196
www.piarc.org VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES Comité technique AIPCR 3.2 Gestion des risques liés aux routes PIARC Technical Committee 3.2 Risk management for roads 2010R01 TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

  • Upload
    others

  • View
    3

  • Download
    1

Embed Size (px)

Citation preview

Page 1: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

www.piarc.org

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES

Comité technique AIPCR 3.2 Gestion des risques liés aux routes

PIARC Technical Committee 3.2 Risk management for roads

2010R01

TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Page 2: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

2010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES

TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Comité technique AIPCR 3.2 Gestion des risques liés aux routesPIARC Technical Committee 3.2 Risk management for roads

ISBN : 2-84060-230-X

Page 3: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

2 2010R01 32010R01

Statements

The World Road Association (PIARC) is a nonprofit organisation established in 1909 to improve international co-operation and to foster progress in the field of roads and road transport.

The study that is the subject of this report was defined in the PIARC Strategic Plan 2004 – 2007 approved by the Council of the World Road Association, whose members and representatives of the member national governments. The members of the Technical Committee responsible for this report were nominated by the member national governments for their special competences.

Any opinions, findings, conclusions and recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of their parent organizations or agencies.

International Standard Book Number 2-84060-230-X

This report is available from the internet site of the World Road Association (PIARC)http://www.piarc.org

Copyright by the World Road Association. All rights reserved.

World Road Association (PIARC)La Grande Arche, Paroi nord, Niveau 592055 La Défense cedex, FRANCe

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

A propos de l’AIPCR

L’Association mondiale de la Route (AIPCR) est une association à but non lucratif fondée en 1909 pour favoriser la coopération internationale et les progrès dans le domaine de la route et du transport routier.

L’étude faisant l’objet de ce rapport a été définie dans le Plan stratégique 2004-2007 approuvé par le Conseil de l’AIPCR dont les membres sont des représentants des gouvernements nationaux membres. Les membres du Comité technique responsable de ce rapport ont été nommés par les gouvernements nationaux membres pour leurs compétences spécifiques.

Les opinions, constatations, conclusions et recommandations exprimées dans cette publication sont celles des auteurs et ne sont pas nécessairement celles de la société/organisme auquel ils appar-tiennent.

N° ISBN : 2-84060-230-X

Ce rapport est disponible sur le site de l’Association mondiale de la Route (AIPCR)http://www.piarc.org

Tous droits réservés. © Association mondiale de la Route (AIPCR).

Association mondiale de la Route (AIPCR)La Grande Arche, Paroi nord, Niveau 5 92055 La Défense cedex, FRANCe

Page 4: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

4 2010R01 52010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Ce rapport a été préparé par un groupe de travail du comité technique 3.2 portant sur la gestion des risques liés aux routes de l’Association mondiale de la Route (AIPCR).

Les membres du groupe de travail sont les suivants :

Michio OKAHARA (Japon) président, responsable du groupe de travail 2Line TReMBLAY (Canada-Québec) secrétaire francophone, responsable du groupe de travail 3Hiroyuki NAKAJIMA (Japon) secrétaire anglophone Federico FeRNANDeZ ALONZO (espagne) secrétaire hispanophoneRobert ARDITI (Italie) membre, responsable du groupe de travail 3Terry BROWN (Nouvelle-Zélande) membre, responsable du groupe de travail 1Roly FROST (Nouvelle-Zélande) membre, responsable du groupe de travail 1 (successeur de Terry Brown)Michel CLOUTIeR (Canada) membre, responsable du groupe de travail 3Denis DAVI (France) membre, responsable du groupe de travail 2Michel DONZeL (Suisse) membreJohan HANSeN (Suède) membre, responsable du groupe de travail 2Gunnar LOTSBeRG (Norvège) membreAnders PLOVGAARD (Danemark) membreKeiichi TAMURA (Japon) membre correspondantShinjyuro KOMATA (Japon) membre du Comité japonaisAkira SASAKI (Japon) membre du Comité japonaisKei TeSHIMA (Japon) membre du Comité japonais

Le responsable de ce rapport est Line TReMBLAY (Canada-Québec) qui a assuré la traduction vers le français.

Roly FROST (Nouvelle-Zélande) était responsable du contrôle qualité de la version anglaise de ce rapport.

Le comité technique était présidé par Michio OKAHARA (Japon), assisté de Hiroyuki NAKAJIMA (Japon), secrétaire anglophone, Line TReMBLAY (Canada-Québec), secrétaire francophone et Federico FeRNANDeZ ALONZO (espagne), secrétaire hispanophone.

This report has been prepared by the working group TC 3.2 of the Technical Committee Risk Management for Roads of the World Road Association PIARC.

The contributors to the preparation of this report are:

Michio OKAHARA (Japan) Chair, co-leader working group 2Line TReMBLAY (Canada-Québec) French-speaking secretary, co-leader working group 3Hiroyuki NAKAJIMA (Japan) english-speaking secretary Federico FeRNANDeZ ALONZO (Spain) Spanish-speaking secretaryRobert ARDITI (Italy) Member, co-leader working group 3Terry BROWN (New-Zealand) Member, co-leader working group 1Roly FROST (New-Zealand) Member, co-leader working group 1 (successor of Terry Brown)Michel CLOUTIeR (Canada) Member, co-leader working group 3Denis DAVI (France) Member, co-leader working group 2Michel DONZeL (Switzerland) MemberJohan HANSeN (Sweden) Member, co-leader working group 2Gunnar LOTSBeRG (Norway) MemberAnders PLOVGAARD (Denmark) MemberKeiichi TAMURA (Japan) Corresponding memberShinjyuro KOMATA (Japan) Japanese committee memberAkira SASAKI (Japan) Japanese committee memberKei TeSHIMA (Japan) Japanese committee member

The editor of this report is: Line TReMBLAY (Canada-Québec). The translation into French/english of the original version was produced by Line TReMBLAY (Canada-Québec).

Roly FROST (New-Zealand) is responsible within the Technical Committee of the quality control for the production of this report in english.

The Technical Committee was chaired by Michio OKAHARA (Japan) and Line Tremblay (Canada-Québec), Hiroyuki NAKAJIMA (Japan), Federico FeRNANDeZ ALONZO (Portugal) were respectively the French, english and Spanish speaking secretaries.

Page 5: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

6 2010R01 72010R01

CONT EN T Sw w w . p i a r c . o r gw w w . p i a r c . o r g

S o m m a i r e

ExEcutivE Summary .............................................................................................................................. 17introduction............................................................................................................................................ 23

WHY DO WE NEED RISK MANAGEMENT? ........................................................................................ 23OBJECTIVES OF THE STUDY ................................................................................................................ 27REPORT FRAMEWORK .......................................................................................................................... 27

rEPort mEtHodoLoGy ......................................................................................................................... 29LITERATURE REVIEW ............................................................................................................................ 29QUESTIONNAIRE DESIGN ..................................................................................................................... 29

StatE oF tHE art in riSK manaGEmEnt ....................................................................................... 31WHAT IS RISK MANAGEMENT? ........................................................................................................... 31

riSK manaGEmEnt in tHE road SEctor / FramEWorK ....................................................... 33RISK, CONTEXT AND MANAGEMENT ............................................................................................... 33

Risk, interest and perception ............................................................................................................. 33Static and dynamic risks ................................................................................................................... 33Risk decisions in context ................................................................................................................... 37Risk definitions and communication ................................................................................................. 37

GENERAL APPROACH ............................................................................................................................ 41Basic logic and sequence .................................................................................................................. 41Types of risk ...................................................................................................................................... 43Risk analysis...................................................................................................................................... 49Risk evaluation .................................................................................................................................. 55Matrix tables in risk assessment ....................................................................................................... 55Matrix tables as tools for governance .............................................................................................. 59

EXAMPLES IN PRACTICE ...................................................................................................................... 65Risk analysis by scenario - (RAS) light version ................................................................................ 65Routine .............................................................................................................................................. 71Universal risk matrix ........................................................................................................................ 71Basic risk analysis for scorecard targets .......................................................................................... 73Procedure step by step ..................................................................................................................... 75Consolidated top risk profile ............................................................................................................. 83

RISK MANAGEMENT TECHNIQUES ................................................................................................... 83Management techniques .................................................................................................................... 83Recent development of risk management .......................................................................................... 87

riSK manaGEmEnt For mEGa-ProJEctS ................................................................................... 101

MEGA-PROJECT DEFINITION AND CHARACTERISTICS .............................................................. 101RISK MANAGEMENT FRAMEWORK AND GUIDELINES FOR MEGA-PROJECTS .................... 105

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Résumé.............................................................................................................................16IntRoductIon.......................................................................................................................... 22

POURQUOI AVONS-NOUS BESOIN DE GESTION DES RISQUES ? .................................... 22OBJECTIFS DE L’éTUDE ...................................................................................................... 26ORGANISATION DU RAPPORT ............................................................................................ 26

métHodoLoGIE......................................................................................................................... 28éTUDE BIBLIOGRAPhIQUE ................................................................................................. 28CONCEPTION DU QUESTIONNAIRE .................................................................................... 28

étAt.dE.L’ARt.En.GEstIon.dE.RIsQuEs................................................................................ 30QU’EST-CE QUE LA GESTION DES RISQUES ? .................................................................. 30

GEstIon.dEs.RIsQuEs.dAns.LE.domAInE.dEs.RoutEs.Et.dEs.InFRAstRuctuREs..... 32RISQUE, CONTEXTE ET GESTION ...................................................................................... 32

Risque, intérêt spécifique et perception ......................................................................... 32Risques statiques et dynamiques .................................................................................. 32Décisions risquées dans leur contexte .......................................................................... 36Définitions des risques et communication ...................................................................... 36

APPROChE GéNéRALE ....................................................................................................... 40Logique et processus de base ....................................................................................... 40Types de risque ............................................................................................................ 42Analyse des risques ...................................................................................................... 48Évaluation des risques .................................................................................................. 54Matrice d’appréciation des risques ................................................................................ 54Les matrices comme outils de gouvernance .................................................................. 58

EXEMPLES PRATIQUES ....................................................................................................... 64Concept de l’analyse des risques par scénario (ARS) – version simplifiée ..................... 64Le processus ................................................................................................................ 70Matrice de risques universelle ....................................................................................... 70Analyse des risques de base pour des objectifs du tableau de bord ............................... 72Procédure étape par étape ............................................................................................ 74Profil de risque supérieur consolidé ............................................................................... 82

TEChNIQUES DE GESTION DES RISQUES ......................................................................... 82Techniques de gestion .................................................................................................. 82Développements récents en gestion des risques ........................................................... 86

GEstIon.dEs.RIsQuEs.PouR.LEs.méGAPRoJEts.............................................................. 100DéFINITION ET CARACTéRISTIQUES DES MéGA-PROJETS ........................................... 100CADRE POUR LA GESTION DES RISQUES DANS LES MéGA-PROJETS .......................... 104

Page 6: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

8 2010R01 92010R01

Factors and partners associated with risk management in mega-projects .................................... 105Risk management at different mega-project stages..........................................................................111

EXAMPLES OF GOOD PRACTICE ...................................................................................................... 131The Rion-Antirion Bridge ............................................................................................................... 133The Millau Viaduct .......................................................................................................................... 135The Øresund Link tunnel and bridge .............................................................................................. 139The Stockholm South Link ............................................................................................................... 143The Frejus tunnel ............................................................................................................................ 145

HiGHWay SyStEm SEcurity ............................................................................................................... 151OVERVIEW.............................................................................................................................................. 151GENERAL VULNERABILITY ASSESSMENT CONCEPTS AND METHODOLOGIES ................... 153

FIRST METHODOLOGY FROM “A GUIDE TO HIGHWAY VULNERABILITY ASSESSMENT” .. 155SECOND METHODOLOGY FROM RECOMMENDATIONS FOR BRIDGE AND TUNNEL SECURITY ..................................................................................................................... 185THIRD METHODOLOGY FROM NATIONAL INFRASTRUCTURE INSTITUTE CENTER FOR INFRASTRUCTURE EXPERTISE ................................................................................................ 203

intErnaL SEcurity (PErSonnEL – FaciLitiES – inFormation) ....................................... 207GENERAL ................................................................................................................................................ 207PERSONNEL AND FACILITIES ............................................................................................................ 209INFORMATION TECHNOLOGY (IT) ................................................................................................... 213

riSK manaGEmEnt tEcHnicaL tooLBox ................................................................................... 221WHAT ARE INVENTORY SHEETS? ..................................................................................................... 221USAGE OF INVENTORY SHEETS ....................................................................................................... 223INVENTORY SHEETS FOR THE NATURAL EVENT MANAGEMENT ........................................... 225INVENTORY SHEETS FOR THE MAN-MADE EVENT MANAGEMENT ....................................... 225

FUTURE DEVELOPMENT OF TECHNICAL TOOLBOX FOR RISK MANAGEMENT .................. 225

concLuSion and rEcommEndationS ......................................................................................... 245GENERAL CONCLUSION ..................................................................................................................... 245RECOMMENDATIONS .......................................................................................................................... 253

Recommendations to Decision makers ........................................................................................... 253Recommendations to International Road Organizations and PIARC ............................................ 255

