23
Université de La Rochelle Paris, le 2 mai 2018

Université de La Rochelle...(Cattarin et al. 2016) I Contexte II Verrous scientifiques III Etat de l’art IV Conclusion Les installations 9 02/05/2018 Journée SFT I Contexte II

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Université de La Rochelle...(Cattarin et al. 2016) I Contexte II Verrous scientifiques III Etat de l’art IV Conclusion Les installations 9 02/05/2018 Journée SFT I Contexte II

Universiteacute de La Rochelle

Paris le 2 mai 2018

2

Sommaire

I ndash Contexte

II ndash Verrous scientifiques

gt Le triptyque de la meacutethode inverse

gt Lrsquoanalyse des donneacutees

III ndash Etat de lrsquoart sur les meacutethodes inverses appliqueacutees agrave la caracteacuterisation thermique des parois

gt Installations

gt Meacutethodes et modegraveles statiques

gt Meacutethodes et modegraveles dynamiques

gt Instrumentation

IV - Conclusion

Journeacutee SFT02052018

Pourquoi caracteacuteriser le comportement thermique des parois

3 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

gt Evaluer les performances eacutenergeacutetiques des bacirctiments qui deacutependent

fortement de lrsquoenveloppe des bacirctiments en hiver comme en eacuteteacute qualifieacutee de

laquo modeacuteratrice climatique raquo (John et al 2005)

gt Caracteacuteriser des composants drsquoenveloppes innovants

ndash geacuteomeacutetrie complexe

ndash pheacutenomegravenes physiques non lineacuteaires (convection dans des lames drsquoair)

ndash humiditeacute

ndash aspects dynamiques (solaires)hellip

Composants drsquoenveloppes innovants

4 Journeacutee SFT02052018

Stockage deacutestockage

Controcircle dynamique

actif ou passif

Geacuteneacuterateur drsquoeacutenergie

Mateacuteriaux nouveaux

Valorisation des ressources eacutenergeacutetiques

bull Murs stockeursbull MCP

bull MursToits veacutegeacutetaliseacutesbull Aeacuterogels PIVbull Biomateacuteriauxbull Paroi agrave isolation controcircleacuteebull Parois commutableshellip

bull PVbull Pieacutezoeacutelectriquebull Thermoeacutelectriciteacutebull Piles microbiennes agrave

plantesbull Verre photoeacutelectrique

photoluminescent eacutelectroluminescent

bull Murfenecirctre parieacutetodynamiquebull Alliages et polymegraveres agrave meacutemoire

de formebull Verre thermochromebull Verre photochromebull Verre eacutelectrochromebull Dispositif agrave particules en

suspension et agrave cristaux liquidesbull Verre gazochromebull Verre eacutelectromeacutecanique

bull Soleil (Mur Trombe Isolants transparents Solar Wallhellip)

bull Air exteacuterieur (double peau VNhellip)

bull Ciel (refroidissement)bull Sol habitat (air extrait

chaleur fatalehellip)

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

5 Journeacutee SFT02052018

A lrsquoeacutechelle des mateacuteriaux

gt Mesure des proprieacuteteacutes thermiques normaliseacutees

ndash Reacutesistance thermique (NF EN 12939 NF EN 12667 NF EN 12664)

ndash Conductiviteacute thermique et diffusiviteacute thermique (NF EN 22007-2)

gt Recherche sur des mateacuteriaux nouveaux les transferts coupleacutes (Berger et al 2018)hellip

Lrsquoeacutechelle drsquoeacutetude

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

A lrsquoeacutechelle des parois

Caracteacuteristiques = Performance globale

ne sum proprieacuteteacutes thermiques de chaque mateacuteriau

gt Des essais en conditions reacuteelles sont neacutecessaires pour identifier les caracteacuteristiques thermiques des composants de faccedilade de maniegravere dynamique

6 Journeacutee SFT02052018

Quelle installation

de test utiliser

Quelles meacutethodes

inverses utiliseacutees

Comment prendre

en compte lrsquoinertie

Les deacuteperditions de plus en plus

faibles comment les mesurer

Que doit-on mesurer

et comment

Quel niveau de deacutetail de modegravele

neacutecessaire agrave lrsquoeacutechelle de la paroi

Quels paramegravetres en

fonction du type de paroi

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Le triptyque de la meacutethode inverse

Mais pas seulementhellip

Expeacuterience

Modegravele Inversion

Quelles donneacutees sont

seacutelectionneacutees

7 Journeacutee SFT

HLCth = 408 WK

Roels et al 2017 dans le cadre du projet AIE EBC Annex 58 lsquoReliableBuilding Energy Performance Characterisation Based on Full Scale Dynamic Measurementsrsquo

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Le traitement des donneacutees

8 Journeacutee SFT02052018

Caracteacuteristiques Laboratoire controcircleacute Cellule test exteacuterieure Mesure in situ

Conditions aux limites Controcircleacutees Controcircleacutees Reacuteelles Reacuteelles

Instrumentation + + -

Preacutecision + = -

Influence occupant Possible

Essais reacuteplicables

Adapteacute agrave

Parois opaques

Parois vitreacutees asymp

Parois actives

Twin houses (Germany IBP)Facade test (La Rochelle TIPEE)

Climatic chamber (Norway

NTNU)

Ces trois installations sont compleacutementaires (Cattarin et al 2016)

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Les installations

9 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes statiques

Meacutethode simple deacutecoulant de la loi de Fourier

Naveros et al 2012 | Deconinck et Roels 2016 | Gori 2017 | Gaspar 2018

Deacutetermination la reacutesistance thermique mais pas la capaciteacute thermique

Hypothegraveses

gt CL constantes ou moyenneacutees

gt proprieacuteteacutes indeacutependantes du temps

gt stockage thermique neacutegligeacute

Contraintes

gt Neacutecessite une longue dureacutee drsquoessai

gt Geacuteneacuteralement un fort gradient de tempeacuterature entre intext (gt10K)

gt Difficulteacute agrave prendre en compte lrsquoensoleillement

10 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Meacutethode de la moyenne

gt Meacutethode tregraves utiliseacutee sur site

gt Deacutefinie dans ISO 9869-1

gt Neacutecessite la mesure de la tempeacuterature drsquoair inteacuterieur la tempeacuterature drsquoair exteacuterieur et le flux thermique

gt Incertitude devient grande pour des parois fortement isoleacutees

gt Pas adapteacute aux parois agrave forte inertie

Modegraveles et meacutethodes statiques

gt Exemples drsquoapplications

ndash Comparaison agrave drsquoautres meacutethodes (Nardi et al 2016 Biddulph 2014)

ndash Utilisation sur site (Baker 2008 Lucchi 2017)

ndash Ameacutelioration et eacutevaluation de la meacutethode (Naveros et al 2012 Ficco et al 2015 Gaspar et al 2018)

11 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Principe

gt Prend en compte le comportement dynamique de la paroi et les conditionsaux limites varieacutees (rayonnement solaire convection forceacutee due au venthellip)pour deacutefinir des caracteacuteristiques thermiques de la paroi

Naveros et al 2014 | Gori 2017

Contraintes

gt Neacutecessite de seacutelectionner convenablement les donneacutees agrave traiter

gt Modegraveles plus complexes

Grande varieacuteteacute

gt Modegraveles de connaissance (ex meacutethode des diffeacuterences finies)

gt Meacutethodes agrave partir de modegraveles laquo boicircte grise raquo (LORD CTSM)

gt Modegraveles de comportement (ex meacutethodes agrave facteurs de reacuteponse)

12 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

LORD | 1994

gt Modegraveles boicircte grise modegraveles RC

gt 2 types de minimisation

ndash OEM (Output Error Method) = somme des eacutecarts quadratiques entre la tempeacuteraturemesureacutee et la tempeacuterature calculeacutee

ndash PEM (Prediction Error Method) = incertitudes sur les mesures et les calculs

gt Estime le coefficient de transmission thermique et le facteur solaire

gt Algorithme de minimisation Meacutethode de Nelder-Mead + Monte Carlo

gt Disponible sur wwwdynasteeinfo

Manuel LORD 32 | Gutschker 2008 | Jimeacutenez et al 2008

gt Exemples drsquoapplications

ndash Diffeacuterents murs avec ou sans ouvrant (U et g) Androutsopoulos et al 2008

ndash Projet Paslink Baker et van Dijk 2008

ndash U et g en climat chaud Jimeacutenez et al 2008

H 3-4Tint

2 3H 2-3

C2 C3

TextH 1-2

1 4

Ex Mur homogegravene

13 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

CTSM = Continuous Time Stochastic Model

gt Deacuteveloppeacute sous R agrave DTU

gt Modegravele boicircte grise laquo continuous time state space models raquo avec prise encompte du bruit de mesure

gt Non lineacuteaire et instationnaire

gt Minimisation PEM (Prediction Error Method) = incertitudes sur les mesureset les calculs

gt Algorithme de minimisation Stochastique

CTSM ndash R Userrsquos Guide | Kristensen et al 2004

gt Exemples drsquoapplications

ndash PV Jimeacutenez et al 2008

ndash U facteur solaire et Ceff Naveros et al 2014

ndash R et C Deconinck et Roels 2017

14 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Modegraveles AR(MA)X

gt Modegraveles de comportement

gt Aucune information physique sauf lorsque le comportement du modegravele est stable = comparaison possible avec lrsquoeacutequation du transfert thermique statique

Naveros et al 2015 | Deconinck et Roels 2016 | Gori 2017

gt Exemples drsquoapplications

ndash U facteur solaire et Ceff Naveros et al 2015

ndash U et g (modegraveles agrave plusieurs sorties) Jimeacutenez et Heras 2005

15 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Autres modegraveles dynamiques

gt Facteur de reacuteponse

ndash Peng et Wu 2008 Rasooli et al 2016

gt Meacutethode des diffeacuterences finies et algorithme de LM

ndash Chaffar et al 2014 Mareacutechal 2014

gt Modegraveles RC

ndash Analyse bayeacutesienne Biddulph et al 2014

ndash Algorithme geacuteneacuterique Wang 2006

gt Meacutethode des quadripocircles et algorithme du gradient reacuteduit geacuteneacuteraliseacute

ndash Sassine 2016

Deux types de donneacutees

gt Les conditions aux limites (tempeacuterature humiditeacute fluxhellip)

gt Mesures pour lrsquoidentification (geacuteneacuteralement tempeacuterature etou flux voire deacutebit)

16 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Instrumentation

1oct 3oct 5oct 7oct 9oct 11oct 13oct 15oct0

1000

2000

3000

4000

5000

6000

7000MODE 1

Day

Ma

ss f

low

ra

te [

kgh

]

Tracer gas method

Velocity profile method

Rogez et Le Coze 2009 | Meng et al 2015 | Cucumo et al 2018

Vigilances

gt Sur les grandeurs

ndash Grande varieacuteteacute

ndash Diffeacuterents ordres de grandeur

gt Sur les capteurs

ndash Choix et preacutecision

ndash Positionnement

ndash Impact sur la mesure

gt Sur les donneacutees reacutecolteacutees

ndash Choix du pas de temps drsquoacquisition

ndash Seacutelection des donneacutees pertinentes et traitement efficace

Larsen et al 2007

Meacutethodes statiques simples mais limiteacutees

Large avantage des meacutethodes dynamiques pour notre probleacutematique

Grande diversiteacute de meacutethodes dynamiques et de meacutethodes inverses

Faccedilades actives Nombreux modegraveles laquo boicircte grise raquo mais aussi modegraveles de connaissance

17 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

18 Journeacutee SFT02052018

Avez-vous des questions

Contact Manon Rendu manonrenduuniv-lrfr

19 Journeacutee SFT02052018

Annexes

gt Androutsopoulos A JJ Bloem HAL van Dijk et PH Baker 2008 laquo Comparison of User Performance When ApplyingSystem Identification for Assessment of the Energy Performance of Building Components raquo Building and Environment43 (2) 189-96 httpsdoiorg101016jbuildenv200610017

gt Baker P H et H A L van Dijk 2008 laquo PASLINK and dynamic outdoor testing of building components raquo Building and Environment Outdoor Testing Analysis and Modelling of Building Components 43 (2) 143-51 httpsdoiorg101016jbuildenv200610009

gt Baker Paul 2008 laquo Technical Paper 2 - In Situ U-Value Measurements in Traditional Buildings - Preliminary Results raquo

gt Berger Julien Thomas Busser Denys Dutykh et Nathan Mendes 2018 laquo On the estimation of moisture permeabilityand advection coefficients of a wood fibre material using the optimal experiment design approach raquo ExperimentalThermal and Fluid Science 90 (janvier) 246-59 httpsdoiorg101016jexpthermflusci201707026

gt Biddulph Phillip Virginia Gori Clifford A Elwell Cameron Scott Caroline Rye Robert Lowe et Tadj Oreszczyn 2014 laquo Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements raquo Energy and Buildings 78 (aoucirct) 10-16 httpsdoiorg101016jenbuild201404004

gt Cattarin G F Causone A Kindinis et L Pagliano 2016 laquo Outdoor test cells for building envelope experimentalcharacterisation ndash A literature review raquo Renewable and Sustainable Energy Reviews 54 (feacutevrier) 606-25 httpsdoiorg101016jrser201510012

gt Chaffar Khaled Alexis Chauchois Didier Defer et Laurent Zalewski 2014 laquo Thermal characterization of homogeneouswalls using inverse method raquo Energy and Buildings 78 (aoucirct) 248-55 httpsdoiorg101016jenbuild201404038

gt laquo CTSM-R Version 100 raquo 2015 CTSM-R Development Team

gt Cucumo Mario Vittorio Ferraro Dimitrios Kaliakatsos et Marilena Mele 2018 laquo On the distortion of thermal flux and of surface temperature induced by heat flux sensors positioned on the inner surface of buildings raquo Energy and Buildings 158 (janvier) 677-83 httpsdoiorg101016jenbuild201710034

20 Journeacutee SFT02052018

Annexes

gt Deconinck An-Heleen et Staf Roels 2016 laquo Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements raquo Energy and Buildings 130 (octobre) 309-20 httpsdoiorg101016jenbuild201608061

gt mdashmdashmdash 2017 laquo The as-built thermal quality of building components characterising non-stationary phenomena throughinverse modelling raquo Energy Procedia 11th Nordic Symposium on Building Physics NSB2017 11-14 June 2017 Trondheim Norway 132 (octobre) 351-56 httpsdoiorg101016jegypro201709748

gt Ficco Giorgio Fabio Iannetta Elvira Ianniello Francesca Romana drsquoAmbrosio Alfano et Marco DellrsquoIsola 2015 laquo U-value in situ measurement for energy diagnosis of existing buildings raquo Energy and Buildings 104 (octobre) 108-21 httpsdoiorg101016jenbuild201506071

gt Gaspar Katia Miquel Casals et Marta Gangolells 2018 laquo In Situ Measurement of Faccedilades with a Low U-Value AvoidingDeviations raquo Energy and Buildings 170 (juillet) 61-73 httpsdoiorg101016jenbuild201804012

gt Gori Virginia University College London et The Barlett 2017 laquo A Novel Method for the Estimation of ThermophysicalProperties of Walls from Short and Seasonally Independent In-Situ Surveys raquo 272

gt Gutschker Olaf 2008 laquo Parameter identification with the software package LORD raquo Building and Environment OutdoorTesting Analysis and Modelling of Building Components 43 (2) 163-69 httpsdoiorg101016jbuildenv200610010

gt mdashmdashmdash s d laquo LORD 32 raquo httpdynasteeinfowp-contentuploads201212lordmanualpdf

gt laquo ISO 9869-12014 - Isolation thermique -- Eacuteleacutements de construction -- Mesurage in situ de la reacutesistance thermique et du coefficient de transmission thermique -- Partie 1 Meacutethode du fluxmegravetre raquo

gt Jensen Rasmus Lund Olena Kalyanova Ph D-student et Per Heiselberg 2008 laquo Modeling a Naturally Ventilated Double Skin Faccedilade with a Building Thermal Simulation Program raquo Building Physics 8

gt Jimeacutenez M J H Madsen J J Bloem et B Dammann 2008 laquo Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules raquo Energy and Buildings 40 (2) 157-67 httpsdoiorg101016jenbuild200702026

21 Journeacutee SFT02052018

Annexes

gt Jimeacutenez M J B Porcar et M R Heras 2008 laquo Estimation of building component UA and gA from outdoor tests in warm and moderate weather conditions raquo Solar Energy 82 (7) 573-87 httpsdoiorg101016jsolener200802013

gt Jimeacutenez Mariacutea Joseacute et Henrik Madsen 2008 laquo Models for describing the thermal characteristics of building components raquo Building and Environment 2008 httpsdoi101016jbuildenv200610030

gt John Godfaurd Derek Clements-Croome et George Jeronimidis 2005 laquo Sustainable Building Solutions A Review of Lessons from the Natural World raquo Building and Environment 40 (3) 319-28 httpsdoiorg101016jbuildenv200405011

gt Kristensen Niels Rode Henrik Madsen et Sten Bay Joslashrgensen 2004 laquo Parameter estimation in stochastic grey-box models raquo Automatica 40 (2) 225-37 httpsdoiorg101016jautomatica200310001

gt Lucchi Elena 2017 laquo Thermal transmittance of historical stone masonries A comparison among standard calculatedand measured data raquo Energy and Buildings 151 (septembre) 393-405 httpsdoiorg101016jenbuild201707002

gt Mareacutechal William 2014 Utilisation de meacutethodes inverses pour la caracteacuterisation de mateacuteriaux agrave changement de phase (MCP) Pau httpwwwthesesfr2014PAUU3014

gt Meng Xi Tao Luo Yanna Gao Lili Zhang Qiong Shen et Enshen Long 2017 laquo A new simple method to measure wallthermal transmittance in situ and its adaptability analysis raquo Applied Thermal Engineering 122 (juillet) 747-57 httpsdoiorg101016japplthermaleng201705074

gt Nardi Iole Domenica Paoletti Dario Ambrosini Tullio de Rubeis et Stefano Sfarra 2016 laquo U-value assessment by infrared thermography A comparison of different calculation methods in a Guarded Hot Box raquo Energy and Buildings 122 (juin) 211-21 httpsdoiorg101016jenbuild201604017

gt Naveros I P Bacher D P Ruiz M J Jimeacutenez et H Madsen 2014 laquo Setting up and validating a complex model for a simple homogeneous wall raquo Energy and Buildings 70 (feacutevrier) 303-17 httpsdoiorg101016jenbuild201311076

gt Naveros I Christian Ghiaus DP Ruiz S Castano et S Castantildeo 2015 laquo Physical parameters identification of walls usingARX models obtained by deduction raquo Energy and Buildings no 108 317-29 httpsdoiorg101016jenbuild201509021

22 Journeacutee SFT02052018

Annexes

gt NF EN 12664 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits secs et humides de moyenne et basse reacutesistance thermique 2001

gt NF EN 12667 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits de haute et moyenne reacutesistance thermique 2001

gt NF EN 12939 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits eacutepais de haute et moyenne reacutesistance thermique 2001

gt NF EN ISO 22007-2 - Plastiques - Deacutetermination de la conductiviteacute thermique et de la diffusiviteacute thermique - Partie 2 meacutethode de la source plane transitoire (disque chaud) 2015

gt Peng Changhai et Zhishen Wu 2008 laquo In situ measuring and evaluating the thermal resistance of building construction raquo Energy and Buildings 40 (11) 2076-82 httpsdoiorg101016jenbuild200805012

gt Rasooli Arash Laure Itard et Carlos Infante Ferreira 2016 laquo A response factor-based method for the rapid in-situ determination of wallrsquos thermal resistance in existing buildings raquo Energy and Buildings 119 (mai) 51-61 httpsdoiorg101016jenbuild201603009

gt Roels Staf Peder Bacher Geert Bauwens Sergio Castantildeo Maria Joseacute Jimeacutenez et Henrik Madsen 2017 laquo On Site Characterisation of the Overall Heat Loss Coefficient Comparison of Different Assessment Methods by a Blind Validation Exercise on a Round Robin Test Box raquo Energy and Buildings 153 (octobre) 179-89 httpsdoiorg101016jenbuild201708006

gt ROGEZ Jacques et Jean LE COZE 2009 laquo Mesure des tempeacuteratures - Questions agrave se poser avant la mesure raquo Text Ref TIP672WEB - laquo Mesures physiques raquo 10 mars 2009 httpswwwtechniques-ingenieurfrbase-documentairemesures-analyses-th1mesure-de-temperature-generalites-echelles-de-temperature-et-etalonnage-42542210mesure-des-temperatures-r2516

23 Journeacutee SFT02052018

Annexes

gt Sassine Emilio 2016 laquo A practical method for in-situ thermal characterization of walls raquo Case Studies in Thermal Engineering 8 (septembre) 84-93 httpsdoiorg101016jcsite201603006

gt Wang Shengwei et Xinhua Xu 2006 laquo Parameter estimation of internal thermal mass of building dynamic models usinggenetic algorithm raquo Energy Conversion and Management 47 (13) 1927-41 httpsdoiorg101016jenconman200509011

Page 2: Université de La Rochelle...(Cattarin et al. 2016) I Contexte II Verrous scientifiques III Etat de l’art IV Conclusion Les installations 9 02/05/2018 Journée SFT I Contexte II

2

Sommaire

I ndash Contexte

II ndash Verrous scientifiques

gt Le triptyque de la meacutethode inverse

gt Lrsquoanalyse des donneacutees

III ndash Etat de lrsquoart sur les meacutethodes inverses appliqueacutees agrave la caracteacuterisation thermique des parois

gt Installations

gt Meacutethodes et modegraveles statiques

gt Meacutethodes et modegraveles dynamiques

gt Instrumentation

IV - Conclusion

Journeacutee SFT02052018

Pourquoi caracteacuteriser le comportement thermique des parois

3 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

gt Evaluer les performances eacutenergeacutetiques des bacirctiments qui deacutependent

fortement de lrsquoenveloppe des bacirctiments en hiver comme en eacuteteacute qualifieacutee de

laquo modeacuteratrice climatique raquo (John et al 2005)

gt Caracteacuteriser des composants drsquoenveloppes innovants

ndash geacuteomeacutetrie complexe

ndash pheacutenomegravenes physiques non lineacuteaires (convection dans des lames drsquoair)

ndash humiditeacute

ndash aspects dynamiques (solaires)hellip

Composants drsquoenveloppes innovants

4 Journeacutee SFT02052018

Stockage deacutestockage

Controcircle dynamique

actif ou passif

Geacuteneacuterateur drsquoeacutenergie

Mateacuteriaux nouveaux

Valorisation des ressources eacutenergeacutetiques

bull Murs stockeursbull MCP

bull MursToits veacutegeacutetaliseacutesbull Aeacuterogels PIVbull Biomateacuteriauxbull Paroi agrave isolation controcircleacuteebull Parois commutableshellip

bull PVbull Pieacutezoeacutelectriquebull Thermoeacutelectriciteacutebull Piles microbiennes agrave

plantesbull Verre photoeacutelectrique

photoluminescent eacutelectroluminescent

bull Murfenecirctre parieacutetodynamiquebull Alliages et polymegraveres agrave meacutemoire

de formebull Verre thermochromebull Verre photochromebull Verre eacutelectrochromebull Dispositif agrave particules en

suspension et agrave cristaux liquidesbull Verre gazochromebull Verre eacutelectromeacutecanique

bull Soleil (Mur Trombe Isolants transparents Solar Wallhellip)

bull Air exteacuterieur (double peau VNhellip)

bull Ciel (refroidissement)bull Sol habitat (air extrait

chaleur fatalehellip)

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

5 Journeacutee SFT02052018

A lrsquoeacutechelle des mateacuteriaux

gt Mesure des proprieacuteteacutes thermiques normaliseacutees

ndash Reacutesistance thermique (NF EN 12939 NF EN 12667 NF EN 12664)

ndash Conductiviteacute thermique et diffusiviteacute thermique (NF EN 22007-2)

gt Recherche sur des mateacuteriaux nouveaux les transferts coupleacutes (Berger et al 2018)hellip

Lrsquoeacutechelle drsquoeacutetude

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

A lrsquoeacutechelle des parois

Caracteacuteristiques = Performance globale

ne sum proprieacuteteacutes thermiques de chaque mateacuteriau

gt Des essais en conditions reacuteelles sont neacutecessaires pour identifier les caracteacuteristiques thermiques des composants de faccedilade de maniegravere dynamique

6 Journeacutee SFT02052018

Quelle installation

de test utiliser

Quelles meacutethodes

inverses utiliseacutees

Comment prendre

en compte lrsquoinertie

Les deacuteperditions de plus en plus

faibles comment les mesurer

Que doit-on mesurer

et comment

Quel niveau de deacutetail de modegravele

neacutecessaire agrave lrsquoeacutechelle de la paroi

Quels paramegravetres en

fonction du type de paroi

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Le triptyque de la meacutethode inverse

Mais pas seulementhellip

Expeacuterience

Modegravele Inversion

Quelles donneacutees sont

seacutelectionneacutees

7 Journeacutee SFT

HLCth = 408 WK

Roels et al 2017 dans le cadre du projet AIE EBC Annex 58 lsquoReliableBuilding Energy Performance Characterisation Based on Full Scale Dynamic Measurementsrsquo

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Le traitement des donneacutees

8 Journeacutee SFT02052018

Caracteacuteristiques Laboratoire controcircleacute Cellule test exteacuterieure Mesure in situ

Conditions aux limites Controcircleacutees Controcircleacutees Reacuteelles Reacuteelles

Instrumentation + + -

Preacutecision + = -

Influence occupant Possible

Essais reacuteplicables

Adapteacute agrave

Parois opaques

Parois vitreacutees asymp

Parois actives

Twin houses (Germany IBP)Facade test (La Rochelle TIPEE)

Climatic chamber (Norway

NTNU)

Ces trois installations sont compleacutementaires (Cattarin et al 2016)

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Les installations

9 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes statiques

Meacutethode simple deacutecoulant de la loi de Fourier

Naveros et al 2012 | Deconinck et Roels 2016 | Gori 2017 | Gaspar 2018

Deacutetermination la reacutesistance thermique mais pas la capaciteacute thermique

Hypothegraveses

gt CL constantes ou moyenneacutees

gt proprieacuteteacutes indeacutependantes du temps

gt stockage thermique neacutegligeacute

Contraintes

gt Neacutecessite une longue dureacutee drsquoessai

gt Geacuteneacuteralement un fort gradient de tempeacuterature entre intext (gt10K)

gt Difficulteacute agrave prendre en compte lrsquoensoleillement

10 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Meacutethode de la moyenne

gt Meacutethode tregraves utiliseacutee sur site

gt Deacutefinie dans ISO 9869-1

gt Neacutecessite la mesure de la tempeacuterature drsquoair inteacuterieur la tempeacuterature drsquoair exteacuterieur et le flux thermique

gt Incertitude devient grande pour des parois fortement isoleacutees

gt Pas adapteacute aux parois agrave forte inertie

Modegraveles et meacutethodes statiques

gt Exemples drsquoapplications

ndash Comparaison agrave drsquoautres meacutethodes (Nardi et al 2016 Biddulph 2014)

ndash Utilisation sur site (Baker 2008 Lucchi 2017)

ndash Ameacutelioration et eacutevaluation de la meacutethode (Naveros et al 2012 Ficco et al 2015 Gaspar et al 2018)

11 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Principe

gt Prend en compte le comportement dynamique de la paroi et les conditionsaux limites varieacutees (rayonnement solaire convection forceacutee due au venthellip)pour deacutefinir des caracteacuteristiques thermiques de la paroi

Naveros et al 2014 | Gori 2017

Contraintes

gt Neacutecessite de seacutelectionner convenablement les donneacutees agrave traiter

gt Modegraveles plus complexes

Grande varieacuteteacute

gt Modegraveles de connaissance (ex meacutethode des diffeacuterences finies)

gt Meacutethodes agrave partir de modegraveles laquo boicircte grise raquo (LORD CTSM)

gt Modegraveles de comportement (ex meacutethodes agrave facteurs de reacuteponse)

12 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

LORD | 1994

gt Modegraveles boicircte grise modegraveles RC

gt 2 types de minimisation

ndash OEM (Output Error Method) = somme des eacutecarts quadratiques entre la tempeacuteraturemesureacutee et la tempeacuterature calculeacutee

ndash PEM (Prediction Error Method) = incertitudes sur les mesures et les calculs

gt Estime le coefficient de transmission thermique et le facteur solaire

gt Algorithme de minimisation Meacutethode de Nelder-Mead + Monte Carlo

gt Disponible sur wwwdynasteeinfo

Manuel LORD 32 | Gutschker 2008 | Jimeacutenez et al 2008

gt Exemples drsquoapplications

ndash Diffeacuterents murs avec ou sans ouvrant (U et g) Androutsopoulos et al 2008

ndash Projet Paslink Baker et van Dijk 2008

ndash U et g en climat chaud Jimeacutenez et al 2008

H 3-4Tint

2 3H 2-3

C2 C3

TextH 1-2

1 4

Ex Mur homogegravene

13 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

CTSM = Continuous Time Stochastic Model

gt Deacuteveloppeacute sous R agrave DTU

gt Modegravele boicircte grise laquo continuous time state space models raquo avec prise encompte du bruit de mesure

gt Non lineacuteaire et instationnaire

gt Minimisation PEM (Prediction Error Method) = incertitudes sur les mesureset les calculs

gt Algorithme de minimisation Stochastique

CTSM ndash R Userrsquos Guide | Kristensen et al 2004

gt Exemples drsquoapplications

ndash PV Jimeacutenez et al 2008

ndash U facteur solaire et Ceff Naveros et al 2014

ndash R et C Deconinck et Roels 2017

14 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Modegraveles AR(MA)X

gt Modegraveles de comportement

gt Aucune information physique sauf lorsque le comportement du modegravele est stable = comparaison possible avec lrsquoeacutequation du transfert thermique statique

Naveros et al 2015 | Deconinck et Roels 2016 | Gori 2017

gt Exemples drsquoapplications

ndash U facteur solaire et Ceff Naveros et al 2015

ndash U et g (modegraveles agrave plusieurs sorties) Jimeacutenez et Heras 2005

15 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Autres modegraveles dynamiques

gt Facteur de reacuteponse

ndash Peng et Wu 2008 Rasooli et al 2016

gt Meacutethode des diffeacuterences finies et algorithme de LM

ndash Chaffar et al 2014 Mareacutechal 2014

gt Modegraveles RC

ndash Analyse bayeacutesienne Biddulph et al 2014

ndash Algorithme geacuteneacuterique Wang 2006

gt Meacutethode des quadripocircles et algorithme du gradient reacuteduit geacuteneacuteraliseacute

ndash Sassine 2016

Deux types de donneacutees

gt Les conditions aux limites (tempeacuterature humiditeacute fluxhellip)

gt Mesures pour lrsquoidentification (geacuteneacuteralement tempeacuterature etou flux voire deacutebit)

16 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Instrumentation

1oct 3oct 5oct 7oct 9oct 11oct 13oct 15oct0

1000

2000

3000

4000

5000

6000

7000MODE 1

Day

Ma

ss f

low

ra

te [

kgh

]

Tracer gas method

Velocity profile method

Rogez et Le Coze 2009 | Meng et al 2015 | Cucumo et al 2018

Vigilances

gt Sur les grandeurs

ndash Grande varieacuteteacute

ndash Diffeacuterents ordres de grandeur

gt Sur les capteurs

ndash Choix et preacutecision

ndash Positionnement

ndash Impact sur la mesure

gt Sur les donneacutees reacutecolteacutees

ndash Choix du pas de temps drsquoacquisition

ndash Seacutelection des donneacutees pertinentes et traitement efficace

Larsen et al 2007

Meacutethodes statiques simples mais limiteacutees

Large avantage des meacutethodes dynamiques pour notre probleacutematique

Grande diversiteacute de meacutethodes dynamiques et de meacutethodes inverses

Faccedilades actives Nombreux modegraveles laquo boicircte grise raquo mais aussi modegraveles de connaissance

17 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

18 Journeacutee SFT02052018

Avez-vous des questions

Contact Manon Rendu manonrenduuniv-lrfr

19 Journeacutee SFT02052018

Annexes

gt Androutsopoulos A JJ Bloem HAL van Dijk et PH Baker 2008 laquo Comparison of User Performance When ApplyingSystem Identification for Assessment of the Energy Performance of Building Components raquo Building and Environment43 (2) 189-96 httpsdoiorg101016jbuildenv200610017

gt Baker P H et H A L van Dijk 2008 laquo PASLINK and dynamic outdoor testing of building components raquo Building and Environment Outdoor Testing Analysis and Modelling of Building Components 43 (2) 143-51 httpsdoiorg101016jbuildenv200610009

gt Baker Paul 2008 laquo Technical Paper 2 - In Situ U-Value Measurements in Traditional Buildings - Preliminary Results raquo

gt Berger Julien Thomas Busser Denys Dutykh et Nathan Mendes 2018 laquo On the estimation of moisture permeabilityand advection coefficients of a wood fibre material using the optimal experiment design approach raquo ExperimentalThermal and Fluid Science 90 (janvier) 246-59 httpsdoiorg101016jexpthermflusci201707026

gt Biddulph Phillip Virginia Gori Clifford A Elwell Cameron Scott Caroline Rye Robert Lowe et Tadj Oreszczyn 2014 laquo Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements raquo Energy and Buildings 78 (aoucirct) 10-16 httpsdoiorg101016jenbuild201404004

gt Cattarin G F Causone A Kindinis et L Pagliano 2016 laquo Outdoor test cells for building envelope experimentalcharacterisation ndash A literature review raquo Renewable and Sustainable Energy Reviews 54 (feacutevrier) 606-25 httpsdoiorg101016jrser201510012

gt Chaffar Khaled Alexis Chauchois Didier Defer et Laurent Zalewski 2014 laquo Thermal characterization of homogeneouswalls using inverse method raquo Energy and Buildings 78 (aoucirct) 248-55 httpsdoiorg101016jenbuild201404038

gt laquo CTSM-R Version 100 raquo 2015 CTSM-R Development Team

gt Cucumo Mario Vittorio Ferraro Dimitrios Kaliakatsos et Marilena Mele 2018 laquo On the distortion of thermal flux and of surface temperature induced by heat flux sensors positioned on the inner surface of buildings raquo Energy and Buildings 158 (janvier) 677-83 httpsdoiorg101016jenbuild201710034

20 Journeacutee SFT02052018

Annexes

gt Deconinck An-Heleen et Staf Roels 2016 laquo Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements raquo Energy and Buildings 130 (octobre) 309-20 httpsdoiorg101016jenbuild201608061

gt mdashmdashmdash 2017 laquo The as-built thermal quality of building components characterising non-stationary phenomena throughinverse modelling raquo Energy Procedia 11th Nordic Symposium on Building Physics NSB2017 11-14 June 2017 Trondheim Norway 132 (octobre) 351-56 httpsdoiorg101016jegypro201709748

gt Ficco Giorgio Fabio Iannetta Elvira Ianniello Francesca Romana drsquoAmbrosio Alfano et Marco DellrsquoIsola 2015 laquo U-value in situ measurement for energy diagnosis of existing buildings raquo Energy and Buildings 104 (octobre) 108-21 httpsdoiorg101016jenbuild201506071

gt Gaspar Katia Miquel Casals et Marta Gangolells 2018 laquo In Situ Measurement of Faccedilades with a Low U-Value AvoidingDeviations raquo Energy and Buildings 170 (juillet) 61-73 httpsdoiorg101016jenbuild201804012

gt Gori Virginia University College London et The Barlett 2017 laquo A Novel Method for the Estimation of ThermophysicalProperties of Walls from Short and Seasonally Independent In-Situ Surveys raquo 272

gt Gutschker Olaf 2008 laquo Parameter identification with the software package LORD raquo Building and Environment OutdoorTesting Analysis and Modelling of Building Components 43 (2) 163-69 httpsdoiorg101016jbuildenv200610010

gt mdashmdashmdash s d laquo LORD 32 raquo httpdynasteeinfowp-contentuploads201212lordmanualpdf

gt laquo ISO 9869-12014 - Isolation thermique -- Eacuteleacutements de construction -- Mesurage in situ de la reacutesistance thermique et du coefficient de transmission thermique -- Partie 1 Meacutethode du fluxmegravetre raquo

gt Jensen Rasmus Lund Olena Kalyanova Ph D-student et Per Heiselberg 2008 laquo Modeling a Naturally Ventilated Double Skin Faccedilade with a Building Thermal Simulation Program raquo Building Physics 8

gt Jimeacutenez M J H Madsen J J Bloem et B Dammann 2008 laquo Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules raquo Energy and Buildings 40 (2) 157-67 httpsdoiorg101016jenbuild200702026

21 Journeacutee SFT02052018

Annexes

gt Jimeacutenez M J B Porcar et M R Heras 2008 laquo Estimation of building component UA and gA from outdoor tests in warm and moderate weather conditions raquo Solar Energy 82 (7) 573-87 httpsdoiorg101016jsolener200802013

gt Jimeacutenez Mariacutea Joseacute et Henrik Madsen 2008 laquo Models for describing the thermal characteristics of building components raquo Building and Environment 2008 httpsdoi101016jbuildenv200610030

gt John Godfaurd Derek Clements-Croome et George Jeronimidis 2005 laquo Sustainable Building Solutions A Review of Lessons from the Natural World raquo Building and Environment 40 (3) 319-28 httpsdoiorg101016jbuildenv200405011

gt Kristensen Niels Rode Henrik Madsen et Sten Bay Joslashrgensen 2004 laquo Parameter estimation in stochastic grey-box models raquo Automatica 40 (2) 225-37 httpsdoiorg101016jautomatica200310001

gt Lucchi Elena 2017 laquo Thermal transmittance of historical stone masonries A comparison among standard calculatedand measured data raquo Energy and Buildings 151 (septembre) 393-405 httpsdoiorg101016jenbuild201707002

gt Mareacutechal William 2014 Utilisation de meacutethodes inverses pour la caracteacuterisation de mateacuteriaux agrave changement de phase (MCP) Pau httpwwwthesesfr2014PAUU3014

gt Meng Xi Tao Luo Yanna Gao Lili Zhang Qiong Shen et Enshen Long 2017 laquo A new simple method to measure wallthermal transmittance in situ and its adaptability analysis raquo Applied Thermal Engineering 122 (juillet) 747-57 httpsdoiorg101016japplthermaleng201705074

gt Nardi Iole Domenica Paoletti Dario Ambrosini Tullio de Rubeis et Stefano Sfarra 2016 laquo U-value assessment by infrared thermography A comparison of different calculation methods in a Guarded Hot Box raquo Energy and Buildings 122 (juin) 211-21 httpsdoiorg101016jenbuild201604017

gt Naveros I P Bacher D P Ruiz M J Jimeacutenez et H Madsen 2014 laquo Setting up and validating a complex model for a simple homogeneous wall raquo Energy and Buildings 70 (feacutevrier) 303-17 httpsdoiorg101016jenbuild201311076

gt Naveros I Christian Ghiaus DP Ruiz S Castano et S Castantildeo 2015 laquo Physical parameters identification of walls usingARX models obtained by deduction raquo Energy and Buildings no 108 317-29 httpsdoiorg101016jenbuild201509021

