (1/N

    ch)

    d2N

    µµ/(

    dM

    ) (2

    0 M

    eV)-

    1

    M (GeV)

    1.8 GeV

  • Conclusions and Outlook

    dilepton spectra ⇔ in-medium em. current correlatormodel for dilepton sources

    radiation from thermal sources: QGP, ρ, ω, φρ-decay after thermal freeze-outdecays of non-thermalized primordial ρ’sDrell-Yan annihilation, correlated DD̄ decays

    invariant-mass spectra and medium effects

    excess yield dominated by radiation from thermal sourcesbaryons essential for in-medium properties of vector mesonsmelting ρ with little mass shift robust signal! (independent of Tc)IMR well described by scenarios with radiation dominatedeither by QGP or multi-pion processes (depending on EoS)

    Reason: mostly from thermal radiation around160 MeV ≤ T ≤ 190 MeV⇔ “parton-hadron” duality of rates⇔ compatible with chiral-symmetry restoration!

    dimuons in In-In (NA60), Pb-Au (CERES/NA45), γ in Pb-Pb (WA98)

    Hendrik van Hees (JLU Gießen) Dileptons in HICs September 11, 2009 21 / 22

  • Conclusions and Outlook

    fireball/freeze-out dynamics ⇔ mT spectra and effective slopes“non-thermal sources” important for qT & 1 GeVlower Tc ⇒ higher hadronic temperatures ⇒ harder qT spectrato describe measured effective slopes a⊥ = 0.085c2/fm→ 0.1c2/fmoff-equilibrium effects (viscous hydro)?

    Further developments

    understand recent PHENIX results (large dilepton excess in LMR)understand “DLS puzzle” (exp. confirmed by HADES)NN (np!) bremsstrahlung!vector- should be complemented with axial-vector-spectral functions(a1 as chiral partner of ρ)constrained with lQCD via in-medium Weinberg chiral sum rulesdirect connection to chiral phase transition!

    Hendrik van Hees (JLU Gießen) Dileptons in HICs September 11, 2009 22 / 22

    Electromagnetic probes in heavy-ion collisionsElectromagnetic probes and vector mesonsChiral symmetry and dileptonsThermal sources of dileptonsNon-thermal sources of dileptons

    Comparison to Heavy-Ion dataInvariant-mass spectraSensitivity to Tc and hadro-chemistryIMR: Parton- or hadron-dominated source?

    Conclusions and Outlook