BiBLioGraPHy / rEFErEncES ............................................................................................................ 259Bibliography ............................................................................................................................................. 259Web Sites .................................................................................................................................................. 265

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Facteurs et partenaires associés à la gestion des risques dans les méga-projets ........ 104La gestion des risques au cours des différents stades des méga-projets ......................110

EXEMPLES DE BONNES PRATIQUES ................................................................................ 130Le pont de Rion-Antirion ............................................................................................. 132Le viaduc de Millau ..................................................................................................... 134Le pont tunnel Øresund Link ....................................................................................... 138Le lien routier dans le sud de Stockholm ..................................................................... 142Le tunnel du Fréjus ..................................................................................................... 144

sûREté.du.RésEAu.RoutIER............................................................................................... 150INTRODUCTION ................................................................................................................. 150CONCEPTS ET MéThODOLOGIES GéNéRAUX D’éVALUATION DE LA VULNéRABILITé ... 152PREMIèRE MéThODOLOGIE PROVENANT DU GUIDE D’éVALUATIONDE LA VULNéRABILITé DU RéSEAU ROUTIER ................................................................. 154DEUXIèME MéThODOLOGIE PROVENANT DES RECOMMANDATIONS POUR LA SûRETé DES PONTS ET TUNNELS ................................................................... 184EXEMPLE 3 : MéThODOLOGIE DU CENTRE D’EXPERTISE EN INFRASTUCTURE DE L’INSTITUT NATIONAL EN INFRASTRUCTURE (NATIONAL INFRASTRUCTURE INSTITUTE CENTER FOR INFRASTRUCTURE EXPERTISE) ............................................. 202

sûREté.IntERnE.(PERsonnEL.–.InstALLAtIons.–.InFoRmAtIon).................................. 206GéNéRALITéS .................................................................................................................... 206PERSONNEL ET INSTALLATIONS ...................................................................................... 208INFORMATION .................................................................................................................... 212

BoîtE.à.outILs.tEcHnIQuEs.En.GEstIon.dEs.RIsQuEs.................................................. 220QU’EST-CE QU’UNE FEUILLE D’INVENTAIRE ? ................................................................. 220UTILISATION DES FEUILLES D’INVENTAIRE ..................................................................... 222LES FEUILLES D’INVENTAIRE POUR LA GESTION DES éVéNEMENTS NATURELS ........ 224LES FEUILLES D’INVENTAIRE POUR LA GESTION DES éVéNEMENTS ANThROPIQUES ... 224DéVELOPPEMENTS FUTURS POUR LA BOîTE à OUTILS TEChNIQUES DE GESTION DES RISQUES .............................................................................................. 224

concLusIon.Et.REcommAndAtIons.................................................................................. 244CONCLUSION GéNéRALE ................................................................................................. 244RECOMMANDATIONS ........................................................................................................ 252

Recommandations aux décideurs ................................................................................ 252Recommandations pour les administrations routières et l’AIPCR ................................. 254

BIBLIoGRAPHIE./.RéFéREncEs............................................................................................. 258Bibliographie ....................................................................................................................... 258Web Sites ............................................................................................................................ 264

Page 7: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

10 2010R01 112010R01

aPPEndicES ................................................................................................................................................ 266

aPPEndix a - PrESEntationS madE By mEmBErS .................................................................... 267

aPPEndix B - tHE rESuLtS oF tHE intErnationaL SurvEy oF riSK manaGEmEnt 270A) GENERAL ...................................................................................................................................... 270B) RISK MANAGEMENT FOR NETWORKS .................................................................................. 270C) RISK MANAGEMENT FOR PROJECTS ..................................................................................... 271D) HIGHWAYS SECURITY ............................................................................................................... 271E) NATURAL HAzARDS .................................................................................................................. 271

Man-Made (Human, Social, Technical) Hazards............................................................................ 271

aPPEndix c – intErnationaL SEminar rEcordS ................................................................... 2731ST INTERNATIONAL SEMINAR ON RISK MANAGEMENT FOR ROADS AND INTERNATIONAL WORKSHOP ON TSUNAMI, ORGANIzED BY PIARC TECHNICAL COMMITTEE 3.2, AND MINISTRY OF TRANSPORT, VIETNAM. ............................ 273

Brief summary of each session ........................................................................................................ 275Opening session .............................................................................................................................. 275Session 1 – Introduction of risk management techniques in the road sector .................................. 277Session 2. — Risk Management of natural hazards ........................................................................ 281Session 3 — Risk Management of manmade hazards ..................................................................... 284Session 4 — Risk Management for projects and organizations ...................................................... 286International workshop on Tsunami ............................................................................................... 294Closing session................................................................................................................................ 295

2. THE SECOND INTERNATIONAL SEMINAR IN COLOMBIA ....................................................... 2953. BRIEF SUMMARY OF EACH SESSION ........................................................................................... 297

Opening session .............................................................................................................................. 2974. TECHNICAL CONCLUSIONS ........................................................................................................... 309

aPPEndix d — ovErviEW oF riSK manaGEmEnt ProcESS manuaL, iSSuEd By tranSit nEW ZEaLand ................................................................................................... 311

RISK MANAGEMENT PROCESS MANUAL ....................................................................................... 311Overview (Section 1) ....................................................................................................................... 311Responsibilities (Section 2) ............................................................................................................. 311Key Tools (Section 3) ...................................................................................................................... 311Application (Section 4) ................................................................................................................... 312

USING THE GENERAL APPROACH .................................................................................................... 312

aPPEndix E - comPariSon oF tHE mEtHodoLoGiES ............................................................. 316

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

annExES (en anglais seulement) ................................................................................................................ 266

aPPEndix a - PrESEntationS madE By mEmBErS .................................................................... 267

aPPEndix B - tHE rESuLtS oF tHE intErnationaL SurvEy oF riSK manaGEmEnt 270A) GENERAL ...................................................................................................................................... 270B) RISK MANAGEMENT FOR NETWORKS .................................................................................. 270C) RISK MANAGEMENT FOR PROJECTS ..................................................................................... 271D) HIGHWAYS SECURITY ............................................................................................................... 271E) NATURAL HAzARDS .................................................................................................................. 271

Man-Made (Human, Social, Technical) Hazards............................................................................ 271

aPPEndix c – intErnationaL SEminar rEcordS ................................................................... 2731ST INTERNATIONAL SEMINAR ON RISK MANAGEMENT FOR ROADS AND INTERNATIONAL WORKSHOP ON TSUNAMI, ORGANIzED BY PIARC TECHNICAL COMMITTEE 3.2, AND MINISTRY OF TRANSPORT, VIETNAM. ............................ 273

Brief summary of each session ........................................................................................................ 275Opening session .............................................................................................................................. 275Session 1 – Introduction of risk management techniques in the road sector .................................. 277Session 2. — Risk Management of natural hazards ........................................................................ 281Session 3 — Risk Management of manmade hazards ..................................................................... 284Session 4 — Risk Management for projects and organizations ...................................................... 286International workshop on Tsunami ............................................................................................... 294Closing session................................................................................................................................ 295

2. THE SECOND INTERNATIONAL SEMINAR IN COLOMBIA ....................................................... 2953. BRIEF SUMMARY OF EACH SESSION ........................................................................................... 297

Opening session .............................................................................................................................. 2974. TECHNICAL CONCLUSIONS ........................................................................................................... 309

aPPEndix d — ovErviEW oF riSK manaGEmEnt ProcESS manuaL, iSSuEd By tranSit nEW ZEaLand ................................................................................................... 311

RISK MANAGEMENT PROCESS MANUAL ....................................................................................... 311Overview (Section 1) ....................................................................................................................... 311Responsibilities (Section 2) ............................................................................................................. 311Key Tools (Section 3) ...................................................................................................................... 311Application (Section 4) ................................................................................................................... 312

USING THE GENERAL APPROACH .................................................................................................... 312

aPPEndix E - comPariSon oF tHE mEtHodoLoGiES ............................................................. 316

Page 8: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

12 2010R01 132010R01

aPPEndix F - BESt PracticES ExamPLES ..................................................................................... 324EXAMPLE 1: THE MILLAU VIADUCT (FROM RISK MANAGEMENT PERSPECTIVES) .......... 324

General presentation of the mega-project ...................................................................................... 3241. Risk management issues .............................................................................................................. 325The Architectural / environmental Risk .......................................................................................... 327The Financial / economical Risk .................................................................................................... 328The Technical Risk ......................................................................................................................... 329The Bad-Ageing Risk ...................................................................................................................... 330The Construction Related Risks ..................................................................................................... 331The Drivers Related Risks .............................................................................................................. 332The Local Population Related Risks .............................................................................................. 333Conclusion ...................................................................................................................................... 334References ....................................................................................................................................... 335

EXAMPLE 2: RISK MANAGEMENT PROCESS IN ITALY: “THE FRéJUS TUNNEL” ................... 335Brief tunnel description................................................................................................................... 335Risk analysis context ....................................................................................................................... 336Methodology ................................................................................................................................... 336Conclusions and recommendations ................................................................................................ 339

EXAMPLE 3. MT RUAPEHU LAHAR RISK MANAGEMENT PROCESSES ................................... 340Risk Analysis of Measures to Manage the Lahar Hazards from Ruapehu Crater Lake ................. 342(a): Do Nothing ............................................................................................................................. 342(b): Monitoring & Sensor System ................................................................................................. 342(c) Contingency Plans plus Sensor System .................................................................................... 343(d): Construct Crater Rim Channel .............................................................................................. 344

EXAMPLE 4: RISK MANAGEMENT FOR PROJECTS : THE SOUTH LINK ................................... 347Swedish Road Administration ......................................................................................................... 347Risk Management for Projects ....................................................................................................... 348

EXAMPLE 5 : BRIDGE OVER THE SEA ............................................................................................. 3491. Introduction ................................................................................................................................. 3502. Summary and conclusion ............................................................................................................ 352

EXAMPLE 6 — LANDSLIDE IN JAPAN .............................................................................................. 3631. Introduction ................................................................................................................................. 3632. Risk curve .................................................................................................................................... 3643. Procedure of risk curve development .......................................................................................... 365

EXAMPLE 7 — SISMOA ........................................................................................................................ 374Why Sismoa? ................................................................................................................................... 375A Qualitative Approach: ................................................................................................................. 375The unseating risk analysis ............................................................................................................. 378

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

aPPEndix F - BESt PracticES ExamPLES ..................................................................................... 324EXAMPLE 1: THE MILLAU VIADUCT (FROM RISK MANAGEMENT PERSPECTIVES) .......... 324

General presentation of the mega-project ...................................................................................... 3241. Risk management issues .............................................................................................................. 325The Architectural / environmental Risk .......................................................................................... 327The Financial / economical Risk .................................................................................................... 328The Technical Risk ......................................................................................................................... 329The Bad-Ageing Risk ...................................................................................................................... 330The Construction Related Risks ..................................................................................................... 331The Drivers Related Risks .............................................................................................................. 332The Local Population Related Risks .............................................................................................. 333Conclusion ...................................................................................................................................... 334References ....................................................................................................................................... 335

EXAMPLE 2: RISK MANAGEMENT PROCESS IN ITALY: “THE FRéJUS TUNNEL” ................... 335Brief tunnel description................................................................................................................... 335Risk analysis context ....................................................................................................................... 336Methodology ................................................................................................................................... 336Conclusions and recommendations ................................................................................................ 339

EXAMPLE 3. MT RUAPEHU LAHAR RISK MANAGEMENT PROCESSES ................................... 340Risk Analysis of Measures to Manage the Lahar Hazards from Ruapehu Crater Lake ................. 342(a): Do Nothing ............................................................................................................................. 342(b): Monitoring & Sensor System ................................................................................................. 342(c) Contingency Plans plus Sensor System .................................................................................... 343(d): Construct Crater Rim Channel .............................................................................................. 344

EXAMPLE 4: RISK MANAGEMENT FOR PROJECTS : THE SOUTH LINK ................................... 347Swedish Road Administration ......................................................................................................... 347Risk Management for Projects ....................................................................................................... 348

EXAMPLE 5 : BRIDGE OVER THE SEA ............................................................................................. 3491. Introduction ................................................................................................................................. 3502. Summary and conclusion ............................................................................................................ 352

EXAMPLE 6 — LANDSLIDE IN JAPAN .............................................................................................. 3631. Introduction ................................................................................................................................. 3632. Risk curve .................................................................................................................................... 3643. Procedure of risk curve development .......................................................................................... 365

EXAMPLE 7 — SISMOA ........................................................................................................................ 374Why Sismoa? ................................................................................................................................... 375A Qualitative Approach: ................................................................................................................. 375The unseating risk analysis ............................................................................................................. 378

Page 9: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

14 2010R01 152010R01

EXAMPLE 8: CASE OF A BRIDGE STRUCTURE PARTICULARLY EXPOSED TO RISKS: THE RION-ANTIRION BRIDGE ........................................................................................................... 381

1. General presentation of the mega-project ................................................................................. 3812. Risks management during the planning phase............................................................................ 3823. Risks management during the design phase ............................................................................... 3844. Risks management during the construction phase ...................................................................... 3865. Risks management during the operation phase .......................................................................... 3886. Conclusion ................................................................................................................................. 388References ...................................................................................................................................... 389

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

EXAMPLE 8: CASE OF A BRIDGE STRUCTURE PARTICULARLY EXPOSED TO RISKS: THE RION-ANTIRION BRIDGE ........................................................................................................... 381

1. General presentation of the mega-project ................................................................................. 3812. Risks management during the planning phase............................................................................ 3823. Risks management during the design phase ............................................................................... 3844. Risks management during the construction phase ...................................................................... 3865. Risks management during the operation phase .......................................................................... 3886. Conclusion ................................................................................................................................. 388References ...................................................................................................................................... 389

Page 10: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

16 2010R01 172010R01

ExEcutivE Summary

This Report, prepared by Technical Committee 3.2 of the World Road Association, Risk Management of Roads, addresses the integrated management of risks with respect to the following:

• the introduction of risk management techniques in the road sector;• the introduction of risk management for mega projects; and• improving the safety of road systems.