22 Journeacutee SFT02052018

Annexes

gt NF EN 12664 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits secs et humides de moyenne et basse reacutesistance thermique 2001

gt NF EN 12667 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits de haute et moyenne reacutesistance thermique 2001

gt NF EN 12939 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits eacutepais de haute et moyenne reacutesistance thermique 2001

gt NF EN ISO 22007-2 - Plastiques - Deacutetermination de la conductiviteacute thermique et de la diffusiviteacute thermique - Partie 2 meacutethode de la source plane transitoire (disque chaud) 2015

gt Peng Changhai et Zhishen Wu 2008 laquo In situ measuring and evaluating the thermal resistance of building construction raquo Energy and Buildings 40 (11) 2076-82 httpsdoiorg101016jenbuild200805012

gt Rasooli Arash Laure Itard et Carlos Infante Ferreira 2016 laquo A response factor-based method for the rapid in-situ determination of wallrsquos thermal resistance in existing buildings raquo Energy and Buildings 119 (mai) 51-61 httpsdoiorg101016jenbuild201603009

gt Roels Staf Peder Bacher Geert Bauwens Sergio Castantildeo Maria Joseacute Jimeacutenez et Henrik Madsen 2017 laquo On Site Characterisation of the Overall Heat Loss Coefficient Comparison of Different Assessment Methods by a Blind Validation Exercise on a Round Robin Test Box raquo Energy and Buildings 153 (octobre) 179-89 httpsdoiorg101016jenbuild201708006

gt ROGEZ Jacques et Jean LE COZE 2009 laquo Mesure des tempeacuteratures - Questions agrave se poser avant la mesure raquo Text Ref TIP672WEB - laquo Mesures physiques raquo 10 mars 2009 httpswwwtechniques-ingenieurfrbase-documentairemesures-analyses-th1mesure-de-temperature-generalites-echelles-de-temperature-et-etalonnage-42542210mesure-des-temperatures-r2516

23 Journeacutee SFT02052018

Annexes

gt Sassine Emilio 2016 laquo A practical method for in-situ thermal characterization of walls raquo Case Studies in Thermal Engineering 8 (septembre) 84-93 httpsdoiorg101016jcsite201603006

gt Wang Shengwei et Xinhua Xu 2006 laquo Parameter estimation of internal thermal mass of building dynamic models usinggenetic algorithm raquo Energy Conversion and Management 47 (13) 1927-41 httpsdoiorg101016jenconman200509011

Page 3: Université de La Rochelle...(Cattarin et al. 2016) I Contexte II Verrous scientifiques III Etat de l’art IV Conclusion Les installations 9 02/05/2018 Journée SFT I Contexte II

Pourquoi caracteacuteriser le comportement thermique des parois

3 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

gt Evaluer les performances eacutenergeacutetiques des bacirctiments qui deacutependent

fortement de lrsquoenveloppe des bacirctiments en hiver comme en eacuteteacute qualifieacutee de

laquo modeacuteratrice climatique raquo (John et al 2005)

gt Caracteacuteriser des composants drsquoenveloppes innovants

ndash geacuteomeacutetrie complexe

ndash pheacutenomegravenes physiques non lineacuteaires (convection dans des lames drsquoair)

ndash humiditeacute

ndash aspects dynamiques (solaires)hellip

Composants drsquoenveloppes innovants

4 Journeacutee SFT02052018

Stockage deacutestockage

Controcircle dynamique

actif ou passif

Geacuteneacuterateur drsquoeacutenergie

Mateacuteriaux nouveaux

Valorisation des ressources eacutenergeacutetiques

bull Murs stockeursbull MCP

bull MursToits veacutegeacutetaliseacutesbull Aeacuterogels PIVbull Biomateacuteriauxbull Paroi agrave isolation controcircleacuteebull Parois commutableshellip

bull PVbull Pieacutezoeacutelectriquebull Thermoeacutelectriciteacutebull Piles microbiennes agrave

plantesbull Verre photoeacutelectrique

photoluminescent eacutelectroluminescent

bull Murfenecirctre parieacutetodynamiquebull Alliages et polymegraveres agrave meacutemoire

de formebull Verre thermochromebull Verre photochromebull Verre eacutelectrochromebull Dispositif agrave particules en

suspension et agrave cristaux liquidesbull Verre gazochromebull Verre eacutelectromeacutecanique

bull Soleil (Mur Trombe Isolants transparents Solar Wallhellip)

bull Air exteacuterieur (double peau VNhellip)

bull Ciel (refroidissement)bull Sol habitat (air extrait

chaleur fatalehellip)

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

5 Journeacutee SFT02052018

A lrsquoeacutechelle des mateacuteriaux

gt Mesure des proprieacuteteacutes thermiques normaliseacutees

ndash Reacutesistance thermique (NF EN 12939 NF EN 12667 NF EN 12664)

ndash Conductiviteacute thermique et diffusiviteacute thermique (NF EN 22007-2)

gt Recherche sur des mateacuteriaux nouveaux les transferts coupleacutes (Berger et al 2018)hellip

Lrsquoeacutechelle drsquoeacutetude

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

A lrsquoeacutechelle des parois

Caracteacuteristiques = Performance globale

ne sum proprieacuteteacutes thermiques de chaque mateacuteriau

gt Des essais en conditions reacuteelles sont neacutecessaires pour identifier les caracteacuteristiques thermiques des composants de faccedilade de maniegravere dynamique

6 Journeacutee SFT02052018

Quelle installation

de test utiliser

Quelles meacutethodes

inverses utiliseacutees

Comment prendre

en compte lrsquoinertie

Les deacuteperditions de plus en plus

faibles comment les mesurer

Que doit-on mesurer

et comment

Quel niveau de deacutetail de modegravele

neacutecessaire agrave lrsquoeacutechelle de la paroi

Quels paramegravetres en

fonction du type de paroi

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Le triptyque de la meacutethode inverse

Mais pas seulementhellip

Expeacuterience

Modegravele Inversion

Quelles donneacutees sont

seacutelectionneacutees

7 Journeacutee SFT

HLCth = 408 WK

Roels et al 2017 dans le cadre du projet AIE EBC Annex 58 lsquoReliableBuilding Energy Performance Characterisation Based on Full Scale Dynamic Measurementsrsquo

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Le traitement des donneacutees

8 Journeacutee SFT02052018

Caracteacuteristiques Laboratoire controcircleacute Cellule test exteacuterieure Mesure in situ

Conditions aux limites Controcircleacutees Controcircleacutees Reacuteelles Reacuteelles

Instrumentation + + -

Preacutecision + = -

Influence occupant Possible

Essais reacuteplicables

Adapteacute agrave

Parois opaques

Parois vitreacutees asymp

Parois actives

Twin houses (Germany IBP)Facade test (La Rochelle TIPEE)

Climatic chamber (Norway

NTNU)

Ces trois installations sont compleacutementaires (Cattarin et al 2016)

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Les installations

9 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes statiques

Meacutethode simple deacutecoulant de la loi de Fourier

Naveros et al 2012 | Deconinck et Roels 2016 | Gori 2017 | Gaspar 2018

Deacutetermination la reacutesistance thermique mais pas la capaciteacute thermique

Hypothegraveses

gt CL constantes ou moyenneacutees

gt proprieacuteteacutes indeacutependantes du temps

gt stockage thermique neacutegligeacute

Contraintes

gt Neacutecessite une longue dureacutee drsquoessai

gt Geacuteneacuteralement un fort gradient de tempeacuterature entre intext (gt10K)

gt Difficulteacute agrave prendre en compte lrsquoensoleillement

10 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Meacutethode de la moyenne

gt Meacutethode tregraves utiliseacutee sur site

gt Deacutefinie dans ISO 9869-1

gt Neacutecessite la mesure de la tempeacuterature drsquoair inteacuterieur la tempeacuterature drsquoair exteacuterieur et le flux thermique

gt Incertitude devient grande pour des parois fortement isoleacutees

gt Pas adapteacute aux parois agrave forte inertie

Modegraveles et meacutethodes statiques

gt Exemples drsquoapplications

ndash Comparaison agrave drsquoautres meacutethodes (Nardi et al 2016 Biddulph 2014)

ndash Utilisation sur site (Baker 2008 Lucchi 2017)

ndash Ameacutelioration et eacutevaluation de la meacutethode (Naveros et al 2012 Ficco et al 2015 Gaspar et al 2018)

11 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Principe

gt Prend en compte le comportement dynamique de la paroi et les conditionsaux limites varieacutees (rayonnement solaire convection forceacutee due au venthellip)pour deacutefinir des caracteacuteristiques thermiques de la paroi

Naveros et al 2014 | Gori 2017

Contraintes

gt Neacutecessite de seacutelectionner convenablement les donneacutees agrave traiter

gt Modegraveles plus complexes

Grande varieacuteteacute

gt Modegraveles de connaissance (ex meacutethode des diffeacuterences finies)

gt Meacutethodes agrave partir de modegraveles laquo boicircte grise raquo (LORD CTSM)

gt Modegraveles de comportement (ex meacutethodes agrave facteurs de reacuteponse)

12 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

LORD | 1994

gt Modegraveles boicircte grise modegraveles RC

gt 2 types de minimisation

ndash OEM (Output Error Method) = somme des eacutecarts quadratiques entre la tempeacuteraturemesureacutee et la tempeacuterature calculeacutee

ndash PEM (Prediction Error Method) = incertitudes sur les mesures et les calculs

gt Estime le coefficient de transmission thermique et le facteur solaire

gt Algorithme de minimisation Meacutethode de Nelder-Mead + Monte Carlo

gt Disponible sur wwwdynasteeinfo

Manuel LORD 32 | Gutschker 2008 | Jimeacutenez et al 2008

gt Exemples drsquoapplications

ndash Diffeacuterents murs avec ou sans ouvrant (U et g) Androutsopoulos et al 2008

ndash Projet Paslink Baker et van Dijk 2008

ndash U et g en climat chaud Jimeacutenez et al 2008

H 3-4Tint

2 3H 2-3

C2 C3

TextH 1-2

1 4

Ex Mur homogegravene

13 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

CTSM = Continuous Time Stochastic Model

gt Deacuteveloppeacute sous R agrave DTU

gt Modegravele boicircte grise laquo continuous time state space models raquo avec prise encompte du bruit de mesure

gt Non lineacuteaire et instationnaire

gt Minimisation PEM (Prediction Error Method) = incertitudes sur les mesureset les calculs

gt Algorithme de minimisation Stochastique

CTSM ndash R Userrsquos Guide | Kristensen et al 2004

gt Exemples drsquoapplications

ndash PV Jimeacutenez et al 2008

ndash U facteur solaire et Ceff Naveros et al 2014

ndash R et C Deconinck et Roels 2017

14 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Modegraveles AR(MA)X

gt Modegraveles de comportement

gt Aucune information physique sauf lorsque le comportement du modegravele est stable = comparaison possible avec lrsquoeacutequation du transfert thermique statique

Naveros et al 2015 | Deconinck et Roels 2016 | Gori 2017

gt Exemples drsquoapplications

ndash U facteur solaire et Ceff Naveros et al 2015

ndash U et g (modegraveles agrave plusieurs sorties) Jimeacutenez et Heras 2005

15 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Autres modegraveles dynamiques

gt Facteur de reacuteponse

ndash Peng et Wu 2008 Rasooli et al 2016

gt Meacutethode des diffeacuterences finies et algorithme de LM

ndash Chaffar et al 2014 Mareacutechal 2014

gt Modegraveles RC

ndash Analyse bayeacutesienne Biddulph et al 2014

ndash Algorithme geacuteneacuterique Wang 2006

gt Meacutethode des quadripocircles et algorithme du gradient reacuteduit geacuteneacuteraliseacute

ndash Sassine 2016

Deux types de donneacutees

gt Les conditions aux limites (tempeacuterature humiditeacute fluxhellip)

gt Mesures pour lrsquoidentification (geacuteneacuteralement tempeacuterature etou flux voire deacutebit)

16 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Instrumentation

1oct 3oct 5oct 7oct 9oct 11oct 13oct 15oct0

1000

2000

3000

4000

5000

6000

7000MODE 1

Day

Ma

ss f

low

ra

te [

kgh

]

Tracer gas method

Velocity profile method

Rogez et Le Coze 2009 | Meng et al 2015 | Cucumo et al 2018

Vigilances

gt Sur les grandeurs

ndash Grande varieacuteteacute

ndash Diffeacuterents ordres de grandeur

gt Sur les capteurs

ndash Choix et preacutecision

ndash Positionnement

ndash Impact sur la mesure

gt Sur les donneacutees reacutecolteacutees

ndash Choix du pas de temps drsquoacquisition

ndash Seacutelection des donneacutees pertinentes et traitement efficace

Larsen et al 2007

Meacutethodes statiques simples mais limiteacutees

Large avantage des meacutethodes dynamiques pour notre probleacutematique

Grande diversiteacute de meacutethodes dynamiques et de meacutethodes inverses

Faccedilades actives Nombreux modegraveles laquo boicircte grise raquo mais aussi modegraveles de connaissance

17 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

18 Journeacutee SFT02052018

Avez-vous des questions

Contact Manon Rendu manonrenduuniv-lrfr

19 Journeacutee SFT02052018

Annexes

gt Androutsopoulos A JJ Bloem HAL van Dijk et PH Baker 2008 laquo Comparison of User Performance When ApplyingSystem Identification for Assessment of the Energy Performance of Building Components raquo Building and Environment43 (2) 189-96 httpsdoiorg101016jbuildenv200610017

gt Baker P H et H A L van Dijk 2008 laquo PASLINK and dynamic outdoor testing of building components raquo Building and Environment Outdoor Testing Analysis and Modelling of Building Components 43 (2) 143-51 httpsdoiorg101016jbuildenv200610009

gt Baker Paul 2008 laquo Technical Paper 2 - In Situ U-Value Measurements in Traditional Buildings - Preliminary Results raquo

gt Berger Julien Thomas Busser Denys Dutykh et Nathan Mendes 2018 laquo On the estimation of moisture permeabilityand advection coefficients of a wood fibre material using the optimal experiment design approach raquo ExperimentalThermal and Fluid Science 90 (janvier) 246-59 httpsdoiorg101016jexpthermflusci201707026

gt Biddulph Phillip Virginia Gori Clifford A Elwell Cameron Scott Caroline Rye Robert Lowe et Tadj Oreszczyn 2014 laquo Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements raquo Energy and Buildings 78 (aoucirct) 10-16 httpsdoiorg101016jenbuild201404004

gt Cattarin G F Causone A Kindinis et L Pagliano 2016 laquo Outdoor test cells for building envelope experimentalcharacterisation ndash A literature review raquo Renewable and Sustainable Energy Reviews 54 (feacutevrier) 606-25 httpsdoiorg101016jrser201510012

gt Chaffar Khaled Alexis Chauchois Didier Defer et Laurent Zalewski 2014 laquo Thermal characterization of homogeneouswalls using inverse method raquo Energy and Buildings 78 (aoucirct) 248-55 httpsdoiorg101016jenbuild201404038

gt laquo CTSM-R Version 100 raquo 2015 CTSM-R Development Team

gt Cucumo Mario Vittorio Ferraro Dimitrios Kaliakatsos et Marilena Mele 2018 laquo On the distortion of thermal flux and of surface temperature induced by heat flux sensors positioned on the inner surface of buildings raquo Energy and Buildings 158 (janvier) 677-83 httpsdoiorg101016jenbuild201710034

20 Journeacutee SFT02052018

Annexes

gt Deconinck An-Heleen et Staf Roels 2016 laquo Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements raquo Energy and Buildings 130 (octobre) 309-20 httpsdoiorg101016jenbuild201608061

gt mdashmdashmdash 2017 laquo The as-built thermal quality of building components characterising non-stationary phenomena throughinverse modelling raquo Energy Procedia 11th Nordic Symposium on Building Physics NSB2017 11-14 June 2017 Trondheim Norway 132 (octobre) 351-56 httpsdoiorg101016jegypro201709748

gt Ficco Giorgio Fabio Iannetta Elvira Ianniello Francesca Romana drsquoAmbrosio Alfano et Marco DellrsquoIsola 2015 laquo U-value in situ measurement for energy diagnosis of existing buildings raquo Energy and Buildings 104 (octobre) 108-21 httpsdoiorg101016jenbuild201506071

gt Gaspar Katia Miquel Casals et Marta Gangolells 2018 laquo In Situ Measurement of Faccedilades with a Low U-Value AvoidingDeviations raquo Energy and Buildings 170 (juillet) 61-73 httpsdoiorg101016jenbuild201804012

gt Gori Virginia University College London et The Barlett 2017 laquo A Novel Method for the Estimation of ThermophysicalProperties of Walls from Short and Seasonally Independent In-Situ Surveys raquo 272

gt Gutschker Olaf 2008 laquo Parameter identification with the software package LORD raquo Building and Environment OutdoorTesting Analysis and Modelling of Building Components 43 (2) 163-69 httpsdoiorg101016jbuildenv200610010

gt mdashmdashmdash s d laquo LORD 32 raquo httpdynasteeinfowp-contentuploads201212lordmanualpdf

gt laquo ISO 9869-12014 - Isolation thermique -- Eacuteleacutements de construction -- Mesurage in situ de la reacutesistance thermique et du coefficient de transmission thermique -- Partie 1 Meacutethode du fluxmegravetre raquo

gt Jensen Rasmus Lund Olena Kalyanova Ph D-student et Per Heiselberg 2008 laquo Modeling a Naturally Ventilated Double Skin Faccedilade with a Building Thermal Simulation Program raquo Building Physics 8

gt Jimeacutenez M J H Madsen J J Bloem et B Dammann 2008 laquo Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules raquo Energy and Buildings 40 (2) 157-67 httpsdoiorg101016jenbuild200702026

21 Journeacutee SFT02052018

Annexes

gt Jimeacutenez M J B Porcar et M R Heras 2008 laquo Estimation of building component UA and gA from outdoor tests in warm and moderate weather conditions raquo Solar Energy 82 (7) 573-87 httpsdoiorg101016jsolener200802013

gt Jimeacutenez Mariacutea Joseacute et Henrik Madsen 2008 laquo Models for describing the thermal characteristics of building components raquo Building and Environment 2008 httpsdoi101016jbuildenv200610030

gt John Godfaurd Derek Clements-Croome et George Jeronimidis 2005 laquo Sustainable Building Solutions A Review of Lessons from the Natural World raquo Building and Environment 40 (3) 319-28 httpsdoiorg101016jbuildenv200405011

gt Kristensen Niels Rode Henrik Madsen et Sten Bay Joslashrgensen 2004 laquo Parameter estimation in stochastic grey-box models raquo Automatica 40 (2) 225-37 httpsdoiorg101016jautomatica200310001

gt Lucchi Elena 2017 laquo Thermal transmittance of historical stone masonries A comparison among standard calculatedand measured data raquo Energy and Buildings 151 (septembre) 393-405 httpsdoiorg101016jenbuild201707002

gt Mareacutechal William 2014 Utilisation de meacutethodes inverses pour la caracteacuterisation de mateacuteriaux agrave changement de phase (MCP) Pau httpwwwthesesfr2014PAUU3014

gt Meng Xi Tao Luo Yanna Gao Lili Zhang Qiong Shen et Enshen Long 2017 laquo A new simple method to measure wallthermal transmittance in situ and its adaptability analysis raquo Applied Thermal Engineering 122 (juillet) 747-57 httpsdoiorg101016japplthermaleng201705074

gt Nardi Iole Domenica Paoletti Dario Ambrosini Tullio de Rubeis et Stefano Sfarra 2016 laquo U-value assessment by infrared thermography A comparison of different calculation methods in a Guarded Hot Box raquo Energy and Buildings 122 (juin) 211-21 httpsdoiorg101016jenbuild201604017

gt Naveros I P Bacher D P Ruiz M J Jimeacutenez et H Madsen 2014 laquo Setting up and validating a complex model for a simple homogeneous wall raquo Energy and Buildings 70 (feacutevrier) 303-17 httpsdoiorg101016jenbuild201311076

gt Naveros I Christian Ghiaus DP Ruiz S Castano et S Castantildeo 2015 laquo Physical parameters identification of walls usingARX models obtained by deduction raquo Energy and Buildings no 108 317-29 httpsdoiorg101016jenbuild201509021

22 Journeacutee SFT02052018

Annexes

gt NF EN 12664 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits secs et humides de moyenne et basse reacutesistance thermique 2001

gt NF EN 12667 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits de haute et moyenne reacutesistance thermique 2001

gt NF EN 12939 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits eacutepais de haute et moyenne reacutesistance thermique 2001

gt NF EN ISO 22007-2 - Plastiques - Deacutetermination de la conductiviteacute thermique et de la diffusiviteacute thermique - Partie 2 meacutethode de la source plane transitoire (disque chaud) 2015

gt Peng Changhai et Zhishen Wu 2008 laquo In situ measuring and evaluating the thermal resistance of building construction raquo Energy and Buildings 40 (11) 2076-82 httpsdoiorg101016jenbuild200805012

gt Rasooli Arash Laure Itard et Carlos Infante Ferreira 2016 laquo A response factor-based method for the rapid in-situ determination of wallrsquos thermal resistance in existing buildings raquo Energy and Buildings 119 (mai) 51-61 httpsdoiorg101016jenbuild201603009

gt Roels Staf Peder Bacher Geert Bauwens Sergio Castantildeo Maria Joseacute Jimeacutenez et Henrik Madsen 2017 laquo On Site Characterisation of the Overall Heat Loss Coefficient Comparison of Different Assessment Methods by a Blind Validation Exercise on a Round Robin Test Box raquo Energy and Buildings 153 (octobre) 179-89 httpsdoiorg101016jenbuild201708006

gt ROGEZ Jacques et Jean LE COZE 2009 laquo Mesure des tempeacuteratures - Questions agrave se poser avant la mesure raquo Text Ref TIP672WEB - laquo Mesures physiques raquo 10 mars 2009 httpswwwtechniques-ingenieurfrbase-documentairemesures-analyses-th1mesure-de-temperature-generalites-echelles-de-temperature-et-etalonnage-42542210mesure-des-temperatures-r2516

23 Journeacutee SFT02052018

Annexes

gt Sassine Emilio 2016 laquo A practical method for in-situ thermal characterization of walls raquo Case Studies in Thermal Engineering 8 (septembre) 84-93 httpsdoiorg101016jcsite201603006

gt Wang Shengwei et Xinhua Xu 2006 laquo Parameter estimation of internal thermal mass of building dynamic models usinggenetic algorithm raquo Energy Conversion and Management 47 (13) 1927-41 httpsdoiorg101016jenconman200509011

Page 4: Université de La Rochelle...(Cattarin et al. 2016) I Contexte II Verrous scientifiques III Etat de l’art IV Conclusion Les installations 9 02/05/2018 Journée SFT I Contexte II

Composants drsquoenveloppes innovants

4 Journeacutee SFT02052018

Stockage deacutestockage

Controcircle dynamique

actif ou passif

Geacuteneacuterateur drsquoeacutenergie

Mateacuteriaux nouveaux

Valorisation des ressources eacutenergeacutetiques

bull Murs stockeursbull MCP

bull MursToits veacutegeacutetaliseacutesbull Aeacuterogels PIVbull Biomateacuteriauxbull Paroi agrave isolation controcircleacuteebull Parois commutableshellip

bull PVbull Pieacutezoeacutelectriquebull Thermoeacutelectriciteacutebull Piles microbiennes agrave

plantesbull Verre photoeacutelectrique

photoluminescent eacutelectroluminescent

bull Murfenecirctre parieacutetodynamiquebull Alliages et polymegraveres agrave meacutemoire

de formebull Verre thermochromebull Verre photochromebull Verre eacutelectrochromebull Dispositif agrave particules en

suspension et agrave cristaux liquidesbull Verre gazochromebull Verre eacutelectromeacutecanique

bull Soleil (Mur Trombe Isolants transparents Solar Wallhellip)

bull Air exteacuterieur (double peau VNhellip)

bull Ciel (refroidissement)bull Sol habitat (air extrait

chaleur fatalehellip)

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

5 Journeacutee SFT02052018

A lrsquoeacutechelle des mateacuteriaux

gt Mesure des proprieacuteteacutes thermiques normaliseacutees

ndash Reacutesistance thermique (NF EN 12939 NF EN 12667 NF EN 12664)

ndash Conductiviteacute thermique et diffusiviteacute thermique (NF EN 22007-2)

gt Recherche sur des mateacuteriaux nouveaux les transferts coupleacutes (Berger et al 2018)hellip

Lrsquoeacutechelle drsquoeacutetude

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

A lrsquoeacutechelle des parois

Caracteacuteristiques = Performance globale

ne sum proprieacuteteacutes thermiques de chaque mateacuteriau

gt Des essais en conditions reacuteelles sont neacutecessaires pour identifier les caracteacuteristiques thermiques des composants de faccedilade de maniegravere dynamique

6 Journeacutee SFT02052018

Quelle installation

de test utiliser

Quelles meacutethodes

inverses utiliseacutees

Comment prendre

en compte lrsquoinertie

Les deacuteperditions de plus en plus

faibles comment les mesurer

Que doit-on mesurer

et comment

Quel niveau de deacutetail de modegravele

neacutecessaire agrave lrsquoeacutechelle de la paroi

Quels paramegravetres en

fonction du type de paroi

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Le triptyque de la meacutethode inverse

Mais pas seulementhellip

Expeacuterience

Modegravele Inversion

Quelles donneacutees sont

seacutelectionneacutees

7 Journeacutee SFT

HLCth = 408 WK

Roels et al 2017 dans le cadre du projet AIE EBC Annex 58 lsquoReliableBuilding Energy Performance Characterisation Based on Full Scale Dynamic Measurementsrsquo

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Le traitement des donneacutees

8 Journeacutee SFT02052018

Caracteacuteristiques Laboratoire controcircleacute Cellule test exteacuterieure Mesure in situ

Conditions aux limites Controcircleacutees Controcircleacutees Reacuteelles Reacuteelles

Instrumentation + + -

Preacutecision + = -

Influence occupant Possible

Essais reacuteplicables

Adapteacute agrave

Parois opaques

Parois vitreacutees asymp

Parois actives

Twin houses (Germany IBP)Facade test (La Rochelle TIPEE)

Climatic chamber (Norway

NTNU)

Ces trois installations sont compleacutementaires (Cattarin et al 2016)

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Les installations

9 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes statiques

Meacutethode simple deacutecoulant de la loi de Fourier

Naveros et al 2012 | Deconinck et Roels 2016 | Gori 2017 | Gaspar 2018

Deacutetermination la reacutesistance thermique mais pas la capaciteacute thermique

Hypothegraveses

gt CL constantes ou moyenneacutees

gt proprieacuteteacutes indeacutependantes du temps

gt stockage thermique neacutegligeacute

Contraintes

gt Neacutecessite une longue dureacutee drsquoessai

gt Geacuteneacuteralement un fort gradient de tempeacuterature entre intext (gt10K)

gt Difficulteacute agrave prendre en compte lrsquoensoleillement

10 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Meacutethode de la moyenne

gt Meacutethode tregraves utiliseacutee sur site

gt Deacutefinie dans ISO 9869-1

gt Neacutecessite la mesure de la tempeacuterature drsquoair inteacuterieur la tempeacuterature drsquoair exteacuterieur et le flux thermique

gt Incertitude devient grande pour des parois fortement isoleacutees

gt Pas adapteacute aux parois agrave forte inertie

Modegraveles et meacutethodes statiques

gt Exemples drsquoapplications

ndash Comparaison agrave drsquoautres meacutethodes (Nardi et al 2016 Biddulph 2014)

ndash Utilisation sur site (Baker 2008 Lucchi 2017)

ndash Ameacutelioration et eacutevaluation de la meacutethode (Naveros et al 2012 Ficco et al 2015 Gaspar et al 2018)

11 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Principe

gt Prend en compte le comportement dynamique de la paroi et les conditionsaux limites varieacutees (rayonnement solaire convection forceacutee due au venthellip)pour deacutefinir des caracteacuteristiques thermiques de la paroi

Naveros et al 2014 | Gori 2017

Contraintes

gt Neacutecessite de seacutelectionner convenablement les donneacutees agrave traiter

gt Modegraveles plus complexes

Grande varieacuteteacute

gt Modegraveles de connaissance (ex meacutethode des diffeacuterences finies)

gt Meacutethodes agrave partir de modegraveles laquo boicircte grise raquo (LORD CTSM)

gt Modegraveles de comportement (ex meacutethodes agrave facteurs de reacuteponse)

12 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

LORD | 1994

gt Modegraveles boicircte grise modegraveles RC

gt 2 types de minimisation

ndash OEM (Output Error Method) = somme des eacutecarts quadratiques entre la tempeacuteraturemesureacutee et la tempeacuterature calculeacutee

ndash PEM (Prediction Error Method) = incertitudes sur les mesures et les calculs

gt Estime le coefficient de transmission thermique et le facteur solaire

gt Algorithme de minimisation Meacutethode de Nelder-Mead + Monte Carlo

gt Disponible sur wwwdynasteeinfo

Manuel LORD 32 | Gutschker 2008 | Jimeacutenez et al 2008

gt Exemples drsquoapplications

ndash Diffeacuterents murs avec ou sans ouvrant (U et g) Androutsopoulos et al 2008

ndash Projet Paslink Baker et van Dijk 2008

ndash U et g en climat chaud Jimeacutenez et al 2008

H 3-4Tint

2 3H 2-3

C2 C3

TextH 1-2

1 4

Ex Mur homogegravene

13 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

CTSM = Continuous Time Stochastic Model

gt Deacuteveloppeacute sous R agrave DTU

gt Modegravele boicircte grise laquo continuous time state space models raquo avec prise encompte du bruit de mesure

gt Non lineacuteaire et instationnaire

gt Minimisation PEM (Prediction Error Method) = incertitudes sur les mesureset les calculs

gt Algorithme de minimisation Stochastique

CTSM ndash R Userrsquos Guide | Kristensen et al 2004

gt Exemples drsquoapplications

ndash PV Jimeacutenez et al 2008

ndash U facteur solaire et Ceff Naveros et al 2014

ndash R et C Deconinck et Roels 2017

14 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Modegraveles AR(MA)X

gt Modegraveles de comportement

gt Aucune information physique sauf lorsque le comportement du modegravele est stable = comparaison possible avec lrsquoeacutequation du transfert thermique statique

Naveros et al 2015 | Deconinck et Roels 2016 | Gori 2017

gt Exemples drsquoapplications

ndash U facteur solaire et Ceff Naveros et al 2015

ndash U et g (modegraveles agrave plusieurs sorties) Jimeacutenez et Heras 2005

15 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Autres modegraveles dynamiques

gt Facteur de reacuteponse

ndash Peng et Wu 2008 Rasooli et al 2016

gt Meacutethode des diffeacuterences finies et algorithme de LM

ndash Chaffar et al 2014 Mareacutechal 2014

gt Modegraveles RC

ndash Analyse bayeacutesienne Biddulph et al 2014

ndash Algorithme geacuteneacuterique Wang 2006

gt Meacutethode des quadripocircles et algorithme du gradient reacuteduit geacuteneacuteraliseacute

ndash Sassine 2016

Deux types de donneacutees

gt Les conditions aux limites (tempeacuterature humiditeacute fluxhellip)

gt Mesures pour lrsquoidentification (geacuteneacuteralement tempeacuterature etou flux voire deacutebit)

16 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Instrumentation

1oct 3oct 5oct 7oct 9oct 11oct 13oct 15oct0

1000

2000

3000

4000

5000

6000

7000MODE 1

Day

Ma

ss f

low

ra

te [

kgh

]

Tracer gas method

Velocity profile method

Rogez et Le Coze 2009 | Meng et al 2015 | Cucumo et al 2018

Vigilances

gt Sur les grandeurs

ndash Grande varieacuteteacute

ndash Diffeacuterents ordres de grandeur

gt Sur les capteurs

ndash Choix et preacutecision

ndash Positionnement

ndash Impact sur la mesure

gt Sur les donneacutees reacutecolteacutees

ndash Choix du pas de temps drsquoacquisition

ndash Seacutelection des donneacutees pertinentes et traitement efficace

Larsen et al 2007

Meacutethodes statiques simples mais limiteacutees

Large avantage des meacutethodes dynamiques pour notre probleacutematique

Grande diversiteacute de meacutethodes dynamiques et de meacutethodes inverses

Faccedilades actives Nombreux modegraveles laquo boicircte grise raquo mais aussi modegraveles de connaissance

17 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

18 Journeacutee SFT02052018

Avez-vous des questions

Contact Manon Rendu manonrenduuniv-lrfr

19 Journeacutee SFT02052018

Annexes

gt Androutsopoulos A JJ Bloem HAL van Dijk et PH Baker 2008 laquo Comparison of User Performance When ApplyingSystem Identification for Assessment of the Energy Performance of Building Components raquo Building and Environment43 (2) 189-96 httpsdoiorg101016jbuildenv200610017

gt Baker P H et H A L van Dijk 2008 laquo PASLINK and dynamic outdoor testing of building components raquo Building and Environment Outdoor Testing Analysis and Modelling of Building Components 43 (2) 143-51 httpsdoiorg101016jbuildenv200610009

gt Baker Paul 2008 laquo Technical Paper 2 - In Situ U-Value Measurements in Traditional Buildings - Preliminary Results raquo

gt Berger Julien Thomas Busser Denys Dutykh et Nathan Mendes 2018 laquo On the estimation of moisture permeabilityand advection coefficients of a wood fibre material using the optimal experiment design approach raquo ExperimentalThermal and Fluid Science 90 (janvier) 246-59 httpsdoiorg101016jexpthermflusci201707026

gt Biddulph Phillip Virginia Gori Clifford A Elwell Cameron Scott Caroline Rye Robert Lowe et Tadj Oreszczyn 2014 laquo Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements raquo Energy and Buildings 78 (aoucirct) 10-16 httpsdoiorg101016jenbuild201404004

gt Cattarin G F Causone A Kindinis et L Pagliano 2016 laquo Outdoor test cells for building envelope experimentalcharacterisation ndash A literature review raquo Renewable and Sustainable Energy Reviews 54 (feacutevrier) 606-25 httpsdoiorg101016jrser201510012

gt Chaffar Khaled Alexis Chauchois Didier Defer et Laurent Zalewski 2014 laquo Thermal characterization of homogeneouswalls using inverse method raquo Energy and Buildings 78 (aoucirct) 248-55 httpsdoiorg101016jenbuild201404038

gt laquo CTSM-R Version 100 raquo 2015 CTSM-R Development Team

gt Cucumo Mario Vittorio Ferraro Dimitrios Kaliakatsos et Marilena Mele 2018 laquo On the distortion of thermal flux and of surface temperature induced by heat flux sensors positioned on the inner surface of buildings raquo Energy and Buildings 158 (janvier) 677-83 httpsdoiorg101016jenbuild201710034

20 Journeacutee SFT02052018

Annexes

gt Deconinck An-Heleen et Staf Roels 2016 laquo Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements raquo Energy and Buildings 130 (octobre) 309-20 httpsdoiorg101016jenbuild201608061

gt mdashmdashmdash 2017 laquo The as-built thermal quality of building components characterising non-stationary phenomena throughinverse modelling raquo Energy Procedia 11th Nordic Symposium on Building Physics NSB2017 11-14 June 2017 Trondheim Norway 132 (octobre) 351-56 httpsdoiorg101016jegypro201709748

gt Ficco Giorgio Fabio Iannetta Elvira Ianniello Francesca Romana drsquoAmbrosio Alfano et Marco DellrsquoIsola 2015 laquo U-value in situ measurement for energy diagnosis of existing buildings raquo Energy and Buildings 104 (octobre) 108-21 httpsdoiorg101016jenbuild201506071

gt Gaspar Katia Miquel Casals et Marta Gangolells 2018 laquo In Situ Measurement of Faccedilades with a Low U-Value AvoidingDeviations raquo Energy and Buildings 170 (juillet) 61-73 httpsdoiorg101016jenbuild201804012

gt Gori Virginia University College London et The Barlett 2017 laquo A Novel Method for the Estimation of ThermophysicalProperties of Walls from Short and Seasonally Independent In-Situ Surveys raquo 272

gt Gutschker Olaf 2008 laquo Parameter identification with the software package LORD raquo Building and Environment OutdoorTesting Analysis and Modelling of Building Components 43 (2) 163-69 httpsdoiorg101016jbuildenv200610010

gt mdashmdashmdash s d laquo LORD 32 raquo httpdynasteeinfowp-contentuploads201212lordmanualpdf

gt laquo ISO 9869-12014 - Isolation thermique -- Eacuteleacutements de construction -- Mesurage in situ de la reacutesistance thermique et du coefficient de transmission thermique -- Partie 1 Meacutethode du fluxmegravetre raquo

gt Jensen Rasmus Lund Olena Kalyanova Ph D-student et Per Heiselberg 2008 laquo Modeling a Naturally Ventilated Double Skin Faccedilade with a Building Thermal Simulation Program raquo Building Physics 8

gt Jimeacutenez M J H Madsen J J Bloem et B Dammann 2008 laquo Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules raquo Energy and Buildings 40 (2) 157-67 httpsdoiorg101016jenbuild200702026