The concept of risk and the approaches to risk categorisation, analysis and evaluation are presented. The content of a risk analysis using scenarios is described. This section includes recommendations on how risk management can be used by an organization and its management to assist decision-making and guide programs and projects.

The second part of the report discusses risk management on mega projects, which are defined herein as those which are exceptional due to their dimensions, cost, architecture or technical specifications. The report provides a list of critical points in the process of development of the project with respect to the responsibilities of the owner. Recommendations are given on how to take into consideration risks, how to assess and treat them at each stage of the project, from the planning, design, construction and operational stages. Five examples of mega-projects are presented.

Because of the social and economic importance placed on the seamless operation of the road transport system, increasing attention is being paid to security issues of the road network. The report presents three methodological approaches developed in the USA to assess the vulnerabilities of the road system: Highway Vulnerability Assessment methodology, recommendations for bridge and tunnel security and the CARVER2 methodology, which is a broad-based comparison tool for prioritising assets vulnerable to terrorist attacks. Also discussed is the management of risks related to internal security, namely the security of personnel, facilities (e.g. buildings and equipment) and information technology, all of which are essential to the operation of the road system.

The report introduces a technical toolbox for risk management. The toolbox is a database of policy, techniques and operational (maintenance) technologies/tools with an inspection facility for road management, consisting of inventory sheets. The inventory sheets introduce the risk management technology, used mainly in Japan. The inventory sheets aim to assist budgeting and road management with

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Résumé

Ce rapport élaboré par le comité technique 3.2, de l’Association mondiale de la Route, Gestion des risques liés aux routes, traite de la gestion intégrée des risques en examinant plus précisément trois aspects :

• l’introduction des techniques de gestion des risques dans le secteur routier ;• l’introduction de la gestion des risques pour les mégaprojets ;• l’amélioration de la sûreté des systèmes routiers.

Dans la première partie, le rapport présente les concepts de risque et des approches générales pour l’analyse et l’évaluation des risques. Le contenu de l’approche d’analyse des risques par scénario est explicité. Cette partie se termine par le volet gestion, c'est-à-dire la manière d’amener une organisation et les gens qui la composent à faire de la gestion des risques dans l’exercice de leurs responsabilités.

La seconde partie se rapporte à la gestion des risques pour les mégaprojets, c'est-à-dire des projets reconnus comme exceptionnels de par leurs dimensions, leur coût, leur architecture ou leur technicité. Le rapport dresse une liste de points critiques du processus de déroulement du projet au regard des responsabilités du maître d’ouvrage. Il formule certains conseils pour la prise en compte des risques, leur évaluation et leur traitement aux différents stades du projet, planification, conception, construction et exploitation. Cinq exemples de mégaprojet sont présentés dans le rapport et plus en détail en annexe.

Compte tenu de l’importance sociale et économique du bon fonctionnement du système de transport routier, une attention croissante est portée à la sûreté du réseau routier. Le rapport présente trois approches méthodologiques développées aux Etats-Unis pour évaluer les vulnérabilités : la méthodologie d’évaluation de la vulnérabilité des routes, des recommandations pour la sureté des ponts et des tunnels et la méthode CARVER2 qui est un outil de comparaison pour prioriser les éléments du patrimoine vulnérables aux attaques terroristes. Ce chapitre complète ce sujet en traitant de la sécurité interne, c'est-à-dire des mesures à prendre envers les personnels, les installations et en matière de communication pour prévenir les actes de malveillance et en réduire les impacts.

Le rapport propose enfin une première version d’une boîte à outils en matière de gestion des risques. Cette boîte à outils est une base de données sur les politiques, les techniques et les technologies pour l’exploitation (la maintenance) ainsi qu’une approche de surveillance du réseau routier ; cette boîte à outils se présente sous la forme de fiches d’inventaire. Ces fiches proposent une approche

Page 11: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

18 2010R01 192010R01

easy application of risk management technologies/tools. The inventory sheets are divided into natural event management and man-made event management. All sheets are classified according to the different stages of the project (from planning to operations). In each case the sheets makes a brief presentation of the proposed recommended methodology and of the technologies available.

The report is supplemented by several appendices:

• The results of an international survey undertaken by the Technical Committee on the use of risk management;

• a summary of the two international seminars organized by the Technical Committee;

• an overview of the Risk Management Process Manual produced by Transit New zealand;

• a comparison of three methodologies for assessing the vulnerability of assets to security threats;

• best practice examples of risk management applied to projects

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

de gestion des risques principalement à partir de l’expérience acquise au Japon. Elles sont une aide à la programmation budgétaire et à la gestion routière en intégrant la gestion des risques. La différence est faite entre les risques naturels et anthropiques. Les fiches d’inventaire sont établies pour les différentes phases de l’exécution d’un projet (de la planification à l’exploitation). Pour chaque cas, la feuille d’inventaire présente brièvement l’approche recommandée pour la gestion des risques et des solutions techniques disponibles.

Le rapport est complété par de nombreuses annexes :

• les résultats de l’enquête internationale qui avait été faite par le comité technique sur l’utilisation de la gestion des risques ;

• un résumé des différentes interventions lors des deux séminaires internationaux de l’AIPCR organisés avec le comité technique ;

• une présentation du manuel de gestion des risques produit par Transit New Zealand ;

• une comparaison des trois méthodologies d’analyse de la vulnérabilité mentionnées par le rapport ;

• différents cas de bonnes pratiques d’application d’une démarche de gestion des risques.

Page 12: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

20 2010R01 212010R01

The Technical Committee on Risk Management for Roads (TC 3.2) lays special emphasis on integrated risk management with expanded research into risk assessment, decision-making processes and security issues. More specifically TC 3.2 has the three terms of reference (Table 1):

1. Introduce risk management techniques in the road sector

2. Introduce risk management for mega-projects3. Improve highway systems security

To meet its requirement, TC 3.2 is actively engaged in various activities such as launching an international survey, collecting good practices of risk management, developing technical toolbox for risk management and organizing international seminars.

taBLE 1 — tErmS oF rEFErEncE For tc 3.2issue 1 - introduce risk management techniques in the road sectorStrategies outputsCollect and analyze information about Integrated Risk Management from a strategic organizational standpoint.

Collect information about the use of quantitative risk assessment/management tools and develop best practices/ lessons learned on risk based decision making.

Study how security risks/vulnerability can be used to assess major transportation alternatives and impact the decision making process.

Recommendations on how risk management can be used in an organization to guide programs/projects.

Report on existing practices.

Model Integrated Risk Management Framework that can be used as a Guide.

Quantitative risk assessment toolbox of techniques and methodologies which can be applied to the transportation community.

issue 2 - introduce risk management for mega-projectsStrategies outputsStudy the use of risk assessment tools on mega-projects and assess their success.

Guidance on better use of risk management on mega- projects to maintain public trust and confidence.

issue 3 - improve highway systems securityStrategies outputsInvestigate the application of risk management principles to the reduction of risk for the highway system.

Vulnerability assessment model for critical transportation infrastructures.

i n t r o d u c t i o n

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Le Comité technique sur la gestion des risques pour les routes (CT 3.2) s'attache à la gestion intégrée des risques en lien avec la recherche sur l’évaluation des risques, les processus de décision et les questions de sûreté. Plus précisément, le CT 3.2 avait trois sujets à son programme de travail (Tableau 1) :

1. Mettre en place des techniques de gestion des risques dans le secteur routier.

2. Introduire la gestion des risques pour les mégaprojets.3. Améliorer la sûreté des systèmes routiers.

Pour ce faire, le CT 3.2 a lancé une enquête internationale, collecté de bonnes pratiques de gestion des risques, développé des d’outils techniques pour la gestion des risques et organisé des séminaires internationaux.

tABLEAu.1.—.mAndAt.du.ct.3.2Enjeu.1.—.Introduire.des.techniques.de.gestion.du.risque.dans.le.secteur.routierstratégies ProduitsRecueillir et analyser les informations sur la gestion intégrée des risques à partir d’un point de vue stratégique organisationnel.

Recueillir des informations sur l’utilisation de l’évaluation quantitative des risques / outils de gestion et de développer les meilleures pratiques / leçons apprises sur la prise de décisions fondée sur le risque.

étudier la façon dont les risques pour la sécurité ou la vulnérabilité peut être utilisée pour évaluer les grandes alternatives de transport et de l’impact sur le processus de décision.

Des recommandations sur les moyens de gestion des risques peuvent être utilisées au sein d’une organisation afin d’orienter les programmes / projets.

Rapport sur les pratiques existantes.

Modèle/Cadre de gestion intégrée du risque qui peut être utilisé comme un guide.

évaluation quantitative des risques, boîtes à outils techniques et de méthodes qui peuvent être utilisées par la communauté des transports.

Enjeu.2.-.Introduire.la.gestion.des.risques.pour.les.mégaprojetsstratégies ProduitsEtude de l’utilisation des outils d’évaluation des risques dans les méga-projets et évaluation de leur succès.

Lignes directrices relatives à une meilleure utilisation de la gestion des risques dans les mégaprojets au maintien de la confiance du public.

Enjeu.3.-.Améliorer.la.sûreté.des.systèmes.routiers

stratégies ProduitsEnquêter sur l’application des principes de gestion du risque à la réduction des risques pour le réseau routier

Modèle d’évaluation de la vulnérabilité critique pour les infrastructures de transport

I n t R o d u c t I o n

Page 13: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

22 2010R01 232010R01

WHy do WE nEEd riSK manaGEmEnt?

The risk management process is carried out in a rapidly evolving context: natural disasters are becoming increasingly destructive. Consider for example Hurricane Katrina in Louisiana or the floods in the south of France. Add to that the growing number of terrorist attacks: the United States, Madrid, and London have unfortunately all been hit. Whether natural or anthropogenic, disasters take us by surprise. These developments give rise to a number of observations:

• the risks are increasing;• the general population suffers the effects;• transportation systems are affected, with major social and economic

consequences. This impact on the movements of persons and on the transportation of goods.

• transportation systems are life-support networks in the same way as water, communications, and electricity. Rebuilding of infrastructures is very expensive.

Road authorities must accommodate a large number of requirements1:

• provision of a safe and efficient road network;• need to have a complete inventory of all assets;• need to have current data reflecting the condition of the assets;• need to maintain substantial investment in transportation asset; • identification of critical assets and vulnerable points;• need to be able to defensibly conduct and integrate investment trade-off;• need to support economic development and manage traffic growth, and to

minimize adverse land use, socio-economic and environmental impacts;

• requirement for a long-term evaluation of future needs with respect to financing and operation.

A risk management approach is a decision-making tool which helps to concretize what is often an intuitive process. The risk management approach should be designed to answer the following questions:

• What are the risks which can affect the road network?• Who owns risk management?• What are the impacts of these risks on the safety of users and on the smooth

flow of traffic?

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

PouRQuoI.AVons-nous.BEsoIn.dE.GEstIon.dEs.RIsQuEs.?

Le processus de gestion des risques est mis en œuvre dans un contexte qui évolue rapidement : les catastrophes naturelles sont de plus en plus destructrices. Considérons par exemple l’ouragan Katrina en Louisiane ou les inondations dans le sud de la France. Ajoutez à cela le nombre croissant d’attentats terroristes : les états-Unis, Madrid et Londres ont malheureusement été touchés. Qu’elles soient naturelles ou anthropiques, les catastrophes nous prennent par surprise. Cette évolution donne lieu à un certain nombre d’observations :

• les risques sont en augmentation ;• l’ensemble de la population en subit les effets ;• les systèmes de transport sont touchés, avec de grandes conséquences

sociales et économiques. Ceci touche les déplacements des personnes et le transport des marchandises ;

• les systèmes de transport sont un réseau de soutien à la vie de la même manière que l’eau, les communications et l’électricité. La reconstruction des infrastructures est très coûteuse. .

Les administrations routières doivent respecter un grand nombre d’exigences1 :

• fournir un réseau routier sûr et efficace ;• disposer d’un inventaire complet de tous les actifs ;• disposer de données reflétant l’état de l’actif ;• maintenir des investissements substantiels dans le transport actif ;• identifier des actifs importants et leurs sensibilités ;• être en mesure de réaliser et de rentabiliser les investissements ;• appuyer le développement économique et gérer la croissance du trafic, réduire

au minimum l’utilisation de l’espace naturel et les impacts socio-économiques et environnementaux ;

• évaluer sur le long terme les besoins futurs, en prenant en compte le financement et l’exploitation.