21 Journeacutee SFT02052018

Annexes

gt Jimeacutenez M J B Porcar et M R Heras 2008 laquo Estimation of building component UA and gA from outdoor tests in warm and moderate weather conditions raquo Solar Energy 82 (7) 573-87 httpsdoiorg101016jsolener200802013

gt Jimeacutenez Mariacutea Joseacute et Henrik Madsen 2008 laquo Models for describing the thermal characteristics of building components raquo Building and Environment 2008 httpsdoi101016jbuildenv200610030

gt John Godfaurd Derek Clements-Croome et George Jeronimidis 2005 laquo Sustainable Building Solutions A Review of Lessons from the Natural World raquo Building and Environment 40 (3) 319-28 httpsdoiorg101016jbuildenv200405011

gt Kristensen Niels Rode Henrik Madsen et Sten Bay Joslashrgensen 2004 laquo Parameter estimation in stochastic grey-box models raquo Automatica 40 (2) 225-37 httpsdoiorg101016jautomatica200310001

gt Lucchi Elena 2017 laquo Thermal transmittance of historical stone masonries A comparison among standard calculatedand measured data raquo Energy and Buildings 151 (septembre) 393-405 httpsdoiorg101016jenbuild201707002

gt Mareacutechal William 2014 Utilisation de meacutethodes inverses pour la caracteacuterisation de mateacuteriaux agrave changement de phase (MCP) Pau httpwwwthesesfr2014PAUU3014

gt Meng Xi Tao Luo Yanna Gao Lili Zhang Qiong Shen et Enshen Long 2017 laquo A new simple method to measure wallthermal transmittance in situ and its adaptability analysis raquo Applied Thermal Engineering 122 (juillet) 747-57 httpsdoiorg101016japplthermaleng201705074

gt Nardi Iole Domenica Paoletti Dario Ambrosini Tullio de Rubeis et Stefano Sfarra 2016 laquo U-value assessment by infrared thermography A comparison of different calculation methods in a Guarded Hot Box raquo Energy and Buildings 122 (juin) 211-21 httpsdoiorg101016jenbuild201604017

gt Naveros I P Bacher D P Ruiz M J Jimeacutenez et H Madsen 2014 laquo Setting up and validating a complex model for a simple homogeneous wall raquo Energy and Buildings 70 (feacutevrier) 303-17 httpsdoiorg101016jenbuild201311076

gt Naveros I Christian Ghiaus DP Ruiz S Castano et S Castantildeo 2015 laquo Physical parameters identification of walls usingARX models obtained by deduction raquo Energy and Buildings no 108 317-29 httpsdoiorg101016jenbuild201509021

22 Journeacutee SFT02052018

Annexes

gt NF EN 12664 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits secs et humides de moyenne et basse reacutesistance thermique 2001

gt NF EN 12667 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits de haute et moyenne reacutesistance thermique 2001

gt NF EN 12939 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits eacutepais de haute et moyenne reacutesistance thermique 2001

gt NF EN ISO 22007-2 - Plastiques - Deacutetermination de la conductiviteacute thermique et de la diffusiviteacute thermique - Partie 2 meacutethode de la source plane transitoire (disque chaud) 2015

gt Peng Changhai et Zhishen Wu 2008 laquo In situ measuring and evaluating the thermal resistance of building construction raquo Energy and Buildings 40 (11) 2076-82 httpsdoiorg101016jenbuild200805012

gt Rasooli Arash Laure Itard et Carlos Infante Ferreira 2016 laquo A response factor-based method for the rapid in-situ determination of wallrsquos thermal resistance in existing buildings raquo Energy and Buildings 119 (mai) 51-61 httpsdoiorg101016jenbuild201603009

gt Roels Staf Peder Bacher Geert Bauwens Sergio Castantildeo Maria Joseacute Jimeacutenez et Henrik Madsen 2017 laquo On Site Characterisation of the Overall Heat Loss Coefficient Comparison of Different Assessment Methods by a Blind Validation Exercise on a Round Robin Test Box raquo Energy and Buildings 153 (octobre) 179-89 httpsdoiorg101016jenbuild201708006

gt ROGEZ Jacques et Jean LE COZE 2009 laquo Mesure des tempeacuteratures - Questions agrave se poser avant la mesure raquo Text Ref TIP672WEB - laquo Mesures physiques raquo 10 mars 2009 httpswwwtechniques-ingenieurfrbase-documentairemesures-analyses-th1mesure-de-temperature-generalites-echelles-de-temperature-et-etalonnage-42542210mesure-des-temperatures-r2516

23 Journeacutee SFT02052018

Annexes

gt Sassine Emilio 2016 laquo A practical method for in-situ thermal characterization of walls raquo Case Studies in Thermal Engineering 8 (septembre) 84-93 httpsdoiorg101016jcsite201603006

gt Wang Shengwei et Xinhua Xu 2006 laquo Parameter estimation of internal thermal mass of building dynamic models usinggenetic algorithm raquo Energy Conversion and Management 47 (13) 1927-41 httpsdoiorg101016jenconman200509011

Page 5: Université de La Rochelle...(Cattarin et al. 2016) I Contexte II Verrous scientifiques III Etat de l’art IV Conclusion Les installations 9 02/05/2018 Journée SFT I Contexte II

5 Journeacutee SFT02052018

A lrsquoeacutechelle des mateacuteriaux

gt Mesure des proprieacuteteacutes thermiques normaliseacutees

ndash Reacutesistance thermique (NF EN 12939 NF EN 12667 NF EN 12664)

ndash Conductiviteacute thermique et diffusiviteacute thermique (NF EN 22007-2)

gt Recherche sur des mateacuteriaux nouveaux les transferts coupleacutes (Berger et al 2018)hellip

Lrsquoeacutechelle drsquoeacutetude

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

A lrsquoeacutechelle des parois

Caracteacuteristiques = Performance globale

ne sum proprieacuteteacutes thermiques de chaque mateacuteriau

gt Des essais en conditions reacuteelles sont neacutecessaires pour identifier les caracteacuteristiques thermiques des composants de faccedilade de maniegravere dynamique

6 Journeacutee SFT02052018

Quelle installation

de test utiliser

Quelles meacutethodes

inverses utiliseacutees

Comment prendre

en compte lrsquoinertie

Les deacuteperditions de plus en plus

faibles comment les mesurer

Que doit-on mesurer

et comment

Quel niveau de deacutetail de modegravele

neacutecessaire agrave lrsquoeacutechelle de la paroi

Quels paramegravetres en

fonction du type de paroi

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Le triptyque de la meacutethode inverse

Mais pas seulementhellip

Expeacuterience

Modegravele Inversion

Quelles donneacutees sont

seacutelectionneacutees

7 Journeacutee SFT

HLCth = 408 WK

Roels et al 2017 dans le cadre du projet AIE EBC Annex 58 lsquoReliableBuilding Energy Performance Characterisation Based on Full Scale Dynamic Measurementsrsquo

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Le traitement des donneacutees

8 Journeacutee SFT02052018

Caracteacuteristiques Laboratoire controcircleacute Cellule test exteacuterieure Mesure in situ

Conditions aux limites Controcircleacutees Controcircleacutees Reacuteelles Reacuteelles

Instrumentation + + -

Preacutecision + = -

Influence occupant Possible

Essais reacuteplicables

Adapteacute agrave

Parois opaques

Parois vitreacutees asymp

Parois actives

Twin houses (Germany IBP)Facade test (La Rochelle TIPEE)

Climatic chamber (Norway

NTNU)

Ces trois installations sont compleacutementaires (Cattarin et al 2016)

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Les installations

9 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes statiques

Meacutethode simple deacutecoulant de la loi de Fourier

Naveros et al 2012 | Deconinck et Roels 2016 | Gori 2017 | Gaspar 2018

Deacutetermination la reacutesistance thermique mais pas la capaciteacute thermique

Hypothegraveses

gt CL constantes ou moyenneacutees

gt proprieacuteteacutes indeacutependantes du temps

gt stockage thermique neacutegligeacute

Contraintes

gt Neacutecessite une longue dureacutee drsquoessai

gt Geacuteneacuteralement un fort gradient de tempeacuterature entre intext (gt10K)

gt Difficulteacute agrave prendre en compte lrsquoensoleillement

10 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Meacutethode de la moyenne

gt Meacutethode tregraves utiliseacutee sur site

gt Deacutefinie dans ISO 9869-1

gt Neacutecessite la mesure de la tempeacuterature drsquoair inteacuterieur la tempeacuterature drsquoair exteacuterieur et le flux thermique

gt Incertitude devient grande pour des parois fortement isoleacutees

gt Pas adapteacute aux parois agrave forte inertie

Modegraveles et meacutethodes statiques

gt Exemples drsquoapplications

ndash Comparaison agrave drsquoautres meacutethodes (Nardi et al 2016 Biddulph 2014)

ndash Utilisation sur site (Baker 2008 Lucchi 2017)

ndash Ameacutelioration et eacutevaluation de la meacutethode (Naveros et al 2012 Ficco et al 2015 Gaspar et al 2018)

11 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Principe

gt Prend en compte le comportement dynamique de la paroi et les conditionsaux limites varieacutees (rayonnement solaire convection forceacutee due au venthellip)pour deacutefinir des caracteacuteristiques thermiques de la paroi

Naveros et al 2014 | Gori 2017

Contraintes

gt Neacutecessite de seacutelectionner convenablement les donneacutees agrave traiter

gt Modegraveles plus complexes

Grande varieacuteteacute

gt Modegraveles de connaissance (ex meacutethode des diffeacuterences finies)

gt Meacutethodes agrave partir de modegraveles laquo boicircte grise raquo (LORD CTSM)

gt Modegraveles de comportement (ex meacutethodes agrave facteurs de reacuteponse)

12 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

LORD | 1994

gt Modegraveles boicircte grise modegraveles RC

gt 2 types de minimisation

ndash OEM (Output Error Method) = somme des eacutecarts quadratiques entre la tempeacuteraturemesureacutee et la tempeacuterature calculeacutee

ndash PEM (Prediction Error Method) = incertitudes sur les mesures et les calculs

gt Estime le coefficient de transmission thermique et le facteur solaire

gt Algorithme de minimisation Meacutethode de Nelder-Mead + Monte Carlo

gt Disponible sur wwwdynasteeinfo

Manuel LORD 32 | Gutschker 2008 | Jimeacutenez et al 2008

gt Exemples drsquoapplications

ndash Diffeacuterents murs avec ou sans ouvrant (U et g) Androutsopoulos et al 2008

ndash Projet Paslink Baker et van Dijk 2008

ndash U et g en climat chaud Jimeacutenez et al 2008

H 3-4Tint

2 3H 2-3

C2 C3

TextH 1-2

1 4

Ex Mur homogegravene

13 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

CTSM = Continuous Time Stochastic Model

gt Deacuteveloppeacute sous R agrave DTU

gt Modegravele boicircte grise laquo continuous time state space models raquo avec prise encompte du bruit de mesure

gt Non lineacuteaire et instationnaire

gt Minimisation PEM (Prediction Error Method) = incertitudes sur les mesureset les calculs

gt Algorithme de minimisation Stochastique

CTSM ndash R Userrsquos Guide | Kristensen et al 2004

gt Exemples drsquoapplications

ndash PV Jimeacutenez et al 2008

ndash U facteur solaire et Ceff Naveros et al 2014

ndash R et C Deconinck et Roels 2017

14 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Modegraveles AR(MA)X

gt Modegraveles de comportement

gt Aucune information physique sauf lorsque le comportement du modegravele est stable = comparaison possible avec lrsquoeacutequation du transfert thermique statique

Naveros et al 2015 | Deconinck et Roels 2016 | Gori 2017

gt Exemples drsquoapplications

ndash U facteur solaire et Ceff Naveros et al 2015

ndash U et g (modegraveles agrave plusieurs sorties) Jimeacutenez et Heras 2005

15 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Autres modegraveles dynamiques

gt Facteur de reacuteponse

ndash Peng et Wu 2008 Rasooli et al 2016

gt Meacutethode des diffeacuterences finies et algorithme de LM

ndash Chaffar et al 2014 Mareacutechal 2014

gt Modegraveles RC

ndash Analyse bayeacutesienne Biddulph et al 2014

ndash Algorithme geacuteneacuterique Wang 2006

gt Meacutethode des quadripocircles et algorithme du gradient reacuteduit geacuteneacuteraliseacute

ndash Sassine 2016

Deux types de donneacutees

gt Les conditions aux limites (tempeacuterature humiditeacute fluxhellip)

gt Mesures pour lrsquoidentification (geacuteneacuteralement tempeacuterature etou flux voire deacutebit)

16 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Instrumentation

1oct 3oct 5oct 7oct 9oct 11oct 13oct 15oct0

1000

2000

3000

4000

5000

6000

7000MODE 1

Day

Ma

ss f

low

ra

te [

kgh

]

Tracer gas method

Velocity profile method

Rogez et Le Coze 2009 | Meng et al 2015 | Cucumo et al 2018

Vigilances

gt Sur les grandeurs

ndash Grande varieacuteteacute

ndash Diffeacuterents ordres de grandeur

gt Sur les capteurs

ndash Choix et preacutecision

ndash Positionnement

ndash Impact sur la mesure

gt Sur les donneacutees reacutecolteacutees

ndash Choix du pas de temps drsquoacquisition

ndash Seacutelection des donneacutees pertinentes et traitement efficace

Larsen et al 2007

Meacutethodes statiques simples mais limiteacutees

Large avantage des meacutethodes dynamiques pour notre probleacutematique

Grande diversiteacute de meacutethodes dynamiques et de meacutethodes inverses

Faccedilades actives Nombreux modegraveles laquo boicircte grise raquo mais aussi modegraveles de connaissance

17 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

18 Journeacutee SFT02052018

Avez-vous des questions

Contact Manon Rendu manonrenduuniv-lrfr

19 Journeacutee SFT02052018

Annexes

gt Androutsopoulos A JJ Bloem HAL van Dijk et PH Baker 2008 laquo Comparison of User Performance When ApplyingSystem Identification for Assessment of the Energy Performance of Building Components raquo Building and Environment43 (2) 189-96 httpsdoiorg101016jbuildenv200610017

gt Baker P H et H A L van Dijk 2008 laquo PASLINK and dynamic outdoor testing of building components raquo Building and Environment Outdoor Testing Analysis and Modelling of Building Components 43 (2) 143-51 httpsdoiorg101016jbuildenv200610009

gt Baker Paul 2008 laquo Technical Paper 2 - In Situ U-Value Measurements in Traditional Buildings - Preliminary Results raquo

gt Berger Julien Thomas Busser Denys Dutykh et Nathan Mendes 2018 laquo On the estimation of moisture permeabilityand advection coefficients of a wood fibre material using the optimal experiment design approach raquo ExperimentalThermal and Fluid Science 90 (janvier) 246-59 httpsdoiorg101016jexpthermflusci201707026

gt Biddulph Phillip Virginia Gori Clifford A Elwell Cameron Scott Caroline Rye Robert Lowe et Tadj Oreszczyn 2014 laquo Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements raquo Energy and Buildings 78 (aoucirct) 10-16 httpsdoiorg101016jenbuild201404004

gt Cattarin G F Causone A Kindinis et L Pagliano 2016 laquo Outdoor test cells for building envelope experimentalcharacterisation ndash A literature review raquo Renewable and Sustainable Energy Reviews 54 (feacutevrier) 606-25 httpsdoiorg101016jrser201510012

gt Chaffar Khaled Alexis Chauchois Didier Defer et Laurent Zalewski 2014 laquo Thermal characterization of homogeneouswalls using inverse method raquo Energy and Buildings 78 (aoucirct) 248-55 httpsdoiorg101016jenbuild201404038

gt laquo CTSM-R Version 100 raquo 2015 CTSM-R Development Team

gt Cucumo Mario Vittorio Ferraro Dimitrios Kaliakatsos et Marilena Mele 2018 laquo On the distortion of thermal flux and of surface temperature induced by heat flux sensors positioned on the inner surface of buildings raquo Energy and Buildings 158 (janvier) 677-83 httpsdoiorg101016jenbuild201710034

20 Journeacutee SFT02052018

Annexes

gt Deconinck An-Heleen et Staf Roels 2016 laquo Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements raquo Energy and Buildings 130 (octobre) 309-20 httpsdoiorg101016jenbuild201608061

gt mdashmdashmdash 2017 laquo The as-built thermal quality of building components characterising non-stationary phenomena throughinverse modelling raquo Energy Procedia 11th Nordic Symposium on Building Physics NSB2017 11-14 June 2017 Trondheim Norway 132 (octobre) 351-56 httpsdoiorg101016jegypro201709748

gt Ficco Giorgio Fabio Iannetta Elvira Ianniello Francesca Romana drsquoAmbrosio Alfano et Marco DellrsquoIsola 2015 laquo U-value in situ measurement for energy diagnosis of existing buildings raquo Energy and Buildings 104 (octobre) 108-21 httpsdoiorg101016jenbuild201506071

gt Gaspar Katia Miquel Casals et Marta Gangolells 2018 laquo In Situ Measurement of Faccedilades with a Low U-Value AvoidingDeviations raquo Energy and Buildings 170 (juillet) 61-73 httpsdoiorg101016jenbuild201804012

gt Gori Virginia University College London et The Barlett 2017 laquo A Novel Method for the Estimation of ThermophysicalProperties of Walls from Short and Seasonally Independent In-Situ Surveys raquo 272

gt Gutschker Olaf 2008 laquo Parameter identification with the software package LORD raquo Building and Environment OutdoorTesting Analysis and Modelling of Building Components 43 (2) 163-69 httpsdoiorg101016jbuildenv200610010

gt mdashmdashmdash s d laquo LORD 32 raquo httpdynasteeinfowp-contentuploads201212lordmanualpdf

gt laquo ISO 9869-12014 - Isolation thermique -- Eacuteleacutements de construction -- Mesurage in situ de la reacutesistance thermique et du coefficient de transmission thermique -- Partie 1 Meacutethode du fluxmegravetre raquo

gt Jensen Rasmus Lund Olena Kalyanova Ph D-student et Per Heiselberg 2008 laquo Modeling a Naturally Ventilated Double Skin Faccedilade with a Building Thermal Simulation Program raquo Building Physics 8

gt Jimeacutenez M J H Madsen J J Bloem et B Dammann 2008 laquo Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules raquo Energy and Buildings 40 (2) 157-67 httpsdoiorg101016jenbuild200702026

21 Journeacutee SFT02052018

Annexes

gt Jimeacutenez M J B Porcar et M R Heras 2008 laquo Estimation of building component UA and gA from outdoor tests in warm and moderate weather conditions raquo Solar Energy 82 (7) 573-87 httpsdoiorg101016jsolener200802013

gt Jimeacutenez Mariacutea Joseacute et Henrik Madsen 2008 laquo Models for describing the thermal characteristics of building components raquo Building and Environment 2008 httpsdoi101016jbuildenv200610030

gt John Godfaurd Derek Clements-Croome et George Jeronimidis 2005 laquo Sustainable Building Solutions A Review of Lessons from the Natural World raquo Building and Environment 40 (3) 319-28 httpsdoiorg101016jbuildenv200405011

gt Kristensen Niels Rode Henrik Madsen et Sten Bay Joslashrgensen 2004 laquo Parameter estimation in stochastic grey-box models raquo Automatica 40 (2) 225-37 httpsdoiorg101016jautomatica200310001

gt Lucchi Elena 2017 laquo Thermal transmittance of historical stone masonries A comparison among standard calculatedand measured data raquo Energy and Buildings 151 (septembre) 393-405 httpsdoiorg101016jenbuild201707002

gt Mareacutechal William 2014 Utilisation de meacutethodes inverses pour la caracteacuterisation de mateacuteriaux agrave changement de phase (MCP) Pau httpwwwthesesfr2014PAUU3014

gt Meng Xi Tao Luo Yanna Gao Lili Zhang Qiong Shen et Enshen Long 2017 laquo A new simple method to measure wallthermal transmittance in situ and its adaptability analysis raquo Applied Thermal Engineering 122 (juillet) 747-57 httpsdoiorg101016japplthermaleng201705074

gt Nardi Iole Domenica Paoletti Dario Ambrosini Tullio de Rubeis et Stefano Sfarra 2016 laquo U-value assessment by infrared thermography A comparison of different calculation methods in a Guarded Hot Box raquo Energy and Buildings 122 (juin) 211-21 httpsdoiorg101016jenbuild201604017

gt Naveros I P Bacher D P Ruiz M J Jimeacutenez et H Madsen 2014 laquo Setting up and validating a complex model for a simple homogeneous wall raquo Energy and Buildings 70 (feacutevrier) 303-17 httpsdoiorg101016jenbuild201311076

gt Naveros I Christian Ghiaus DP Ruiz S Castano et S Castantildeo 2015 laquo Physical parameters identification of walls usingARX models obtained by deduction raquo Energy and Buildings no 108 317-29 httpsdoiorg101016jenbuild201509021

22 Journeacutee SFT02052018

Annexes

gt NF EN 12664 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits secs et humides de moyenne et basse reacutesistance thermique 2001

gt NF EN 12667 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits de haute et moyenne reacutesistance thermique 2001

gt NF EN 12939 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits eacutepais de haute et moyenne reacutesistance thermique 2001

gt NF EN ISO 22007-2 - Plastiques - Deacutetermination de la conductiviteacute thermique et de la diffusiviteacute thermique - Partie 2 meacutethode de la source plane transitoire (disque chaud) 2015

gt Peng Changhai et Zhishen Wu 2008 laquo In situ measuring and evaluating the thermal resistance of building construction raquo Energy and Buildings 40 (11) 2076-82 httpsdoiorg101016jenbuild200805012

gt Rasooli Arash Laure Itard et Carlos Infante Ferreira 2016 laquo A response factor-based method for the rapid in-situ determination of wallrsquos thermal resistance in existing buildings raquo Energy and Buildings 119 (mai) 51-61 httpsdoiorg101016jenbuild201603009

gt Roels Staf Peder Bacher Geert Bauwens Sergio Castantildeo Maria Joseacute Jimeacutenez et Henrik Madsen 2017 laquo On Site Characterisation of the Overall Heat Loss Coefficient Comparison of Different Assessment Methods by a Blind Validation Exercise on a Round Robin Test Box raquo Energy and Buildings 153 (octobre) 179-89 httpsdoiorg101016jenbuild201708006

gt ROGEZ Jacques et Jean LE COZE 2009 laquo Mesure des tempeacuteratures - Questions agrave se poser avant la mesure raquo Text Ref TIP672WEB - laquo Mesures physiques raquo 10 mars 2009 httpswwwtechniques-ingenieurfrbase-documentairemesures-analyses-th1mesure-de-temperature-generalites-echelles-de-temperature-et-etalonnage-42542210mesure-des-temperatures-r2516

23 Journeacutee SFT02052018

Annexes

gt Sassine Emilio 2016 laquo A practical method for in-situ thermal characterization of walls raquo Case Studies in Thermal Engineering 8 (septembre) 84-93 httpsdoiorg101016jcsite201603006

gt Wang Shengwei et Xinhua Xu 2006 laquo Parameter estimation of internal thermal mass of building dynamic models usinggenetic algorithm raquo Energy Conversion and Management 47 (13) 1927-41 httpsdoiorg101016jenconman200509011

Page 6: Université de La Rochelle...(Cattarin et al. 2016) I Contexte II Verrous scientifiques III Etat de l’art IV Conclusion Les installations 9 02/05/2018 Journée SFT I Contexte II

6 Journeacutee SFT02052018

Quelle installation

de test utiliser

Quelles meacutethodes

inverses utiliseacutees

Comment prendre

en compte lrsquoinertie

Les deacuteperditions de plus en plus

faibles comment les mesurer

Que doit-on mesurer

et comment

Quel niveau de deacutetail de modegravele

neacutecessaire agrave lrsquoeacutechelle de la paroi

Quels paramegravetres en

fonction du type de paroi

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Le triptyque de la meacutethode inverse

Mais pas seulementhellip

Expeacuterience

Modegravele Inversion

Quelles donneacutees sont

seacutelectionneacutees

7 Journeacutee SFT

HLCth = 408 WK

Roels et al 2017 dans le cadre du projet AIE EBC Annex 58 lsquoReliableBuilding Energy Performance Characterisation Based on Full Scale Dynamic Measurementsrsquo

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Le traitement des donneacutees

8 Journeacutee SFT02052018

Caracteacuteristiques Laboratoire controcircleacute Cellule test exteacuterieure Mesure in situ

Conditions aux limites Controcircleacutees Controcircleacutees Reacuteelles Reacuteelles

Instrumentation + + -

Preacutecision + = -

Influence occupant Possible

Essais reacuteplicables

Adapteacute agrave

Parois opaques

Parois vitreacutees asymp

Parois actives

Twin houses (Germany IBP)Facade test (La Rochelle TIPEE)

Climatic chamber (Norway

NTNU)

Ces trois installations sont compleacutementaires (Cattarin et al 2016)

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Les installations

9 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes statiques

Meacutethode simple deacutecoulant de la loi de Fourier

Naveros et al 2012 | Deconinck et Roels 2016 | Gori 2017 | Gaspar 2018

Deacutetermination la reacutesistance thermique mais pas la capaciteacute thermique

Hypothegraveses

gt CL constantes ou moyenneacutees

gt proprieacuteteacutes indeacutependantes du temps

gt stockage thermique neacutegligeacute

Contraintes

gt Neacutecessite une longue dureacutee drsquoessai

gt Geacuteneacuteralement un fort gradient de tempeacuterature entre intext (gt10K)

gt Difficulteacute agrave prendre en compte lrsquoensoleillement

10 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Meacutethode de la moyenne

gt Meacutethode tregraves utiliseacutee sur site

gt Deacutefinie dans ISO 9869-1

gt Neacutecessite la mesure de la tempeacuterature drsquoair inteacuterieur la tempeacuterature drsquoair exteacuterieur et le flux thermique

gt Incertitude devient grande pour des parois fortement isoleacutees

gt Pas adapteacute aux parois agrave forte inertie

Modegraveles et meacutethodes statiques

gt Exemples drsquoapplications

ndash Comparaison agrave drsquoautres meacutethodes (Nardi et al 2016 Biddulph 2014)

ndash Utilisation sur site (Baker 2008 Lucchi 2017)

ndash Ameacutelioration et eacutevaluation de la meacutethode (Naveros et al 2012 Ficco et al 2015 Gaspar et al 2018)

11 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Principe

gt Prend en compte le comportement dynamique de la paroi et les conditionsaux limites varieacutees (rayonnement solaire convection forceacutee due au venthellip)pour deacutefinir des caracteacuteristiques thermiques de la paroi

Naveros et al 2014 | Gori 2017

Contraintes

gt Neacutecessite de seacutelectionner convenablement les donneacutees agrave traiter

gt Modegraveles plus complexes

Grande varieacuteteacute

gt Modegraveles de connaissance (ex meacutethode des diffeacuterences finies)

gt Meacutethodes agrave partir de modegraveles laquo boicircte grise raquo (LORD CTSM)

gt Modegraveles de comportement (ex meacutethodes agrave facteurs de reacuteponse)

12 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

LORD | 1994

gt Modegraveles boicircte grise modegraveles RC

gt 2 types de minimisation

ndash OEM (Output Error Method) = somme des eacutecarts quadratiques entre la tempeacuteraturemesureacutee et la tempeacuterature calculeacutee

ndash PEM (Prediction Error Method) = incertitudes sur les mesures et les calculs

gt Estime le coefficient de transmission thermique et le facteur solaire

gt Algorithme de minimisation Meacutethode de Nelder-Mead + Monte Carlo

gt Disponible sur wwwdynasteeinfo

Manuel LORD 32 | Gutschker 2008 | Jimeacutenez et al 2008

gt Exemples drsquoapplications

ndash Diffeacuterents murs avec ou sans ouvrant (U et g) Androutsopoulos et al 2008

ndash Projet Paslink Baker et van Dijk 2008

ndash U et g en climat chaud Jimeacutenez et al 2008

H 3-4Tint

2 3H 2-3

C2 C3

TextH 1-2

1 4

Ex Mur homogegravene

13 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

CTSM = Continuous Time Stochastic Model

gt Deacuteveloppeacute sous R agrave DTU

gt Modegravele boicircte grise laquo continuous time state space models raquo avec prise encompte du bruit de mesure

gt Non lineacuteaire et instationnaire

gt Minimisation PEM (Prediction Error Method) = incertitudes sur les mesureset les calculs

gt Algorithme de minimisation Stochastique

CTSM ndash R Userrsquos Guide | Kristensen et al 2004

gt Exemples drsquoapplications

ndash PV Jimeacutenez et al 2008

ndash U facteur solaire et Ceff Naveros et al 2014

ndash R et C Deconinck et Roels 2017

14 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Modegraveles AR(MA)X

gt Modegraveles de comportement

gt Aucune information physique sauf lorsque le comportement du modegravele est stable = comparaison possible avec lrsquoeacutequation du transfert thermique statique

Naveros et al 2015 | Deconinck et Roels 2016 | Gori 2017

gt Exemples drsquoapplications

ndash U facteur solaire et Ceff Naveros et al 2015

ndash U et g (modegraveles agrave plusieurs sorties) Jimeacutenez et Heras 2005

15 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Autres modegraveles dynamiques

gt Facteur de reacuteponse

ndash Peng et Wu 2008 Rasooli et al 2016

gt Meacutethode des diffeacuterences finies et algorithme de LM

ndash Chaffar et al 2014 Mareacutechal 2014

gt Modegraveles RC

ndash Analyse bayeacutesienne Biddulph et al 2014

ndash Algorithme geacuteneacuterique Wang 2006

gt Meacutethode des quadripocircles et algorithme du gradient reacuteduit geacuteneacuteraliseacute

ndash Sassine 2016

Deux types de donneacutees

gt Les conditions aux limites (tempeacuterature humiditeacute fluxhellip)

gt Mesures pour lrsquoidentification (geacuteneacuteralement tempeacuterature etou flux voire deacutebit)

16 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Instrumentation

1oct 3oct 5oct 7oct 9oct 11oct 13oct 15oct0

1000

2000

3000

4000

5000

6000

7000MODE 1

Day

Ma

ss f

low

ra

te [

kgh

]

Tracer gas method

Velocity profile method

Rogez et Le Coze 2009 | Meng et al 2015 | Cucumo et al 2018

Vigilances

gt Sur les grandeurs

ndash Grande varieacuteteacute

ndash Diffeacuterents ordres de grandeur

gt Sur les capteurs

ndash Choix et preacutecision

ndash Positionnement

ndash Impact sur la mesure

gt Sur les donneacutees reacutecolteacutees

ndash Choix du pas de temps drsquoacquisition

ndash Seacutelection des donneacutees pertinentes et traitement efficace

Larsen et al 2007

Meacutethodes statiques simples mais limiteacutees

Large avantage des meacutethodes dynamiques pour notre probleacutematique

Grande diversiteacute de meacutethodes dynamiques et de meacutethodes inverses

Faccedilades actives Nombreux modegraveles laquo boicircte grise raquo mais aussi modegraveles de connaissance

17 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

18 Journeacutee SFT02052018

Avez-vous des questions

Contact Manon Rendu manonrenduuniv-lrfr

19 Journeacutee SFT02052018

Annexes

gt Androutsopoulos A JJ Bloem HAL van Dijk et PH Baker 2008 laquo Comparison of User Performance When ApplyingSystem Identification for Assessment of the Energy Performance of Building Components raquo Building and Environment43 (2) 189-96 httpsdoiorg101016jbuildenv200610017

gt Baker P H et H A L van Dijk 2008 laquo PASLINK and dynamic outdoor testing of building components raquo Building and Environment Outdoor Testing Analysis and Modelling of Building Components 43 (2) 143-51 httpsdoiorg101016jbuildenv200610009

gt Baker Paul 2008 laquo Technical Paper 2 - In Situ U-Value Measurements in Traditional Buildings - Preliminary Results raquo

gt Berger Julien Thomas Busser Denys Dutykh et Nathan Mendes 2018 laquo On the estimation of moisture permeabilityand advection coefficients of a wood fibre material using the optimal experiment design approach raquo ExperimentalThermal and Fluid Science 90 (janvier) 246-59 httpsdoiorg101016jexpthermflusci201707026

gt Biddulph Phillip Virginia Gori Clifford A Elwell Cameron Scott Caroline Rye Robert Lowe et Tadj Oreszczyn 2014 laquo Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements raquo Energy and Buildings 78 (aoucirct) 10-16 httpsdoiorg101016jenbuild201404004

gt Cattarin G F Causone A Kindinis et L Pagliano 2016 laquo Outdoor test cells for building envelope experimentalcharacterisation ndash A literature review raquo Renewable and Sustainable Energy Reviews 54 (feacutevrier) 606-25 httpsdoiorg101016jrser201510012

gt Chaffar Khaled Alexis Chauchois Didier Defer et Laurent Zalewski 2014 laquo Thermal characterization of homogeneouswalls using inverse method raquo Energy and Buildings 78 (aoucirct) 248-55 httpsdoiorg101016jenbuild201404038

gt laquo CTSM-R Version 100 raquo 2015 CTSM-R Development Team

gt Cucumo Mario Vittorio Ferraro Dimitrios Kaliakatsos et Marilena Mele 2018 laquo On the distortion of thermal flux and of surface temperature induced by heat flux sensors positioned on the inner surface of buildings raquo Energy and Buildings 158 (janvier) 677-83 httpsdoiorg101016jenbuild201710034

20 Journeacutee SFT02052018

Annexes

gt Deconinck An-Heleen et Staf Roels 2016 laquo Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements raquo Energy and Buildings 130 (octobre) 309-20 httpsdoiorg101016jenbuild201608061

gt mdashmdashmdash 2017 laquo The as-built thermal quality of building components characterising non-stationary phenomena throughinverse modelling raquo Energy Procedia 11th Nordic Symposium on Building Physics NSB2017 11-14 June 2017 Trondheim Norway 132 (octobre) 351-56 httpsdoiorg101016jegypro201709748

gt Ficco Giorgio Fabio Iannetta Elvira Ianniello Francesca Romana drsquoAmbrosio Alfano et Marco DellrsquoIsola 2015 laquo U-value in situ measurement for energy diagnosis of existing buildings raquo Energy and Buildings 104 (octobre) 108-21 httpsdoiorg101016jenbuild201506071

gt Gaspar Katia Miquel Casals et Marta Gangolells 2018 laquo In Situ Measurement of Faccedilades with a Low U-Value AvoidingDeviations raquo Energy and Buildings 170 (juillet) 61-73 httpsdoiorg101016jenbuild201804012

gt Gori Virginia University College London et The Barlett 2017 laquo A Novel Method for the Estimation of ThermophysicalProperties of Walls from Short and Seasonally Independent In-Situ Surveys raquo 272

gt Gutschker Olaf 2008 laquo Parameter identification with the software package LORD raquo Building and Environment OutdoorTesting Analysis and Modelling of Building Components 43 (2) 163-69 httpsdoiorg101016jbuildenv200610010

gt mdashmdashmdash s d laquo LORD 32 raquo httpdynasteeinfowp-contentuploads201212lordmanualpdf

gt laquo ISO 9869-12014 - Isolation thermique -- Eacuteleacutements de construction -- Mesurage in situ de la reacutesistance thermique et du coefficient de transmission thermique -- Partie 1 Meacutethode du fluxmegravetre raquo

gt Jensen Rasmus Lund Olena Kalyanova Ph D-student et Per Heiselberg 2008 laquo Modeling a Naturally Ventilated Double Skin Faccedilade with a Building Thermal Simulation Program raquo Building Physics 8

gt Jimeacutenez M J H Madsen J J Bloem et B Dammann 2008 laquo Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules raquo Energy and Buildings 40 (2) 157-67 httpsdoiorg101016jenbuild200702026

21 Journeacutee SFT02052018

Annexes

gt Jimeacutenez M J B Porcar et M R Heras 2008 laquo Estimation of building component UA and gA from outdoor tests in warm and moderate weather conditions raquo Solar Energy 82 (7) 573-87 httpsdoiorg101016jsolener200802013

gt Jimeacutenez Mariacutea Joseacute et Henrik Madsen 2008 laquo Models for describing the thermal characteristics of building components raquo Building and Environment 2008 httpsdoi101016jbuildenv200610030

gt John Godfaurd Derek Clements-Croome et George Jeronimidis 2005 laquo Sustainable Building Solutions A Review of Lessons from the Natural World raquo Building and Environment 40 (3) 319-28 httpsdoiorg101016jbuildenv200405011

gt Kristensen Niels Rode Henrik Madsen et Sten Bay Joslashrgensen 2004 laquo Parameter estimation in stochastic grey-box models raquo Automatica 40 (2) 225-37 httpsdoiorg101016jautomatica200310001

gt Lucchi Elena 2017 laquo Thermal transmittance of historical stone masonries A comparison among standard calculatedand measured data raquo Energy and Buildings 151 (septembre) 393-405 httpsdoiorg101016jenbuild201707002

gt Mareacutechal William 2014 Utilisation de meacutethodes inverses pour la caracteacuterisation de mateacuteriaux agrave changement de phase (MCP) Pau httpwwwthesesfr2014PAUU3014

gt Meng Xi Tao Luo Yanna Gao Lili Zhang Qiong Shen et Enshen Long 2017 laquo A new simple method to measure wallthermal transmittance in situ and its adaptability analysis raquo Applied Thermal Engineering 122 (juillet) 747-57 httpsdoiorg101016japplthermaleng201705074

gt Nardi Iole Domenica Paoletti Dario Ambrosini Tullio de Rubeis et Stefano Sfarra 2016 laquo U-value assessment by infrared thermography A comparison of different calculation methods in a Guarded Hot Box raquo Energy and Buildings 122 (juin) 211-21 httpsdoiorg101016jenbuild201604017

gt Naveros I P Bacher D P Ruiz M J Jimeacutenez et H Madsen 2014 laquo Setting up and validating a complex model for a simple homogeneous wall raquo Energy and Buildings 70 (feacutevrier) 303-17 httpsdoiorg101016jenbuild201311076

gt Naveros I Christian Ghiaus DP Ruiz S Castano et S Castantildeo 2015 laquo Physical parameters identification of walls usingARX models obtained by deduction raquo Energy and Buildings no 108 317-29 httpsdoiorg101016jenbuild201509021