Une approche de gestion du risque est un outil de prise de décision qui permet de concrétiser ce qui est souvent un processus intuitif. L’approche de gestion du risque devrait être conçue de manière à répondre aux questions suivantes :

• Quels sont les risques qui peuvent avoir une incidence sur le réseau routier ?• Qui est responsable de la gestion du risque ?• Quels sont les impacts de ces risques sur la sécurité des usagers et sur la

fluidité de la circulation ?

1“Asset Management for Roads - An Overview”, extrait du rapport du Comité C6 p.14-15, 1995. 1“Asset Management for Roads - An Overview”, extract from C6 Committee report p.14-15, 1995.

Page 14: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

24 2010R01 252010R01

• What protective or mitigating measures can be taken to deal with these risks?

• What is the state of readiness of the organization?• To what extent is risk management taken into account in major road projects?

At what stage of the project?• What are the impacts of not managing risk?• What are the advantages of managing risk?• What is the involvement of partners in the risk management approach?• How are road users informed of the risks?• Which are the critical assets essential to the operation of the network?• Which are the vulnerable assets which it is essential to protect?

According to Martyn Philips2:

“The value and risk management approach is a good natural companion to good Programme and project management for complex or sensitive issue areas and for encouraging continuous improvement. It provides a vehicle for transforming the way organizations and individuals approach project planning and development. The techniques to address the inter-related aspects of:

• Stakeholder issues and concerns• Stakeholder values• Project functionality• Operations and maintenance requirements• Cost (capital and whole of life)• Implementation schedules• Implementation obstacles• Potential project risks

There are two contrasting applications:

Strategic choice – through strategic focusing, formulation of clear, unambiguous, strategic direction to enable approvals, funding and subsequent orientation of the development/implementation team. To build consensus on the way forward through complete gathering of the many and various stakeholder views, strategic focusing is, of necessity, an iterative process.

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

• Quelle protection ou mesures peuvent être prises pour faire face à ces risques ?

• Quel est l’état de préparation de l’organisation ?• Dans quelle mesure la gestion des risques est-elle prise en compte dans les

grands projets routiers ? à quelle étape du projet ?• Quels sont les impacts de la non gestion des risques ?• Quels sont les avantages de la gestion du risque ?• Quelle est l’implication des partenaires dans l’approche de gestion du risque ?• Comment les usagers de la route sont informés des risques ?• Quels sont les éléments essentiels à l’exploitation du réseau ?• Quels sont les éléments vulnérables qu’il est essentiel de protéger ?

Selon M. Martyn Philips2 :

« L’approche de gestion de la valeur et des risques est un bon compagnon de la bonne gestion des programmes et des projets complexes ou pour la question de la protection des zones sensibles. elle fournit un moyen de transformer la façon dont les organisations et les individus approchent la planification et le développement de projets. Les techniques pour traiter les aspects interdépendants sont reliées aux éléments suivants :

• questions et préoccupations des parties prenantes ;• valeurs des parties prenantes ;• fonctionalité du projet ;• exploitation et exigences d’entretien ;• coût (capital et au cours de la vie) ;• calendriers de mise en œuvre ;• obstacles à la mise en œuvre ;• risques probables du projet.

Il existe deux applications :

Choix stratégique - en se concentrant sur les éléments stratégiques, c'est formuler une orientation stratégique claire, sans ambigüité, afin d’approuver les étapes du projet, le financement et les orientations du développement ou de la mise en place de l’équipe. Pour arriver à un consensus sur la démarche, un processus itératif sera nécessaire pour recueillir les nombreux et divers points de vue des parties prenantes, en se concentrant sur les aspects stratégiques.

2 PhILLIPS, M., “A value and risk management approach to project development”, extrait du Canadian paper, Civil Engineering, Mai 2002.

2 PHILLIPS, M., “A value and risk management approach to project development”, extract from a Canadian paper, Civil Engineering, May 2002.

Page 15: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

26 2010R01 272010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Amélioration de la valeur – à travers l’ingénierie de la valeur - l’amélioration continue de la valeur pour optimiser la qualité, la fonctionnalité et les paramètres de coûts. »

oBJEctIFs.dE.L’étudE

Il s'agit de développer une boîte à outils de techniques et de méthodes sur l’évaluation des risques, le traitement et la communication des risques pour transférer la technologie. Pour cela, le comité a constitué trois groupes de travail :

tABLE.2.—.oBJEctIFs.Et.REsuLtAtsobjectifs Résultats

Groupe.de.travail.1 Introduire des techniques de gestion du risque dans le secteur routier

• Panoplie de techniques• Cadre intégré pour la gestion de risques• Principes et techniques communes à toutes

les applications de la gestion de risques• Des exemples de l’utilisation de la gestion

de risques à partir d’un point de vue organisationnel

Groupe.de.travail.2 Introduire la gestion des risques pour les mégaprojets

• Conseils pour une meilleure utilisation de la gestion de risques sur les mégaprojets

• Boîte à outils en gestion de risques, incluant la définition des mégaprojets, l’évaluation des risques naturels et technologiques

Groupe.de.travail.3 Améliorer la sûreté des systèmes routiers

• Boîte à outils en gestion de risques• Modèle d’évaluation de la vulnérabilité pour

les infrastructures critiques de transport

oRGAnIsAtIon.du.RAPPoRt

Le rapport est constitué de trois grands chapitres, dont chacun est lié à l’un des trois groupes de travail. Après une explication de la méthodologie de l’étude, le chapitre 4, page 32 présente les résultats des travaux du groupe de travail 1, à savoir l’introduction de la gestion des risques dans le secteur routier. Ce chapitre sert d’introduction aux deux chapitres suivants qui traitent de sujets plus spécifiques. Le chapitre 5, page 100 traite de la gestion des risques dans les mégaprojets, tandis que le chapitre 6, page 150 traite de la gestion des risques comme un outil pour améliorer la sécurité des réseaux routiers. Le chapitre 7, page 206 traite de la sûreté, qui est un domaine spécifique lié à la gestion des risques.

Un autre volet important du rapport est le chapitre 8, page 220 qui porte sur une boîte à outils techniques de gestion des risques. Les conclusions et recommandations du comité sont énoncées dans le chapitre 9, page 244.

Value enhancement – through value engineering – continuing value improvement for finessing to optimum quality, functionality and cost parameters.”

oBJEctivES oF tHE Study

The study will develop an RM toolbox of techniques and methodologies on risk assessment, risk treatment, and risk communication for technology transfer. Following this, the committee established three working groups:

taBLE 2 — GoaLS and rESuLtSobjectives résults

Working Group 1 Introduce risk management techniques in the road sector

• RM toolbox of techniques• Framework for Integrated RM• Principles and techniques common to all

RM applications• Examples of the use of RM from an

organizational standpointWorking Group 2 Introduce risk

management for mega-projects

• Advise for better use of RM on mega-projects

• RM toolbox, including the definition of mega-projects, risk assessment of natural and technological hazards

Working Group 3 Improve highway systems security

• RM toolbox• Vulnerability assessment model for critical

transportation infrastructures

rEPort FramEWorK

The report consists of three main chapters, each of which is related to one of the three working groups. After an explanation of the study methodology, Chapter 4, page 33 presents the results of the work of working group 1, namely, the introduction of risk management in the road sector. This chapter serves as an introduction to the two following chapters, which deal with more specific topics. Chapter 5, page 101 is concerned with risk management in mega-projects, while Chapter 6, page 151 deals with risk management as a tool for improving the safety of highway systems. Chapter 7, page 207 deals with internal security which is a specific field related to risk management.

Another important part of the report is the chapter 8, page 221 which is about Risk Management Technical Toolbox. The conclusions and recommendations of the committee are set out in the chapter 9, page 245.

Page 16: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

28 2010R01 292010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

métHodoLoGIE

La première réunion du comité a servi à établir la base des travaux et l’approche à adopter pour atteindre les résultats souhaités :

• analyse des rapports antérieurs et des approches dans le domaine de la gestion des risques ;

• mise en commun de l’expérience des membres du comité ;• réalisation d’une étude en deux étapes sur la gestion des risques liés aux

routes. Cette enquête a permis d’identifier d’autres normes dans ce domaine, de déterminer les pratiques des pays membres et de demander leur coopération ;

• organisation de deux séminaires internationaux ;• participation à des colloques dans le domaine de la gestion des risques

(Japan Road Congress). Présentation et validation des résultats des groupes de travail ;

• préparation d’un rapport basé sur les résultats des travaux des trois groupes de travail ;

• préparation d’articles pour le magazine Routes/Roads ;• organisation d’une session technique présentant les résultats des trois

objectifs fixés au début de ce cycle et d’une session spéciale sur la gestion des risques au Congrès mondial de la Route à Paris.

étudE.BIBLIoGRAPHIQuE

Afin d’obtenir une vue d’ensemble des développements dans le domaine de la gestion des risques, une analyse de la littérature a été effectuée afin d’identifier les principaux documents de référence. Les objectifs étaient de créer une base de référence dans le domaine de la gestion des risques et de parvenir à une meilleure compréhension des éléments à prendre en compte au cours des différentes phases des grands projets routiers (planification, conception, construction et exploitation) et dans le fonctionnement des systèmes de transport.

concEPtIon.du.QuEstIonnAIRE

Deux questionnaires ont été conçus pour fournir un complément à l’expertise des membres du comité, pour recueillir les informations suivantes :

• pratiques de gestion des risques ;• exemples de l’utilisation de la gestion des risques dans les projets routiers ;• applications de la gestion du risque.

rEPort mEtHodoLoGy

The first meeting of the committee served to establish the basis of the work and the approach to be taken to achieve the desired results:

• analysis of earlier reports and approaches in the field of risk management;

• pooling of the experience of the committee members;• carrying out of an international two-stage survey on risk management as it

pertains to roads.This survey made it possible to identify other standards in this area and to determine the practices of member’s countries and request their cooperation;

• organization of two international seminars;• participation in symposiums in the field of highway-system risk management

(Japan Road Congress). Presentation and validation of the results of the working groups;

• preparation of a report based on the results of the work of the 3 working groups;

• preparation of articles for Routes/Roads magazine;• organization of a technical session presenting the results of the three goals fixed

in the beginning of this cycle and of a special session on risk management at the World Road Congress in Paris.

LitEraturE rEviEW

In order to obtain an overview of developments in the field of highway-system risk management, a review of the literature was carried out to identify the principal reference documents. The objectives were to establish a reference base in the field of risk management and to achieve a better understanding of the elements to be taken into account during the various phases of major highway projects (planning, design, construction and operation) and in the operation of highway systems.

QuEStionnairE dESiGn

Two questionnaires were designed to provide input to complement the expertise of the committee members, to collect the following information:

• Risk management practices;• Examples of the use of risk management in highway projects;• Applications of the risk management process.

Page 17: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

30 2010R01 312010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Le premier questionnaire a été transmis à tous les pays membres de l’AIPCR, en février 2005. 21 pays ont répondu à ce questionnaire, ce qui a permis d’obtenir un aperçu préliminaire. Le deuxième questionnaire envoyé en mars et en avril 2006, a permis de parvenir à une compréhension plus approfondie de la gestion des risques et d’identifier les pratiques intéressantes. Les deux questionnaires et les résultats sont présentés en annexe.

étAt.dE.L’ARt.En.GEstIon.dE.RIsQuEs

Qu’Est-cE.QuE.LA.GEstIon.dEs.RIsQuEs.?

Un désastre se produit lorsque les ressources d’une communauté ou d’une organisation sont insuffisantes pour faire face à une catastrophe. Chaque année, le nombre de personnes exposées à des risques augmente. Minimiser les désastres est devenu l’objectif principal des autorités sur le terrain.

Selon l’ISO (Organisation Internationale de Normalisation)« La sécurité est obtenue en réduisant le risque à un niveau acceptable (…). Le risque tolérable est déterminé par la recherche d’un équilibre optimal entre l’idéal de la sécurité absolue et les exigences à remplir par un produit, procédé ou service, et des facteurs tels que l’avantage pour l’utilisateur, l’adéquation à un usage particulier, la rentabilité et les conventions de la société concernée. Il s’ensuit qu’il est nécessaire de revoir continuellement les niveaux tolérables, en particulier lors de l’évolution, tant dans la technologie et dans les connaissances, ce qui peut conduire à des améliorations économiquement possible permettant ainsi d’atteindre un niveau de risque plus bas compatible avec l’utilisation du produit, le procédé ou service.

Le risque acceptable est obtenu par un processus itératif d’évaluation des risques (analyse des risques et l’évaluation des risques) et de la réduction des risques. »

The first questionnaire was sent to all PIARC member countries in February 2005. 21 countries responded to this questionnaire, thus making it possible to obtain a preliminary overview. The second questionnaire was sent out in March and April 2006 and made it possible to achieve a more in-depth understanding of risk management and to identify interesting practices. The two questionnaires and results are presented in the appendix.