22 Journeacutee SFT02052018

Annexes

gt NF EN 12664 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits secs et humides de moyenne et basse reacutesistance thermique 2001

gt NF EN 12667 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits de haute et moyenne reacutesistance thermique 2001

gt NF EN 12939 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits eacutepais de haute et moyenne reacutesistance thermique 2001

gt NF EN ISO 22007-2 - Plastiques - Deacutetermination de la conductiviteacute thermique et de la diffusiviteacute thermique - Partie 2 meacutethode de la source plane transitoire (disque chaud) 2015

gt Peng Changhai et Zhishen Wu 2008 laquo In situ measuring and evaluating the thermal resistance of building construction raquo Energy and Buildings 40 (11) 2076-82 httpsdoiorg101016jenbuild200805012

gt Rasooli Arash Laure Itard et Carlos Infante Ferreira 2016 laquo A response factor-based method for the rapid in-situ determination of wallrsquos thermal resistance in existing buildings raquo Energy and Buildings 119 (mai) 51-61 httpsdoiorg101016jenbuild201603009

gt Roels Staf Peder Bacher Geert Bauwens Sergio Castantildeo Maria Joseacute Jimeacutenez et Henrik Madsen 2017 laquo On Site Characterisation of the Overall Heat Loss Coefficient Comparison of Different Assessment Methods by a Blind Validation Exercise on a Round Robin Test Box raquo Energy and Buildings 153 (octobre) 179-89 httpsdoiorg101016jenbuild201708006

gt ROGEZ Jacques et Jean LE COZE 2009 laquo Mesure des tempeacuteratures - Questions agrave se poser avant la mesure raquo Text Ref TIP672WEB - laquo Mesures physiques raquo 10 mars 2009 httpswwwtechniques-ingenieurfrbase-documentairemesures-analyses-th1mesure-de-temperature-generalites-echelles-de-temperature-et-etalonnage-42542210mesure-des-temperatures-r2516

23 Journeacutee SFT02052018

Annexes

gt Sassine Emilio 2016 laquo A practical method for in-situ thermal characterization of walls raquo Case Studies in Thermal Engineering 8 (septembre) 84-93 httpsdoiorg101016jcsite201603006

gt Wang Shengwei et Xinhua Xu 2006 laquo Parameter estimation of internal thermal mass of building dynamic models usinggenetic algorithm raquo Energy Conversion and Management 47 (13) 1927-41 httpsdoiorg101016jenconman200509011

Page 7: Université de La Rochelle...(Cattarin et al. 2016) I Contexte II Verrous scientifiques III Etat de l’art IV Conclusion Les installations 9 02/05/2018 Journée SFT I Contexte II

7 Journeacutee SFT

HLCth = 408 WK

Roels et al 2017 dans le cadre du projet AIE EBC Annex 58 lsquoReliableBuilding Energy Performance Characterisation Based on Full Scale Dynamic Measurementsrsquo

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Le traitement des donneacutees

8 Journeacutee SFT02052018

Caracteacuteristiques Laboratoire controcircleacute Cellule test exteacuterieure Mesure in situ

Conditions aux limites Controcircleacutees Controcircleacutees Reacuteelles Reacuteelles

Instrumentation + + -

Preacutecision + = -

Influence occupant Possible

Essais reacuteplicables

Adapteacute agrave

Parois opaques

Parois vitreacutees asymp

Parois actives

Twin houses (Germany IBP)Facade test (La Rochelle TIPEE)

Climatic chamber (Norway

NTNU)

Ces trois installations sont compleacutementaires (Cattarin et al 2016)

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Les installations

9 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes statiques

Meacutethode simple deacutecoulant de la loi de Fourier

Naveros et al 2012 | Deconinck et Roels 2016 | Gori 2017 | Gaspar 2018

Deacutetermination la reacutesistance thermique mais pas la capaciteacute thermique

Hypothegraveses

gt CL constantes ou moyenneacutees

gt proprieacuteteacutes indeacutependantes du temps

gt stockage thermique neacutegligeacute

Contraintes

gt Neacutecessite une longue dureacutee drsquoessai

gt Geacuteneacuteralement un fort gradient de tempeacuterature entre intext (gt10K)

gt Difficulteacute agrave prendre en compte lrsquoensoleillement

10 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Meacutethode de la moyenne

gt Meacutethode tregraves utiliseacutee sur site

gt Deacutefinie dans ISO 9869-1

gt Neacutecessite la mesure de la tempeacuterature drsquoair inteacuterieur la tempeacuterature drsquoair exteacuterieur et le flux thermique

gt Incertitude devient grande pour des parois fortement isoleacutees

gt Pas adapteacute aux parois agrave forte inertie

Modegraveles et meacutethodes statiques

gt Exemples drsquoapplications

ndash Comparaison agrave drsquoautres meacutethodes (Nardi et al 2016 Biddulph 2014)

ndash Utilisation sur site (Baker 2008 Lucchi 2017)

ndash Ameacutelioration et eacutevaluation de la meacutethode (Naveros et al 2012 Ficco et al 2015 Gaspar et al 2018)

11 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Principe

gt Prend en compte le comportement dynamique de la paroi et les conditionsaux limites varieacutees (rayonnement solaire convection forceacutee due au venthellip)pour deacutefinir des caracteacuteristiques thermiques de la paroi

Naveros et al 2014 | Gori 2017

Contraintes

gt Neacutecessite de seacutelectionner convenablement les donneacutees agrave traiter

gt Modegraveles plus complexes

Grande varieacuteteacute

gt Modegraveles de connaissance (ex meacutethode des diffeacuterences finies)

gt Meacutethodes agrave partir de modegraveles laquo boicircte grise raquo (LORD CTSM)

gt Modegraveles de comportement (ex meacutethodes agrave facteurs de reacuteponse)

12 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

LORD | 1994

gt Modegraveles boicircte grise modegraveles RC

gt 2 types de minimisation

ndash OEM (Output Error Method) = somme des eacutecarts quadratiques entre la tempeacuteraturemesureacutee et la tempeacuterature calculeacutee

ndash PEM (Prediction Error Method) = incertitudes sur les mesures et les calculs

gt Estime le coefficient de transmission thermique et le facteur solaire

gt Algorithme de minimisation Meacutethode de Nelder-Mead + Monte Carlo

gt Disponible sur wwwdynasteeinfo

Manuel LORD 32 | Gutschker 2008 | Jimeacutenez et al 2008

gt Exemples drsquoapplications

ndash Diffeacuterents murs avec ou sans ouvrant (U et g) Androutsopoulos et al 2008

ndash Projet Paslink Baker et van Dijk 2008

ndash U et g en climat chaud Jimeacutenez et al 2008

H 3-4Tint

2 3H 2-3

C2 C3

TextH 1-2

1 4

Ex Mur homogegravene

13 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

CTSM = Continuous Time Stochastic Model

gt Deacuteveloppeacute sous R agrave DTU

gt Modegravele boicircte grise laquo continuous time state space models raquo avec prise encompte du bruit de mesure

gt Non lineacuteaire et instationnaire

gt Minimisation PEM (Prediction Error Method) = incertitudes sur les mesureset les calculs

gt Algorithme de minimisation Stochastique

CTSM ndash R Userrsquos Guide | Kristensen et al 2004

gt Exemples drsquoapplications

ndash PV Jimeacutenez et al 2008

ndash U facteur solaire et Ceff Naveros et al 2014

ndash R et C Deconinck et Roels 2017

14 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Modegraveles AR(MA)X

gt Modegraveles de comportement

gt Aucune information physique sauf lorsque le comportement du modegravele est stable = comparaison possible avec lrsquoeacutequation du transfert thermique statique

Naveros et al 2015 | Deconinck et Roels 2016 | Gori 2017

gt Exemples drsquoapplications

ndash U facteur solaire et Ceff Naveros et al 2015

ndash U et g (modegraveles agrave plusieurs sorties) Jimeacutenez et Heras 2005

15 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Autres modegraveles dynamiques

gt Facteur de reacuteponse

ndash Peng et Wu 2008 Rasooli et al 2016

gt Meacutethode des diffeacuterences finies et algorithme de LM

ndash Chaffar et al 2014 Mareacutechal 2014

gt Modegraveles RC

ndash Analyse bayeacutesienne Biddulph et al 2014

ndash Algorithme geacuteneacuterique Wang 2006

gt Meacutethode des quadripocircles et algorithme du gradient reacuteduit geacuteneacuteraliseacute

ndash Sassine 2016

Deux types de donneacutees

gt Les conditions aux limites (tempeacuterature humiditeacute fluxhellip)

gt Mesures pour lrsquoidentification (geacuteneacuteralement tempeacuterature etou flux voire deacutebit)

16 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Instrumentation

1oct 3oct 5oct 7oct 9oct 11oct 13oct 15oct0

1000

2000

3000

4000

5000

6000

7000MODE 1

Day

Ma

ss f

low

ra

te [

kgh

]

Tracer gas method

Velocity profile method

Rogez et Le Coze 2009 | Meng et al 2015 | Cucumo et al 2018

Vigilances

gt Sur les grandeurs

ndash Grande varieacuteteacute

ndash Diffeacuterents ordres de grandeur

gt Sur les capteurs

ndash Choix et preacutecision

ndash Positionnement

ndash Impact sur la mesure

gt Sur les donneacutees reacutecolteacutees

ndash Choix du pas de temps drsquoacquisition

ndash Seacutelection des donneacutees pertinentes et traitement efficace

Larsen et al 2007

Meacutethodes statiques simples mais limiteacutees

Large avantage des meacutethodes dynamiques pour notre probleacutematique

Grande diversiteacute de meacutethodes dynamiques et de meacutethodes inverses

Faccedilades actives Nombreux modegraveles laquo boicircte grise raquo mais aussi modegraveles de connaissance

17 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

18 Journeacutee SFT02052018

Avez-vous des questions

Contact Manon Rendu manonrenduuniv-lrfr

19 Journeacutee SFT02052018

Annexes

gt Androutsopoulos A JJ Bloem HAL van Dijk et PH Baker 2008 laquo Comparison of User Performance When ApplyingSystem Identification for Assessment of the Energy Performance of Building Components raquo Building and Environment43 (2) 189-96 httpsdoiorg101016jbuildenv200610017

gt Baker P H et H A L van Dijk 2008 laquo PASLINK and dynamic outdoor testing of building components raquo Building and Environment Outdoor Testing Analysis and Modelling of Building Components 43 (2) 143-51 httpsdoiorg101016jbuildenv200610009

gt Baker Paul 2008 laquo Technical Paper 2 - In Situ U-Value Measurements in Traditional Buildings - Preliminary Results raquo

gt Berger Julien Thomas Busser Denys Dutykh et Nathan Mendes 2018 laquo On the estimation of moisture permeabilityand advection coefficients of a wood fibre material using the optimal experiment design approach raquo ExperimentalThermal and Fluid Science 90 (janvier) 246-59 httpsdoiorg101016jexpthermflusci201707026

gt Biddulph Phillip Virginia Gori Clifford A Elwell Cameron Scott Caroline Rye Robert Lowe et Tadj Oreszczyn 2014 laquo Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements raquo Energy and Buildings 78 (aoucirct) 10-16 httpsdoiorg101016jenbuild201404004

gt Cattarin G F Causone A Kindinis et L Pagliano 2016 laquo Outdoor test cells for building envelope experimentalcharacterisation ndash A literature review raquo Renewable and Sustainable Energy Reviews 54 (feacutevrier) 606-25 httpsdoiorg101016jrser201510012

gt Chaffar Khaled Alexis Chauchois Didier Defer et Laurent Zalewski 2014 laquo Thermal characterization of homogeneouswalls using inverse method raquo Energy and Buildings 78 (aoucirct) 248-55 httpsdoiorg101016jenbuild201404038

gt laquo CTSM-R Version 100 raquo 2015 CTSM-R Development Team

gt Cucumo Mario Vittorio Ferraro Dimitrios Kaliakatsos et Marilena Mele 2018 laquo On the distortion of thermal flux and of surface temperature induced by heat flux sensors positioned on the inner surface of buildings raquo Energy and Buildings 158 (janvier) 677-83 httpsdoiorg101016jenbuild201710034

20 Journeacutee SFT02052018

Annexes

gt Deconinck An-Heleen et Staf Roels 2016 laquo Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements raquo Energy and Buildings 130 (octobre) 309-20 httpsdoiorg101016jenbuild201608061

gt mdashmdashmdash 2017 laquo The as-built thermal quality of building components characterising non-stationary phenomena throughinverse modelling raquo Energy Procedia 11th Nordic Symposium on Building Physics NSB2017 11-14 June 2017 Trondheim Norway 132 (octobre) 351-56 httpsdoiorg101016jegypro201709748

gt Ficco Giorgio Fabio Iannetta Elvira Ianniello Francesca Romana drsquoAmbrosio Alfano et Marco DellrsquoIsola 2015 laquo U-value in situ measurement for energy diagnosis of existing buildings raquo Energy and Buildings 104 (octobre) 108-21 httpsdoiorg101016jenbuild201506071

gt Gaspar Katia Miquel Casals et Marta Gangolells 2018 laquo In Situ Measurement of Faccedilades with a Low U-Value AvoidingDeviations raquo Energy and Buildings 170 (juillet) 61-73 httpsdoiorg101016jenbuild201804012

gt Gori Virginia University College London et The Barlett 2017 laquo A Novel Method for the Estimation of ThermophysicalProperties of Walls from Short and Seasonally Independent In-Situ Surveys raquo 272

gt Gutschker Olaf 2008 laquo Parameter identification with the software package LORD raquo Building and Environment OutdoorTesting Analysis and Modelling of Building Components 43 (2) 163-69 httpsdoiorg101016jbuildenv200610010

gt mdashmdashmdash s d laquo LORD 32 raquo httpdynasteeinfowp-contentuploads201212lordmanualpdf

gt laquo ISO 9869-12014 - Isolation thermique -- Eacuteleacutements de construction -- Mesurage in situ de la reacutesistance thermique et du coefficient de transmission thermique -- Partie 1 Meacutethode du fluxmegravetre raquo

gt Jensen Rasmus Lund Olena Kalyanova Ph D-student et Per Heiselberg 2008 laquo Modeling a Naturally Ventilated Double Skin Faccedilade with a Building Thermal Simulation Program raquo Building Physics 8

gt Jimeacutenez M J H Madsen J J Bloem et B Dammann 2008 laquo Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules raquo Energy and Buildings 40 (2) 157-67 httpsdoiorg101016jenbuild200702026

21 Journeacutee SFT02052018

Annexes

gt Jimeacutenez M J B Porcar et M R Heras 2008 laquo Estimation of building component UA and gA from outdoor tests in warm and moderate weather conditions raquo Solar Energy 82 (7) 573-87 httpsdoiorg101016jsolener200802013

gt Jimeacutenez Mariacutea Joseacute et Henrik Madsen 2008 laquo Models for describing the thermal characteristics of building components raquo Building and Environment 2008 httpsdoi101016jbuildenv200610030

gt John Godfaurd Derek Clements-Croome et George Jeronimidis 2005 laquo Sustainable Building Solutions A Review of Lessons from the Natural World raquo Building and Environment 40 (3) 319-28 httpsdoiorg101016jbuildenv200405011

gt Kristensen Niels Rode Henrik Madsen et Sten Bay Joslashrgensen 2004 laquo Parameter estimation in stochastic grey-box models raquo Automatica 40 (2) 225-37 httpsdoiorg101016jautomatica200310001

gt Lucchi Elena 2017 laquo Thermal transmittance of historical stone masonries A comparison among standard calculatedand measured data raquo Energy and Buildings 151 (septembre) 393-405 httpsdoiorg101016jenbuild201707002

gt Mareacutechal William 2014 Utilisation de meacutethodes inverses pour la caracteacuterisation de mateacuteriaux agrave changement de phase (MCP) Pau httpwwwthesesfr2014PAUU3014

gt Meng Xi Tao Luo Yanna Gao Lili Zhang Qiong Shen et Enshen Long 2017 laquo A new simple method to measure wallthermal transmittance in situ and its adaptability analysis raquo Applied Thermal Engineering 122 (juillet) 747-57 httpsdoiorg101016japplthermaleng201705074

gt Nardi Iole Domenica Paoletti Dario Ambrosini Tullio de Rubeis et Stefano Sfarra 2016 laquo U-value assessment by infrared thermography A comparison of different calculation methods in a Guarded Hot Box raquo Energy and Buildings 122 (juin) 211-21 httpsdoiorg101016jenbuild201604017

gt Naveros I P Bacher D P Ruiz M J Jimeacutenez et H Madsen 2014 laquo Setting up and validating a complex model for a simple homogeneous wall raquo Energy and Buildings 70 (feacutevrier) 303-17 httpsdoiorg101016jenbuild201311076

gt Naveros I Christian Ghiaus DP Ruiz S Castano et S Castantildeo 2015 laquo Physical parameters identification of walls usingARX models obtained by deduction raquo Energy and Buildings no 108 317-29 httpsdoiorg101016jenbuild201509021

22 Journeacutee SFT02052018

Annexes

gt NF EN 12664 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits secs et humides de moyenne et basse reacutesistance thermique 2001

gt NF EN 12667 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits de haute et moyenne reacutesistance thermique 2001

gt NF EN 12939 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits eacutepais de haute et moyenne reacutesistance thermique 2001

gt NF EN ISO 22007-2 - Plastiques - Deacutetermination de la conductiviteacute thermique et de la diffusiviteacute thermique - Partie 2 meacutethode de la source plane transitoire (disque chaud) 2015

gt Peng Changhai et Zhishen Wu 2008 laquo In situ measuring and evaluating the thermal resistance of building construction raquo Energy and Buildings 40 (11) 2076-82 httpsdoiorg101016jenbuild200805012

gt Rasooli Arash Laure Itard et Carlos Infante Ferreira 2016 laquo A response factor-based method for the rapid in-situ determination of wallrsquos thermal resistance in existing buildings raquo Energy and Buildings 119 (mai) 51-61 httpsdoiorg101016jenbuild201603009

gt Roels Staf Peder Bacher Geert Bauwens Sergio Castantildeo Maria Joseacute Jimeacutenez et Henrik Madsen 2017 laquo On Site Characterisation of the Overall Heat Loss Coefficient Comparison of Different Assessment Methods by a Blind Validation Exercise on a Round Robin Test Box raquo Energy and Buildings 153 (octobre) 179-89 httpsdoiorg101016jenbuild201708006

gt ROGEZ Jacques et Jean LE COZE 2009 laquo Mesure des tempeacuteratures - Questions agrave se poser avant la mesure raquo Text Ref TIP672WEB - laquo Mesures physiques raquo 10 mars 2009 httpswwwtechniques-ingenieurfrbase-documentairemesures-analyses-th1mesure-de-temperature-generalites-echelles-de-temperature-et-etalonnage-42542210mesure-des-temperatures-r2516

23 Journeacutee SFT02052018

Annexes

gt Sassine Emilio 2016 laquo A practical method for in-situ thermal characterization of walls raquo Case Studies in Thermal Engineering 8 (septembre) 84-93 httpsdoiorg101016jcsite201603006

gt Wang Shengwei et Xinhua Xu 2006 laquo Parameter estimation of internal thermal mass of building dynamic models usinggenetic algorithm raquo Energy Conversion and Management 47 (13) 1927-41 httpsdoiorg101016jenconman200509011

Page 8: Université de La Rochelle...(Cattarin et al. 2016) I Contexte II Verrous scientifiques III Etat de l’art IV Conclusion Les installations 9 02/05/2018 Journée SFT I Contexte II

8 Journeacutee SFT02052018

Caracteacuteristiques Laboratoire controcircleacute Cellule test exteacuterieure Mesure in situ

Conditions aux limites Controcircleacutees Controcircleacutees Reacuteelles Reacuteelles

Instrumentation + + -

Preacutecision + = -

Influence occupant Possible

Essais reacuteplicables

Adapteacute agrave

Parois opaques

Parois vitreacutees asymp

Parois actives

Twin houses (Germany IBP)Facade test (La Rochelle TIPEE)

Climatic chamber (Norway

NTNU)

Ces trois installations sont compleacutementaires (Cattarin et al 2016)

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Les installations

9 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes statiques

Meacutethode simple deacutecoulant de la loi de Fourier

Naveros et al 2012 | Deconinck et Roels 2016 | Gori 2017 | Gaspar 2018

Deacutetermination la reacutesistance thermique mais pas la capaciteacute thermique

Hypothegraveses

gt CL constantes ou moyenneacutees

gt proprieacuteteacutes indeacutependantes du temps

gt stockage thermique neacutegligeacute

Contraintes

gt Neacutecessite une longue dureacutee drsquoessai

gt Geacuteneacuteralement un fort gradient de tempeacuterature entre intext (gt10K)

gt Difficulteacute agrave prendre en compte lrsquoensoleillement

10 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Meacutethode de la moyenne

gt Meacutethode tregraves utiliseacutee sur site

gt Deacutefinie dans ISO 9869-1

gt Neacutecessite la mesure de la tempeacuterature drsquoair inteacuterieur la tempeacuterature drsquoair exteacuterieur et le flux thermique

gt Incertitude devient grande pour des parois fortement isoleacutees

gt Pas adapteacute aux parois agrave forte inertie

Modegraveles et meacutethodes statiques

gt Exemples drsquoapplications

ndash Comparaison agrave drsquoautres meacutethodes (Nardi et al 2016 Biddulph 2014)

ndash Utilisation sur site (Baker 2008 Lucchi 2017)

ndash Ameacutelioration et eacutevaluation de la meacutethode (Naveros et al 2012 Ficco et al 2015 Gaspar et al 2018)

11 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Principe

gt Prend en compte le comportement dynamique de la paroi et les conditionsaux limites varieacutees (rayonnement solaire convection forceacutee due au venthellip)pour deacutefinir des caracteacuteristiques thermiques de la paroi

Naveros et al 2014 | Gori 2017

Contraintes

gt Neacutecessite de seacutelectionner convenablement les donneacutees agrave traiter

gt Modegraveles plus complexes

Grande varieacuteteacute

gt Modegraveles de connaissance (ex meacutethode des diffeacuterences finies)

gt Meacutethodes agrave partir de modegraveles laquo boicircte grise raquo (LORD CTSM)

gt Modegraveles de comportement (ex meacutethodes agrave facteurs de reacuteponse)

12 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

LORD | 1994

gt Modegraveles boicircte grise modegraveles RC

gt 2 types de minimisation

ndash OEM (Output Error Method) = somme des eacutecarts quadratiques entre la tempeacuteraturemesureacutee et la tempeacuterature calculeacutee

ndash PEM (Prediction Error Method) = incertitudes sur les mesures et les calculs

gt Estime le coefficient de transmission thermique et le facteur solaire

gt Algorithme de minimisation Meacutethode de Nelder-Mead + Monte Carlo

gt Disponible sur wwwdynasteeinfo

Manuel LORD 32 | Gutschker 2008 | Jimeacutenez et al 2008

gt Exemples drsquoapplications

ndash Diffeacuterents murs avec ou sans ouvrant (U et g) Androutsopoulos et al 2008

ndash Projet Paslink Baker et van Dijk 2008

ndash U et g en climat chaud Jimeacutenez et al 2008

H 3-4Tint

2 3H 2-3

C2 C3

TextH 1-2

1 4

Ex Mur homogegravene

13 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

CTSM = Continuous Time Stochastic Model

gt Deacuteveloppeacute sous R agrave DTU

gt Modegravele boicircte grise laquo continuous time state space models raquo avec prise encompte du bruit de mesure

gt Non lineacuteaire et instationnaire

gt Minimisation PEM (Prediction Error Method) = incertitudes sur les mesureset les calculs

gt Algorithme de minimisation Stochastique

CTSM ndash R Userrsquos Guide | Kristensen et al 2004

gt Exemples drsquoapplications

ndash PV Jimeacutenez et al 2008

ndash U facteur solaire et Ceff Naveros et al 2014

ndash R et C Deconinck et Roels 2017

14 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Modegraveles AR(MA)X

gt Modegraveles de comportement

gt Aucune information physique sauf lorsque le comportement du modegravele est stable = comparaison possible avec lrsquoeacutequation du transfert thermique statique

Naveros et al 2015 | Deconinck et Roels 2016 | Gori 2017

gt Exemples drsquoapplications

ndash U facteur solaire et Ceff Naveros et al 2015

ndash U et g (modegraveles agrave plusieurs sorties) Jimeacutenez et Heras 2005

15 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Autres modegraveles dynamiques

gt Facteur de reacuteponse

ndash Peng et Wu 2008 Rasooli et al 2016

gt Meacutethode des diffeacuterences finies et algorithme de LM

ndash Chaffar et al 2014 Mareacutechal 2014

gt Modegraveles RC

ndash Analyse bayeacutesienne Biddulph et al 2014

ndash Algorithme geacuteneacuterique Wang 2006

gt Meacutethode des quadripocircles et algorithme du gradient reacuteduit geacuteneacuteraliseacute

ndash Sassine 2016

Deux types de donneacutees

gt Les conditions aux limites (tempeacuterature humiditeacute fluxhellip)

gt Mesures pour lrsquoidentification (geacuteneacuteralement tempeacuterature etou flux voire deacutebit)

16 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Instrumentation

1oct 3oct 5oct 7oct 9oct 11oct 13oct 15oct0

1000

2000

3000

4000

5000

6000

7000MODE 1

Day

Ma

ss f

low

ra

te [

kgh

]

Tracer gas method

Velocity profile method

Rogez et Le Coze 2009 | Meng et al 2015 | Cucumo et al 2018

Vigilances

gt Sur les grandeurs

ndash Grande varieacuteteacute

ndash Diffeacuterents ordres de grandeur

gt Sur les capteurs

ndash Choix et preacutecision

ndash Positionnement

ndash Impact sur la mesure

gt Sur les donneacutees reacutecolteacutees

ndash Choix du pas de temps drsquoacquisition

ndash Seacutelection des donneacutees pertinentes et traitement efficace

Larsen et al 2007

Meacutethodes statiques simples mais limiteacutees

Large avantage des meacutethodes dynamiques pour notre probleacutematique

Grande diversiteacute de meacutethodes dynamiques et de meacutethodes inverses

Faccedilades actives Nombreux modegraveles laquo boicircte grise raquo mais aussi modegraveles de connaissance

17 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

18 Journeacutee SFT02052018

Avez-vous des questions

Contact Manon Rendu manonrenduuniv-lrfr

19 Journeacutee SFT02052018

Annexes

gt Androutsopoulos A JJ Bloem HAL van Dijk et PH Baker 2008 laquo Comparison of User Performance When ApplyingSystem Identification for Assessment of the Energy Performance of Building Components raquo Building and Environment43 (2) 189-96 httpsdoiorg101016jbuildenv200610017

gt Baker P H et H A L van Dijk 2008 laquo PASLINK and dynamic outdoor testing of building components raquo Building and Environment Outdoor Testing Analysis and Modelling of Building Components 43 (2) 143-51 httpsdoiorg101016jbuildenv200610009

gt Baker Paul 2008 laquo Technical Paper 2 - In Situ U-Value Measurements in Traditional Buildings - Preliminary Results raquo

gt Berger Julien Thomas Busser Denys Dutykh et Nathan Mendes 2018 laquo On the estimation of moisture permeabilityand advection coefficients of a wood fibre material using the optimal experiment design approach raquo ExperimentalThermal and Fluid Science 90 (janvier) 246-59 httpsdoiorg101016jexpthermflusci201707026

gt Biddulph Phillip Virginia Gori Clifford A Elwell Cameron Scott Caroline Rye Robert Lowe et Tadj Oreszczyn 2014 laquo Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements raquo Energy and Buildings 78 (aoucirct) 10-16 httpsdoiorg101016jenbuild201404004

gt Cattarin G F Causone A Kindinis et L Pagliano 2016 laquo Outdoor test cells for building envelope experimentalcharacterisation ndash A literature review raquo Renewable and Sustainable Energy Reviews 54 (feacutevrier) 606-25 httpsdoiorg101016jrser201510012

gt Chaffar Khaled Alexis Chauchois Didier Defer et Laurent Zalewski 2014 laquo Thermal characterization of homogeneouswalls using inverse method raquo Energy and Buildings 78 (aoucirct) 248-55 httpsdoiorg101016jenbuild201404038

gt laquo CTSM-R Version 100 raquo 2015 CTSM-R Development Team

gt Cucumo Mario Vittorio Ferraro Dimitrios Kaliakatsos et Marilena Mele 2018 laquo On the distortion of thermal flux and of surface temperature induced by heat flux sensors positioned on the inner surface of buildings raquo Energy and Buildings 158 (janvier) 677-83 httpsdoiorg101016jenbuild201710034

20 Journeacutee SFT02052018

Annexes

gt Deconinck An-Heleen et Staf Roels 2016 laquo Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements raquo Energy and Buildings 130 (octobre) 309-20 httpsdoiorg101016jenbuild201608061

gt mdashmdashmdash 2017 laquo The as-built thermal quality of building components characterising non-stationary phenomena throughinverse modelling raquo Energy Procedia 11th Nordic Symposium on Building Physics NSB2017 11-14 June 2017 Trondheim Norway 132 (octobre) 351-56 httpsdoiorg101016jegypro201709748

gt Ficco Giorgio Fabio Iannetta Elvira Ianniello Francesca Romana drsquoAmbrosio Alfano et Marco DellrsquoIsola 2015 laquo U-value in situ measurement for energy diagnosis of existing buildings raquo Energy and Buildings 104 (octobre) 108-21 httpsdoiorg101016jenbuild201506071

gt Gaspar Katia Miquel Casals et Marta Gangolells 2018 laquo In Situ Measurement of Faccedilades with a Low U-Value AvoidingDeviations raquo Energy and Buildings 170 (juillet) 61-73 httpsdoiorg101016jenbuild201804012

gt Gori Virginia University College London et The Barlett 2017 laquo A Novel Method for the Estimation of ThermophysicalProperties of Walls from Short and Seasonally Independent In-Situ Surveys raquo 272

gt Gutschker Olaf 2008 laquo Parameter identification with the software package LORD raquo Building and Environment OutdoorTesting Analysis and Modelling of Building Components 43 (2) 163-69 httpsdoiorg101016jbuildenv200610010

gt mdashmdashmdash s d laquo LORD 32 raquo httpdynasteeinfowp-contentuploads201212lordmanualpdf

gt laquo ISO 9869-12014 - Isolation thermique -- Eacuteleacutements de construction -- Mesurage in situ de la reacutesistance thermique et du coefficient de transmission thermique -- Partie 1 Meacutethode du fluxmegravetre raquo

gt Jensen Rasmus Lund Olena Kalyanova Ph D-student et Per Heiselberg 2008 laquo Modeling a Naturally Ventilated Double Skin Faccedilade with a Building Thermal Simulation Program raquo Building Physics 8

gt Jimeacutenez M J H Madsen J J Bloem et B Dammann 2008 laquo Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules raquo Energy and Buildings 40 (2) 157-67 httpsdoiorg101016jenbuild200702026

21 Journeacutee SFT02052018

Annexes

gt Jimeacutenez M J B Porcar et M R Heras 2008 laquo Estimation of building component UA and gA from outdoor tests in warm and moderate weather conditions raquo Solar Energy 82 (7) 573-87 httpsdoiorg101016jsolener200802013

gt Jimeacutenez Mariacutea Joseacute et Henrik Madsen 2008 laquo Models for describing the thermal characteristics of building components raquo Building and Environment 2008 httpsdoi101016jbuildenv200610030

gt John Godfaurd Derek Clements-Croome et George Jeronimidis 2005 laquo Sustainable Building Solutions A Review of Lessons from the Natural World raquo Building and Environment 40 (3) 319-28 httpsdoiorg101016jbuildenv200405011

gt Kristensen Niels Rode Henrik Madsen et Sten Bay Joslashrgensen 2004 laquo Parameter estimation in stochastic grey-box models raquo Automatica 40 (2) 225-37 httpsdoiorg101016jautomatica200310001

gt Lucchi Elena 2017 laquo Thermal transmittance of historical stone masonries A comparison among standard calculatedand measured data raquo Energy and Buildings 151 (septembre) 393-405 httpsdoiorg101016jenbuild201707002

gt Mareacutechal William 2014 Utilisation de meacutethodes inverses pour la caracteacuterisation de mateacuteriaux agrave changement de phase (MCP) Pau httpwwwthesesfr2014PAUU3014

gt Meng Xi Tao Luo Yanna Gao Lili Zhang Qiong Shen et Enshen Long 2017 laquo A new simple method to measure wallthermal transmittance in situ and its adaptability analysis raquo Applied Thermal Engineering 122 (juillet) 747-57 httpsdoiorg101016japplthermaleng201705074

gt Nardi Iole Domenica Paoletti Dario Ambrosini Tullio de Rubeis et Stefano Sfarra 2016 laquo U-value assessment by infrared thermography A comparison of different calculation methods in a Guarded Hot Box raquo Energy and Buildings 122 (juin) 211-21 httpsdoiorg101016jenbuild201604017

gt Naveros I P Bacher D P Ruiz M J Jimeacutenez et H Madsen 2014 laquo Setting up and validating a complex model for a simple homogeneous wall raquo Energy and Buildings 70 (feacutevrier) 303-17 httpsdoiorg101016jenbuild201311076

gt Naveros I Christian Ghiaus DP Ruiz S Castano et S Castantildeo 2015 laquo Physical parameters identification of walls usingARX models obtained by deduction raquo Energy and Buildings no 108 317-29 httpsdoiorg101016jenbuild201509021

22 Journeacutee SFT02052018

Annexes

gt NF EN 12664 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits secs et humides de moyenne et basse reacutesistance thermique 2001

gt NF EN 12667 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits de haute et moyenne reacutesistance thermique 2001

gt NF EN 12939 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits eacutepais de haute et moyenne reacutesistance thermique 2001

gt NF EN ISO 22007-2 - Plastiques - Deacutetermination de la conductiviteacute thermique et de la diffusiviteacute thermique - Partie 2 meacutethode de la source plane transitoire (disque chaud) 2015

gt Peng Changhai et Zhishen Wu 2008 laquo In situ measuring and evaluating the thermal resistance of building construction raquo Energy and Buildings 40 (11) 2076-82 httpsdoiorg101016jenbuild200805012

gt Rasooli Arash Laure Itard et Carlos Infante Ferreira 2016 laquo A response factor-based method for the rapid in-situ determination of wallrsquos thermal resistance in existing buildings raquo Energy and Buildings 119 (mai) 51-61 httpsdoiorg101016jenbuild201603009

gt Roels Staf Peder Bacher Geert Bauwens Sergio Castantildeo Maria Joseacute Jimeacutenez et Henrik Madsen 2017 laquo On Site Characterisation of the Overall Heat Loss Coefficient Comparison of Different Assessment Methods by a Blind Validation Exercise on a Round Robin Test Box raquo Energy and Buildings 153 (octobre) 179-89 httpsdoiorg101016jenbuild201708006

gt ROGEZ Jacques et Jean LE COZE 2009 laquo Mesure des tempeacuteratures - Questions agrave se poser avant la mesure raquo Text Ref TIP672WEB - laquo Mesures physiques raquo 10 mars 2009 httpswwwtechniques-ingenieurfrbase-documentairemesures-analyses-th1mesure-de-temperature-generalites-echelles-de-temperature-et-etalonnage-42542210mesure-des-temperatures-r2516

23 Journeacutee SFT02052018

Annexes

gt Sassine Emilio 2016 laquo A practical method for in-situ thermal characterization of walls raquo Case Studies in Thermal Engineering 8 (septembre) 84-93 httpsdoiorg101016jcsite201603006

gt Wang Shengwei et Xinhua Xu 2006 laquo Parameter estimation of internal thermal mass of building dynamic models usinggenetic algorithm raquo Energy Conversion and Management 47 (13) 1927-41 httpsdoiorg101016jenconman200509011

Page 9: Université de La Rochelle...(Cattarin et al. 2016) I Contexte II Verrous scientifiques III Etat de l’art IV Conclusion Les installations 9 02/05/2018 Journée SFT I Contexte II

9 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes statiques

Meacutethode simple deacutecoulant de la loi de Fourier

Naveros et al 2012 | Deconinck et Roels 2016 | Gori 2017 | Gaspar 2018

Deacutetermination la reacutesistance thermique mais pas la capaciteacute thermique

Hypothegraveses

gt CL constantes ou moyenneacutees

gt proprieacuteteacutes indeacutependantes du temps

gt stockage thermique neacutegligeacute

Contraintes

gt Neacutecessite une longue dureacutee drsquoessai

gt Geacuteneacuteralement un fort gradient de tempeacuterature entre intext (gt10K)

gt Difficulteacute agrave prendre en compte lrsquoensoleillement

10 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Meacutethode de la moyenne

gt Meacutethode tregraves utiliseacutee sur site

gt Deacutefinie dans ISO 9869-1

gt Neacutecessite la mesure de la tempeacuterature drsquoair inteacuterieur la tempeacuterature drsquoair exteacuterieur et le flux thermique

gt Incertitude devient grande pour des parois fortement isoleacutees

gt Pas adapteacute aux parois agrave forte inertie

Modegraveles et meacutethodes statiques

gt Exemples drsquoapplications

ndash Comparaison agrave drsquoautres meacutethodes (Nardi et al 2016 Biddulph 2014)

ndash Utilisation sur site (Baker 2008 Lucchi 2017)

ndash Ameacutelioration et eacutevaluation de la meacutethode (Naveros et al 2012 Ficco et al 2015 Gaspar et al 2018)