StatE oF tHE art in riSK manaGEmEnt

WHat iS riSK manaGEmEnt?

A disaster occurs when the resources of a community or organization are inadequate to cope with the resources of a catastrophe. Every year, the number of persons exposed to risks increases. Minimizing disasters has become the principal objective of the authorities in the field.

According to the ISO:

“Safety is achieved by reducing risk to a tolerable level (…). Tolerable risk is determined by the search for an optimal balance between the ideal of absolute safety and the demands to be met by a product, process, or service, and factors such as benefit to the user, suitability for purpose, cost effectiveness, and the conventions

of the society concerned. It follows that there is a need to review continually the tolerable level, in particular when developments, both in technology and in knowledge, can lead to economically feasible improvements to attain the minimum risk compatible with the use of the product, process, or service.

Tolerable risk is achieved by an iterative process of risk assessment (risk analysis and risk evaluation) and risk reduction .”

Apprécier le risque global

Définition du contexte

Identification des risques

Analyse des risques

évaluation des risques

Traitement des risques

Suivi et révision

Com

mun

icat

ion

et c

onsu

ltatio

n

Figure 2 - Processus de gestion des risques

Global risk assess

Define the context

Identify risks

Analyse risks

Evaluate risks

Treat risks

Monitor and review

Com

mun

icat

e an

d co

nsul

tFigure 2 — Risk management process

Page 18: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

32 2010R01 332010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Le processus général de gestion des risques qui a été largement adopté par plusieurs pays est présenté Figure 2, page précédente.

Le rapport du Comité C18 publié en 2003 donne plus de renseignements sur ce processus général.

GEstIon.dEs.RIsQuEs.dAns.LE.domAInE.dEs.RoutEs.Et.dEs.InFRAstRuctuREs

RIsQuE,.contEXtE.Et.GEstIon

Risque,.intérêt.spécifique.et.perception

Du point de vue philosophique, le risque désigne la possibilité d’écart négatif par rapport à un désir quelconque d’un être humain. Ce désir, par rapport à un état existant ou futur du monde, peut également être qualifié d’intérêt spécifique. En ce qui nous concerne, le risque est un concept humain. Il n’existe pas dans la nature. Nous ne pouvons pas le mesurer directement à l’aide d’un instrument, mais nous pouvons mesurer l’ampleur du phénomène. Ce phénomène ne constitue un risque qu’en fonction de l’existence d’un intérêt. Il est possible qu’un intérêt spécifique ne soit pas lié uniquement à des biens ou à des actifs financiers, mais également à des idées et à des valeurs. Cette situation rend la gestion des risques fort complexe. L’évaluation des risques dépend de la personne qui l’effectue. Les perceptions peuvent varier considérablement selon la partie intéressée.

Risques.statiques.et.dynamiques

Une dichotomie datant du tout début de la gestion des risques, et qui existe encore, consiste dans la différence philosophique et logique entre les situations risquées comprenant et reliant entre eux le gain et la perte éventuels et les situations qui ne peuvent qu’entraîner une perte éventuelle.

Les risques dits statiques sont inhérents partout et ne présentent que des possibilités de perte, sans contrepartie correspondante spécifique et avec un statu quo en cas de non-survenance.

Le développement d’une entreprise ou d’une activité de toute sorte présente un équilibre entre le gain et la perte. à présent, la gestion des risques étudie également de plus en plus la gestion des opportunités au lieu des « risques ». Les opportunités sont le contraire des risques. Il y a des possibilités de gain et

The general risk management process which has been widely adopted by countries around the world is presented in Figure 2, previous page. The TC18 Report published in 2003 gives more information on this general process.

riSK manaGEmEnt in tHE road SEctor / FramEWorK

riSK, contExt and manaGEmEnt

risk, interest and perception

From a philosophical viewpoint risk means the possibility of a negative deviation from whatever is the desire of any human being. This desire, relative to an existing or future state of the world, can also be designated interest. As far as we are concerned, risk is a human concept. It does not exist in nature and cannot as such be measured directly with an instrument. What we can measure is the magnitude of phenomena. Whether such phenomena constitute a risk depends on the existence of a vested interest. An interest is not only linked to property or finance but also to ideas and values. This situation makes risk management highly complex. The evaluation of risk depends on who makes it. Different stakeholders or interested parties may have completely different perceptions.

Static and dynamic risks

One dichotomy that originates from the early days of risk management, and still exists, is the philosophical and logical difference between risk situations including and linking together both possible gain and loss, and situations that only bring possible loss.

Static risks are inherent everywhere and mean possibilities of loss only, without a specifically linked corresponding balance and with status quo in case of non-occurrence.

The development of an enterprise or activity of any kind has a balance of gain or loss. To an increasing degree, risk management has come to encompass also the management of opportunities rather than “risks”. Opportunities are the opposites of risks. There are possibilities of both gain and loss. The possibility

Page 19: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

34 2010R01 352010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

de perte. La possibilité de perte est ce qu’on appelle le risque dynamique. La gestion des risques traite alors de l’appréciation des risques par rapport aux opportunités.

Ce n’est toutefois pas un type de risques différent sur le plan philosophique. La gestion des risques traite toujours de la possibilité d’écarts négatifs ou indésirables et se rapporte soit à la perte de valeurs ou biens existants, soit à la non-réalisation de projets et d’efforts. Seuls les aspects diffèrent.

Les risques statiques n’ont pas de contrepartie. Une route inondée ne peut pas être compensée ou « non inondée » par une autre route. Des risques dynamiques peuvent être compensés en ce sens qu’une perte peut être contrebalancée par un autre gain. Par ailleurs, certains risques statiques sont assurables.

of loss is what is called dynamic risk. Risk management deals with assessing the risks in comparison with the opportunities.

This is however not a philosophically different kind. Risk management always deals with the possibility of negative or undesired deviations, either it relates to loss of existing assets or values or non-achievement of plans and efforts. Only the aspects differ.

Static risks can not be balanced out. A flooded road can not be compensated or “unflooded” by another road. Dynamic risks can be balanced out in the meaning that one loss can be covered by another gain. On the other hand, some static risks are insurable.

Page 20: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

36 2010R01 372010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

décisions.risquées.dans.leur.contexte

Au fond, toute la gestion des risques, ainsi que la gestion en général, traite plus ou moins d’options concernant la mise en balance ou la limitation ou les deux. Mais comme d’autres parties pourraient également être affectées, il s’agit d’une question délicate. Les difficultés sont manifestées dans une situation avec les décideurs d’une part et les sujets d’autre part. Quel est l’intérêt prioritaire ? Qui paie ? Qui y gagne ? Qui détermine ce qu’est un juste équilibre ?

Si la décision et le préjudice éventuel ne concernent que le décideur, c’est à lui seul que devrait incomber cette responsabilité, mais, dans la société moderne, les répercussions dépassent largement le cercle primaire. Les médias et les groupes de pression peuvent attirer l’attention du public sur l’affaire. Même si l’affaire est finalement considérée comme acceptable, l’ensemble de la situation entraîne un autre type de risque, à savoir un risque de problèmes critiques, qui pourrait occasionner une perte de réputation et un échec.

Les risques traditionnels d’une autorité en transport routier comprennent tout ce qui a trait à l’infrastructure, au personnel et au financement. Il s’agit principalement de risques physiques et naturels, d’accidents et de défaillances techniques. Cependant, les autorités de transport routier traitent également de questions de politique publique concernant la sécurité, les dépenses, l’immatriculation, la surveillance, la conception des véhicules et l’environnement, entre autres.

Ceci donne peu à peu une nouvelle dimension du contexte du risque dans la société moderne, avec un accroissement de l’éducation, de la sensibilisation, de la conscience des réclamations et de l’attention des médias.

L’autorité, ses cadres dirigeants et le niveau politique sont donc concernés.

définitions.des.risques.et.communication

Dans le domaine de la science et des applications spécifiques, différentes définitions ont été données au risque. Elles ont toutes une fin. Il est vain de n’évoquer qu’une seule définition du risque, à moins qu’il ne s’agisse de celle très basique citée plus haut. Chacun peut avoir la sienne. Nous devons définir nos termes spécifiques pour une plus grande clarté afin que nous puissions nous comprendre. La communication sur les risques doit pourtant également comporter un dialogue sur les risques. Nous devons comprendre non seulement les termes, mais également les raisons et les valeurs sous-jacentes et en discuter.

risk decisions in context

All risk management, as well as management in general, more or less deals basically with options with respect to balancing, limitation or both. But since harm to other parties could also be involved, this is a sensitive issue. The difficulties become apparent in a situation with decision-makers on the one hand and subjects on the other. Whose interest prevails? Who pays? Who gains? Who determines what a fair balance is?

If the decision and possible harm only concerns the decision-maker, then it should be her or his sole responsibility. But in modern society the repercussions extend far beyond the primary circle. Media and lobby groups may bring the matter to public attention. Even if the matter is eventually concluded to be acceptable as such, the whole situation brings another type of risk, a critical issues risk, which may result in loss of reputation and failure for the primary party.

Traditional risks for a road transport authority have included anything in relation to infrastructure, personnel and finance. Mostly it has concerned physical and natural risks, accidents and engineering failures. But road transport authorities are also dealing with matters of public policy, concerning safety, spending, licensing, monitoring, vehicle design, environment and more.

This gradually brings a whole new dimension to the risk environment in modern society, with increasing education, awareness, claims consciousness and media attention.

This concerns the authority, its management and the political level above.

risk definitions and communication

Risk has been given various definitions in science and specific applications. They all have a purpose. It is futile to advocate just one meaning of risk, unless it is the very fundamental one above. Anybody can use their own. What we must do is to define our specific terms for clarity, in order to understand each other. Risk communication must however also mean a risk dialogue. We have to understand not only the terms but also the underlying motives and values and appreciate them.

Page 21: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

38 2010R01 392010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Il est peu probable qu’il soit possible de développer un langage simple commun pour toutes les fins, sauf pour des fins strictement scientifiques bien spécifiques. Mais même dans le domaine de la science, (la « vérité »), il existe une marge d’interprétation. L’incertitude liée au manque de connaissances existera toujours d’une façon ou d’une autre. Par conséquent, quand les décisions sont prises (par les « autorités »), les connaissances ne sont jamais complètes et l’unanimité n’est jamais absolue en ce qui concerne les fins et les moyens. Les « autorités » doivent néanmoins fonder leurs décisions sur la « vérité » autant que possible.

Toutefois, il devrait exister un langage et des critères communs de prise de décision au moins au sein d’une organisation, d’un secteur d’activités ou d’un domaine politique, voire au sein du secteur routier au niveau mondial.

Ceci devrait comprendre :

• la terminologie ;• les processus ;• l’organisation, sa mission et ses buts ;• les objectifs de la gestion des risques.

dans. le. cadre. de. ce. rapport,. le. RIsQuE. peut. être. défini. comme. :. la.combinaison.de.la.probabilité.d’un.danger.et.de.ses.conséquences.

La.renaissance.de.la.gestion.des.risquesLa gestion des risques est actuellement une discipline ou plutôt un groupe de disciplines en développement rapide. L’environnement des risques opérationnels, politiques et sociaux change constamment. Les aspects de la gestion des risques varient considérablement selon les applications.

Vu ce qui précède, il est maintenant encore plus important de prendre des décisions bien fondées et transparentes, pas seulement pour les risques traditionnels, mais dans tous les cas. Le domaine de la gestion des risques n’est donc plus limité à la sécurité, la sûreté, la qualité et l’efficacité traditionnelles ; il s’est étendu à la gestion générale. Les domaines traditionnels sont souvent dénommés sécurité, sûreté ou prévention des pertes.

Pour essayer de les distinguer, citons les domaines émergents que sont la gestion du risque d’entreprise (GRE), la gouvernance d’entreprise, la planification de la continuité des affaires, la responsabilité sociale des entreprises, la gestion des problèmes critiques, etc. La discipline de gestion des risques déjà largement répandue est désignée par l’expression « gestion traditionnelle des risques » (GTR).

It is doubtful whether it is possible to develop one simple common language for all purposes, except those strictly scientific for specific purposes. But even in science, (“truth”), there is room for interpretation. Uncertainty as lack of knowledge in one way or other will always exist. So when decisions are made (by ”power”) there will never be complete knowledge or absolute unanimity about ends and means. Nevertheless “power” should base decisions on “truth” as far as possible.

However, inside an organization, an industry or a political field at least, or maybe the global road sector, there should be a need for a common language and criteria for decision making.

This should include:

• terminology ;• processes ;• organization, its mission and goals ;• objectives for risk management.

For the purpose of this report, riSK can be defined as: the combination of the probability of a hazard and its consequences.

risk management emerging againRisk management is now a rapidly developing discipline, or rather set of disciplines. The operational, political and social risk environment is in constant change. The aspects of risk management differ considerably between a multitude of applications.

Given the above, the importance of making well supported, transparent decisions has grown, not only for traditional risk decisions but for all decisions. The field of risk management has consequently expanded from traditional safety, security, quality and efficiency into general management. The traditional fields are often labeled safety, security or loss prevention.

The emerging fields, in an attempt to distinguish themselves, are called enterprise risk management (ERM), corporate governance, business continuity planning, corporate responsibility, critical issues management etc. They have even invented the term traditional risk management (TRM) for the already widely established management discipline.

Page 22: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

40 2010R01 412010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

En tant que concept général, les domaines émergents pourraient être appelés «. Gestion. des. risques. dynamiques. ». Le terme «. Gestion. des. risques.statiques. ». convient mieux à la gestion traditionnelle des risques. Le même processus de gestion des risques est utilisé dans ces deux domaines.

Il est toutefois important de se rappeler que tous deux sont composantes de la gestion en général.

APPRocHE.GénéRALE

Logique.et.processus.de.base

Il y a presque autant de descriptions et de définitions de la gestion des risques que de praticiens. Certaines ont été élaborées par des institutions et ont, par conséquent, un peu plus de poids. D’autres sont désignées par le terme « normes » ou « directives généralement admises ». Elles ont tendance à être théoriques et universelles et, de ce fait, procurent des cadres. Mais elles n’aident pas beaucoup le praticien confronté à des problèmes importants. Au plus, elles offrent des connaissances ou bien procurent des outils pratiques pour assister la gestion.

Figure 3 – Processus de gestion des risques simples

As an umbrella concept, the emerging fields could be named dynamic risk management. Traditional risk management is better named Static risk management. The same risk management process is used in both fields.

But it is important to remember that they both exist under the umbrella of general management.

GEnEraL aPProacH

Basic logic and sequence

There are nearly as many descriptions and definitions of risk management as the number of practitioners. Some of them have been developed by institutions and carry a little more weight. Some are referred to as standards or generally accepted approaches. They tend to be academic and universal and as such they provide frameworks. For the practitioner facing acute problems they offer little help. In as much as they offer knowledge or bring practicable means of assistance they are much appreciated.

Figure 3 – Simple risk management process

Réviser

évaluer

Identifier

choisir

Gestion..des.risques

Regarder

Penser

Décider

Agir

Surveiller

Mettre en œuvre

Review

Evaluate

Identify

choose

risk management

simple

Look

think

Decide

do

Monitor

Implement

Page 23: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

42 2010R01 432010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

La logique et la séquence habituelles sont l’analyse des risques, le traitement des risques et le suivi. Il est également entendu que le traitement des risques ne peut envisager que quatre options logiques, c’est-à-dire l’évitement, la réduction avec le cas spécial de l’élimination, la rétention/acceptation et le transfert/partage.

L’évitement désigne le fait de ne pas du tout intervenir. La rétention peut désigner le risque résiduel, net après le traitement, ou un risque qui ne peut pas être traité ou, en tout cas, qui n’est pas traité. Le transfert désigne en général le financement des risques, parfois d’autres types de contrats. Le financement des risques désignait autrefois une assurance commerciale.

Le nombre de solutions pour les options de traitement des risques a augmenté au fur et à mesure que la gestion des risques s’est développée. Toutefois, une assurance d’intérêt public n’est généralement pas une option possible.

types.de.risque

Il est évident que les risques peuvent être catégorisés. Plusieurs aspects peuvent être pris en compte comme, par exemple, les causes, les impacts, les intérêts, etc. Il n’existe pas une seule structure tout à fait claire pour tous les types. Par conséquent, quiconque doit traiter tout type de risques créera probablement ses propres catégories en tant qu’outil de gestion.

The normal logic and sequence is usually said to be risk analysis, risk treatment and monitoring. It is also understood that risk treatment only can take four logic options, namely avoidance, reduction with the special case of elimination, retention/acceptance and transfer/sharing.

Avoidance means not getting involved at all. Retention could mean either residual risk, net post-treatment, or a risk that could not exist or anyway is not treated. Transfer generally means risk financing and sometimes other types of contract. Risk financing used to mean commercial insurance.

When risk management developed the number of solutions for risk treatment options also increased. However, public policy insurance is in most cases not a possible option.

types of risk

It is self-evident that risks can be categorized. A number of aspects may be involved; e.g., causes, impact, interests and so on. There is no one unambiguous structure for all types. Therefore, whoever must deal with any kind of risk management will probably devise their own categories as a means of management.

Page 24: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

44 2010R01 452010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Figure 4 – Logique de traitement des risques Figure 4 – Risk treatment logic

RISQUE

Choix stratégiques

Options de traitement du risque

Acceptation/rétention

Autres Contrats Mesures

éviter

TRAITEMENT

Assumer

Risque résiduelDomaine d'évaluation du risque

Contrôle

Réduction/élimination

Finances

Budget

Exploitation

Financement/"auto-assurance"

Emprunt

Solutions financières

Enchaînement de faits

Cause

Prévention Limitation

Adhoc Assurance Organisation Techniques

Financement du risque

Transfert/partage

Financial

RISK

The strategic choice

Options for treatment of risk

Accept/retain

Other Contracts Measures

Avoid

TREATMENT

Carry

Residual riskRisk evaluation domain

Control

Reduce/eliminate

Budget

Running

Funding/"self-insurance"

Emprunt

Financial solutions

Chain of events

Cause

Prevention Limitation

Adhoc Assurance Organisation Technical

Risk financing

Transfer/share

Page 25: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

46 2010R01 472010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Les risques pour la gestion des risques statiques peuvent être classés selon deux catégories :naturels et anthropogéniques.

Risques.naturels.:.exemples Risques.anthropogéniques.:.exemples

• Glissements de terrain• Tremblements de terre• Inondations• Avalanches• Feux de forêts/ de broussailles• Chute de pierres• Tempête de neige /verglas massif /

chute de neige importante• Tempête / tempête de pluie /

fortes précipitations• Brouillard• éruption volcanique• Sécheresse

• Risques de sécurité informatique• Accidents de travail• Transport de produits dangereux• Surcharge de poids, dépassement de hauteur• Accident d’avion, de train ou naufrage• Incendie• Accidents industriels• Explosifs / mines en temps de guerre • Grèves• Terrorisme / vandalisme• Embouteillage• Rupture de digue

D’autres auteurs classifient les risques comme suit :

• risques.naturels : feu de broussailles, tempête, inondation, tremblement de terre, ouragan, etc. ;

• risques. technologiques : rupture de digue, contamination de denrées alimentaires, accidents sur site industriel, défaillance d’équipement ou apparition d’un problème ;

• risques.biologiques : maladie se propageant via les végétaux, les animaux ou les humains ;

• risques. civils. ou. politiques : terrorisme, sabotage, guerre civile, prise d’otage ou attaque par un pays ennemi.

Risks for Static Risk Management can be classified into two categories:natural and man-made.

natural risks – examples man-made risks - examples

• Landslides• Earthquakes• Floods• Avalanches• Bushfires / Forest fires• Rock Fall• Snow storm / Ice storm / Heavy Snowfall• Wind storm / Rain storm / Heavy Rain• Fog• Volcanic eruption• Ice storm• Drought

• IT security risks• Work accidents• Transport of dangerous goods• Overloading (height, weight)• Aeroplane, ship, or train crash• Fire• Industrial accidents• Wartime explosives / Mines• Strikes• Terrorism / Vandalism• Traffic congestion• Dam collapse

Other authors of Static Risk Management classify risks as follows:

• natural risks: bush fire, storm, flood, earthquake, hurricane, etc.

• technological risks: dam breach, food contamination, industrial site accidents, infrastructure failure or problem which arises

• Biological risks: Disease spread by plants, animals, or humans.

• civil or political risks: Terrorism, sabotage, civil war, hostage-taking, or an attack by an enemy country.

Page 26: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

48 2010R01 492010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Là où une organisation a adopté une approche plus large de la gestion des risques, c’est-à-dire en couvrant à la fois la gestion des risques statiques et dynamiques, les risques peuvent être classifiés comme suit :

Risques.statiques..(comportement.conservateur).:.exemples

Risques.dynamiques..(comportement.progressiste).:.exemples

• nature (inondation, chute de neige importante, glissement de terrain, etc.)

• maladies• Guerre• Accidents• Etc.

• Idée• Marché• Développement• Atteindre les objectifs d’un projet• Performance de l’organisation• Etc.

Analyse.des.risques

étapesL’analyse des risques comporte en général l’identification et l’évaluation des risques. L’identification consiste à rechercher dans le monde les dangers éventuels qui ont un rapport avec les intérêts concernés. L’évaluation est une étape plus sophistiquée où nous pouvons utiliser notre science ou méthodologie de prise de décision.

Figure 3 – Processus de la gestion des risques

Where an organization has adopted a wider approach to risk management, i.e. covering both dynamic and static risk management, risks can be classified into:

Static risks (attitude preserving) - examples

dynamic risks (attitude developing) – examples

• nature (flooding, heavy snowfall, landslides, etc)

• diseases• War• accidents• etc.-

• Idea• Market• Development• Achieving project goals• Organizational performance• etc.

risk analysis

StepsRisk analysis is normally said to include risk identification and risk evaluation. Identification is the scanning of the world for possible hazards pertinent to whatever interests might be involved. Evaluation is the more sophisticated step where we expect to use our decision-making science or methodology.

Figure 3 — Risk management process

Apprécier le risque global

Définition du contexte

Identification des risques

Analyse des risques

évaluation des risques

Traitement des risques

Suivi et révision

Com

mun

icat

ion

et c

onsu

ltatio

n

Global risk assess

Define the context

Identify risks

Analyse risks

Evaluate risks

Treat risks

Monitor and review

Com

mun

icat

e an

d co

nsul

t

Page 27: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

50 2010R01 512010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

mesure.des.risquesL’étape la plus délicate dans l’analyse des risques est l’évaluation du risque. Nous souhaitons baser notre évaluation sur des mesures. Généralement, le risque est mesuré par deux paramètres : la fréquence et la gravité. Ceci s’applique à tout type de phénomène. La fréquence et la gravité sont combinées pour former des couples de nombres associés.

Dans le domaine des sciences et des techniques, en tout cas, l’évaluation des risques doit être basée sur des calculs ou des estimations de grandeur et de fréquence des dangers et les combinaisons de celles-ci. Dans de nombreux cas, la gestion des risques concerne de vraies incertitudes relatives à de très graves dangers avec des fréquences extrêmement basses, sans aucun précédent dans de nombreux cas. Il est généralement plus facile d’apprécier les conséquences d’un danger que sa fréquence.

Nous pouvons maintenant voir que, dans des situations uniques, ne bénéficiant pas d’un grand historique en nombre et en risque, nous devons prendre des décisions basées sur rien d’autre que notre connaissance actuelle, débouchant sur des probabilités bayésiennes. De plus, nous devons faire face aux perceptions des différents groupes d’intérêt qui n’ont que leurs propres convictions à l’esprit. heureusement, il existe des outils sophistiqués qui peuvent être utilisés en pareilles situations.

moyenne.et.écart.typeLa moyenne et l’écart type sont deux concepts fondamentaux en statistiques. Ils se rapportent aux observations d’un phénomène. La moyenne est une valeur centrale. Quand la moyenne est utilisée pour prévoir le futur, on l’appelle espérance. La déviation par rapport à la moyenne, l’écart type, est une mesure de la vraisemblance de la moyenne. Si toutes les observations sont proches de la moyenne, elle est plus vraisemblable que si les observations sont éparpillées loin de la moyenne.

Dès lors, afin de mesurer le risque, il serait nécessaire de connaître non seulement la fréquence et la gravité d’un phénomène, mais également l’écart type. L’écart type met en évidence le risque de prendre des décisions basées sur la moyenne.

distributions.de.probabilitésDifférents phénomènes ont différents modèles. Certains peuvent être « binaires », c’est-à-dire bivalents. D’autres peuvent comprendre un grand nombre de possibilités et peuvent laisser de la latitude dans le processus. Il peut y avoir une infinité de résultats. La probabilité de chaque résultat est différente.

risk measurementThe most awkward step in risk analysis would be the risk evaluation. We would like to base our evaluation on measurement. Generally risk will be measured by two variables, frequency and severity. This applies to all kinds of phenomena. Frequency and severity are combined into mutually connected couples of numbers.

At least in science and technology the risk evaluation needs to be based on calculations or estimations of size and frequency of hazards and the combinations of the two. In many cases risk management deals with genuine uncertainties related to very serious hazards with extremely low frequencies, in many cases without precedent. Usually it is easier to assess the consequences of a hazard than its frequency.

Now we can see that in one-off situations, deprived of the privilege of large numbers and risk portfolios, we have to make decisions based on nothing else than our present knowledge, resulting in Bayesian probabilities. Furthermore, we have to deal with perceptions of different interest groups that have nothing but their own conviction in mind. Happily enough, there are sophisticated tools to be used even in such situations.

mean and deviationTwo basic concepts in statistics are mean and deviation. They are related to observations of a phenomenon. The mean is a central value. When the mean is used to predict the future it is called the expected value. A variation from the mean, the deviation, is a measurement of the credibility of the mean. If all observations are close to the mean, it is more credible than if the observations are scattered around far from the mean.

Therefore, in order to measure risk, it would be necessary to know not only the frequency and severity of a phenomenon but also the deviation. The deviation denotes the risk inherent in making decisions based on the mean.