11 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Principe

gt Prend en compte le comportement dynamique de la paroi et les conditionsaux limites varieacutees (rayonnement solaire convection forceacutee due au venthellip)pour deacutefinir des caracteacuteristiques thermiques de la paroi

Naveros et al 2014 | Gori 2017

Contraintes

gt Neacutecessite de seacutelectionner convenablement les donneacutees agrave traiter

gt Modegraveles plus complexes

Grande varieacuteteacute

gt Modegraveles de connaissance (ex meacutethode des diffeacuterences finies)

gt Meacutethodes agrave partir de modegraveles laquo boicircte grise raquo (LORD CTSM)

gt Modegraveles de comportement (ex meacutethodes agrave facteurs de reacuteponse)

12 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

LORD | 1994

gt Modegraveles boicircte grise modegraveles RC

gt 2 types de minimisation

ndash OEM (Output Error Method) = somme des eacutecarts quadratiques entre la tempeacuteraturemesureacutee et la tempeacuterature calculeacutee

ndash PEM (Prediction Error Method) = incertitudes sur les mesures et les calculs

gt Estime le coefficient de transmission thermique et le facteur solaire

gt Algorithme de minimisation Meacutethode de Nelder-Mead + Monte Carlo

gt Disponible sur wwwdynasteeinfo

Manuel LORD 32 | Gutschker 2008 | Jimeacutenez et al 2008

gt Exemples drsquoapplications

ndash Diffeacuterents murs avec ou sans ouvrant (U et g) Androutsopoulos et al 2008

ndash Projet Paslink Baker et van Dijk 2008

ndash U et g en climat chaud Jimeacutenez et al 2008

H 3-4Tint

2 3H 2-3

C2 C3

TextH 1-2

1 4

Ex Mur homogegravene

13 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

CTSM = Continuous Time Stochastic Model

gt Deacuteveloppeacute sous R agrave DTU

gt Modegravele boicircte grise laquo continuous time state space models raquo avec prise encompte du bruit de mesure

gt Non lineacuteaire et instationnaire

gt Minimisation PEM (Prediction Error Method) = incertitudes sur les mesureset les calculs

gt Algorithme de minimisation Stochastique

CTSM ndash R Userrsquos Guide | Kristensen et al 2004

gt Exemples drsquoapplications

ndash PV Jimeacutenez et al 2008

ndash U facteur solaire et Ceff Naveros et al 2014

ndash R et C Deconinck et Roels 2017

14 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Modegraveles AR(MA)X

gt Modegraveles de comportement

gt Aucune information physique sauf lorsque le comportement du modegravele est stable = comparaison possible avec lrsquoeacutequation du transfert thermique statique

Naveros et al 2015 | Deconinck et Roels 2016 | Gori 2017

gt Exemples drsquoapplications

ndash U facteur solaire et Ceff Naveros et al 2015

ndash U et g (modegraveles agrave plusieurs sorties) Jimeacutenez et Heras 2005

15 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Autres modegraveles dynamiques

gt Facteur de reacuteponse

ndash Peng et Wu 2008 Rasooli et al 2016

gt Meacutethode des diffeacuterences finies et algorithme de LM

ndash Chaffar et al 2014 Mareacutechal 2014

gt Modegraveles RC

ndash Analyse bayeacutesienne Biddulph et al 2014

ndash Algorithme geacuteneacuterique Wang 2006

gt Meacutethode des quadripocircles et algorithme du gradient reacuteduit geacuteneacuteraliseacute

ndash Sassine 2016

Deux types de donneacutees

gt Les conditions aux limites (tempeacuterature humiditeacute fluxhellip)

gt Mesures pour lrsquoidentification (geacuteneacuteralement tempeacuterature etou flux voire deacutebit)

16 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Instrumentation

1oct 3oct 5oct 7oct 9oct 11oct 13oct 15oct0

1000

2000

3000

4000

5000

6000

7000MODE 1

Day

Ma

ss f

low

ra

te [

kgh

]

Tracer gas method

Velocity profile method

Rogez et Le Coze 2009 | Meng et al 2015 | Cucumo et al 2018

Vigilances

gt Sur les grandeurs

ndash Grande varieacuteteacute

ndash Diffeacuterents ordres de grandeur

gt Sur les capteurs

ndash Choix et preacutecision

ndash Positionnement

ndash Impact sur la mesure

gt Sur les donneacutees reacutecolteacutees

ndash Choix du pas de temps drsquoacquisition

ndash Seacutelection des donneacutees pertinentes et traitement efficace

Larsen et al 2007

Meacutethodes statiques simples mais limiteacutees

Large avantage des meacutethodes dynamiques pour notre probleacutematique

Grande diversiteacute de meacutethodes dynamiques et de meacutethodes inverses

Faccedilades actives Nombreux modegraveles laquo boicircte grise raquo mais aussi modegraveles de connaissance

17 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

18 Journeacutee SFT02052018

Avez-vous des questions

Contact Manon Rendu manonrenduuniv-lrfr

19 Journeacutee SFT02052018

Annexes

gt Androutsopoulos A JJ Bloem HAL van Dijk et PH Baker 2008 laquo Comparison of User Performance When ApplyingSystem Identification for Assessment of the Energy Performance of Building Components raquo Building and Environment43 (2) 189-96 httpsdoiorg101016jbuildenv200610017

gt Baker P H et H A L van Dijk 2008 laquo PASLINK and dynamic outdoor testing of building components raquo Building and Environment Outdoor Testing Analysis and Modelling of Building Components 43 (2) 143-51 httpsdoiorg101016jbuildenv200610009

gt Baker Paul 2008 laquo Technical Paper 2 - In Situ U-Value Measurements in Traditional Buildings - Preliminary Results raquo

gt Berger Julien Thomas Busser Denys Dutykh et Nathan Mendes 2018 laquo On the estimation of moisture permeabilityand advection coefficients of a wood fibre material using the optimal experiment design approach raquo ExperimentalThermal and Fluid Science 90 (janvier) 246-59 httpsdoiorg101016jexpthermflusci201707026

gt Biddulph Phillip Virginia Gori Clifford A Elwell Cameron Scott Caroline Rye Robert Lowe et Tadj Oreszczyn 2014 laquo Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements raquo Energy and Buildings 78 (aoucirct) 10-16 httpsdoiorg101016jenbuild201404004

gt Cattarin G F Causone A Kindinis et L Pagliano 2016 laquo Outdoor test cells for building envelope experimentalcharacterisation ndash A literature review raquo Renewable and Sustainable Energy Reviews 54 (feacutevrier) 606-25 httpsdoiorg101016jrser201510012

gt Chaffar Khaled Alexis Chauchois Didier Defer et Laurent Zalewski 2014 laquo Thermal characterization of homogeneouswalls using inverse method raquo Energy and Buildings 78 (aoucirct) 248-55 httpsdoiorg101016jenbuild201404038

gt laquo CTSM-R Version 100 raquo 2015 CTSM-R Development Team

gt Cucumo Mario Vittorio Ferraro Dimitrios Kaliakatsos et Marilena Mele 2018 laquo On the distortion of thermal flux and of surface temperature induced by heat flux sensors positioned on the inner surface of buildings raquo Energy and Buildings 158 (janvier) 677-83 httpsdoiorg101016jenbuild201710034

20 Journeacutee SFT02052018

Annexes

gt Deconinck An-Heleen et Staf Roels 2016 laquo Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements raquo Energy and Buildings 130 (octobre) 309-20 httpsdoiorg101016jenbuild201608061

gt mdashmdashmdash 2017 laquo The as-built thermal quality of building components characterising non-stationary phenomena throughinverse modelling raquo Energy Procedia 11th Nordic Symposium on Building Physics NSB2017 11-14 June 2017 Trondheim Norway 132 (octobre) 351-56 httpsdoiorg101016jegypro201709748

gt Ficco Giorgio Fabio Iannetta Elvira Ianniello Francesca Romana drsquoAmbrosio Alfano et Marco DellrsquoIsola 2015 laquo U-value in situ measurement for energy diagnosis of existing buildings raquo Energy and Buildings 104 (octobre) 108-21 httpsdoiorg101016jenbuild201506071

gt Gaspar Katia Miquel Casals et Marta Gangolells 2018 laquo In Situ Measurement of Faccedilades with a Low U-Value AvoidingDeviations raquo Energy and Buildings 170 (juillet) 61-73 httpsdoiorg101016jenbuild201804012

gt Gori Virginia University College London et The Barlett 2017 laquo A Novel Method for the Estimation of ThermophysicalProperties of Walls from Short and Seasonally Independent In-Situ Surveys raquo 272

gt Gutschker Olaf 2008 laquo Parameter identification with the software package LORD raquo Building and Environment OutdoorTesting Analysis and Modelling of Building Components 43 (2) 163-69 httpsdoiorg101016jbuildenv200610010

gt mdashmdashmdash s d laquo LORD 32 raquo httpdynasteeinfowp-contentuploads201212lordmanualpdf

gt laquo ISO 9869-12014 - Isolation thermique -- Eacuteleacutements de construction -- Mesurage in situ de la reacutesistance thermique et du coefficient de transmission thermique -- Partie 1 Meacutethode du fluxmegravetre raquo

gt Jensen Rasmus Lund Olena Kalyanova Ph D-student et Per Heiselberg 2008 laquo Modeling a Naturally Ventilated Double Skin Faccedilade with a Building Thermal Simulation Program raquo Building Physics 8

gt Jimeacutenez M J H Madsen J J Bloem et B Dammann 2008 laquo Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules raquo Energy and Buildings 40 (2) 157-67 httpsdoiorg101016jenbuild200702026

21 Journeacutee SFT02052018

Annexes

gt Jimeacutenez M J B Porcar et M R Heras 2008 laquo Estimation of building component UA and gA from outdoor tests in warm and moderate weather conditions raquo Solar Energy 82 (7) 573-87 httpsdoiorg101016jsolener200802013

gt Jimeacutenez Mariacutea Joseacute et Henrik Madsen 2008 laquo Models for describing the thermal characteristics of building components raquo Building and Environment 2008 httpsdoi101016jbuildenv200610030

gt John Godfaurd Derek Clements-Croome et George Jeronimidis 2005 laquo Sustainable Building Solutions A Review of Lessons from the Natural World raquo Building and Environment 40 (3) 319-28 httpsdoiorg101016jbuildenv200405011

gt Kristensen Niels Rode Henrik Madsen et Sten Bay Joslashrgensen 2004 laquo Parameter estimation in stochastic grey-box models raquo Automatica 40 (2) 225-37 httpsdoiorg101016jautomatica200310001

gt Lucchi Elena 2017 laquo Thermal transmittance of historical stone masonries A comparison among standard calculatedand measured data raquo Energy and Buildings 151 (septembre) 393-405 httpsdoiorg101016jenbuild201707002

gt Mareacutechal William 2014 Utilisation de meacutethodes inverses pour la caracteacuterisation de mateacuteriaux agrave changement de phase (MCP) Pau httpwwwthesesfr2014PAUU3014

gt Meng Xi Tao Luo Yanna Gao Lili Zhang Qiong Shen et Enshen Long 2017 laquo A new simple method to measure wallthermal transmittance in situ and its adaptability analysis raquo Applied Thermal Engineering 122 (juillet) 747-57 httpsdoiorg101016japplthermaleng201705074

gt Nardi Iole Domenica Paoletti Dario Ambrosini Tullio de Rubeis et Stefano Sfarra 2016 laquo U-value assessment by infrared thermography A comparison of different calculation methods in a Guarded Hot Box raquo Energy and Buildings 122 (juin) 211-21 httpsdoiorg101016jenbuild201604017

gt Naveros I P Bacher D P Ruiz M J Jimeacutenez et H Madsen 2014 laquo Setting up and validating a complex model for a simple homogeneous wall raquo Energy and Buildings 70 (feacutevrier) 303-17 httpsdoiorg101016jenbuild201311076

gt Naveros I Christian Ghiaus DP Ruiz S Castano et S Castantildeo 2015 laquo Physical parameters identification of walls usingARX models obtained by deduction raquo Energy and Buildings no 108 317-29 httpsdoiorg101016jenbuild201509021

22 Journeacutee SFT02052018

Annexes

gt NF EN 12664 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits secs et humides de moyenne et basse reacutesistance thermique 2001

gt NF EN 12667 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits de haute et moyenne reacutesistance thermique 2001

gt NF EN 12939 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits eacutepais de haute et moyenne reacutesistance thermique 2001

gt NF EN ISO 22007-2 - Plastiques - Deacutetermination de la conductiviteacute thermique et de la diffusiviteacute thermique - Partie 2 meacutethode de la source plane transitoire (disque chaud) 2015

gt Peng Changhai et Zhishen Wu 2008 laquo In situ measuring and evaluating the thermal resistance of building construction raquo Energy and Buildings 40 (11) 2076-82 httpsdoiorg101016jenbuild200805012

gt Rasooli Arash Laure Itard et Carlos Infante Ferreira 2016 laquo A response factor-based method for the rapid in-situ determination of wallrsquos thermal resistance in existing buildings raquo Energy and Buildings 119 (mai) 51-61 httpsdoiorg101016jenbuild201603009

gt Roels Staf Peder Bacher Geert Bauwens Sergio Castantildeo Maria Joseacute Jimeacutenez et Henrik Madsen 2017 laquo On Site Characterisation of the Overall Heat Loss Coefficient Comparison of Different Assessment Methods by a Blind Validation Exercise on a Round Robin Test Box raquo Energy and Buildings 153 (octobre) 179-89 httpsdoiorg101016jenbuild201708006

gt ROGEZ Jacques et Jean LE COZE 2009 laquo Mesure des tempeacuteratures - Questions agrave se poser avant la mesure raquo Text Ref TIP672WEB - laquo Mesures physiques raquo 10 mars 2009 httpswwwtechniques-ingenieurfrbase-documentairemesures-analyses-th1mesure-de-temperature-generalites-echelles-de-temperature-et-etalonnage-42542210mesure-des-temperatures-r2516

23 Journeacutee SFT02052018

Annexes

gt Sassine Emilio 2016 laquo A practical method for in-situ thermal characterization of walls raquo Case Studies in Thermal Engineering 8 (septembre) 84-93 httpsdoiorg101016jcsite201603006

gt Wang Shengwei et Xinhua Xu 2006 laquo Parameter estimation of internal thermal mass of building dynamic models usinggenetic algorithm raquo Energy Conversion and Management 47 (13) 1927-41 httpsdoiorg101016jenconman200509011

Page 10: Université de La Rochelle...(Cattarin et al. 2016) I Contexte II Verrous scientifiques III Etat de l’art IV Conclusion Les installations 9 02/05/2018 Journée SFT I Contexte II

10 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Meacutethode de la moyenne

gt Meacutethode tregraves utiliseacutee sur site

gt Deacutefinie dans ISO 9869-1

gt Neacutecessite la mesure de la tempeacuterature drsquoair inteacuterieur la tempeacuterature drsquoair exteacuterieur et le flux thermique

gt Incertitude devient grande pour des parois fortement isoleacutees

gt Pas adapteacute aux parois agrave forte inertie

Modegraveles et meacutethodes statiques

gt Exemples drsquoapplications

ndash Comparaison agrave drsquoautres meacutethodes (Nardi et al 2016 Biddulph 2014)

ndash Utilisation sur site (Baker 2008 Lucchi 2017)

ndash Ameacutelioration et eacutevaluation de la meacutethode (Naveros et al 2012 Ficco et al 2015 Gaspar et al 2018)

11 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Principe

gt Prend en compte le comportement dynamique de la paroi et les conditionsaux limites varieacutees (rayonnement solaire convection forceacutee due au venthellip)pour deacutefinir des caracteacuteristiques thermiques de la paroi

Naveros et al 2014 | Gori 2017

Contraintes

gt Neacutecessite de seacutelectionner convenablement les donneacutees agrave traiter

gt Modegraveles plus complexes

Grande varieacuteteacute

gt Modegraveles de connaissance (ex meacutethode des diffeacuterences finies)

gt Meacutethodes agrave partir de modegraveles laquo boicircte grise raquo (LORD CTSM)

gt Modegraveles de comportement (ex meacutethodes agrave facteurs de reacuteponse)

12 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

LORD | 1994

gt Modegraveles boicircte grise modegraveles RC

gt 2 types de minimisation

ndash OEM (Output Error Method) = somme des eacutecarts quadratiques entre la tempeacuteraturemesureacutee et la tempeacuterature calculeacutee

ndash PEM (Prediction Error Method) = incertitudes sur les mesures et les calculs

gt Estime le coefficient de transmission thermique et le facteur solaire

gt Algorithme de minimisation Meacutethode de Nelder-Mead + Monte Carlo

gt Disponible sur wwwdynasteeinfo

Manuel LORD 32 | Gutschker 2008 | Jimeacutenez et al 2008

gt Exemples drsquoapplications

ndash Diffeacuterents murs avec ou sans ouvrant (U et g) Androutsopoulos et al 2008

ndash Projet Paslink Baker et van Dijk 2008

ndash U et g en climat chaud Jimeacutenez et al 2008

H 3-4Tint

2 3H 2-3

C2 C3

TextH 1-2

1 4

Ex Mur homogegravene

13 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

CTSM = Continuous Time Stochastic Model

gt Deacuteveloppeacute sous R agrave DTU

gt Modegravele boicircte grise laquo continuous time state space models raquo avec prise encompte du bruit de mesure

gt Non lineacuteaire et instationnaire

gt Minimisation PEM (Prediction Error Method) = incertitudes sur les mesureset les calculs

gt Algorithme de minimisation Stochastique

CTSM ndash R Userrsquos Guide | Kristensen et al 2004

gt Exemples drsquoapplications

ndash PV Jimeacutenez et al 2008

ndash U facteur solaire et Ceff Naveros et al 2014

ndash R et C Deconinck et Roels 2017

14 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Modegraveles AR(MA)X

gt Modegraveles de comportement

gt Aucune information physique sauf lorsque le comportement du modegravele est stable = comparaison possible avec lrsquoeacutequation du transfert thermique statique

Naveros et al 2015 | Deconinck et Roels 2016 | Gori 2017

gt Exemples drsquoapplications

ndash U facteur solaire et Ceff Naveros et al 2015

ndash U et g (modegraveles agrave plusieurs sorties) Jimeacutenez et Heras 2005

15 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Autres modegraveles dynamiques

gt Facteur de reacuteponse

ndash Peng et Wu 2008 Rasooli et al 2016

gt Meacutethode des diffeacuterences finies et algorithme de LM

ndash Chaffar et al 2014 Mareacutechal 2014

gt Modegraveles RC

ndash Analyse bayeacutesienne Biddulph et al 2014

ndash Algorithme geacuteneacuterique Wang 2006

gt Meacutethode des quadripocircles et algorithme du gradient reacuteduit geacuteneacuteraliseacute

ndash Sassine 2016

Deux types de donneacutees

gt Les conditions aux limites (tempeacuterature humiditeacute fluxhellip)

gt Mesures pour lrsquoidentification (geacuteneacuteralement tempeacuterature etou flux voire deacutebit)

16 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Instrumentation

1oct 3oct 5oct 7oct 9oct 11oct 13oct 15oct0

1000

2000

3000

4000

5000

6000

7000MODE 1

Day

Ma

ss f

low

ra

te [

kgh

]

Tracer gas method

Velocity profile method

Rogez et Le Coze 2009 | Meng et al 2015 | Cucumo et al 2018

Vigilances

gt Sur les grandeurs

ndash Grande varieacuteteacute

ndash Diffeacuterents ordres de grandeur

gt Sur les capteurs

ndash Choix et preacutecision

ndash Positionnement

ndash Impact sur la mesure

gt Sur les donneacutees reacutecolteacutees

ndash Choix du pas de temps drsquoacquisition

ndash Seacutelection des donneacutees pertinentes et traitement efficace

Larsen et al 2007

Meacutethodes statiques simples mais limiteacutees

Large avantage des meacutethodes dynamiques pour notre probleacutematique

Grande diversiteacute de meacutethodes dynamiques et de meacutethodes inverses

Faccedilades actives Nombreux modegraveles laquo boicircte grise raquo mais aussi modegraveles de connaissance

17 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

18 Journeacutee SFT02052018

Avez-vous des questions

Contact Manon Rendu manonrenduuniv-lrfr

19 Journeacutee SFT02052018

Annexes

gt Androutsopoulos A JJ Bloem HAL van Dijk et PH Baker 2008 laquo Comparison of User Performance When ApplyingSystem Identification for Assessment of the Energy Performance of Building Components raquo Building and Environment43 (2) 189-96 httpsdoiorg101016jbuildenv200610017

gt Baker P H et H A L van Dijk 2008 laquo PASLINK and dynamic outdoor testing of building components raquo Building and Environment Outdoor Testing Analysis and Modelling of Building Components 43 (2) 143-51 httpsdoiorg101016jbuildenv200610009

gt Baker Paul 2008 laquo Technical Paper 2 - In Situ U-Value Measurements in Traditional Buildings - Preliminary Results raquo

gt Berger Julien Thomas Busser Denys Dutykh et Nathan Mendes 2018 laquo On the estimation of moisture permeabilityand advection coefficients of a wood fibre material using the optimal experiment design approach raquo ExperimentalThermal and Fluid Science 90 (janvier) 246-59 httpsdoiorg101016jexpthermflusci201707026

gt Biddulph Phillip Virginia Gori Clifford A Elwell Cameron Scott Caroline Rye Robert Lowe et Tadj Oreszczyn 2014 laquo Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements raquo Energy and Buildings 78 (aoucirct) 10-16 httpsdoiorg101016jenbuild201404004

gt Cattarin G F Causone A Kindinis et L Pagliano 2016 laquo Outdoor test cells for building envelope experimentalcharacterisation ndash A literature review raquo Renewable and Sustainable Energy Reviews 54 (feacutevrier) 606-25 httpsdoiorg101016jrser201510012

gt Chaffar Khaled Alexis Chauchois Didier Defer et Laurent Zalewski 2014 laquo Thermal characterization of homogeneouswalls using inverse method raquo Energy and Buildings 78 (aoucirct) 248-55 httpsdoiorg101016jenbuild201404038

gt laquo CTSM-R Version 100 raquo 2015 CTSM-R Development Team

gt Cucumo Mario Vittorio Ferraro Dimitrios Kaliakatsos et Marilena Mele 2018 laquo On the distortion of thermal flux and of surface temperature induced by heat flux sensors positioned on the inner surface of buildings raquo Energy and Buildings 158 (janvier) 677-83 httpsdoiorg101016jenbuild201710034

20 Journeacutee SFT02052018

Annexes

gt Deconinck An-Heleen et Staf Roels 2016 laquo Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements raquo Energy and Buildings 130 (octobre) 309-20 httpsdoiorg101016jenbuild201608061

gt mdashmdashmdash 2017 laquo The as-built thermal quality of building components characterising non-stationary phenomena throughinverse modelling raquo Energy Procedia 11th Nordic Symposium on Building Physics NSB2017 11-14 June 2017 Trondheim Norway 132 (octobre) 351-56 httpsdoiorg101016jegypro201709748

gt Ficco Giorgio Fabio Iannetta Elvira Ianniello Francesca Romana drsquoAmbrosio Alfano et Marco DellrsquoIsola 2015 laquo U-value in situ measurement for energy diagnosis of existing buildings raquo Energy and Buildings 104 (octobre) 108-21 httpsdoiorg101016jenbuild201506071

gt Gaspar Katia Miquel Casals et Marta Gangolells 2018 laquo In Situ Measurement of Faccedilades with a Low U-Value AvoidingDeviations raquo Energy and Buildings 170 (juillet) 61-73 httpsdoiorg101016jenbuild201804012

gt Gori Virginia University College London et The Barlett 2017 laquo A Novel Method for the Estimation of ThermophysicalProperties of Walls from Short and Seasonally Independent In-Situ Surveys raquo 272

gt Gutschker Olaf 2008 laquo Parameter identification with the software package LORD raquo Building and Environment OutdoorTesting Analysis and Modelling of Building Components 43 (2) 163-69 httpsdoiorg101016jbuildenv200610010

gt mdashmdashmdash s d laquo LORD 32 raquo httpdynasteeinfowp-contentuploads201212lordmanualpdf

gt laquo ISO 9869-12014 - Isolation thermique -- Eacuteleacutements de construction -- Mesurage in situ de la reacutesistance thermique et du coefficient de transmission thermique -- Partie 1 Meacutethode du fluxmegravetre raquo

gt Jensen Rasmus Lund Olena Kalyanova Ph D-student et Per Heiselberg 2008 laquo Modeling a Naturally Ventilated Double Skin Faccedilade with a Building Thermal Simulation Program raquo Building Physics 8

gt Jimeacutenez M J H Madsen J J Bloem et B Dammann 2008 laquo Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules raquo Energy and Buildings 40 (2) 157-67 httpsdoiorg101016jenbuild200702026

21 Journeacutee SFT02052018

Annexes

gt Jimeacutenez M J B Porcar et M R Heras 2008 laquo Estimation of building component UA and gA from outdoor tests in warm and moderate weather conditions raquo Solar Energy 82 (7) 573-87 httpsdoiorg101016jsolener200802013

gt Jimeacutenez Mariacutea Joseacute et Henrik Madsen 2008 laquo Models for describing the thermal characteristics of building components raquo Building and Environment 2008 httpsdoi101016jbuildenv200610030

gt John Godfaurd Derek Clements-Croome et George Jeronimidis 2005 laquo Sustainable Building Solutions A Review of Lessons from the Natural World raquo Building and Environment 40 (3) 319-28 httpsdoiorg101016jbuildenv200405011

gt Kristensen Niels Rode Henrik Madsen et Sten Bay Joslashrgensen 2004 laquo Parameter estimation in stochastic grey-box models raquo Automatica 40 (2) 225-37 httpsdoiorg101016jautomatica200310001

gt Lucchi Elena 2017 laquo Thermal transmittance of historical stone masonries A comparison among standard calculatedand measured data raquo Energy and Buildings 151 (septembre) 393-405 httpsdoiorg101016jenbuild201707002

gt Mareacutechal William 2014 Utilisation de meacutethodes inverses pour la caracteacuterisation de mateacuteriaux agrave changement de phase (MCP) Pau httpwwwthesesfr2014PAUU3014

gt Meng Xi Tao Luo Yanna Gao Lili Zhang Qiong Shen et Enshen Long 2017 laquo A new simple method to measure wallthermal transmittance in situ and its adaptability analysis raquo Applied Thermal Engineering 122 (juillet) 747-57 httpsdoiorg101016japplthermaleng201705074

gt Nardi Iole Domenica Paoletti Dario Ambrosini Tullio de Rubeis et Stefano Sfarra 2016 laquo U-value assessment by infrared thermography A comparison of different calculation methods in a Guarded Hot Box raquo Energy and Buildings 122 (juin) 211-21 httpsdoiorg101016jenbuild201604017

gt Naveros I P Bacher D P Ruiz M J Jimeacutenez et H Madsen 2014 laquo Setting up and validating a complex model for a simple homogeneous wall raquo Energy and Buildings 70 (feacutevrier) 303-17 httpsdoiorg101016jenbuild201311076

gt Naveros I Christian Ghiaus DP Ruiz S Castano et S Castantildeo 2015 laquo Physical parameters identification of walls usingARX models obtained by deduction raquo Energy and Buildings no 108 317-29 httpsdoiorg101016jenbuild201509021

22 Journeacutee SFT02052018

Annexes

gt NF EN 12664 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits secs et humides de moyenne et basse reacutesistance thermique 2001

gt NF EN 12667 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits de haute et moyenne reacutesistance thermique 2001

gt NF EN 12939 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits eacutepais de haute et moyenne reacutesistance thermique 2001

gt NF EN ISO 22007-2 - Plastiques - Deacutetermination de la conductiviteacute thermique et de la diffusiviteacute thermique - Partie 2 meacutethode de la source plane transitoire (disque chaud) 2015

gt Peng Changhai et Zhishen Wu 2008 laquo In situ measuring and evaluating the thermal resistance of building construction raquo Energy and Buildings 40 (11) 2076-82 httpsdoiorg101016jenbuild200805012

gt Rasooli Arash Laure Itard et Carlos Infante Ferreira 2016 laquo A response factor-based method for the rapid in-situ determination of wallrsquos thermal resistance in existing buildings raquo Energy and Buildings 119 (mai) 51-61 httpsdoiorg101016jenbuild201603009

gt Roels Staf Peder Bacher Geert Bauwens Sergio Castantildeo Maria Joseacute Jimeacutenez et Henrik Madsen 2017 laquo On Site Characterisation of the Overall Heat Loss Coefficient Comparison of Different Assessment Methods by a Blind Validation Exercise on a Round Robin Test Box raquo Energy and Buildings 153 (octobre) 179-89 httpsdoiorg101016jenbuild201708006

gt ROGEZ Jacques et Jean LE COZE 2009 laquo Mesure des tempeacuteratures - Questions agrave se poser avant la mesure raquo Text Ref TIP672WEB - laquo Mesures physiques raquo 10 mars 2009 httpswwwtechniques-ingenieurfrbase-documentairemesures-analyses-th1mesure-de-temperature-generalites-echelles-de-temperature-et-etalonnage-42542210mesure-des-temperatures-r2516

23 Journeacutee SFT02052018

Annexes

gt Sassine Emilio 2016 laquo A practical method for in-situ thermal characterization of walls raquo Case Studies in Thermal Engineering 8 (septembre) 84-93 httpsdoiorg101016jcsite201603006

gt Wang Shengwei et Xinhua Xu 2006 laquo Parameter estimation of internal thermal mass of building dynamic models usinggenetic algorithm raquo Energy Conversion and Management 47 (13) 1927-41 httpsdoiorg101016jenconman200509011

Page 11: Université de La Rochelle...(Cattarin et al. 2016) I Contexte II Verrous scientifiques III Etat de l’art IV Conclusion Les installations 9 02/05/2018 Journée SFT I Contexte II

11 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Principe

gt Prend en compte le comportement dynamique de la paroi et les conditionsaux limites varieacutees (rayonnement solaire convection forceacutee due au venthellip)pour deacutefinir des caracteacuteristiques thermiques de la paroi

Naveros et al 2014 | Gori 2017

Contraintes

gt Neacutecessite de seacutelectionner convenablement les donneacutees agrave traiter

gt Modegraveles plus complexes

Grande varieacuteteacute

gt Modegraveles de connaissance (ex meacutethode des diffeacuterences finies)

gt Meacutethodes agrave partir de modegraveles laquo boicircte grise raquo (LORD CTSM)

gt Modegraveles de comportement (ex meacutethodes agrave facteurs de reacuteponse)

12 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

LORD | 1994

gt Modegraveles boicircte grise modegraveles RC

gt 2 types de minimisation

ndash OEM (Output Error Method) = somme des eacutecarts quadratiques entre la tempeacuteraturemesureacutee et la tempeacuterature calculeacutee

ndash PEM (Prediction Error Method) = incertitudes sur les mesures et les calculs

gt Estime le coefficient de transmission thermique et le facteur solaire

gt Algorithme de minimisation Meacutethode de Nelder-Mead + Monte Carlo

gt Disponible sur wwwdynasteeinfo

Manuel LORD 32 | Gutschker 2008 | Jimeacutenez et al 2008

gt Exemples drsquoapplications

ndash Diffeacuterents murs avec ou sans ouvrant (U et g) Androutsopoulos et al 2008

ndash Projet Paslink Baker et van Dijk 2008

ndash U et g en climat chaud Jimeacutenez et al 2008

H 3-4Tint

2 3H 2-3

C2 C3

TextH 1-2

1 4

Ex Mur homogegravene

13 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

CTSM = Continuous Time Stochastic Model

gt Deacuteveloppeacute sous R agrave DTU

gt Modegravele boicircte grise laquo continuous time state space models raquo avec prise encompte du bruit de mesure

gt Non lineacuteaire et instationnaire

gt Minimisation PEM (Prediction Error Method) = incertitudes sur les mesureset les calculs

gt Algorithme de minimisation Stochastique

CTSM ndash R Userrsquos Guide | Kristensen et al 2004

gt Exemples drsquoapplications

ndash PV Jimeacutenez et al 2008

ndash U facteur solaire et Ceff Naveros et al 2014

ndash R et C Deconinck et Roels 2017

14 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Modegraveles AR(MA)X

gt Modegraveles de comportement

gt Aucune information physique sauf lorsque le comportement du modegravele est stable = comparaison possible avec lrsquoeacutequation du transfert thermique statique

Naveros et al 2015 | Deconinck et Roels 2016 | Gori 2017

gt Exemples drsquoapplications

ndash U facteur solaire et Ceff Naveros et al 2015

ndash U et g (modegraveles agrave plusieurs sorties) Jimeacutenez et Heras 2005

15 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Autres modegraveles dynamiques

gt Facteur de reacuteponse

ndash Peng et Wu 2008 Rasooli et al 2016

gt Meacutethode des diffeacuterences finies et algorithme de LM

ndash Chaffar et al 2014 Mareacutechal 2014

gt Modegraveles RC

ndash Analyse bayeacutesienne Biddulph et al 2014

ndash Algorithme geacuteneacuterique Wang 2006

gt Meacutethode des quadripocircles et algorithme du gradient reacuteduit geacuteneacuteraliseacute

ndash Sassine 2016

Deux types de donneacutees

gt Les conditions aux limites (tempeacuterature humiditeacute fluxhellip)

gt Mesures pour lrsquoidentification (geacuteneacuteralement tempeacuterature etou flux voire deacutebit)

16 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Instrumentation

1oct 3oct 5oct 7oct 9oct 11oct 13oct 15oct0

1000

2000

3000

4000

5000

6000

7000MODE 1

Day

Ma

ss f

low

ra

te [

kgh

]

Tracer gas method

Velocity profile method

Rogez et Le Coze 2009 | Meng et al 2015 | Cucumo et al 2018

Vigilances

gt Sur les grandeurs

ndash Grande varieacuteteacute

ndash Diffeacuterents ordres de grandeur

gt Sur les capteurs

ndash Choix et preacutecision

ndash Positionnement

ndash Impact sur la mesure

gt Sur les donneacutees reacutecolteacutees

ndash Choix du pas de temps drsquoacquisition

ndash Seacutelection des donneacutees pertinentes et traitement efficace

Larsen et al 2007

Meacutethodes statiques simples mais limiteacutees

Large avantage des meacutethodes dynamiques pour notre probleacutematique

Grande diversiteacute de meacutethodes dynamiques et de meacutethodes inverses

Faccedilades actives Nombreux modegraveles laquo boicircte grise raquo mais aussi modegraveles de connaissance

17 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

18 Journeacutee SFT02052018

Avez-vous des questions

Contact Manon Rendu manonrenduuniv-lrfr

19 Journeacutee SFT02052018

Annexes

gt Androutsopoulos A JJ Bloem HAL van Dijk et PH Baker 2008 laquo Comparison of User Performance When ApplyingSystem Identification for Assessment of the Energy Performance of Building Components raquo Building and Environment43 (2) 189-96 httpsdoiorg101016jbuildenv200610017

gt Baker P H et H A L van Dijk 2008 laquo PASLINK and dynamic outdoor testing of building components raquo Building and Environment Outdoor Testing Analysis and Modelling of Building Components 43 (2) 143-51 httpsdoiorg101016jbuildenv200610009

gt Baker Paul 2008 laquo Technical Paper 2 - In Situ U-Value Measurements in Traditional Buildings - Preliminary Results raquo

gt Berger Julien Thomas Busser Denys Dutykh et Nathan Mendes 2018 laquo On the estimation of moisture permeabilityand advection coefficients of a wood fibre material using the optimal experiment design approach raquo ExperimentalThermal and Fluid Science 90 (janvier) 246-59 httpsdoiorg101016jexpthermflusci201707026

gt Biddulph Phillip Virginia Gori Clifford A Elwell Cameron Scott Caroline Rye Robert Lowe et Tadj Oreszczyn 2014 laquo Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements raquo Energy and Buildings 78 (aoucirct) 10-16 httpsdoiorg101016jenbuild201404004

gt Cattarin G F Causone A Kindinis et L Pagliano 2016 laquo Outdoor test cells for building envelope experimentalcharacterisation ndash A literature review raquo Renewable and Sustainable Energy Reviews 54 (feacutevrier) 606-25 httpsdoiorg101016jrser201510012

gt Chaffar Khaled Alexis Chauchois Didier Defer et Laurent Zalewski 2014 laquo Thermal characterization of homogeneouswalls using inverse method raquo Energy and Buildings 78 (aoucirct) 248-55 httpsdoiorg101016jenbuild201404038

gt laquo CTSM-R Version 100 raquo 2015 CTSM-R Development Team

gt Cucumo Mario Vittorio Ferraro Dimitrios Kaliakatsos et Marilena Mele 2018 laquo On the distortion of thermal flux and of surface temperature induced by heat flux sensors positioned on the inner surface of buildings raquo Energy and Buildings 158 (janvier) 677-83 httpsdoiorg101016jenbuild201710034