Probability distributionsDifferent phenomena have different patterns. Some may be ”binary”, i.e., either-or. Others may include a number of possibilities and may provide room for action in the process. There may be a universe of outcomes. The probability is different for each outcome.

Page 28: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

52 2010R01 532010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Figure 4 - Moyenne et écart type

GrandeursAu début, il était plus ou moins acquis que l’argent devait être la grandeur à utiliser. Cela a été souligné par le lien à l’assurance. Des moyennes et des espérances pouvaient être utilisées. L’évaluation des risques était généralement limitée au calcul des pertes éventuelles, comparées à leur tour à certaines capacités financières, par exemple un bénéfice net, un bilan, une valeur d'actif, une part de marché ou un chiffre d’affaires. Même si d’autres grandeurs sont utilisées à présent, l’argent reste néanmoins la grandeur la plus importante.

AppréciationsEn tenant compte du développement de la gouvernance d’entreprise, de la législation et de la gestion du risque d’entreprise, nous devons avancer étape par étape avec des estimations grossières, des calculs et des appréciations. Par appréciation, on entend ici l’étape finale du processus de prise de décision, quand le décideur pèse l’ensemble des circonstances affectant le risque. à ce moment-là, le risque n’est peut-être pas le risque initial, mais plutôt le risque de faire le « mauvais » choix, lequel peut influencer négativement le décideur. Il y a toujours une bonne raison et une raison réelle.

Mais les appréciations peuvent aussi être faites de manière plus précoce et quasiment identique, mais avec des informations limitées. En fait, nous pouvons faire la différence entre une appréciation initiale et une appréciation finale.

Figure 4 — Mean and deviation

dimensionsIn the early days it was more or less taken for granted that money was the dimension to be used. The link to insurance underlined this. Averages and expectancies could be used. Risk evaluation was generally limited to calculation of possible losses, in turn compared to some financial capacity, e.g. net profit, total balance sheet, stock value, market share or turn-over. However even if other dimensions nowadays are used, money still is the most important dimension.

assessmentsUnder the development of corporate governance, legislation and enterprise risk management, we have to work in steps with rough estimates, calculations and assessments. By assessments here we mean the final step taken in the decision-making process, when the decision-maker weighs in all conceivable circumstances affecting the risk. The risk might at that point not be the original risk but rather the risk of making the “wrong” decision, which might affect the decision-maker unfavorably. There is always a good reason and a real reason.

But assessments are also made at an early stage, very much by the same token, but with scarce information. Actually we can distinguish between a first assessment and a final assessment.

courbe.1.noRmALEm = p (>0) = 0,5s = 1p (0) = 0,4max ca 3,5

courbe.2.noRmALEm = 0 p (>0) = 0,5s = 5p (0) = 0,08max ca 17

normaL curve 1m = 0 p (>0) = 0,5s = 1p (0) = 0,4max ca 3,5

normaL curve 2m = 0 p (>0) = 0,5s = 5p (0) = 0,08max ca 17

Page 29: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

54 2010R01 552010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

L’appréciation initiale est souvent effectuée à l’aide d’une simple matrice d’évaluation des risques. Il est possible qu’une matrice soit également utilisée pour l’appréciation finale. Cette matrice devrait être plus détaillée. Les éléments entrés à ce stade devraient au moins répondre à des critères plus rigoureux. La matrice est autant une méthode de gouvernance qu’un modèle prévisionnel. Cette dernière fonction est toutefois fort risquée si elle est mal comprise.

à titre d’exemple, voir la figure 11, page 72 (Matrice d’appréciation des risques).

évaluation.des.risques

Une des tâches les plus difficiles dans l’analyse des risques est l’évaluation des risques qui comprend toutes les étapes depuis l’appréciation initiale jusqu’à l’appréciation finale en passant par les calculs.

L’évaluation des risques sera la dernière étape dans la compréhension d’un risque et du contexte, compte tenu de ce qu’il pourrait entraîner pour toutes les parties concernées, le tout pour prendre la bonne décision.

En ingénierie et en affaires, dans de nombreux cas heureusement, le risque doit généralement n’être mesuré que par une seule grandeur. Il y a un consensus de ce qui constitue une décision rationnelle et de ce sur quoi elle devrait se baser. Dans les projets technologiques audacieux par exemple, là où les aspects politiques et autres apparaissent, il n’est pas si simple d’établir un raisonnement commun.

En principe, le risque est mesuré en termes de fréquence et de gravité. En fait, il semble qu’il y ait trois étapes dans l’évaluation des risques depuis l’aspect purement quantitatif jusqu’à l’appréciation et l’évaluation finale, quand tous les aspects sont pris en compte.

matrice.d’appréciation.des.risques

Les matrices de risques sont probablement les outils les plus utilisés pour l’évaluation des risques. En général, les matrices permettent d’obtenir une classification homogène des risques. Une matrice est un modèle stéréotypé. Toutefois, il n’existe pas de matrice universelle pour toutes les applications. Une matrice doit être calibrée pour chaque contexte.

Une matrice de risques doit être quantitative. Même si des désignations verbales sont attribuées aux cellules de la matrice, ces termes doivent être calibrés en fonction des paramètres du contexte.

The first assessment is often performed by means of a simple risk evaluation matrix. A matrix may very well be used also for the final assessment. Hopefully that matrix is more detailed. At least the input at that time should be more qualified. The matrix is as much a method for governance as a model for predictions. In the latter capacity it is however quite risky, if misunderstood.

For an example, see Figure 11, page 73 Risk assessment matrix.

risk evaluation

One of the most difficult tasks in risk analysis is the evaluation of risks including all steps from first assessment over calculation through final assessment.

Risk evaluation will be the ultimate step in understanding a risk and the relevant context with respect to what it might entail in respect of all interests involved, all for making the right decision.

In engineering and business, in many cases fortunately enough, risk needs mostly to be measured in one dimension only. There is a consensus of what constitutes a rational decision or what it should be based on. In bold technological projects for example, where political and other aspects appear, it is not so simple to even establish a common rationale.

Basically risk will be measured in terms of frequency and severity. Actually there seems to be three steps in risk evaluation from the pure quantitative to the assessment and the ultimate evaluation, when all aspects are factored in.

matrix tables in risk assessment

Risk matrix tables are probably the most common tools for risk evaluation. Generally the matrices are used for a consistent ranking of risks. A matrix is a stereotyped model. However, there is no universal matrix for all applications. A matrix has to be calibrated within each context.

A risk matrix should be quantitative. Even if the cells of the matrix are given more verbal designations, terms need to be calibrated against the parameters of the context.

Page 30: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

56 2010R01 572010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Les avis sont partagés quant au nombre de cellules à utiliser dans une matrice. Le facteur déterminant doit être les nuances requises dans les décisions. La matrice doit comprendre au moins trois cellules verticales et trois cellules horizontales pour les éléments « faible », « moyen » et « élevé » des deux axes. Un besoin de détails plus poussés peut nécessiter le recours à une matrice 5 x 5. Une matrice au-delà de 10 x 10 semble être totalement superflue pour les applications concernées.

La matrice n’est pas seulement utilisée pour l’appréciation du risque initial (brut), mais également pour apprécier le risque résiduel (net) après la prise de mesures de réduction du risque. Dans une matrice de risques, la réduction des risques est représentée par un déplacement vers « le sud » ou « l’ouest ». Non seulement la position du risque résiduel est évaluée, mais également le pouvoir ou l’efficacité spécifique d’autres solutions ou les efforts d’une unité organisationnelle peuvent l’être aussi.

Le désavantage d’une matrice 3 x 3 est maintenant clair. Dans une telle matrice, avec trois lignes égales, la zone inférieure ne représentera pas bien un niveau acceptable. Les cellules sont trop larges. Dans la gestion des risques, comme dans d’autres disciplines, l’objectif de la gestion est de déterminer ce qui est « suffisant », c’est-à-dire quand un niveau raisonnable de réduction de risque est atteint. Au contraire de ce qui se passe dans d’autres domaines, le risque sera rarement éliminé.

Peu importe le nombre de protections utilisées pour couvrir le risque, il sera toujours présent. Il est dès lors crucial que la zone inférieure donne le feu vert à un niveau considéré acceptable par le responsable. C’est pourquoi les matrices 4 x 4 ou 5 x 5 sont de meilleures solutions.

Une matrice, conçue selon ce principe de base, est une représentation de la combinaison de la fréquence et de la gravité. La représentation pourrait très bien se faire sous forme d’un diagramme en bâtons ou d’une courbe, mais la matrice présente une forme pratique, facile à utiliser. Toutefois, il est essentiel que les utilisateurs comprennent son principe et ses qualités afin de ne pas mal interpréter ou surestimer les résultats.

Les matrices de risque n’indiquent généralement que la moyenne. Les combinaisons de cellules de la matrice représentent des valeurs moyennes. Comme il n’y a généralement pas de référence à l’écart type d’aucune de ces variables, la matrice ne représente pas l’incertitude de chaque cellule.

There are various views on the number of cells in a matrix. The determining factor should be the need for nuances in decisions. The minimum number of cells is 3x3, given the need for low, medium and high for both axes. Higher need for detail may lead to 5x5. More than 10x10 seems to be totally unnecessary for the applications at hand.

The matrix will not only be used for assessing original (gross) risk but also for assessing residual (net) risk after risk reducing action. In a risk matrix risk reduction will be represented by moving south or west. Not only will the residual risk position be evaluated but also the specific power or efficiency of alternative solutions or the efforts of an organisational unit.

Now the disadvantage of a 3x3 matrix will become apparent. In such a matrix with three equal bands the low end will not produce an accepted level very well. The cells are too wide. In risk management as well as in other disciplines, management is about determining “enough”, i.e. when a reasonable level of risk reduction is achieved. In contrast to many other areas, risk will seldom be eliminated.

No matter how much protection we use to cover the risk, it will still remain. Therefore it is crucial that the low end gives the green light at an acceptable level, decided by management. Therefore, a 4x4 or 5x5 matrix will be at better solution.

A matrix, designed according to this basic fact, is a representation of the combination of frequency and severity. It might just as well be presented as a bar diagram or a curve but the matrix is a practical form, easy to use. However it should be essential that practitioners understand its basis and qualities, in order not to miss or over-interpret the results.

Risk matrices generally only pin-point the mean. The combinations of cells in a matrix represent averages (means). Since there generally is no reference to the deviation in any of these variables, the matrix does not account for the uncertainty in each cell.

Page 31: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

58 2010R01 592010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Les matrices de risques aident à parvenir à des décisions et à établir les priorités dans de tels cas, mais elles ne sont bien sûr pas des outils permettant de faire des prévisions sur ce qui va vraiment se passer dans la réalité, ni à quel moment, ni pour quelle raison.

En règle générale, la vraisemblance des cellules combinées par les caractéristiques « gravité élevée » et « fréquence faible » est quasiment nulle. Néanmoins, la matrice peut être utilisée pour prendre une décision. Une façon d’appréhender ce problème est de stipuler la mesure à prendre pour toutes les situations avec une gravité assez élevée, quelle que soit la fréquence (probabilité). Ce serait un exemple d’aversion intégrée pour le risque de pertes importantes.

Les.matrices.comme.outils.de.gouvernance

Fondamentalement, la gestion des risques concerne la façon de traiter l’incertitude. La prise de risque est un élément inévitable dans toutes les activités. habituellement, la gestion des risques se concentre sur la préservation, considérant ce qu’on appelle les risques statiques.

Une autorité en transport routier s’appuie généralement sur la technologie et les sciences. On s’attend donc à ce que la gestion puisse se fonder sur des faits et des calculs. Cependant, de nouvelles tâches de l’administration telles que le lobbying, la conception des véhicules, l’environnement, l’accord de licences, etc., ont profondément modifié son rôle. Le système de transport routier est également l’objet de nombreuses décisions politiques, certaines d’entre elles pouvant même être contradictoires. Il faut donc traiter une multitude d’aspects, d’intérêts, etc. : l’infrastructure, les usagers de la route, le public en général, la sécurité, l’environnement, la capacité routière, les intérêts régionaux et industriels, les attentes plus ou moins déclarées au niveau politique, …

Même si une autorité en transport routier n’exerce pas d’activités commerciales, il y a des risques dynamiques à considérer. La non-exécution ou la mauvaise qualité de l’exploitation ou de projets de développement pourrait très bien donner lieu à une perte de confiance du public. De nouvelles réglementations mal conçues en sont un exemple. La non-conformité aux objectifs fixés par le ministère en est un autre ainsi que le manquement à assurer les services prévus.

Les cadres dirigeants doivent, par conséquent, développer une base et des critères communs de comparaison et de classification des risques dans une vision holistique, comprenant à la fois les risques et les opportunités. Ceci doit se reporter à la fois au type d’actifs ou de valeurs utilisées pour exprimer les gains et les pertes, aux « devises » ainsi qu’à la fréquence et à la sévérité/puissance des dangers. Ceux-ci devraient être classés et enregistrés dans une base de

Risk matrices help to reach decisions and to establish priorities in such cases, but are of course not tools for making predictions about what will actually happen in the real world, when and why.