20 Journeacutee SFT02052018

Annexes

gt Deconinck An-Heleen et Staf Roels 2016 laquo Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements raquo Energy and Buildings 130 (octobre) 309-20 httpsdoiorg101016jenbuild201608061

gt mdashmdashmdash 2017 laquo The as-built thermal quality of building components characterising non-stationary phenomena throughinverse modelling raquo Energy Procedia 11th Nordic Symposium on Building Physics NSB2017 11-14 June 2017 Trondheim Norway 132 (octobre) 351-56 httpsdoiorg101016jegypro201709748

gt Ficco Giorgio Fabio Iannetta Elvira Ianniello Francesca Romana drsquoAmbrosio Alfano et Marco DellrsquoIsola 2015 laquo U-value in situ measurement for energy diagnosis of existing buildings raquo Energy and Buildings 104 (octobre) 108-21 httpsdoiorg101016jenbuild201506071

gt Gaspar Katia Miquel Casals et Marta Gangolells 2018 laquo In Situ Measurement of Faccedilades with a Low U-Value AvoidingDeviations raquo Energy and Buildings 170 (juillet) 61-73 httpsdoiorg101016jenbuild201804012

gt Gori Virginia University College London et The Barlett 2017 laquo A Novel Method for the Estimation of ThermophysicalProperties of Walls from Short and Seasonally Independent In-Situ Surveys raquo 272

gt Gutschker Olaf 2008 laquo Parameter identification with the software package LORD raquo Building and Environment OutdoorTesting Analysis and Modelling of Building Components 43 (2) 163-69 httpsdoiorg101016jbuildenv200610010

gt mdashmdashmdash s d laquo LORD 32 raquo httpdynasteeinfowp-contentuploads201212lordmanualpdf

gt laquo ISO 9869-12014 - Isolation thermique -- Eacuteleacutements de construction -- Mesurage in situ de la reacutesistance thermique et du coefficient de transmission thermique -- Partie 1 Meacutethode du fluxmegravetre raquo

gt Jensen Rasmus Lund Olena Kalyanova Ph D-student et Per Heiselberg 2008 laquo Modeling a Naturally Ventilated Double Skin Faccedilade with a Building Thermal Simulation Program raquo Building Physics 8

gt Jimeacutenez M J H Madsen J J Bloem et B Dammann 2008 laquo Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules raquo Energy and Buildings 40 (2) 157-67 httpsdoiorg101016jenbuild200702026

21 Journeacutee SFT02052018

Annexes

gt Jimeacutenez M J B Porcar et M R Heras 2008 laquo Estimation of building component UA and gA from outdoor tests in warm and moderate weather conditions raquo Solar Energy 82 (7) 573-87 httpsdoiorg101016jsolener200802013

gt Jimeacutenez Mariacutea Joseacute et Henrik Madsen 2008 laquo Models for describing the thermal characteristics of building components raquo Building and Environment 2008 httpsdoi101016jbuildenv200610030

gt John Godfaurd Derek Clements-Croome et George Jeronimidis 2005 laquo Sustainable Building Solutions A Review of Lessons from the Natural World raquo Building and Environment 40 (3) 319-28 httpsdoiorg101016jbuildenv200405011

gt Kristensen Niels Rode Henrik Madsen et Sten Bay Joslashrgensen 2004 laquo Parameter estimation in stochastic grey-box models raquo Automatica 40 (2) 225-37 httpsdoiorg101016jautomatica200310001

gt Lucchi Elena 2017 laquo Thermal transmittance of historical stone masonries A comparison among standard calculatedand measured data raquo Energy and Buildings 151 (septembre) 393-405 httpsdoiorg101016jenbuild201707002

gt Mareacutechal William 2014 Utilisation de meacutethodes inverses pour la caracteacuterisation de mateacuteriaux agrave changement de phase (MCP) Pau httpwwwthesesfr2014PAUU3014

gt Meng Xi Tao Luo Yanna Gao Lili Zhang Qiong Shen et Enshen Long 2017 laquo A new simple method to measure wallthermal transmittance in situ and its adaptability analysis raquo Applied Thermal Engineering 122 (juillet) 747-57 httpsdoiorg101016japplthermaleng201705074

gt Nardi Iole Domenica Paoletti Dario Ambrosini Tullio de Rubeis et Stefano Sfarra 2016 laquo U-value assessment by infrared thermography A comparison of different calculation methods in a Guarded Hot Box raquo Energy and Buildings 122 (juin) 211-21 httpsdoiorg101016jenbuild201604017

gt Naveros I P Bacher D P Ruiz M J Jimeacutenez et H Madsen 2014 laquo Setting up and validating a complex model for a simple homogeneous wall raquo Energy and Buildings 70 (feacutevrier) 303-17 httpsdoiorg101016jenbuild201311076

gt Naveros I Christian Ghiaus DP Ruiz S Castano et S Castantildeo 2015 laquo Physical parameters identification of walls usingARX models obtained by deduction raquo Energy and Buildings no 108 317-29 httpsdoiorg101016jenbuild201509021

22 Journeacutee SFT02052018

Annexes

gt NF EN 12664 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits secs et humides de moyenne et basse reacutesistance thermique 2001

gt NF EN 12667 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits de haute et moyenne reacutesistance thermique 2001

gt NF EN 12939 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits eacutepais de haute et moyenne reacutesistance thermique 2001

gt NF EN ISO 22007-2 - Plastiques - Deacutetermination de la conductiviteacute thermique et de la diffusiviteacute thermique - Partie 2 meacutethode de la source plane transitoire (disque chaud) 2015

gt Peng Changhai et Zhishen Wu 2008 laquo In situ measuring and evaluating the thermal resistance of building construction raquo Energy and Buildings 40 (11) 2076-82 httpsdoiorg101016jenbuild200805012

gt Rasooli Arash Laure Itard et Carlos Infante Ferreira 2016 laquo A response factor-based method for the rapid in-situ determination of wallrsquos thermal resistance in existing buildings raquo Energy and Buildings 119 (mai) 51-61 httpsdoiorg101016jenbuild201603009

gt Roels Staf Peder Bacher Geert Bauwens Sergio Castantildeo Maria Joseacute Jimeacutenez et Henrik Madsen 2017 laquo On Site Characterisation of the Overall Heat Loss Coefficient Comparison of Different Assessment Methods by a Blind Validation Exercise on a Round Robin Test Box raquo Energy and Buildings 153 (octobre) 179-89 httpsdoiorg101016jenbuild201708006

gt ROGEZ Jacques et Jean LE COZE 2009 laquo Mesure des tempeacuteratures - Questions agrave se poser avant la mesure raquo Text Ref TIP672WEB - laquo Mesures physiques raquo 10 mars 2009 httpswwwtechniques-ingenieurfrbase-documentairemesures-analyses-th1mesure-de-temperature-generalites-echelles-de-temperature-et-etalonnage-42542210mesure-des-temperatures-r2516

23 Journeacutee SFT02052018

Annexes

gt Sassine Emilio 2016 laquo A practical method for in-situ thermal characterization of walls raquo Case Studies in Thermal Engineering 8 (septembre) 84-93 httpsdoiorg101016jcsite201603006

gt Wang Shengwei et Xinhua Xu 2006 laquo Parameter estimation of internal thermal mass of building dynamic models usinggenetic algorithm raquo Energy Conversion and Management 47 (13) 1927-41 httpsdoiorg101016jenconman200509011

Page 12: Université de La Rochelle...(Cattarin et al. 2016) I Contexte II Verrous scientifiques III Etat de l’art IV Conclusion Les installations 9 02/05/2018 Journée SFT I Contexte II

12 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

LORD | 1994

gt Modegraveles boicircte grise modegraveles RC

gt 2 types de minimisation

ndash OEM (Output Error Method) = somme des eacutecarts quadratiques entre la tempeacuteraturemesureacutee et la tempeacuterature calculeacutee

ndash PEM (Prediction Error Method) = incertitudes sur les mesures et les calculs

gt Estime le coefficient de transmission thermique et le facteur solaire

gt Algorithme de minimisation Meacutethode de Nelder-Mead + Monte Carlo

gt Disponible sur wwwdynasteeinfo

Manuel LORD 32 | Gutschker 2008 | Jimeacutenez et al 2008

gt Exemples drsquoapplications

ndash Diffeacuterents murs avec ou sans ouvrant (U et g) Androutsopoulos et al 2008

ndash Projet Paslink Baker et van Dijk 2008

ndash U et g en climat chaud Jimeacutenez et al 2008

H 3-4Tint

2 3H 2-3

C2 C3

TextH 1-2

1 4

Ex Mur homogegravene

13 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

CTSM = Continuous Time Stochastic Model

gt Deacuteveloppeacute sous R agrave DTU

gt Modegravele boicircte grise laquo continuous time state space models raquo avec prise encompte du bruit de mesure

gt Non lineacuteaire et instationnaire

gt Minimisation PEM (Prediction Error Method) = incertitudes sur les mesureset les calculs

gt Algorithme de minimisation Stochastique

CTSM ndash R Userrsquos Guide | Kristensen et al 2004

gt Exemples drsquoapplications

ndash PV Jimeacutenez et al 2008

ndash U facteur solaire et Ceff Naveros et al 2014

ndash R et C Deconinck et Roels 2017

14 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Modegraveles AR(MA)X

gt Modegraveles de comportement

gt Aucune information physique sauf lorsque le comportement du modegravele est stable = comparaison possible avec lrsquoeacutequation du transfert thermique statique

Naveros et al 2015 | Deconinck et Roels 2016 | Gori 2017

gt Exemples drsquoapplications

ndash U facteur solaire et Ceff Naveros et al 2015

ndash U et g (modegraveles agrave plusieurs sorties) Jimeacutenez et Heras 2005

15 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Autres modegraveles dynamiques

gt Facteur de reacuteponse

ndash Peng et Wu 2008 Rasooli et al 2016

gt Meacutethode des diffeacuterences finies et algorithme de LM

ndash Chaffar et al 2014 Mareacutechal 2014

gt Modegraveles RC

ndash Analyse bayeacutesienne Biddulph et al 2014

ndash Algorithme geacuteneacuterique Wang 2006

gt Meacutethode des quadripocircles et algorithme du gradient reacuteduit geacuteneacuteraliseacute

ndash Sassine 2016

Deux types de donneacutees

gt Les conditions aux limites (tempeacuterature humiditeacute fluxhellip)

gt Mesures pour lrsquoidentification (geacuteneacuteralement tempeacuterature etou flux voire deacutebit)

16 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Instrumentation

1oct 3oct 5oct 7oct 9oct 11oct 13oct 15oct0

1000

2000

3000

4000

5000

6000

7000MODE 1

Day

Ma

ss f

low

ra

te [

kgh

]

Tracer gas method

Velocity profile method

Rogez et Le Coze 2009 | Meng et al 2015 | Cucumo et al 2018

Vigilances

gt Sur les grandeurs

ndash Grande varieacuteteacute

ndash Diffeacuterents ordres de grandeur

gt Sur les capteurs

ndash Choix et preacutecision

ndash Positionnement

ndash Impact sur la mesure

gt Sur les donneacutees reacutecolteacutees

ndash Choix du pas de temps drsquoacquisition

ndash Seacutelection des donneacutees pertinentes et traitement efficace

Larsen et al 2007

Meacutethodes statiques simples mais limiteacutees

Large avantage des meacutethodes dynamiques pour notre probleacutematique

Grande diversiteacute de meacutethodes dynamiques et de meacutethodes inverses

Faccedilades actives Nombreux modegraveles laquo boicircte grise raquo mais aussi modegraveles de connaissance

17 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

18 Journeacutee SFT02052018

Avez-vous des questions

Contact Manon Rendu manonrenduuniv-lrfr

19 Journeacutee SFT02052018

Annexes

gt Androutsopoulos A JJ Bloem HAL van Dijk et PH Baker 2008 laquo Comparison of User Performance When ApplyingSystem Identification for Assessment of the Energy Performance of Building Components raquo Building and Environment43 (2) 189-96 httpsdoiorg101016jbuildenv200610017

gt Baker P H et H A L van Dijk 2008 laquo PASLINK and dynamic outdoor testing of building components raquo Building and Environment Outdoor Testing Analysis and Modelling of Building Components 43 (2) 143-51 httpsdoiorg101016jbuildenv200610009

gt Baker Paul 2008 laquo Technical Paper 2 - In Situ U-Value Measurements in Traditional Buildings - Preliminary Results raquo

gt Berger Julien Thomas Busser Denys Dutykh et Nathan Mendes 2018 laquo On the estimation of moisture permeabilityand advection coefficients of a wood fibre material using the optimal experiment design approach raquo ExperimentalThermal and Fluid Science 90 (janvier) 246-59 httpsdoiorg101016jexpthermflusci201707026

gt Biddulph Phillip Virginia Gori Clifford A Elwell Cameron Scott Caroline Rye Robert Lowe et Tadj Oreszczyn 2014 laquo Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements raquo Energy and Buildings 78 (aoucirct) 10-16 httpsdoiorg101016jenbuild201404004

gt Cattarin G F Causone A Kindinis et L Pagliano 2016 laquo Outdoor test cells for building envelope experimentalcharacterisation ndash A literature review raquo Renewable and Sustainable Energy Reviews 54 (feacutevrier) 606-25 httpsdoiorg101016jrser201510012

gt Chaffar Khaled Alexis Chauchois Didier Defer et Laurent Zalewski 2014 laquo Thermal characterization of homogeneouswalls using inverse method raquo Energy and Buildings 78 (aoucirct) 248-55 httpsdoiorg101016jenbuild201404038

gt laquo CTSM-R Version 100 raquo 2015 CTSM-R Development Team

gt Cucumo Mario Vittorio Ferraro Dimitrios Kaliakatsos et Marilena Mele 2018 laquo On the distortion of thermal flux and of surface temperature induced by heat flux sensors positioned on the inner surface of buildings raquo Energy and Buildings 158 (janvier) 677-83 httpsdoiorg101016jenbuild201710034

20 Journeacutee SFT02052018

Annexes

gt Deconinck An-Heleen et Staf Roels 2016 laquo Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements raquo Energy and Buildings 130 (octobre) 309-20 httpsdoiorg101016jenbuild201608061

gt mdashmdashmdash 2017 laquo The as-built thermal quality of building components characterising non-stationary phenomena throughinverse modelling raquo Energy Procedia 11th Nordic Symposium on Building Physics NSB2017 11-14 June 2017 Trondheim Norway 132 (octobre) 351-56 httpsdoiorg101016jegypro201709748

gt Ficco Giorgio Fabio Iannetta Elvira Ianniello Francesca Romana drsquoAmbrosio Alfano et Marco DellrsquoIsola 2015 laquo U-value in situ measurement for energy diagnosis of existing buildings raquo Energy and Buildings 104 (octobre) 108-21 httpsdoiorg101016jenbuild201506071

gt Gaspar Katia Miquel Casals et Marta Gangolells 2018 laquo In Situ Measurement of Faccedilades with a Low U-Value AvoidingDeviations raquo Energy and Buildings 170 (juillet) 61-73 httpsdoiorg101016jenbuild201804012

gt Gori Virginia University College London et The Barlett 2017 laquo A Novel Method for the Estimation of ThermophysicalProperties of Walls from Short and Seasonally Independent In-Situ Surveys raquo 272

gt Gutschker Olaf 2008 laquo Parameter identification with the software package LORD raquo Building and Environment OutdoorTesting Analysis and Modelling of Building Components 43 (2) 163-69 httpsdoiorg101016jbuildenv200610010

gt mdashmdashmdash s d laquo LORD 32 raquo httpdynasteeinfowp-contentuploads201212lordmanualpdf

gt laquo ISO 9869-12014 - Isolation thermique -- Eacuteleacutements de construction -- Mesurage in situ de la reacutesistance thermique et du coefficient de transmission thermique -- Partie 1 Meacutethode du fluxmegravetre raquo

gt Jensen Rasmus Lund Olena Kalyanova Ph D-student et Per Heiselberg 2008 laquo Modeling a Naturally Ventilated Double Skin Faccedilade with a Building Thermal Simulation Program raquo Building Physics 8

gt Jimeacutenez M J H Madsen J J Bloem et B Dammann 2008 laquo Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules raquo Energy and Buildings 40 (2) 157-67 httpsdoiorg101016jenbuild200702026

21 Journeacutee SFT02052018

Annexes

gt Jimeacutenez M J B Porcar et M R Heras 2008 laquo Estimation of building component UA and gA from outdoor tests in warm and moderate weather conditions raquo Solar Energy 82 (7) 573-87 httpsdoiorg101016jsolener200802013

gt Jimeacutenez Mariacutea Joseacute et Henrik Madsen 2008 laquo Models for describing the thermal characteristics of building components raquo Building and Environment 2008 httpsdoi101016jbuildenv200610030

gt John Godfaurd Derek Clements-Croome et George Jeronimidis 2005 laquo Sustainable Building Solutions A Review of Lessons from the Natural World raquo Building and Environment 40 (3) 319-28 httpsdoiorg101016jbuildenv200405011

gt Kristensen Niels Rode Henrik Madsen et Sten Bay Joslashrgensen 2004 laquo Parameter estimation in stochastic grey-box models raquo Automatica 40 (2) 225-37 httpsdoiorg101016jautomatica200310001

gt Lucchi Elena 2017 laquo Thermal transmittance of historical stone masonries A comparison among standard calculatedand measured data raquo Energy and Buildings 151 (septembre) 393-405 httpsdoiorg101016jenbuild201707002

gt Mareacutechal William 2014 Utilisation de meacutethodes inverses pour la caracteacuterisation de mateacuteriaux agrave changement de phase (MCP) Pau httpwwwthesesfr2014PAUU3014

gt Meng Xi Tao Luo Yanna Gao Lili Zhang Qiong Shen et Enshen Long 2017 laquo A new simple method to measure wallthermal transmittance in situ and its adaptability analysis raquo Applied Thermal Engineering 122 (juillet) 747-57 httpsdoiorg101016japplthermaleng201705074

gt Nardi Iole Domenica Paoletti Dario Ambrosini Tullio de Rubeis et Stefano Sfarra 2016 laquo U-value assessment by infrared thermography A comparison of different calculation methods in a Guarded Hot Box raquo Energy and Buildings 122 (juin) 211-21 httpsdoiorg101016jenbuild201604017

gt Naveros I P Bacher D P Ruiz M J Jimeacutenez et H Madsen 2014 laquo Setting up and validating a complex model for a simple homogeneous wall raquo Energy and Buildings 70 (feacutevrier) 303-17 httpsdoiorg101016jenbuild201311076

gt Naveros I Christian Ghiaus DP Ruiz S Castano et S Castantildeo 2015 laquo Physical parameters identification of walls usingARX models obtained by deduction raquo Energy and Buildings no 108 317-29 httpsdoiorg101016jenbuild201509021

22 Journeacutee SFT02052018

Annexes

gt NF EN 12664 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits secs et humides de moyenne et basse reacutesistance thermique 2001

gt NF EN 12667 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits de haute et moyenne reacutesistance thermique 2001

gt NF EN 12939 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits eacutepais de haute et moyenne reacutesistance thermique 2001

gt NF EN ISO 22007-2 - Plastiques - Deacutetermination de la conductiviteacute thermique et de la diffusiviteacute thermique - Partie 2 meacutethode de la source plane transitoire (disque chaud) 2015

gt Peng Changhai et Zhishen Wu 2008 laquo In situ measuring and evaluating the thermal resistance of building construction raquo Energy and Buildings 40 (11) 2076-82 httpsdoiorg101016jenbuild200805012

gt Rasooli Arash Laure Itard et Carlos Infante Ferreira 2016 laquo A response factor-based method for the rapid in-situ determination of wallrsquos thermal resistance in existing buildings raquo Energy and Buildings 119 (mai) 51-61 httpsdoiorg101016jenbuild201603009

gt Roels Staf Peder Bacher Geert Bauwens Sergio Castantildeo Maria Joseacute Jimeacutenez et Henrik Madsen 2017 laquo On Site Characterisation of the Overall Heat Loss Coefficient Comparison of Different Assessment Methods by a Blind Validation Exercise on a Round Robin Test Box raquo Energy and Buildings 153 (octobre) 179-89 httpsdoiorg101016jenbuild201708006

gt ROGEZ Jacques et Jean LE COZE 2009 laquo Mesure des tempeacuteratures - Questions agrave se poser avant la mesure raquo Text Ref TIP672WEB - laquo Mesures physiques raquo 10 mars 2009 httpswwwtechniques-ingenieurfrbase-documentairemesures-analyses-th1mesure-de-temperature-generalites-echelles-de-temperature-et-etalonnage-42542210mesure-des-temperatures-r2516

23 Journeacutee SFT02052018

Annexes

gt Sassine Emilio 2016 laquo A practical method for in-situ thermal characterization of walls raquo Case Studies in Thermal Engineering 8 (septembre) 84-93 httpsdoiorg101016jcsite201603006

gt Wang Shengwei et Xinhua Xu 2006 laquo Parameter estimation of internal thermal mass of building dynamic models usinggenetic algorithm raquo Energy Conversion and Management 47 (13) 1927-41 httpsdoiorg101016jenconman200509011

Page 13: Université de La Rochelle...(Cattarin et al. 2016) I Contexte II Verrous scientifiques III Etat de l’art IV Conclusion Les installations 9 02/05/2018 Journée SFT I Contexte II

13 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

CTSM = Continuous Time Stochastic Model

gt Deacuteveloppeacute sous R agrave DTU

gt Modegravele boicircte grise laquo continuous time state space models raquo avec prise encompte du bruit de mesure

gt Non lineacuteaire et instationnaire

gt Minimisation PEM (Prediction Error Method) = incertitudes sur les mesureset les calculs

gt Algorithme de minimisation Stochastique

CTSM ndash R Userrsquos Guide | Kristensen et al 2004

gt Exemples drsquoapplications

ndash PV Jimeacutenez et al 2008

ndash U facteur solaire et Ceff Naveros et al 2014

ndash R et C Deconinck et Roels 2017

14 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Modegraveles AR(MA)X

gt Modegraveles de comportement

gt Aucune information physique sauf lorsque le comportement du modegravele est stable = comparaison possible avec lrsquoeacutequation du transfert thermique statique

Naveros et al 2015 | Deconinck et Roels 2016 | Gori 2017

gt Exemples drsquoapplications

ndash U facteur solaire et Ceff Naveros et al 2015

ndash U et g (modegraveles agrave plusieurs sorties) Jimeacutenez et Heras 2005

15 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Autres modegraveles dynamiques

gt Facteur de reacuteponse

ndash Peng et Wu 2008 Rasooli et al 2016

gt Meacutethode des diffeacuterences finies et algorithme de LM

ndash Chaffar et al 2014 Mareacutechal 2014

gt Modegraveles RC

ndash Analyse bayeacutesienne Biddulph et al 2014

ndash Algorithme geacuteneacuterique Wang 2006

gt Meacutethode des quadripocircles et algorithme du gradient reacuteduit geacuteneacuteraliseacute

ndash Sassine 2016

Deux types de donneacutees

gt Les conditions aux limites (tempeacuterature humiditeacute fluxhellip)

gt Mesures pour lrsquoidentification (geacuteneacuteralement tempeacuterature etou flux voire deacutebit)

16 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Instrumentation

1oct 3oct 5oct 7oct 9oct 11oct 13oct 15oct0

1000

2000

3000

4000

5000

6000

7000MODE 1

Day

Ma

ss f

low

ra

te [

kgh

]

Tracer gas method

Velocity profile method

Rogez et Le Coze 2009 | Meng et al 2015 | Cucumo et al 2018

Vigilances

gt Sur les grandeurs

ndash Grande varieacuteteacute

ndash Diffeacuterents ordres de grandeur

gt Sur les capteurs

ndash Choix et preacutecision

ndash Positionnement

ndash Impact sur la mesure

gt Sur les donneacutees reacutecolteacutees

ndash Choix du pas de temps drsquoacquisition

ndash Seacutelection des donneacutees pertinentes et traitement efficace

Larsen et al 2007

Meacutethodes statiques simples mais limiteacutees

Large avantage des meacutethodes dynamiques pour notre probleacutematique

Grande diversiteacute de meacutethodes dynamiques et de meacutethodes inverses

Faccedilades actives Nombreux modegraveles laquo boicircte grise raquo mais aussi modegraveles de connaissance

17 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

18 Journeacutee SFT02052018

Avez-vous des questions

Contact Manon Rendu manonrenduuniv-lrfr

19 Journeacutee SFT02052018

Annexes

gt Androutsopoulos A JJ Bloem HAL van Dijk et PH Baker 2008 laquo Comparison of User Performance When ApplyingSystem Identification for Assessment of the Energy Performance of Building Components raquo Building and Environment43 (2) 189-96 httpsdoiorg101016jbuildenv200610017

gt Baker P H et H A L van Dijk 2008 laquo PASLINK and dynamic outdoor testing of building components raquo Building and Environment Outdoor Testing Analysis and Modelling of Building Components 43 (2) 143-51 httpsdoiorg101016jbuildenv200610009

gt Baker Paul 2008 laquo Technical Paper 2 - In Situ U-Value Measurements in Traditional Buildings - Preliminary Results raquo

gt Berger Julien Thomas Busser Denys Dutykh et Nathan Mendes 2018 laquo On the estimation of moisture permeabilityand advection coefficients of a wood fibre material using the optimal experiment design approach raquo ExperimentalThermal and Fluid Science 90 (janvier) 246-59 httpsdoiorg101016jexpthermflusci201707026

gt Biddulph Phillip Virginia Gori Clifford A Elwell Cameron Scott Caroline Rye Robert Lowe et Tadj Oreszczyn 2014 laquo Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements raquo Energy and Buildings 78 (aoucirct) 10-16 httpsdoiorg101016jenbuild201404004

gt Cattarin G F Causone A Kindinis et L Pagliano 2016 laquo Outdoor test cells for building envelope experimentalcharacterisation ndash A literature review raquo Renewable and Sustainable Energy Reviews 54 (feacutevrier) 606-25 httpsdoiorg101016jrser201510012

gt Chaffar Khaled Alexis Chauchois Didier Defer et Laurent Zalewski 2014 laquo Thermal characterization of homogeneouswalls using inverse method raquo Energy and Buildings 78 (aoucirct) 248-55 httpsdoiorg101016jenbuild201404038

gt laquo CTSM-R Version 100 raquo 2015 CTSM-R Development Team

gt Cucumo Mario Vittorio Ferraro Dimitrios Kaliakatsos et Marilena Mele 2018 laquo On the distortion of thermal flux and of surface temperature induced by heat flux sensors positioned on the inner surface of buildings raquo Energy and Buildings 158 (janvier) 677-83 httpsdoiorg101016jenbuild201710034

20 Journeacutee SFT02052018

Annexes

gt Deconinck An-Heleen et Staf Roels 2016 laquo Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements raquo Energy and Buildings 130 (octobre) 309-20 httpsdoiorg101016jenbuild201608061

gt mdashmdashmdash 2017 laquo The as-built thermal quality of building components characterising non-stationary phenomena throughinverse modelling raquo Energy Procedia 11th Nordic Symposium on Building Physics NSB2017 11-14 June 2017 Trondheim Norway 132 (octobre) 351-56 httpsdoiorg101016jegypro201709748

gt Ficco Giorgio Fabio Iannetta Elvira Ianniello Francesca Romana drsquoAmbrosio Alfano et Marco DellrsquoIsola 2015 laquo U-value in situ measurement for energy diagnosis of existing buildings raquo Energy and Buildings 104 (octobre) 108-21 httpsdoiorg101016jenbuild201506071

gt Gaspar Katia Miquel Casals et Marta Gangolells 2018 laquo In Situ Measurement of Faccedilades with a Low U-Value AvoidingDeviations raquo Energy and Buildings 170 (juillet) 61-73 httpsdoiorg101016jenbuild201804012

gt Gori Virginia University College London et The Barlett 2017 laquo A Novel Method for the Estimation of ThermophysicalProperties of Walls from Short and Seasonally Independent In-Situ Surveys raquo 272

gt Gutschker Olaf 2008 laquo Parameter identification with the software package LORD raquo Building and Environment OutdoorTesting Analysis and Modelling of Building Components 43 (2) 163-69 httpsdoiorg101016jbuildenv200610010

gt mdashmdashmdash s d laquo LORD 32 raquo httpdynasteeinfowp-contentuploads201212lordmanualpdf

gt laquo ISO 9869-12014 - Isolation thermique -- Eacuteleacutements de construction -- Mesurage in situ de la reacutesistance thermique et du coefficient de transmission thermique -- Partie 1 Meacutethode du fluxmegravetre raquo

gt Jensen Rasmus Lund Olena Kalyanova Ph D-student et Per Heiselberg 2008 laquo Modeling a Naturally Ventilated Double Skin Faccedilade with a Building Thermal Simulation Program raquo Building Physics 8

gt Jimeacutenez M J H Madsen J J Bloem et B Dammann 2008 laquo Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules raquo Energy and Buildings 40 (2) 157-67 httpsdoiorg101016jenbuild200702026

21 Journeacutee SFT02052018

Annexes

gt Jimeacutenez M J B Porcar et M R Heras 2008 laquo Estimation of building component UA and gA from outdoor tests in warm and moderate weather conditions raquo Solar Energy 82 (7) 573-87 httpsdoiorg101016jsolener200802013

gt Jimeacutenez Mariacutea Joseacute et Henrik Madsen 2008 laquo Models for describing the thermal characteristics of building components raquo Building and Environment 2008 httpsdoi101016jbuildenv200610030

gt John Godfaurd Derek Clements-Croome et George Jeronimidis 2005 laquo Sustainable Building Solutions A Review of Lessons from the Natural World raquo Building and Environment 40 (3) 319-28 httpsdoiorg101016jbuildenv200405011

gt Kristensen Niels Rode Henrik Madsen et Sten Bay Joslashrgensen 2004 laquo Parameter estimation in stochastic grey-box models raquo Automatica 40 (2) 225-37 httpsdoiorg101016jautomatica200310001

gt Lucchi Elena 2017 laquo Thermal transmittance of historical stone masonries A comparison among standard calculatedand measured data raquo Energy and Buildings 151 (septembre) 393-405 httpsdoiorg101016jenbuild201707002

gt Mareacutechal William 2014 Utilisation de meacutethodes inverses pour la caracteacuterisation de mateacuteriaux agrave changement de phase (MCP) Pau httpwwwthesesfr2014PAUU3014

gt Meng Xi Tao Luo Yanna Gao Lili Zhang Qiong Shen et Enshen Long 2017 laquo A new simple method to measure wallthermal transmittance in situ and its adaptability analysis raquo Applied Thermal Engineering 122 (juillet) 747-57 httpsdoiorg101016japplthermaleng201705074

gt Nardi Iole Domenica Paoletti Dario Ambrosini Tullio de Rubeis et Stefano Sfarra 2016 laquo U-value assessment by infrared thermography A comparison of different calculation methods in a Guarded Hot Box raquo Energy and Buildings 122 (juin) 211-21 httpsdoiorg101016jenbuild201604017

gt Naveros I P Bacher D P Ruiz M J Jimeacutenez et H Madsen 2014 laquo Setting up and validating a complex model for a simple homogeneous wall raquo Energy and Buildings 70 (feacutevrier) 303-17 httpsdoiorg101016jenbuild201311076

gt Naveros I Christian Ghiaus DP Ruiz S Castano et S Castantildeo 2015 laquo Physical parameters identification of walls usingARX models obtained by deduction raquo Energy and Buildings no 108 317-29 httpsdoiorg101016jenbuild201509021

22 Journeacutee SFT02052018

Annexes

gt NF EN 12664 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits secs et humides de moyenne et basse reacutesistance thermique 2001

gt NF EN 12667 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits de haute et moyenne reacutesistance thermique 2001

gt NF EN 12939 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits eacutepais de haute et moyenne reacutesistance thermique 2001

gt NF EN ISO 22007-2 - Plastiques - Deacutetermination de la conductiviteacute thermique et de la diffusiviteacute thermique - Partie 2 meacutethode de la source plane transitoire (disque chaud) 2015

gt Peng Changhai et Zhishen Wu 2008 laquo In situ measuring and evaluating the thermal resistance of building construction raquo Energy and Buildings 40 (11) 2076-82 httpsdoiorg101016jenbuild200805012

gt Rasooli Arash Laure Itard et Carlos Infante Ferreira 2016 laquo A response factor-based method for the rapid in-situ determination of wallrsquos thermal resistance in existing buildings raquo Energy and Buildings 119 (mai) 51-61 httpsdoiorg101016jenbuild201603009

gt Roels Staf Peder Bacher Geert Bauwens Sergio Castantildeo Maria Joseacute Jimeacutenez et Henrik Madsen 2017 laquo On Site Characterisation of the Overall Heat Loss Coefficient Comparison of Different Assessment Methods by a Blind Validation Exercise on a Round Robin Test Box raquo Energy and Buildings 153 (octobre) 179-89 httpsdoiorg101016jenbuild201708006

gt ROGEZ Jacques et Jean LE COZE 2009 laquo Mesure des tempeacuteratures - Questions agrave se poser avant la mesure raquo Text Ref TIP672WEB - laquo Mesures physiques raquo 10 mars 2009 httpswwwtechniques-ingenieurfrbase-documentairemesures-analyses-th1mesure-de-temperature-generalites-echelles-de-temperature-et-etalonnage-42542210mesure-des-temperatures-r2516

23 Journeacutee SFT02052018

Annexes

gt Sassine Emilio 2016 laquo A practical method for in-situ thermal characterization of walls raquo Case Studies in Thermal Engineering 8 (septembre) 84-93 httpsdoiorg101016jcsite201603006

gt Wang Shengwei et Xinhua Xu 2006 laquo Parameter estimation of internal thermal mass of building dynamic models usinggenetic algorithm raquo Energy Conversion and Management 47 (13) 1927-41 httpsdoiorg101016jenconman200509011

Page 14: Université de La Rochelle...(Cattarin et al. 2016) I Contexte II Verrous scientifiques III Etat de l’art IV Conclusion Les installations 9 02/05/2018 Journée SFT I Contexte II

14 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Modegraveles AR(MA)X

gt Modegraveles de comportement

gt Aucune information physique sauf lorsque le comportement du modegravele est stable = comparaison possible avec lrsquoeacutequation du transfert thermique statique

Naveros et al 2015 | Deconinck et Roels 2016 | Gori 2017

gt Exemples drsquoapplications

ndash U facteur solaire et Ceff Naveros et al 2015

ndash U et g (modegraveles agrave plusieurs sorties) Jimeacutenez et Heras 2005

15 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Autres modegraveles dynamiques

gt Facteur de reacuteponse

ndash Peng et Wu 2008 Rasooli et al 2016

gt Meacutethode des diffeacuterences finies et algorithme de LM

ndash Chaffar et al 2014 Mareacutechal 2014

gt Modegraveles RC

ndash Analyse bayeacutesienne Biddulph et al 2014

ndash Algorithme geacuteneacuterique Wang 2006

gt Meacutethode des quadripocircles et algorithme du gradient reacuteduit geacuteneacuteraliseacute

ndash Sassine 2016

Deux types de donneacutees

gt Les conditions aux limites (tempeacuterature humiditeacute fluxhellip)

gt Mesures pour lrsquoidentification (geacuteneacuteralement tempeacuterature etou flux voire deacutebit)

16 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Instrumentation

1oct 3oct 5oct 7oct 9oct 11oct 13oct 15oct0

1000

2000

3000

4000

5000

6000

7000MODE 1

Day

Ma

ss f

low

ra

te [

kgh

]

Tracer gas method

Velocity profile method

Rogez et Le Coze 2009 | Meng et al 2015 | Cucumo et al 2018

Vigilances

gt Sur les grandeurs

ndash Grande varieacuteteacute

ndash Diffeacuterents ordres de grandeur

gt Sur les capteurs

ndash Choix et preacutecision

ndash Positionnement

ndash Impact sur la mesure

gt Sur les donneacutees reacutecolteacutees

ndash Choix du pas de temps drsquoacquisition

ndash Seacutelection des donneacutees pertinentes et traitement efficace

Larsen et al 2007

Meacutethodes statiques simples mais limiteacutees

Large avantage des meacutethodes dynamiques pour notre probleacutematique

Grande diversiteacute de meacutethodes dynamiques et de meacutethodes inverses

Faccedilades actives Nombreux modegraveles laquo boicircte grise raquo mais aussi modegraveles de connaissance

17 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

18 Journeacutee SFT02052018

Avez-vous des questions

Contact Manon Rendu manonrenduuniv-lrfr

19 Journeacutee SFT02052018

Annexes

gt Androutsopoulos A JJ Bloem HAL van Dijk et PH Baker 2008 laquo Comparison of User Performance When ApplyingSystem Identification for Assessment of the Energy Performance of Building Components raquo Building and Environment43 (2) 189-96 httpsdoiorg101016jbuildenv200610017

gt Baker P H et H A L van Dijk 2008 laquo PASLINK and dynamic outdoor testing of building components raquo Building and Environment Outdoor Testing Analysis and Modelling of Building Components 43 (2) 143-51 httpsdoiorg101016jbuildenv200610009

gt Baker Paul 2008 laquo Technical Paper 2 - In Situ U-Value Measurements in Traditional Buildings - Preliminary Results raquo

gt Berger Julien Thomas Busser Denys Dutykh et Nathan Mendes 2018 laquo On the estimation of moisture permeabilityand advection coefficients of a wood fibre material using the optimal experiment design approach raquo ExperimentalThermal and Fluid Science 90 (janvier) 246-59 httpsdoiorg101016jexpthermflusci201707026

gt Biddulph Phillip Virginia Gori Clifford A Elwell Cameron Scott Caroline Rye Robert Lowe et Tadj Oreszczyn 2014 laquo Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements raquo Energy and Buildings 78 (aoucirct) 10-16 httpsdoiorg101016jenbuild201404004

gt Cattarin G F Causone A Kindinis et L Pagliano 2016 laquo Outdoor test cells for building envelope experimentalcharacterisation ndash A literature review raquo Renewable and Sustainable Energy Reviews 54 (feacutevrier) 606-25 httpsdoiorg101016jrser201510012

gt Chaffar Khaled Alexis Chauchois Didier Defer et Laurent Zalewski 2014 laquo Thermal characterization of homogeneouswalls using inverse method raquo Energy and Buildings 78 (aoucirct) 248-55 httpsdoiorg101016jenbuild201404038

gt laquo CTSM-R Version 100 raquo 2015 CTSM-R Development Team

gt Cucumo Mario Vittorio Ferraro Dimitrios Kaliakatsos et Marilena Mele 2018 laquo On the distortion of thermal flux and of surface temperature induced by heat flux sensors positioned on the inner surface of buildings raquo Energy and Buildings 158 (janvier) 677-83 httpsdoiorg101016jenbuild201710034

20 Journeacutee SFT02052018

Annexes

gt Deconinck An-Heleen et Staf Roels 2016 laquo Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements raquo Energy and Buildings 130 (octobre) 309-20 httpsdoiorg101016jenbuild201608061

gt mdashmdashmdash 2017 laquo The as-built thermal quality of building components characterising non-stationary phenomena throughinverse modelling raquo Energy Procedia 11th Nordic Symposium on Building Physics NSB2017 11-14 June 2017 Trondheim Norway 132 (octobre) 351-56 httpsdoiorg101016jegypro201709748

gt Ficco Giorgio Fabio Iannetta Elvira Ianniello Francesca Romana drsquoAmbrosio Alfano et Marco DellrsquoIsola 2015 laquo U-value in situ measurement for energy diagnosis of existing buildings raquo Energy and Buildings 104 (octobre) 108-21 httpsdoiorg101016jenbuild201506071

gt Gaspar Katia Miquel Casals et Marta Gangolells 2018 laquo In Situ Measurement of Faccedilades with a Low U-Value AvoidingDeviations raquo Energy and Buildings 170 (juillet) 61-73 httpsdoiorg101016jenbuild201804012

gt Gori Virginia University College London et The Barlett 2017 laquo A Novel Method for the Estimation of ThermophysicalProperties of Walls from Short and Seasonally Independent In-Situ Surveys raquo 272

gt Gutschker Olaf 2008 laquo Parameter identification with the software package LORD raquo Building and Environment OutdoorTesting Analysis and Modelling of Building Components 43 (2) 163-69 httpsdoiorg101016jbuildenv200610010

gt mdashmdashmdash s d laquo LORD 32 raquo httpdynasteeinfowp-contentuploads201212lordmanualpdf

gt laquo ISO 9869-12014 - Isolation thermique -- Eacuteleacutements de construction -- Mesurage in situ de la reacutesistance thermique et du coefficient de transmission thermique -- Partie 1 Meacutethode du fluxmegravetre raquo

gt Jensen Rasmus Lund Olena Kalyanova Ph D-student et Per Heiselberg 2008 laquo Modeling a Naturally Ventilated Double Skin Faccedilade with a Building Thermal Simulation Program raquo Building Physics 8

gt Jimeacutenez M J H Madsen J J Bloem et B Dammann 2008 laquo Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules raquo Energy and Buildings 40 (2) 157-67 httpsdoiorg101016jenbuild200702026

21 Journeacutee SFT02052018

Annexes

gt Jimeacutenez M J B Porcar et M R Heras 2008 laquo Estimation of building component UA and gA from outdoor tests in warm and moderate weather conditions raquo Solar Energy 82 (7) 573-87 httpsdoiorg101016jsolener200802013

gt Jimeacutenez Mariacutea Joseacute et Henrik Madsen 2008 laquo Models for describing the thermal characteristics of building components raquo Building and Environment 2008 httpsdoi101016jbuildenv200610030

gt John Godfaurd Derek Clements-Croome et George Jeronimidis 2005 laquo Sustainable Building Solutions A Review of Lessons from the Natural World raquo Building and Environment 40 (3) 319-28 httpsdoiorg101016jbuildenv200405011

gt Kristensen Niels Rode Henrik Madsen et Sten Bay Joslashrgensen 2004 laquo Parameter estimation in stochastic grey-box models raquo Automatica 40 (2) 225-37 httpsdoiorg101016jautomatica200310001

gt Lucchi Elena 2017 laquo Thermal transmittance of historical stone masonries A comparison among standard calculatedand measured data raquo Energy and Buildings 151 (septembre) 393-405 httpsdoiorg101016jenbuild201707002

gt Mareacutechal William 2014 Utilisation de meacutethodes inverses pour la caracteacuterisation de mateacuteriaux agrave changement de phase (MCP) Pau httpwwwthesesfr2014PAUU3014

gt Meng Xi Tao Luo Yanna Gao Lili Zhang Qiong Shen et Enshen Long 2017 laquo A new simple method to measure wallthermal transmittance in situ and its adaptability analysis raquo Applied Thermal Engineering 122 (juillet) 747-57 httpsdoiorg101016japplthermaleng201705074

gt Nardi Iole Domenica Paoletti Dario Ambrosini Tullio de Rubeis et Stefano Sfarra 2016 laquo U-value assessment by infrared thermography A comparison of different calculation methods in a Guarded Hot Box raquo Energy and Buildings 122 (juin) 211-21 httpsdoiorg101016jenbuild201604017

gt Naveros I P Bacher D P Ruiz M J Jimeacutenez et H Madsen 2014 laquo Setting up and validating a complex model for a simple homogeneous wall raquo Energy and Buildings 70 (feacutevrier) 303-17 httpsdoiorg101016jenbuild201311076

gt Naveros I Christian Ghiaus DP Ruiz S Castano et S Castantildeo 2015 laquo Physical parameters identification of walls usingARX models obtained by deduction raquo Energy and Buildings no 108 317-29 httpsdoiorg101016jenbuild201509021

22 Journeacutee SFT02052018

Annexes

gt NF EN 12664 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits secs et humides de moyenne et basse reacutesistance thermique 2001

gt NF EN 12667 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits de haute et moyenne reacutesistance thermique 2001

gt NF EN 12939 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits eacutepais de haute et moyenne reacutesistance thermique 2001

gt NF EN ISO 22007-2 - Plastiques - Deacutetermination de la conductiviteacute thermique et de la diffusiviteacute thermique - Partie 2 meacutethode de la source plane transitoire (disque chaud) 2015

gt Peng Changhai et Zhishen Wu 2008 laquo In situ measuring and evaluating the thermal resistance of building construction raquo Energy and Buildings 40 (11) 2076-82 httpsdoiorg101016jenbuild200805012

gt Rasooli Arash Laure Itard et Carlos Infante Ferreira 2016 laquo A response factor-based method for the rapid in-situ determination of wallrsquos thermal resistance in existing buildings raquo Energy and Buildings 119 (mai) 51-61 httpsdoiorg101016jenbuild201603009

gt Roels Staf Peder Bacher Geert Bauwens Sergio Castantildeo Maria Joseacute Jimeacutenez et Henrik Madsen 2017 laquo On Site Characterisation of the Overall Heat Loss Coefficient Comparison of Different Assessment Methods by a Blind Validation Exercise on a Round Robin Test Box raquo Energy and Buildings 153 (octobre) 179-89 httpsdoiorg101016jenbuild201708006

gt ROGEZ Jacques et Jean LE COZE 2009 laquo Mesure des tempeacuteratures - Questions agrave se poser avant la mesure raquo Text Ref TIP672WEB - laquo Mesures physiques raquo 10 mars 2009 httpswwwtechniques-ingenieurfrbase-documentairemesures-analyses-th1mesure-de-temperature-generalites-echelles-de-temperature-et-etalonnage-42542210mesure-des-temperatures-r2516

23 Journeacutee SFT02052018

Annexes

gt Sassine Emilio 2016 laquo A practical method for in-situ thermal characterization of walls raquo Case Studies in Thermal Engineering 8 (septembre) 84-93 httpsdoiorg101016jcsite201603006

gt Wang Shengwei et Xinhua Xu 2006 laquo Parameter estimation of internal thermal mass of building dynamic models usinggenetic algorithm raquo Energy Conversion and Management 47 (13) 1927-41 httpsdoiorg101016jenconman200509011

Page 15: Université de La Rochelle...(Cattarin et al. 2016) I Contexte II Verrous scientifiques III Etat de l’art IV Conclusion Les installations 9 02/05/2018 Journée SFT I Contexte II

15 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Modegraveles et meacutethodes dynamiques

Autres modegraveles dynamiques

gt Facteur de reacuteponse

ndash Peng et Wu 2008 Rasooli et al 2016

gt Meacutethode des diffeacuterences finies et algorithme de LM

ndash Chaffar et al 2014 Mareacutechal 2014

gt Modegraveles RC

ndash Analyse bayeacutesienne Biddulph et al 2014

ndash Algorithme geacuteneacuterique Wang 2006

gt Meacutethode des quadripocircles et algorithme du gradient reacuteduit geacuteneacuteraliseacute

ndash Sassine 2016

Deux types de donneacutees

gt Les conditions aux limites (tempeacuterature humiditeacute fluxhellip)

gt Mesures pour lrsquoidentification (geacuteneacuteralement tempeacuterature etou flux voire deacutebit)

16 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Instrumentation

1oct 3oct 5oct 7oct 9oct 11oct 13oct 15oct0

1000

2000

3000

4000

5000

6000

7000MODE 1

Day

Ma

ss f

low

ra

te [

kgh

]

Tracer gas method

Velocity profile method

Rogez et Le Coze 2009 | Meng et al 2015 | Cucumo et al 2018

Vigilances

gt Sur les grandeurs

ndash Grande varieacuteteacute

ndash Diffeacuterents ordres de grandeur

gt Sur les capteurs

ndash Choix et preacutecision

ndash Positionnement

ndash Impact sur la mesure

gt Sur les donneacutees reacutecolteacutees

ndash Choix du pas de temps drsquoacquisition

ndash Seacutelection des donneacutees pertinentes et traitement efficace

Larsen et al 2007

Meacutethodes statiques simples mais limiteacutees

Large avantage des meacutethodes dynamiques pour notre probleacutematique

Grande diversiteacute de meacutethodes dynamiques et de meacutethodes inverses

Faccedilades actives Nombreux modegraveles laquo boicircte grise raquo mais aussi modegraveles de connaissance

17 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

18 Journeacutee SFT02052018

Avez-vous des questions

Contact Manon Rendu manonrenduuniv-lrfr

19 Journeacutee SFT02052018

Annexes

gt Androutsopoulos A JJ Bloem HAL van Dijk et PH Baker 2008 laquo Comparison of User Performance When ApplyingSystem Identification for Assessment of the Energy Performance of Building Components raquo Building and Environment43 (2) 189-96 httpsdoiorg101016jbuildenv200610017

gt Baker P H et H A L van Dijk 2008 laquo PASLINK and dynamic outdoor testing of building components raquo Building and Environment Outdoor Testing Analysis and Modelling of Building Components 43 (2) 143-51 httpsdoiorg101016jbuildenv200610009

gt Baker Paul 2008 laquo Technical Paper 2 - In Situ U-Value Measurements in Traditional Buildings - Preliminary Results raquo

gt Berger Julien Thomas Busser Denys Dutykh et Nathan Mendes 2018 laquo On the estimation of moisture permeabilityand advection coefficients of a wood fibre material using the optimal experiment design approach raquo ExperimentalThermal and Fluid Science 90 (janvier) 246-59 httpsdoiorg101016jexpthermflusci201707026

gt Biddulph Phillip Virginia Gori Clifford A Elwell Cameron Scott Caroline Rye Robert Lowe et Tadj Oreszczyn 2014 laquo Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements raquo Energy and Buildings 78 (aoucirct) 10-16 httpsdoiorg101016jenbuild201404004

gt Cattarin G F Causone A Kindinis et L Pagliano 2016 laquo Outdoor test cells for building envelope experimentalcharacterisation ndash A literature review raquo Renewable and Sustainable Energy Reviews 54 (feacutevrier) 606-25 httpsdoiorg101016jrser201510012

gt Chaffar Khaled Alexis Chauchois Didier Defer et Laurent Zalewski 2014 laquo Thermal characterization of homogeneouswalls using inverse method raquo Energy and Buildings 78 (aoucirct) 248-55 httpsdoiorg101016jenbuild201404038

gt laquo CTSM-R Version 100 raquo 2015 CTSM-R Development Team

gt Cucumo Mario Vittorio Ferraro Dimitrios Kaliakatsos et Marilena Mele 2018 laquo On the distortion of thermal flux and of surface temperature induced by heat flux sensors positioned on the inner surface of buildings raquo Energy and Buildings 158 (janvier) 677-83 httpsdoiorg101016jenbuild201710034

20 Journeacutee SFT02052018

Annexes

gt Deconinck An-Heleen et Staf Roels 2016 laquo Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements raquo Energy and Buildings 130 (octobre) 309-20 httpsdoiorg101016jenbuild201608061

gt mdashmdashmdash 2017 laquo The as-built thermal quality of building components characterising non-stationary phenomena throughinverse modelling raquo Energy Procedia 11th Nordic Symposium on Building Physics NSB2017 11-14 June 2017 Trondheim Norway 132 (octobre) 351-56 httpsdoiorg101016jegypro201709748

gt Ficco Giorgio Fabio Iannetta Elvira Ianniello Francesca Romana drsquoAmbrosio Alfano et Marco DellrsquoIsola 2015 laquo U-value in situ measurement for energy diagnosis of existing buildings raquo Energy and Buildings 104 (octobre) 108-21 httpsdoiorg101016jenbuild201506071

gt Gaspar Katia Miquel Casals et Marta Gangolells 2018 laquo In Situ Measurement of Faccedilades with a Low U-Value AvoidingDeviations raquo Energy and Buildings 170 (juillet) 61-73 httpsdoiorg101016jenbuild201804012

gt Gori Virginia University College London et The Barlett 2017 laquo A Novel Method for the Estimation of ThermophysicalProperties of Walls from Short and Seasonally Independent In-Situ Surveys raquo 272

gt Gutschker Olaf 2008 laquo Parameter identification with the software package LORD raquo Building and Environment OutdoorTesting Analysis and Modelling of Building Components 43 (2) 163-69 httpsdoiorg101016jbuildenv200610010

gt mdashmdashmdash s d laquo LORD 32 raquo httpdynasteeinfowp-contentuploads201212lordmanualpdf

gt laquo ISO 9869-12014 - Isolation thermique -- Eacuteleacutements de construction -- Mesurage in situ de la reacutesistance thermique et du coefficient de transmission thermique -- Partie 1 Meacutethode du fluxmegravetre raquo

gt Jensen Rasmus Lund Olena Kalyanova Ph D-student et Per Heiselberg 2008 laquo Modeling a Naturally Ventilated Double Skin Faccedilade with a Building Thermal Simulation Program raquo Building Physics 8

gt Jimeacutenez M J H Madsen J J Bloem et B Dammann 2008 laquo Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules raquo Energy and Buildings 40 (2) 157-67 httpsdoiorg101016jenbuild200702026

21 Journeacutee SFT02052018

Annexes

gt Jimeacutenez M J B Porcar et M R Heras 2008 laquo Estimation of building component UA and gA from outdoor tests in warm and moderate weather conditions raquo Solar Energy 82 (7) 573-87 httpsdoiorg101016jsolener200802013

gt Jimeacutenez Mariacutea Joseacute et Henrik Madsen 2008 laquo Models for describing the thermal characteristics of building components raquo Building and Environment 2008 httpsdoi101016jbuildenv200610030

gt John Godfaurd Derek Clements-Croome et George Jeronimidis 2005 laquo Sustainable Building Solutions A Review of Lessons from the Natural World raquo Building and Environment 40 (3) 319-28 httpsdoiorg101016jbuildenv200405011

gt Kristensen Niels Rode Henrik Madsen et Sten Bay Joslashrgensen 2004 laquo Parameter estimation in stochastic grey-box models raquo Automatica 40 (2) 225-37 httpsdoiorg101016jautomatica200310001

gt Lucchi Elena 2017 laquo Thermal transmittance of historical stone masonries A comparison among standard calculatedand measured data raquo Energy and Buildings 151 (septembre) 393-405 httpsdoiorg101016jenbuild201707002

gt Mareacutechal William 2014 Utilisation de meacutethodes inverses pour la caracteacuterisation de mateacuteriaux agrave changement de phase (MCP) Pau httpwwwthesesfr2014PAUU3014

gt Meng Xi Tao Luo Yanna Gao Lili Zhang Qiong Shen et Enshen Long 2017 laquo A new simple method to measure wallthermal transmittance in situ and its adaptability analysis raquo Applied Thermal Engineering 122 (juillet) 747-57 httpsdoiorg101016japplthermaleng201705074

gt Nardi Iole Domenica Paoletti Dario Ambrosini Tullio de Rubeis et Stefano Sfarra 2016 laquo U-value assessment by infrared thermography A comparison of different calculation methods in a Guarded Hot Box raquo Energy and Buildings 122 (juin) 211-21 httpsdoiorg101016jenbuild201604017

gt Naveros I P Bacher D P Ruiz M J Jimeacutenez et H Madsen 2014 laquo Setting up and validating a complex model for a simple homogeneous wall raquo Energy and Buildings 70 (feacutevrier) 303-17 httpsdoiorg101016jenbuild201311076

gt Naveros I Christian Ghiaus DP Ruiz S Castano et S Castantildeo 2015 laquo Physical parameters identification of walls usingARX models obtained by deduction raquo Energy and Buildings no 108 317-29 httpsdoiorg101016jenbuild201509021

22 Journeacutee SFT02052018

Annexes

gt NF EN 12664 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits secs et humides de moyenne et basse reacutesistance thermique 2001

gt NF EN 12667 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits de haute et moyenne reacutesistance thermique 2001

gt NF EN 12939 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits eacutepais de haute et moyenne reacutesistance thermique 2001

gt NF EN ISO 22007-2 - Plastiques - Deacutetermination de la conductiviteacute thermique et de la diffusiviteacute thermique - Partie 2 meacutethode de la source plane transitoire (disque chaud) 2015

gt Peng Changhai et Zhishen Wu 2008 laquo In situ measuring and evaluating the thermal resistance of building construction raquo Energy and Buildings 40 (11) 2076-82 httpsdoiorg101016jenbuild200805012

gt Rasooli Arash Laure Itard et Carlos Infante Ferreira 2016 laquo A response factor-based method for the rapid in-situ determination of wallrsquos thermal resistance in existing buildings raquo Energy and Buildings 119 (mai) 51-61 httpsdoiorg101016jenbuild201603009

gt Roels Staf Peder Bacher Geert Bauwens Sergio Castantildeo Maria Joseacute Jimeacutenez et Henrik Madsen 2017 laquo On Site Characterisation of the Overall Heat Loss Coefficient Comparison of Different Assessment Methods by a Blind Validation Exercise on a Round Robin Test Box raquo Energy and Buildings 153 (octobre) 179-89 httpsdoiorg101016jenbuild201708006

gt ROGEZ Jacques et Jean LE COZE 2009 laquo Mesure des tempeacuteratures - Questions agrave se poser avant la mesure raquo Text Ref TIP672WEB - laquo Mesures physiques raquo 10 mars 2009 httpswwwtechniques-ingenieurfrbase-documentairemesures-analyses-th1mesure-de-temperature-generalites-echelles-de-temperature-et-etalonnage-42542210mesure-des-temperatures-r2516

23 Journeacutee SFT02052018

Annexes

gt Sassine Emilio 2016 laquo A practical method for in-situ thermal characterization of walls raquo Case Studies in Thermal Engineering 8 (septembre) 84-93 httpsdoiorg101016jcsite201603006

gt Wang Shengwei et Xinhua Xu 2006 laquo Parameter estimation of internal thermal mass of building dynamic models usinggenetic algorithm raquo Energy Conversion and Management 47 (13) 1927-41 httpsdoiorg101016jenconman200509011

Page 16: Université de La Rochelle...(Cattarin et al. 2016) I Contexte II Verrous scientifiques III Etat de l’art IV Conclusion Les installations 9 02/05/2018 Journée SFT I Contexte II

Deux types de donneacutees

gt Les conditions aux limites (tempeacuterature humiditeacute fluxhellip)

gt Mesures pour lrsquoidentification (geacuteneacuteralement tempeacuterature etou flux voire deacutebit)

16 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

Instrumentation

1oct 3oct 5oct 7oct 9oct 11oct 13oct 15oct0

1000

2000

3000

4000

5000

6000

7000MODE 1

Day

Ma

ss f

low

ra

te [

kgh

]

Tracer gas method

Velocity profile method

Rogez et Le Coze 2009 | Meng et al 2015 | Cucumo et al 2018

Vigilances

gt Sur les grandeurs

ndash Grande varieacuteteacute

ndash Diffeacuterents ordres de grandeur

gt Sur les capteurs

ndash Choix et preacutecision

ndash Positionnement

ndash Impact sur la mesure

gt Sur les donneacutees reacutecolteacutees

ndash Choix du pas de temps drsquoacquisition

ndash Seacutelection des donneacutees pertinentes et traitement efficace

Larsen et al 2007

Meacutethodes statiques simples mais limiteacutees

Large avantage des meacutethodes dynamiques pour notre probleacutematique

Grande diversiteacute de meacutethodes dynamiques et de meacutethodes inverses

Faccedilades actives Nombreux modegraveles laquo boicircte grise raquo mais aussi modegraveles de connaissance

17 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

18 Journeacutee SFT02052018

Avez-vous des questions

Contact Manon Rendu manonrenduuniv-lrfr

19 Journeacutee SFT02052018

Annexes

gt Androutsopoulos A JJ Bloem HAL van Dijk et PH Baker 2008 laquo Comparison of User Performance When ApplyingSystem Identification for Assessment of the Energy Performance of Building Components raquo Building and Environment43 (2) 189-96 httpsdoiorg101016jbuildenv200610017

gt Baker P H et H A L van Dijk 2008 laquo PASLINK and dynamic outdoor testing of building components raquo Building and Environment Outdoor Testing Analysis and Modelling of Building Components 43 (2) 143-51 httpsdoiorg101016jbuildenv200610009

gt Baker Paul 2008 laquo Technical Paper 2 - In Situ U-Value Measurements in Traditional Buildings - Preliminary Results raquo

gt Berger Julien Thomas Busser Denys Dutykh et Nathan Mendes 2018 laquo On the estimation of moisture permeabilityand advection coefficients of a wood fibre material using the optimal experiment design approach raquo ExperimentalThermal and Fluid Science 90 (janvier) 246-59 httpsdoiorg101016jexpthermflusci201707026

gt Biddulph Phillip Virginia Gori Clifford A Elwell Cameron Scott Caroline Rye Robert Lowe et Tadj Oreszczyn 2014 laquo Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements raquo Energy and Buildings 78 (aoucirct) 10-16 httpsdoiorg101016jenbuild201404004

gt Cattarin G F Causone A Kindinis et L Pagliano 2016 laquo Outdoor test cells for building envelope experimentalcharacterisation ndash A literature review raquo Renewable and Sustainable Energy Reviews 54 (feacutevrier) 606-25 httpsdoiorg101016jrser201510012

gt Chaffar Khaled Alexis Chauchois Didier Defer et Laurent Zalewski 2014 laquo Thermal characterization of homogeneouswalls using inverse method raquo Energy and Buildings 78 (aoucirct) 248-55 httpsdoiorg101016jenbuild201404038

gt laquo CTSM-R Version 100 raquo 2015 CTSM-R Development Team

gt Cucumo Mario Vittorio Ferraro Dimitrios Kaliakatsos et Marilena Mele 2018 laquo On the distortion of thermal flux and of surface temperature induced by heat flux sensors positioned on the inner surface of buildings raquo Energy and Buildings 158 (janvier) 677-83 httpsdoiorg101016jenbuild201710034

20 Journeacutee SFT02052018

Annexes

gt Deconinck An-Heleen et Staf Roels 2016 laquo Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements raquo Energy and Buildings 130 (octobre) 309-20 httpsdoiorg101016jenbuild201608061

gt mdashmdashmdash 2017 laquo The as-built thermal quality of building components characterising non-stationary phenomena throughinverse modelling raquo Energy Procedia 11th Nordic Symposium on Building Physics NSB2017 11-14 June 2017 Trondheim Norway 132 (octobre) 351-56 httpsdoiorg101016jegypro201709748

gt Ficco Giorgio Fabio Iannetta Elvira Ianniello Francesca Romana drsquoAmbrosio Alfano et Marco DellrsquoIsola 2015 laquo U-value in situ measurement for energy diagnosis of existing buildings raquo Energy and Buildings 104 (octobre) 108-21 httpsdoiorg101016jenbuild201506071

gt Gaspar Katia Miquel Casals et Marta Gangolells 2018 laquo In Situ Measurement of Faccedilades with a Low U-Value AvoidingDeviations raquo Energy and Buildings 170 (juillet) 61-73 httpsdoiorg101016jenbuild201804012

gt Gori Virginia University College London et The Barlett 2017 laquo A Novel Method for the Estimation of ThermophysicalProperties of Walls from Short and Seasonally Independent In-Situ Surveys raquo 272

gt Gutschker Olaf 2008 laquo Parameter identification with the software package LORD raquo Building and Environment OutdoorTesting Analysis and Modelling of Building Components 43 (2) 163-69 httpsdoiorg101016jbuildenv200610010

gt mdashmdashmdash s d laquo LORD 32 raquo httpdynasteeinfowp-contentuploads201212lordmanualpdf

gt laquo ISO 9869-12014 - Isolation thermique -- Eacuteleacutements de construction -- Mesurage in situ de la reacutesistance thermique et du coefficient de transmission thermique -- Partie 1 Meacutethode du fluxmegravetre raquo

gt Jensen Rasmus Lund Olena Kalyanova Ph D-student et Per Heiselberg 2008 laquo Modeling a Naturally Ventilated Double Skin Faccedilade with a Building Thermal Simulation Program raquo Building Physics 8

gt Jimeacutenez M J H Madsen J J Bloem et B Dammann 2008 laquo Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules raquo Energy and Buildings 40 (2) 157-67 httpsdoiorg101016jenbuild200702026

21 Journeacutee SFT02052018

Annexes

gt Jimeacutenez M J B Porcar et M R Heras 2008 laquo Estimation of building component UA and gA from outdoor tests in warm and moderate weather conditions raquo Solar Energy 82 (7) 573-87 httpsdoiorg101016jsolener200802013

gt Jimeacutenez Mariacutea Joseacute et Henrik Madsen 2008 laquo Models for describing the thermal characteristics of building components raquo Building and Environment 2008 httpsdoi101016jbuildenv200610030

gt John Godfaurd Derek Clements-Croome et George Jeronimidis 2005 laquo Sustainable Building Solutions A Review of Lessons from the Natural World raquo Building and Environment 40 (3) 319-28 httpsdoiorg101016jbuildenv200405011

gt Kristensen Niels Rode Henrik Madsen et Sten Bay Joslashrgensen 2004 laquo Parameter estimation in stochastic grey-box models raquo Automatica 40 (2) 225-37 httpsdoiorg101016jautomatica200310001

gt Lucchi Elena 2017 laquo Thermal transmittance of historical stone masonries A comparison among standard calculatedand measured data raquo Energy and Buildings 151 (septembre) 393-405 httpsdoiorg101016jenbuild201707002

gt Mareacutechal William 2014 Utilisation de meacutethodes inverses pour la caracteacuterisation de mateacuteriaux agrave changement de phase (MCP) Pau httpwwwthesesfr2014PAUU3014

gt Meng Xi Tao Luo Yanna Gao Lili Zhang Qiong Shen et Enshen Long 2017 laquo A new simple method to measure wallthermal transmittance in situ and its adaptability analysis raquo Applied Thermal Engineering 122 (juillet) 747-57 httpsdoiorg101016japplthermaleng201705074

gt Nardi Iole Domenica Paoletti Dario Ambrosini Tullio de Rubeis et Stefano Sfarra 2016 laquo U-value assessment by infrared thermography A comparison of different calculation methods in a Guarded Hot Box raquo Energy and Buildings 122 (juin) 211-21 httpsdoiorg101016jenbuild201604017

gt Naveros I P Bacher D P Ruiz M J Jimeacutenez et H Madsen 2014 laquo Setting up and validating a complex model for a simple homogeneous wall raquo Energy and Buildings 70 (feacutevrier) 303-17 httpsdoiorg101016jenbuild201311076

gt Naveros I Christian Ghiaus DP Ruiz S Castano et S Castantildeo 2015 laquo Physical parameters identification of walls usingARX models obtained by deduction raquo Energy and Buildings no 108 317-29 httpsdoiorg101016jenbuild201509021

22 Journeacutee SFT02052018

Annexes

gt NF EN 12664 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits secs et humides de moyenne et basse reacutesistance thermique 2001

gt NF EN 12667 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits de haute et moyenne reacutesistance thermique 2001

gt NF EN 12939 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits eacutepais de haute et moyenne reacutesistance thermique 2001

gt NF EN ISO 22007-2 - Plastiques - Deacutetermination de la conductiviteacute thermique et de la diffusiviteacute thermique - Partie 2 meacutethode de la source plane transitoire (disque chaud) 2015

gt Peng Changhai et Zhishen Wu 2008 laquo In situ measuring and evaluating the thermal resistance of building construction raquo Energy and Buildings 40 (11) 2076-82 httpsdoiorg101016jenbuild200805012

gt Rasooli Arash Laure Itard et Carlos Infante Ferreira 2016 laquo A response factor-based method for the rapid in-situ determination of wallrsquos thermal resistance in existing buildings raquo Energy and Buildings 119 (mai) 51-61 httpsdoiorg101016jenbuild201603009

gt Roels Staf Peder Bacher Geert Bauwens Sergio Castantildeo Maria Joseacute Jimeacutenez et Henrik Madsen 2017 laquo On Site Characterisation of the Overall Heat Loss Coefficient Comparison of Different Assessment Methods by a Blind Validation Exercise on a Round Robin Test Box raquo Energy and Buildings 153 (octobre) 179-89 httpsdoiorg101016jenbuild201708006

gt ROGEZ Jacques et Jean LE COZE 2009 laquo Mesure des tempeacuteratures - Questions agrave se poser avant la mesure raquo Text Ref TIP672WEB - laquo Mesures physiques raquo 10 mars 2009 httpswwwtechniques-ingenieurfrbase-documentairemesures-analyses-th1mesure-de-temperature-generalites-echelles-de-temperature-et-etalonnage-42542210mesure-des-temperatures-r2516

23 Journeacutee SFT02052018

Annexes

gt Sassine Emilio 2016 laquo A practical method for in-situ thermal characterization of walls raquo Case Studies in Thermal Engineering 8 (septembre) 84-93 httpsdoiorg101016jcsite201603006

gt Wang Shengwei et Xinhua Xu 2006 laquo Parameter estimation of internal thermal mass of building dynamic models usinggenetic algorithm raquo Energy Conversion and Management 47 (13) 1927-41 httpsdoiorg101016jenconman200509011

Page 17: Université de La Rochelle...(Cattarin et al. 2016) I Contexte II Verrous scientifiques III Etat de l’art IV Conclusion Les installations 9 02/05/2018 Journée SFT I Contexte II

Meacutethodes statiques simples mais limiteacutees

Large avantage des meacutethodes dynamiques pour notre probleacutematique

Grande diversiteacute de meacutethodes dynamiques et de meacutethodes inverses

Faccedilades actives Nombreux modegraveles laquo boicircte grise raquo mais aussi modegraveles de connaissance

17 Journeacutee SFT02052018

I Contexte II Verrous scientifiques III Etat de lrsquoart IV Conclusion

18 Journeacutee SFT02052018

Avez-vous des questions

Contact Manon Rendu manonrenduuniv-lrfr

19 Journeacutee SFT02052018

Annexes

gt Androutsopoulos A JJ Bloem HAL van Dijk et PH Baker 2008 laquo Comparison of User Performance When ApplyingSystem Identification for Assessment of the Energy Performance of Building Components raquo Building and Environment43 (2) 189-96 httpsdoiorg101016jbuildenv200610017

gt Baker P H et H A L van Dijk 2008 laquo PASLINK and dynamic outdoor testing of building components raquo Building and Environment Outdoor Testing Analysis and Modelling of Building Components 43 (2) 143-51 httpsdoiorg101016jbuildenv200610009

gt Baker Paul 2008 laquo Technical Paper 2 - In Situ U-Value Measurements in Traditional Buildings - Preliminary Results raquo

gt Berger Julien Thomas Busser Denys Dutykh et Nathan Mendes 2018 laquo On the estimation of moisture permeabilityand advection coefficients of a wood fibre material using the optimal experiment design approach raquo ExperimentalThermal and Fluid Science 90 (janvier) 246-59 httpsdoiorg101016jexpthermflusci201707026

gt Biddulph Phillip Virginia Gori Clifford A Elwell Cameron Scott Caroline Rye Robert Lowe et Tadj Oreszczyn 2014 laquo Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements raquo Energy and Buildings 78 (aoucirct) 10-16 httpsdoiorg101016jenbuild201404004

gt Cattarin G F Causone A Kindinis et L Pagliano 2016 laquo Outdoor test cells for building envelope experimentalcharacterisation ndash A literature review raquo Renewable and Sustainable Energy Reviews 54 (feacutevrier) 606-25 httpsdoiorg101016jrser201510012

gt Chaffar Khaled Alexis Chauchois Didier Defer et Laurent Zalewski 2014 laquo Thermal characterization of homogeneouswalls using inverse method raquo Energy and Buildings 78 (aoucirct) 248-55 httpsdoiorg101016jenbuild201404038

gt laquo CTSM-R Version 100 raquo 2015 CTSM-R Development Team

gt Cucumo Mario Vittorio Ferraro Dimitrios Kaliakatsos et Marilena Mele 2018 laquo On the distortion of thermal flux and of surface temperature induced by heat flux sensors positioned on the inner surface of buildings raquo Energy and Buildings 158 (janvier) 677-83 httpsdoiorg101016jenbuild201710034

20 Journeacutee SFT02052018

Annexes

gt Deconinck An-Heleen et Staf Roels 2016 laquo Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements raquo Energy and Buildings 130 (octobre) 309-20 httpsdoiorg101016jenbuild201608061

gt mdashmdashmdash 2017 laquo The as-built thermal quality of building components characterising non-stationary phenomena throughinverse modelling raquo Energy Procedia 11th Nordic Symposium on Building Physics NSB2017 11-14 June 2017 Trondheim Norway 132 (octobre) 351-56 httpsdoiorg101016jegypro201709748

gt Ficco Giorgio Fabio Iannetta Elvira Ianniello Francesca Romana drsquoAmbrosio Alfano et Marco DellrsquoIsola 2015 laquo U-value in situ measurement for energy diagnosis of existing buildings raquo Energy and Buildings 104 (octobre) 108-21 httpsdoiorg101016jenbuild201506071

gt Gaspar Katia Miquel Casals et Marta Gangolells 2018 laquo In Situ Measurement of Faccedilades with a Low U-Value AvoidingDeviations raquo Energy and Buildings 170 (juillet) 61-73 httpsdoiorg101016jenbuild201804012

gt Gori Virginia University College London et The Barlett 2017 laquo A Novel Method for the Estimation of ThermophysicalProperties of Walls from Short and Seasonally Independent In-Situ Surveys raquo 272

gt Gutschker Olaf 2008 laquo Parameter identification with the software package LORD raquo Building and Environment OutdoorTesting Analysis and Modelling of Building Components 43 (2) 163-69 httpsdoiorg101016jbuildenv200610010

gt mdashmdashmdash s d laquo LORD 32 raquo httpdynasteeinfowp-contentuploads201212lordmanualpdf

gt laquo ISO 9869-12014 - Isolation thermique -- Eacuteleacutements de construction -- Mesurage in situ de la reacutesistance thermique et du coefficient de transmission thermique -- Partie 1 Meacutethode du fluxmegravetre raquo

gt Jensen Rasmus Lund Olena Kalyanova Ph D-student et Per Heiselberg 2008 laquo Modeling a Naturally Ventilated Double Skin Faccedilade with a Building Thermal Simulation Program raquo Building Physics 8

gt Jimeacutenez M J H Madsen J J Bloem et B Dammann 2008 laquo Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules raquo Energy and Buildings 40 (2) 157-67 httpsdoiorg101016jenbuild200702026

21 Journeacutee SFT02052018

Annexes

gt Jimeacutenez M J B Porcar et M R Heras 2008 laquo Estimation of building component UA and gA from outdoor tests in warm and moderate weather conditions raquo Solar Energy 82 (7) 573-87 httpsdoiorg101016jsolener200802013

gt Jimeacutenez Mariacutea Joseacute et Henrik Madsen 2008 laquo Models for describing the thermal characteristics of building components raquo Building and Environment 2008 httpsdoi101016jbuildenv200610030

gt John Godfaurd Derek Clements-Croome et George Jeronimidis 2005 laquo Sustainable Building Solutions A Review of Lessons from the Natural World raquo Building and Environment 40 (3) 319-28 httpsdoiorg101016jbuildenv200405011

gt Kristensen Niels Rode Henrik Madsen et Sten Bay Joslashrgensen 2004 laquo Parameter estimation in stochastic grey-box models raquo Automatica 40 (2) 225-37 httpsdoiorg101016jautomatica200310001

gt Lucchi Elena 2017 laquo Thermal transmittance of historical stone masonries A comparison among standard calculatedand measured data raquo Energy and Buildings 151 (septembre) 393-405 httpsdoiorg101016jenbuild201707002

gt Mareacutechal William 2014 Utilisation de meacutethodes inverses pour la caracteacuterisation de mateacuteriaux agrave changement de phase (MCP) Pau httpwwwthesesfr2014PAUU3014

gt Meng Xi Tao Luo Yanna Gao Lili Zhang Qiong Shen et Enshen Long 2017 laquo A new simple method to measure wallthermal transmittance in situ and its adaptability analysis raquo Applied Thermal Engineering 122 (juillet) 747-57 httpsdoiorg101016japplthermaleng201705074

gt Nardi Iole Domenica Paoletti Dario Ambrosini Tullio de Rubeis et Stefano Sfarra 2016 laquo U-value assessment by infrared thermography A comparison of different calculation methods in a Guarded Hot Box raquo Energy and Buildings 122 (juin) 211-21 httpsdoiorg101016jenbuild201604017

gt Naveros I P Bacher D P Ruiz M J Jimeacutenez et H Madsen 2014 laquo Setting up and validating a complex model for a simple homogeneous wall raquo Energy and Buildings 70 (feacutevrier) 303-17 httpsdoiorg101016jenbuild201311076

gt Naveros I Christian Ghiaus DP Ruiz S Castano et S Castantildeo 2015 laquo Physical parameters identification of walls usingARX models obtained by deduction raquo Energy and Buildings no 108 317-29 httpsdoiorg101016jenbuild201509021

22 Journeacutee SFT02052018

Annexes

gt NF EN 12664 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits secs et humides de moyenne et basse reacutesistance thermique 2001

gt NF EN 12667 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits de haute et moyenne reacutesistance thermique 2001

gt NF EN 12939 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits eacutepais de haute et moyenne reacutesistance thermique 2001

gt NF EN ISO 22007-2 - Plastiques - Deacutetermination de la conductiviteacute thermique et de la diffusiviteacute thermique - Partie 2 meacutethode de la source plane transitoire (disque chaud) 2015

gt Peng Changhai et Zhishen Wu 2008 laquo In situ measuring and evaluating the thermal resistance of building construction raquo Energy and Buildings 40 (11) 2076-82 httpsdoiorg101016jenbuild200805012

gt Rasooli Arash Laure Itard et Carlos Infante Ferreira 2016 laquo A response factor-based method for the rapid in-situ determination of wallrsquos thermal resistance in existing buildings raquo Energy and Buildings 119 (mai) 51-61 httpsdoiorg101016jenbuild201603009

gt Roels Staf Peder Bacher Geert Bauwens Sergio Castantildeo Maria Joseacute Jimeacutenez et Henrik Madsen 2017 laquo On Site Characterisation of the Overall Heat Loss Coefficient Comparison of Different Assessment Methods by a Blind Validation Exercise on a Round Robin Test Box raquo Energy and Buildings 153 (octobre) 179-89 httpsdoiorg101016jenbuild201708006

gt ROGEZ Jacques et Jean LE COZE 2009 laquo Mesure des tempeacuteratures - Questions agrave se poser avant la mesure raquo Text Ref TIP672WEB - laquo Mesures physiques raquo 10 mars 2009 httpswwwtechniques-ingenieurfrbase-documentairemesures-analyses-th1mesure-de-temperature-generalites-echelles-de-temperature-et-etalonnage-42542210mesure-des-temperatures-r2516

23 Journeacutee SFT02052018

Annexes

gt Sassine Emilio 2016 laquo A practical method for in-situ thermal characterization of walls raquo Case Studies in Thermal Engineering 8 (septembre) 84-93 httpsdoiorg101016jcsite201603006

gt Wang Shengwei et Xinhua Xu 2006 laquo Parameter estimation of internal thermal mass of building dynamic models usinggenetic algorithm raquo Energy Conversion and Management 47 (13) 1927-41 httpsdoiorg101016jenconman200509011

Page 18: Université de La Rochelle...(Cattarin et al. 2016) I Contexte II Verrous scientifiques III Etat de l’art IV Conclusion Les installations 9 02/05/2018 Journée SFT I Contexte II

18 Journeacutee SFT02052018

Avez-vous des questions

Contact Manon Rendu manonrenduuniv-lrfr

19 Journeacutee SFT02052018

Annexes

gt Androutsopoulos A JJ Bloem HAL van Dijk et PH Baker 2008 laquo Comparison of User Performance When ApplyingSystem Identification for Assessment of the Energy Performance of Building Components raquo Building and Environment43 (2) 189-96 httpsdoiorg101016jbuildenv200610017

gt Baker P H et H A L van Dijk 2008 laquo PASLINK and dynamic outdoor testing of building components raquo Building and Environment Outdoor Testing Analysis and Modelling of Building Components 43 (2) 143-51 httpsdoiorg101016jbuildenv200610009

gt Baker Paul 2008 laquo Technical Paper 2 - In Situ U-Value Measurements in Traditional Buildings - Preliminary Results raquo

gt Berger Julien Thomas Busser Denys Dutykh et Nathan Mendes 2018 laquo On the estimation of moisture permeabilityand advection coefficients of a wood fibre material using the optimal experiment design approach raquo ExperimentalThermal and Fluid Science 90 (janvier) 246-59 httpsdoiorg101016jexpthermflusci201707026

gt Biddulph Phillip Virginia Gori Clifford A Elwell Cameron Scott Caroline Rye Robert Lowe et Tadj Oreszczyn 2014 laquo Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements raquo Energy and Buildings 78 (aoucirct) 10-16 httpsdoiorg101016jenbuild201404004

gt Cattarin G F Causone A Kindinis et L Pagliano 2016 laquo Outdoor test cells for building envelope experimentalcharacterisation ndash A literature review raquo Renewable and Sustainable Energy Reviews 54 (feacutevrier) 606-25 httpsdoiorg101016jrser201510012

gt Chaffar Khaled Alexis Chauchois Didier Defer et Laurent Zalewski 2014 laquo Thermal characterization of homogeneouswalls using inverse method raquo Energy and Buildings 78 (aoucirct) 248-55 httpsdoiorg101016jenbuild201404038

gt laquo CTSM-R Version 100 raquo 2015 CTSM-R Development Team

gt Cucumo Mario Vittorio Ferraro Dimitrios Kaliakatsos et Marilena Mele 2018 laquo On the distortion of thermal flux and of surface temperature induced by heat flux sensors positioned on the inner surface of buildings raquo Energy and Buildings 158 (janvier) 677-83 httpsdoiorg101016jenbuild201710034

20 Journeacutee SFT02052018

Annexes

gt Deconinck An-Heleen et Staf Roels 2016 laquo Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements raquo Energy and Buildings 130 (octobre) 309-20 httpsdoiorg101016jenbuild201608061

gt mdashmdashmdash 2017 laquo The as-built thermal quality of building components characterising non-stationary phenomena throughinverse modelling raquo Energy Procedia 11th Nordic Symposium on Building Physics NSB2017 11-14 June 2017 Trondheim Norway 132 (octobre) 351-56 httpsdoiorg101016jegypro201709748

gt Ficco Giorgio Fabio Iannetta Elvira Ianniello Francesca Romana drsquoAmbrosio Alfano et Marco DellrsquoIsola 2015 laquo U-value in situ measurement for energy diagnosis of existing buildings raquo Energy and Buildings 104 (octobre) 108-21 httpsdoiorg101016jenbuild201506071

gt Gaspar Katia Miquel Casals et Marta Gangolells 2018 laquo In Situ Measurement of Faccedilades with a Low U-Value AvoidingDeviations raquo Energy and Buildings 170 (juillet) 61-73 httpsdoiorg101016jenbuild201804012

gt Gori Virginia University College London et The Barlett 2017 laquo A Novel Method for the Estimation of ThermophysicalProperties of Walls from Short and Seasonally Independent In-Situ Surveys raquo 272

gt Gutschker Olaf 2008 laquo Parameter identification with the software package LORD raquo Building and Environment OutdoorTesting Analysis and Modelling of Building Components 43 (2) 163-69 httpsdoiorg101016jbuildenv200610010

gt mdashmdashmdash s d laquo LORD 32 raquo httpdynasteeinfowp-contentuploads201212lordmanualpdf

gt laquo ISO 9869-12014 - Isolation thermique -- Eacuteleacutements de construction -- Mesurage in situ de la reacutesistance thermique et du coefficient de transmission thermique -- Partie 1 Meacutethode du fluxmegravetre raquo

gt Jensen Rasmus Lund Olena Kalyanova Ph D-student et Per Heiselberg 2008 laquo Modeling a Naturally Ventilated Double Skin Faccedilade with a Building Thermal Simulation Program raquo Building Physics 8

gt Jimeacutenez M J H Madsen J J Bloem et B Dammann 2008 laquo Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules raquo Energy and Buildings 40 (2) 157-67 httpsdoiorg101016jenbuild200702026

21 Journeacutee SFT02052018

Annexes

gt Jimeacutenez M J B Porcar et M R Heras 2008 laquo Estimation of building component UA and gA from outdoor tests in warm and moderate weather conditions raquo Solar Energy 82 (7) 573-87 httpsdoiorg101016jsolener200802013

gt Jimeacutenez Mariacutea Joseacute et Henrik Madsen 2008 laquo Models for describing the thermal characteristics of building components raquo Building and Environment 2008 httpsdoi101016jbuildenv200610030

gt John Godfaurd Derek Clements-Croome et George Jeronimidis 2005 laquo Sustainable Building Solutions A Review of Lessons from the Natural World raquo Building and Environment 40 (3) 319-28 httpsdoiorg101016jbuildenv200405011

gt Kristensen Niels Rode Henrik Madsen et Sten Bay Joslashrgensen 2004 laquo Parameter estimation in stochastic grey-box models raquo Automatica 40 (2) 225-37 httpsdoiorg101016jautomatica200310001

gt Lucchi Elena 2017 laquo Thermal transmittance of historical stone masonries A comparison among standard calculatedand measured data raquo Energy and Buildings 151 (septembre) 393-405 httpsdoiorg101016jenbuild201707002

gt Mareacutechal William 2014 Utilisation de meacutethodes inverses pour la caracteacuterisation de mateacuteriaux agrave changement de phase (MCP) Pau httpwwwthesesfr2014PAUU3014

gt Meng Xi Tao Luo Yanna Gao Lili Zhang Qiong Shen et Enshen Long 2017 laquo A new simple method to measure wallthermal transmittance in situ and its adaptability analysis raquo Applied Thermal Engineering 122 (juillet) 747-57 httpsdoiorg101016japplthermaleng201705074

gt Nardi Iole Domenica Paoletti Dario Ambrosini Tullio de Rubeis et Stefano Sfarra 2016 laquo U-value assessment by infrared thermography A comparison of different calculation methods in a Guarded Hot Box raquo Energy and Buildings 122 (juin) 211-21 httpsdoiorg101016jenbuild201604017

gt Naveros I P Bacher D P Ruiz M J Jimeacutenez et H Madsen 2014 laquo Setting up and validating a complex model for a simple homogeneous wall raquo Energy and Buildings 70 (feacutevrier) 303-17 httpsdoiorg101016jenbuild201311076

gt Naveros I Christian Ghiaus DP Ruiz S Castano et S Castantildeo 2015 laquo Physical parameters identification of walls usingARX models obtained by deduction raquo Energy and Buildings no 108 317-29 httpsdoiorg101016jenbuild201509021

22 Journeacutee SFT02052018

Annexes

gt NF EN 12664 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits secs et humides de moyenne et basse reacutesistance thermique 2001

gt NF EN 12667 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits de haute et moyenne reacutesistance thermique 2001

gt NF EN 12939 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits eacutepais de haute et moyenne reacutesistance thermique 2001

gt NF EN ISO 22007-2 - Plastiques - Deacutetermination de la conductiviteacute thermique et de la diffusiviteacute thermique - Partie 2 meacutethode de la source plane transitoire (disque chaud) 2015

gt Peng Changhai et Zhishen Wu 2008 laquo In situ measuring and evaluating the thermal resistance of building construction raquo Energy and Buildings 40 (11) 2076-82 httpsdoiorg101016jenbuild200805012

gt Rasooli Arash Laure Itard et Carlos Infante Ferreira 2016 laquo A response factor-based method for the rapid in-situ determination of wallrsquos thermal resistance in existing buildings raquo Energy and Buildings 119 (mai) 51-61 httpsdoiorg101016jenbuild201603009

gt Roels Staf Peder Bacher Geert Bauwens Sergio Castantildeo Maria Joseacute Jimeacutenez et Henrik Madsen 2017 laquo On Site Characterisation of the Overall Heat Loss Coefficient Comparison of Different Assessment Methods by a Blind Validation Exercise on a Round Robin Test Box raquo Energy and Buildings 153 (octobre) 179-89 httpsdoiorg101016jenbuild201708006

gt ROGEZ Jacques et Jean LE COZE 2009 laquo Mesure des tempeacuteratures - Questions agrave se poser avant la mesure raquo Text Ref TIP672WEB - laquo Mesures physiques raquo 10 mars 2009 httpswwwtechniques-ingenieurfrbase-documentairemesures-analyses-th1mesure-de-temperature-generalites-echelles-de-temperature-et-etalonnage-42542210mesure-des-temperatures-r2516

23 Journeacutee SFT02052018

Annexes

gt Sassine Emilio 2016 laquo A practical method for in-situ thermal characterization of walls raquo Case Studies in Thermal Engineering 8 (septembre) 84-93 httpsdoiorg101016jcsite201603006

gt Wang Shengwei et Xinhua Xu 2006 laquo Parameter estimation of internal thermal mass of building dynamic models usinggenetic algorithm raquo Energy Conversion and Management 47 (13) 1927-41 httpsdoiorg101016jenconman200509011

Page 19: Université de La Rochelle...(Cattarin et al. 2016) I Contexte II Verrous scientifiques III Etat de l’art IV Conclusion Les installations 9 02/05/2018 Journée SFT I Contexte II

19 Journeacutee SFT02052018

Annexes

gt Androutsopoulos A JJ Bloem HAL van Dijk et PH Baker 2008 laquo Comparison of User Performance When ApplyingSystem Identification for Assessment of the Energy Performance of Building Components raquo Building and Environment43 (2) 189-96 httpsdoiorg101016jbuildenv200610017

gt Baker P H et H A L van Dijk 2008 laquo PASLINK and dynamic outdoor testing of building components raquo Building and Environment Outdoor Testing Analysis and Modelling of Building Components 43 (2) 143-51 httpsdoiorg101016jbuildenv200610009

gt Baker Paul 2008 laquo Technical Paper 2 - In Situ U-Value Measurements in Traditional Buildings - Preliminary Results raquo

gt Berger Julien Thomas Busser Denys Dutykh et Nathan Mendes 2018 laquo On the estimation of moisture permeabilityand advection coefficients of a wood fibre material using the optimal experiment design approach raquo ExperimentalThermal and Fluid Science 90 (janvier) 246-59 httpsdoiorg101016jexpthermflusci201707026

gt Biddulph Phillip Virginia Gori Clifford A Elwell Cameron Scott Caroline Rye Robert Lowe et Tadj Oreszczyn 2014 laquo Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements raquo Energy and Buildings 78 (aoucirct) 10-16 httpsdoiorg101016jenbuild201404004

gt Cattarin G F Causone A Kindinis et L Pagliano 2016 laquo Outdoor test cells for building envelope experimentalcharacterisation ndash A literature review raquo Renewable and Sustainable Energy Reviews 54 (feacutevrier) 606-25 httpsdoiorg101016jrser201510012

gt Chaffar Khaled Alexis Chauchois Didier Defer et Laurent Zalewski 2014 laquo Thermal characterization of homogeneouswalls using inverse method raquo Energy and Buildings 78 (aoucirct) 248-55 httpsdoiorg101016jenbuild201404038

gt laquo CTSM-R Version 100 raquo 2015 CTSM-R Development Team

gt Cucumo Mario Vittorio Ferraro Dimitrios Kaliakatsos et Marilena Mele 2018 laquo On the distortion of thermal flux and of surface temperature induced by heat flux sensors positioned on the inner surface of buildings raquo Energy and Buildings 158 (janvier) 677-83 httpsdoiorg101016jenbuild201710034

20 Journeacutee SFT02052018

Annexes

gt Deconinck An-Heleen et Staf Roels 2016 laquo Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements raquo Energy and Buildings 130 (octobre) 309-20 httpsdoiorg101016jenbuild201608061

gt mdashmdashmdash 2017 laquo The as-built thermal quality of building components characterising non-stationary phenomena throughinverse modelling raquo Energy Procedia 11th Nordic Symposium on Building Physics NSB2017 11-14 June 2017 Trondheim Norway 132 (octobre) 351-56 httpsdoiorg101016jegypro201709748

gt Ficco Giorgio Fabio Iannetta Elvira Ianniello Francesca Romana drsquoAmbrosio Alfano et Marco DellrsquoIsola 2015 laquo U-value in situ measurement for energy diagnosis of existing buildings raquo Energy and Buildings 104 (octobre) 108-21 httpsdoiorg101016jenbuild201506071

gt Gaspar Katia Miquel Casals et Marta Gangolells 2018 laquo In Situ Measurement of Faccedilades with a Low U-Value AvoidingDeviations raquo Energy and Buildings 170 (juillet) 61-73 httpsdoiorg101016jenbuild201804012

gt Gori Virginia University College London et The Barlett 2017 laquo A Novel Method for the Estimation of ThermophysicalProperties of Walls from Short and Seasonally Independent In-Situ Surveys raquo 272

gt Gutschker Olaf 2008 laquo Parameter identification with the software package LORD raquo Building and Environment OutdoorTesting Analysis and Modelling of Building Components 43 (2) 163-69 httpsdoiorg101016jbuildenv200610010

gt mdashmdashmdash s d laquo LORD 32 raquo httpdynasteeinfowp-contentuploads201212lordmanualpdf

gt laquo ISO 9869-12014 - Isolation thermique -- Eacuteleacutements de construction -- Mesurage in situ de la reacutesistance thermique et du coefficient de transmission thermique -- Partie 1 Meacutethode du fluxmegravetre raquo

gt Jensen Rasmus Lund Olena Kalyanova Ph D-student et Per Heiselberg 2008 laquo Modeling a Naturally Ventilated Double Skin Faccedilade with a Building Thermal Simulation Program raquo Building Physics 8

gt Jimeacutenez M J H Madsen J J Bloem et B Dammann 2008 laquo Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules raquo Energy and Buildings 40 (2) 157-67 httpsdoiorg101016jenbuild200702026

21 Journeacutee SFT02052018

Annexes

gt Jimeacutenez M J B Porcar et M R Heras 2008 laquo Estimation of building component UA and gA from outdoor tests in warm and moderate weather conditions raquo Solar Energy 82 (7) 573-87 httpsdoiorg101016jsolener200802013

gt Jimeacutenez Mariacutea Joseacute et Henrik Madsen 2008 laquo Models for describing the thermal characteristics of building components raquo Building and Environment 2008 httpsdoi101016jbuildenv200610030

gt John Godfaurd Derek Clements-Croome et George Jeronimidis 2005 laquo Sustainable Building Solutions A Review of Lessons from the Natural World raquo Building and Environment 40 (3) 319-28 httpsdoiorg101016jbuildenv200405011

gt Kristensen Niels Rode Henrik Madsen et Sten Bay Joslashrgensen 2004 laquo Parameter estimation in stochastic grey-box models raquo Automatica 40 (2) 225-37 httpsdoiorg101016jautomatica200310001

gt Lucchi Elena 2017 laquo Thermal transmittance of historical stone masonries A comparison among standard calculatedand measured data raquo Energy and Buildings 151 (septembre) 393-405 httpsdoiorg101016jenbuild201707002

gt Mareacutechal William 2014 Utilisation de meacutethodes inverses pour la caracteacuterisation de mateacuteriaux agrave changement de phase (MCP) Pau httpwwwthesesfr2014PAUU3014

gt Meng Xi Tao Luo Yanna Gao Lili Zhang Qiong Shen et Enshen Long 2017 laquo A new simple method to measure wallthermal transmittance in situ and its adaptability analysis raquo Applied Thermal Engineering 122 (juillet) 747-57 httpsdoiorg101016japplthermaleng201705074

gt Nardi Iole Domenica Paoletti Dario Ambrosini Tullio de Rubeis et Stefano Sfarra 2016 laquo U-value assessment by infrared thermography A comparison of different calculation methods in a Guarded Hot Box raquo Energy and Buildings 122 (juin) 211-21 httpsdoiorg101016jenbuild201604017

gt Naveros I P Bacher D P Ruiz M J Jimeacutenez et H Madsen 2014 laquo Setting up and validating a complex model for a simple homogeneous wall raquo Energy and Buildings 70 (feacutevrier) 303-17 httpsdoiorg101016jenbuild201311076

gt Naveros I Christian Ghiaus DP Ruiz S Castano et S Castantildeo 2015 laquo Physical parameters identification of walls usingARX models obtained by deduction raquo Energy and Buildings no 108 317-29 httpsdoiorg101016jenbuild201509021

22 Journeacutee SFT02052018

Annexes

gt NF EN 12664 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits secs et humides de moyenne et basse reacutesistance thermique 2001

gt NF EN 12667 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits de haute et moyenne reacutesistance thermique 2001

gt NF EN 12939 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits eacutepais de haute et moyenne reacutesistance thermique 2001

gt NF EN ISO 22007-2 - Plastiques - Deacutetermination de la conductiviteacute thermique et de la diffusiviteacute thermique - Partie 2 meacutethode de la source plane transitoire (disque chaud) 2015

gt Peng Changhai et Zhishen Wu 2008 laquo In situ measuring and evaluating the thermal resistance of building construction raquo Energy and Buildings 40 (11) 2076-82 httpsdoiorg101016jenbuild200805012

gt Rasooli Arash Laure Itard et Carlos Infante Ferreira 2016 laquo A response factor-based method for the rapid in-situ determination of wallrsquos thermal resistance in existing buildings raquo Energy and Buildings 119 (mai) 51-61 httpsdoiorg101016jenbuild201603009

gt Roels Staf Peder Bacher Geert Bauwens Sergio Castantildeo Maria Joseacute Jimeacutenez et Henrik Madsen 2017 laquo On Site Characterisation of the Overall Heat Loss Coefficient Comparison of Different Assessment Methods by a Blind Validation Exercise on a Round Robin Test Box raquo Energy and Buildings 153 (octobre) 179-89 httpsdoiorg101016jenbuild201708006

gt ROGEZ Jacques et Jean LE COZE 2009 laquo Mesure des tempeacuteratures - Questions agrave se poser avant la mesure raquo Text Ref TIP672WEB - laquo Mesures physiques raquo 10 mars 2009 httpswwwtechniques-ingenieurfrbase-documentairemesures-analyses-th1mesure-de-temperature-generalites-echelles-de-temperature-et-etalonnage-42542210mesure-des-temperatures-r2516

23 Journeacutee SFT02052018

Annexes

gt Sassine Emilio 2016 laquo A practical method for in-situ thermal characterization of walls raquo Case Studies in Thermal Engineering 8 (septembre) 84-93 httpsdoiorg101016jcsite201603006

gt Wang Shengwei et Xinhua Xu 2006 laquo Parameter estimation of internal thermal mass of building dynamic models usinggenetic algorithm raquo Energy Conversion and Management 47 (13) 1927-41 httpsdoiorg101016jenconman200509011

Page 20: Université de La Rochelle...(Cattarin et al. 2016) I Contexte II Verrous scientifiques III Etat de l’art IV Conclusion Les installations 9 02/05/2018 Journée SFT I Contexte II

20 Journeacutee SFT02052018

Annexes

gt Deconinck An-Heleen et Staf Roels 2016 laquo Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements raquo Energy and Buildings 130 (octobre) 309-20 httpsdoiorg101016jenbuild201608061

gt mdashmdashmdash 2017 laquo The as-built thermal quality of building components characterising non-stationary phenomena throughinverse modelling raquo Energy Procedia 11th Nordic Symposium on Building Physics NSB2017 11-14 June 2017 Trondheim Norway 132 (octobre) 351-56 httpsdoiorg101016jegypro201709748

gt Ficco Giorgio Fabio Iannetta Elvira Ianniello Francesca Romana drsquoAmbrosio Alfano et Marco DellrsquoIsola 2015 laquo U-value in situ measurement for energy diagnosis of existing buildings raquo Energy and Buildings 104 (octobre) 108-21 httpsdoiorg101016jenbuild201506071

gt Gaspar Katia Miquel Casals et Marta Gangolells 2018 laquo In Situ Measurement of Faccedilades with a Low U-Value AvoidingDeviations raquo Energy and Buildings 170 (juillet) 61-73 httpsdoiorg101016jenbuild201804012

gt Gori Virginia University College London et The Barlett 2017 laquo A Novel Method for the Estimation of ThermophysicalProperties of Walls from Short and Seasonally Independent In-Situ Surveys raquo 272

gt Gutschker Olaf 2008 laquo Parameter identification with the software package LORD raquo Building and Environment OutdoorTesting Analysis and Modelling of Building Components 43 (2) 163-69 httpsdoiorg101016jbuildenv200610010

gt mdashmdashmdash s d laquo LORD 32 raquo httpdynasteeinfowp-contentuploads201212lordmanualpdf

gt laquo ISO 9869-12014 - Isolation thermique -- Eacuteleacutements de construction -- Mesurage in situ de la reacutesistance thermique et du coefficient de transmission thermique -- Partie 1 Meacutethode du fluxmegravetre raquo

gt Jensen Rasmus Lund Olena Kalyanova Ph D-student et Per Heiselberg 2008 laquo Modeling a Naturally Ventilated Double Skin Faccedilade with a Building Thermal Simulation Program raquo Building Physics 8

gt Jimeacutenez M J H Madsen J J Bloem et B Dammann 2008 laquo Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules raquo Energy and Buildings 40 (2) 157-67 httpsdoiorg101016jenbuild200702026

21 Journeacutee SFT02052018

Annexes

gt Jimeacutenez M J B Porcar et M R Heras 2008 laquo Estimation of building component UA and gA from outdoor tests in warm and moderate weather conditions raquo Solar Energy 82 (7) 573-87 httpsdoiorg101016jsolener200802013

gt Jimeacutenez Mariacutea Joseacute et Henrik Madsen 2008 laquo Models for describing the thermal characteristics of building components raquo Building and Environment 2008 httpsdoi101016jbuildenv200610030

gt John Godfaurd Derek Clements-Croome et George Jeronimidis 2005 laquo Sustainable Building Solutions A Review of Lessons from the Natural World raquo Building and Environment 40 (3) 319-28 httpsdoiorg101016jbuildenv200405011

gt Kristensen Niels Rode Henrik Madsen et Sten Bay Joslashrgensen 2004 laquo Parameter estimation in stochastic grey-box models raquo Automatica 40 (2) 225-37 httpsdoiorg101016jautomatica200310001

gt Lucchi Elena 2017 laquo Thermal transmittance of historical stone masonries A comparison among standard calculatedand measured data raquo Energy and Buildings 151 (septembre) 393-405 httpsdoiorg101016jenbuild201707002

gt Mareacutechal William 2014 Utilisation de meacutethodes inverses pour la caracteacuterisation de mateacuteriaux agrave changement de phase (MCP) Pau httpwwwthesesfr2014PAUU3014

gt Meng Xi Tao Luo Yanna Gao Lili Zhang Qiong Shen et Enshen Long 2017 laquo A new simple method to measure wallthermal transmittance in situ and its adaptability analysis raquo Applied Thermal Engineering 122 (juillet) 747-57 httpsdoiorg101016japplthermaleng201705074

gt Nardi Iole Domenica Paoletti Dario Ambrosini Tullio de Rubeis et Stefano Sfarra 2016 laquo U-value assessment by infrared thermography A comparison of different calculation methods in a Guarded Hot Box raquo Energy and Buildings 122 (juin) 211-21 httpsdoiorg101016jenbuild201604017

gt Naveros I P Bacher D P Ruiz M J Jimeacutenez et H Madsen 2014 laquo Setting up and validating a complex model for a simple homogeneous wall raquo Energy and Buildings 70 (feacutevrier) 303-17 httpsdoiorg101016jenbuild201311076

gt Naveros I Christian Ghiaus DP Ruiz S Castano et S Castantildeo 2015 laquo Physical parameters identification of walls usingARX models obtained by deduction raquo Energy and Buildings no 108 317-29 httpsdoiorg101016jenbuild201509021

22 Journeacutee SFT02052018

Annexes

gt NF EN 12664 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits secs et humides de moyenne et basse reacutesistance thermique 2001

gt NF EN 12667 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits de haute et moyenne reacutesistance thermique 2001

gt NF EN 12939 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits eacutepais de haute et moyenne reacutesistance thermique 2001

gt NF EN ISO 22007-2 - Plastiques - Deacutetermination de la conductiviteacute thermique et de la diffusiviteacute thermique - Partie 2 meacutethode de la source plane transitoire (disque chaud) 2015

gt Peng Changhai et Zhishen Wu 2008 laquo In situ measuring and evaluating the thermal resistance of building construction raquo Energy and Buildings 40 (11) 2076-82 httpsdoiorg101016jenbuild200805012

gt Rasooli Arash Laure Itard et Carlos Infante Ferreira 2016 laquo A response factor-based method for the rapid in-situ determination of wallrsquos thermal resistance in existing buildings raquo Energy and Buildings 119 (mai) 51-61 httpsdoiorg101016jenbuild201603009

gt Roels Staf Peder Bacher Geert Bauwens Sergio Castantildeo Maria Joseacute Jimeacutenez et Henrik Madsen 2017 laquo On Site Characterisation of the Overall Heat Loss Coefficient Comparison of Different Assessment Methods by a Blind Validation Exercise on a Round Robin Test Box raquo Energy and Buildings 153 (octobre) 179-89 httpsdoiorg101016jenbuild201708006

gt ROGEZ Jacques et Jean LE COZE 2009 laquo Mesure des tempeacuteratures - Questions agrave se poser avant la mesure raquo Text Ref TIP672WEB - laquo Mesures physiques raquo 10 mars 2009 httpswwwtechniques-ingenieurfrbase-documentairemesures-analyses-th1mesure-de-temperature-generalites-echelles-de-temperature-et-etalonnage-42542210mesure-des-temperatures-r2516

23 Journeacutee SFT02052018

Annexes

gt Sassine Emilio 2016 laquo A practical method for in-situ thermal characterization of walls raquo Case Studies in Thermal Engineering 8 (septembre) 84-93 httpsdoiorg101016jcsite201603006

gt Wang Shengwei et Xinhua Xu 2006 laquo Parameter estimation of internal thermal mass of building dynamic models usinggenetic algorithm raquo Energy Conversion and Management 47 (13) 1927-41 httpsdoiorg101016jenconman200509011

Page 21: Université de La Rochelle...(Cattarin et al. 2016) I Contexte II Verrous scientifiques III Etat de l’art IV Conclusion Les installations 9 02/05/2018 Journée SFT I Contexte II

21 Journeacutee SFT02052018

Annexes

gt Jimeacutenez M J B Porcar et M R Heras 2008 laquo Estimation of building component UA and gA from outdoor tests in warm and moderate weather conditions raquo Solar Energy 82 (7) 573-87 httpsdoiorg101016jsolener200802013

gt Jimeacutenez Mariacutea Joseacute et Henrik Madsen 2008 laquo Models for describing the thermal characteristics of building components raquo Building and Environment 2008 httpsdoi101016jbuildenv200610030

gt John Godfaurd Derek Clements-Croome et George Jeronimidis 2005 laquo Sustainable Building Solutions A Review of Lessons from the Natural World raquo Building and Environment 40 (3) 319-28 httpsdoiorg101016jbuildenv200405011

gt Kristensen Niels Rode Henrik Madsen et Sten Bay Joslashrgensen 2004 laquo Parameter estimation in stochastic grey-box models raquo Automatica 40 (2) 225-37 httpsdoiorg101016jautomatica200310001

gt Lucchi Elena 2017 laquo Thermal transmittance of historical stone masonries A comparison among standard calculatedand measured data raquo Energy and Buildings 151 (septembre) 393-405 httpsdoiorg101016jenbuild201707002

gt Mareacutechal William 2014 Utilisation de meacutethodes inverses pour la caracteacuterisation de mateacuteriaux agrave changement de phase (MCP) Pau httpwwwthesesfr2014PAUU3014

gt Meng Xi Tao Luo Yanna Gao Lili Zhang Qiong Shen et Enshen Long 2017 laquo A new simple method to measure wallthermal transmittance in situ and its adaptability analysis raquo Applied Thermal Engineering 122 (juillet) 747-57 httpsdoiorg101016japplthermaleng201705074

gt Nardi Iole Domenica Paoletti Dario Ambrosini Tullio de Rubeis et Stefano Sfarra 2016 laquo U-value assessment by infrared thermography A comparison of different calculation methods in a Guarded Hot Box raquo Energy and Buildings 122 (juin) 211-21 httpsdoiorg101016jenbuild201604017

gt Naveros I P Bacher D P Ruiz M J Jimeacutenez et H Madsen 2014 laquo Setting up and validating a complex model for a simple homogeneous wall raquo Energy and Buildings 70 (feacutevrier) 303-17 httpsdoiorg101016jenbuild201311076

gt Naveros I Christian Ghiaus DP Ruiz S Castano et S Castantildeo 2015 laquo Physical parameters identification of walls usingARX models obtained by deduction raquo Energy and Buildings no 108 317-29 httpsdoiorg101016jenbuild201509021

22 Journeacutee SFT02052018

Annexes

gt NF EN 12664 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits secs et humides de moyenne et basse reacutesistance thermique 2001

gt NF EN 12667 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits de haute et moyenne reacutesistance thermique 2001

gt NF EN 12939 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits eacutepais de haute et moyenne reacutesistance thermique 2001

gt NF EN ISO 22007-2 - Plastiques - Deacutetermination de la conductiviteacute thermique et de la diffusiviteacute thermique - Partie 2 meacutethode de la source plane transitoire (disque chaud) 2015

gt Peng Changhai et Zhishen Wu 2008 laquo In situ measuring and evaluating the thermal resistance of building construction raquo Energy and Buildings 40 (11) 2076-82 httpsdoiorg101016jenbuild200805012

gt Rasooli Arash Laure Itard et Carlos Infante Ferreira 2016 laquo A response factor-based method for the rapid in-situ determination of wallrsquos thermal resistance in existing buildings raquo Energy and Buildings 119 (mai) 51-61 httpsdoiorg101016jenbuild201603009

gt Roels Staf Peder Bacher Geert Bauwens Sergio Castantildeo Maria Joseacute Jimeacutenez et Henrik Madsen 2017 laquo On Site Characterisation of the Overall Heat Loss Coefficient Comparison of Different Assessment Methods by a Blind Validation Exercise on a Round Robin Test Box raquo Energy and Buildings 153 (octobre) 179-89 httpsdoiorg101016jenbuild201708006

gt ROGEZ Jacques et Jean LE COZE 2009 laquo Mesure des tempeacuteratures - Questions agrave se poser avant la mesure raquo Text Ref TIP672WEB - laquo Mesures physiques raquo 10 mars 2009 httpswwwtechniques-ingenieurfrbase-documentairemesures-analyses-th1mesure-de-temperature-generalites-echelles-de-temperature-et-etalonnage-42542210mesure-des-temperatures-r2516

23 Journeacutee SFT02052018

Annexes

gt Sassine Emilio 2016 laquo A practical method for in-situ thermal characterization of walls raquo Case Studies in Thermal Engineering 8 (septembre) 84-93 httpsdoiorg101016jcsite201603006

gt Wang Shengwei et Xinhua Xu 2006 laquo Parameter estimation of internal thermal mass of building dynamic models usinggenetic algorithm raquo Energy Conversion and Management 47 (13) 1927-41 httpsdoiorg101016jenconman200509011

Page 22: Université de La Rochelle...(Cattarin et al. 2016) I Contexte II Verrous scientifiques III Etat de l’art IV Conclusion Les installations 9 02/05/2018 Journée SFT I Contexte II

22 Journeacutee SFT02052018

Annexes

gt NF EN 12664 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits secs et humides de moyenne et basse reacutesistance thermique 2001

gt NF EN 12667 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits de haute et moyenne reacutesistance thermique 2001

gt NF EN 12939 - Performance thermique des mateacuteriaux et produits pour le bacirctiment - Deacutetermination de la reacutesistance thermique par la meacutethode de la plaque chaude gardeacutee et la meacutethode fluxmeacutetrique - Produits eacutepais de haute et moyenne reacutesistance thermique 2001

gt NF EN ISO 22007-2 - Plastiques - Deacutetermination de la conductiviteacute thermique et de la diffusiviteacute thermique - Partie 2 meacutethode de la source plane transitoire (disque chaud) 2015

gt Peng Changhai et Zhishen Wu 2008 laquo In situ measuring and evaluating the thermal resistance of building construction raquo Energy and Buildings 40 (11) 2076-82 httpsdoiorg101016jenbuild200805012

gt Rasooli Arash Laure Itard et Carlos Infante Ferreira 2016 laquo A response factor-based method for the rapid in-situ determination of wallrsquos thermal resistance in existing buildings raquo Energy and Buildings 119 (mai) 51-61 httpsdoiorg101016jenbuild201603009

gt Roels Staf Peder Bacher Geert Bauwens Sergio Castantildeo Maria Joseacute Jimeacutenez et Henrik Madsen 2017 laquo On Site Characterisation of the Overall Heat Loss Coefficient Comparison of Different Assessment Methods by a Blind Validation Exercise on a Round Robin Test Box raquo Energy and Buildings 153 (octobre) 179-89 httpsdoiorg101016jenbuild201708006

gt ROGEZ Jacques et Jean LE COZE 2009 laquo Mesure des tempeacuteratures - Questions agrave se poser avant la mesure raquo Text Ref TIP672WEB - laquo Mesures physiques raquo 10 mars 2009 httpswwwtechniques-ingenieurfrbase-documentairemesures-analyses-th1mesure-de-temperature-generalites-echelles-de-temperature-et-etalonnage-42542210mesure-des-temperatures-r2516

23 Journeacutee SFT02052018

Annexes

gt Sassine Emilio 2016 laquo A practical method for in-situ thermal characterization of walls raquo Case Studies in Thermal Engineering 8 (septembre) 84-93 httpsdoiorg101016jcsite201603006

gt Wang Shengwei et Xinhua Xu 2006 laquo Parameter estimation of internal thermal mass of building dynamic models usinggenetic algorithm raquo Energy Conversion and Management 47 (13) 1927-41 httpsdoiorg101016jenconman200509011

Page 23: Université de La Rochelle...(Cattarin et al. 2016) I Contexte II Verrous scientifiques III Etat de l’art IV Conclusion Les installations 9 02/05/2018 Journée SFT I Contexte II

23 Journeacutee SFT02052018

Annexes

gt Sassine Emilio 2016 laquo A practical method for in-situ thermal characterization of walls raquo Case Studies in Thermal Engineering 8 (septembre) 84-93 httpsdoiorg101016jcsite201603006

gt Wang Shengwei et Xinhua Xu 2006 laquo Parameter estimation of internal thermal mass of building dynamic models usinggenetic algorithm raquo Energy Conversion and Management 47 (13) 1927-41 httpsdoiorg101016jenconman200509011