Generally speaking, the credibility in cells combined from high severity and low frequency is non-existent. Nonetheless the matrix can be used for decision-making. The way to handle this is to stipulate action to be taken for all situations with a high enough severity, regardless of the frequency (probability). This would be an example of embedded risk aversion against large losses.

matrix tables as tools for governance

Risk management is basically about how to manage uncertainty. Risk-taking is an unavoidable element in all activities. Traditionally, risk management is focused on preservation, dealing with what is called static risks.

A road transport authority has a tradition of engineering and science. Therefore it could be expected that management could be firmly based on facts and calculations. However, new tasks in administration, such as lobbying, vehicle design, the environment, issuing of licences, etc. has changed its role considerably. The road transport system is also subject to a number of political decisions, some of which might even be in conflict. So there are a number of aspects, interests, etc to deal with: the infrastructure, road users, the general public, safety, environment, road capacity, regional and industrial interests, more or less open expectations at the political level, etc.

Although a road transport authority does not act commercially, there are dynamic risks to consider. Non-performance or bad quality in the operations or development projects may very well end up with a loss of public confidence. New regulations that are ill-devised are an example. Non-compliance with goals set up by the ministry is another one as is a failure to deliver services as expected.

Top management must therefore develop a common basis and common criteria for comparing and ranking risks in a holistic view, including both risks and opportunities. This must pertain to both the type of assets or values used to express gains and losses, the “currencies” as well as the frequency and severity/potential of the hazards. These should be categorised and registered in a common data base. Categories can be assigned by a number of factors, of which no specific

Page 32: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

60 2010R01 612010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

données communes. Les catégories peuvent être assignées par une série de facteurs dont aucun n’est parfait en lui-même.

Il est important que l’analyse soit effectuée par les unités opérationnelles ou fonctionnelles concernées. Les analyses doivent être remises aux cadres dirigeants une fois par an. Elles doivent se concentrer sur un nombre limité de points dans chaque domaine. Elles doivent être accompagnées de suggestions sur la manière de traiter les questions examinées pour assurer leur conformité aux lignes directrices ou critères acceptés.

Les cadres dirigeants devraient ensuite mener une appréciation globale de la situation et déterminer quelles mesures prendre en tenant compte de la disponibilité des fonds par rapport aux risques et opportunités, de l’exposition et du niveau d’attractivité. Pour nous aider dans cet exercice, il est possible de recourir à une analyse SWOT (Strength - Weakness - Opportunities - Threats / Forces, Faiblesses, Opportunités, Menaces) qui tient compte de ces aspects.

Figure 5 – Gestion des risques pour la gouvernance

one is perfect in itself.

It is important that the analysis is performed by the operational or performance units. The analyses should be submitted to executive management once a year. They should focus on a few topics within each area. The analyses should be accompanied by suggestions on how to deal with the issues at hand to bring them in line with the accepted guidelines or criteria.

Executive management should then make an overall assessment of the situation and determine which measures to take considering the availability of funds in relation to risks and opportunities, exposure and level of attractiveness. To support this exercise, a special SWOT analysis (Strength-Weakness-Opportunities-Threats) to consider these aspects could be used.

Figure 5 – Risk management for governance

Système de gouvernance Système préparatoire

Externe

Demandes

Analyse des risques

Techniques et outils

Traitements possibles :

• évitement• réduction• rétention• transfert

Mise en œuvre

Surveillance Nœud décisionnel

Gestion de l'exécution

• Tâches• Lignes directrices• Critères• Autres facteurs internes

RecommandationsPlanification

Governance system Preparative system

Outside world

Requests

Risk analysis

Techniques and tools

Treatment options:

• avoid• reduce• retain• transfer

Implementation

Monitoring Decision node

Execution management

• Tasks• Guidelines• Criteria• Other internal factors

RecommendationsPlanning

Page 33: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

62 2010R01 632010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Pour ne pas perdre de vue les questions principales à traiter, une liste des vingt premières préoccupations pourrait être introduite au niveau exécutif pour présenter les questions actuelles prioritaires en vue d’une mise en œuvre et d’un suivi au cours de l’année suivante.

Une matrice d’évaluation des risques devrait être utilisée comme un outil de gestion des risques pour faciliter la mesure, les comparaisons et la gouvernance des départements, les activités ou les situations d’une organisation de manière à répondre aux critères d’acceptation des risques fixés par les dirigeants. Différentes matrices doivent être développées pour les différentes applications.

En général, les matrices doivent conduire à des décisions selon trois priorités :

• mesure à prendre (risque non accepté) ;• enquête approfondie (risque accepté après examen) ;• aucune mesure à prendre (risque accepté).

Une façon normale de sélectionner des solutions selon la théorie admise de prise de décision suivant la méthode quantitative est de trouver la solution optimale. Selon que l’on s’attache à des risques statiques ou dynamiques, on peut essayer de trouver soit le coût minimum du risque, soit le bénéfice maximum. Ces solutions sont fortement attractives, mais difficiles à saisir, car il sera quasiment impossible d’en faire la preuve par calcul. Il est plus réaliste de rechercher des solutions satisfaisantes que des solutions optimales.

Figure 6 – Gestion des risques dynamiques / Résultat maximal

In order not to lose sight of the major issues, a top twenty list could be introduced at the executive level, presenting the top current issues for implementation and monitoring during the following year.

A risk evaluation matrix should be used as a tool in risk management to facilitate measurements, comparisons and governance of an organization’s divisions, activities or situations in order to meet the risk acceptance criteria set by executive management. Different matrices should be developed for different applications.

Normally the matrices should lead to decisions in three priorities:

• Action to be taken (risk not accepted) ;• Further investigation (risk accepted after consideration) ;• No action needed (risk accepted).

A normal way to select solutions according to accepted quantitative decision theory is to find the optimal solution. Depending on whether the focus is on static or dynamic risks one could either attempt to find the minimum cost of the risk or the maximum benefit. These solutions are highly attractive but elusive, since it will be almost impossible to demonstrate the evidence through calculations. A more realistic goal is to look for satisfactory rather than optimal solutions.

Figure 6 – Dynamic risk management/maximal result

courbe de création de valeur

courbe des dépenses

courbe de perte

value creation curve

expense curve

loss curve

Page 34: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

64 2010R01 652010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Figure 7 – Gestion des risques statiques (tradtionnels) / Coût minimal

EXEmPLEs.PRAtIQuEs

concept.de.l’analyse.des.risques.par.scénario.(ARs).–.version.simplifiée

L’analyse des risques par scénario décrite dans ce document est une méthodologie universelle de base. Pour des raisons évidentes, une méthodologie universelle doit être ajustée, adaptée ou modifiée en fonction de l’application. Des éléments de divers autres modèles ou méthodes particuliers peuvent et doivent par conséquent être utilisés à l’appui ou, s’ils sont utilisés séparément, structurés ou présentés en conséquence.

Figure 7 – Static (traditional) risk management/minimize cost

ExamPLES in PracticE

risk analysis by scenario - (raS) light version

The risk analysis by scenario as described here is a basic universal methodology for risk analyses. For obvious reasons a universal methodology must be adjusted, adapted or amended for special applications. Input from various other specially developed methods or models could and should therefore be utilized as a support or, if used separately, be structured or presented accordingly.

courbe du coup du risque

courbe de protection des dépenses

courbe de perte

cost of risk curve

protection expense curve

loss curve

Qu’est-ce.que.l’ARs.?

En général, un scénario est la description d’une situation future fondée sur la situation présente et une voie de transition présumée entre le présent et l’avenir.

Chaque jeu d’intérêt, de danger et de facteurs de risque constitue un scénario.Les intérêts sont analysés l’un après l’autre.

La suite explique brièvement ce que cela veut dire et comment l’analyse est effectuée.

What is raS?

A scenario in general is a description of a future situation based on the present situation and a presumed path of transition from the present into the future.

Here each set of interest, hazard and risk factors comprises one scenario.One interest at a time is in focus for analysis.

What this means and how the analysis is done is briefly described here

Page 35: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

66 2010R01 672010R01

Interest / asset

Interest / assetHazard

Risk factors

Interest / assetHazard

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Point.principalLe point principal est un intérêt spécifique qui doit être créé ou préservé par le biais des activités exercées par une organisation. Cet intérêt spécifique pourrait être un objectif, un prérequis, un budget, un domaine de conformité, un plan ou un actif de toute sorte, physique ou incorporel.

L’un des éléments cruciaux de l’analyse des risques est l’appréciation de la sensibilité d’une organisation, c’est-à-dire ses ressources, son fonctionnement et ses performances, aux écarts ou préjudices.

dangerLa force potentiellement nuisible à un intérêt spécifique est appelée ici un danger. Au lieu de « danger », on rencontre parfois les vocables « péril » ou « événement » dans la littérature.

« Danger » doit être interprété dans son sens le plus large. Ce qui constitue un danger varie selon la nature de l’intérêt spécifique.

Facteurs.de.risqueLes causes de danger sont appelées ici « facteurs de risque ». Les facteurs de risque sont considérés comme des éléments contributifs. La causalité d’un danger peut dépendre d’un ou de plusieurs facteurs de risque. Il est possible que certains facteurs de risques doivent être réunis pour déclencher le danger. La survenance des facteurs de risque peut être réduite par des mesures préventives.

Enchaînement.des.événementsLe concept du scénario se rapporte au fait que la méthodologie analyse un enchaînement des événements commençant par l’apparition d’un danger et l’exposition d’un intérêt spécifique à ce danger et se terminant par l’évaluation du préjudice total qui en résulte. Il est, par conséquent, nécessaire de décrire ce qui se passe du début jusqu’à la fin, avec assez de précision pour l’analyse concernée.

FocusThe focal point is a specific interest that is to be either created or preserved through the activities performed by an organization. Here an interest could be a target, a prerequisite, a budget, a compliance area, a plan or an asset of any kind, physical or intangible.

A crucial part of a risk analysis is to assess the sensitivity of an organization, i.e. its real resources, operations and performance, to deviations or harm.

HazardThe force that is potentially harmful to an interest is here called a Hazard. Instead of Hazard sometimes Peril or Event is used in the literature.

A hazard is to be taken in the broadest possible sense. What makes a hazard varies depending on the nature of the interest.

risk factorsCauses of hazard are here called “risk factors”. Risk factors are seen as contributors. The causation of a hazard may depend on one or more risk factors. Some risk factors may have to be present in combination to trigger the hazard. The appearance of risk factors can be reduced by preventive measures.

chain of eventsThe reference to the scenario concept lies in that the methodology analyses a chain of events starting with the emergence of a hazard and an interest being in harm’s way and ends with an evaluation of the resulting total harm. It is therefore necessary to describe, accurately enough for the analysis at hand, what happens from beginning to end.

Intérêt / bien d'actif

Intérêt / bien d'actifDanger

Facteurs de risque

Intérêt / bien d'actifDanger

Page 36: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

68 2010R01 692010R01

The scenario could and should include relevant estimations and calculations and can also be repeated with a number of variations to form a space of outcomes (lucky case=min; typical case=moderate; worst case=max).

A chain of events is a representation of a cause and effect theory. In a chain of events everything upstream of a specific point is considered causes and everything downstream as effects or consequences. It all depends on which point is selected. Often the term consequence is used for impact or size, which is another aspect per se.

Figure 8 – The scenario methodology in overview

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Le scénario peut et doit comprendre les estimations et calculs pertinents et peut également être répété avec plusieurs variations pour former un espace de résultats (meilleur cas = min. ; cas typique = modéré ; pire cas = max.).

Un enchaînement d’événements est une représentation de la théorie de la relation de cause à effet. Dans un enchaînement d’événements, tout ce qui se trouve en amont d’un point spécifique est considéré comme une cause et tout ce qui se trouve en aval un effet ou une conséquence. Tout dépend du point sélectionné. Le terme « conséquence » est souvent employé pour impact ou importance, qui est en soi un autre aspect.

Figure 8 – Aperçu de la méthodologie du scénario

Facteurs de risque

Enchaînement des événements

Résultats possibles

Grandeur de la perte

Risque / enchaînement de perte

Danger

min

mod.

max

Risk factors

Chain of events

Possible outcomes

Loss size

Risk / loss chain

Hazard / asset

min

mod.

max

Facteurs de risque(fréquence / probabilité)

Résultats combinés

Impact consécutif (perte)

Impact direct (dégât / interruption)

"Le passé" "Le futur"

causes

Impacts (conséquences)

Portée de l'analyse

Danger Intérêt

min

min

mod.

typ

max

max Risk factors(frequency / probability)

Combined outcomes

Impact following (consequential loss)

Direct impact (damage / interruption)

the past the future

causes

Impacts (consequences)

Scope of analysis

Hazard Interest

min

min

mod.

typ

max

max

Page 37: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

70 2010R01 712010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Le.processus

La façon dont l’analyse est effectuée, est décrite dans le schéma ci-après (Figure 9). L’élément essentiel consiste à élaborer un plan d’action pour les risques identifiés comme élevés et à vérifier que le plan est exécuté. Afin de faciliter l’analyse, des lignes directrices sont fournies, notamment pour la classification des risques au moyen d’une matrice, comme indiqué dans le schéma. Le tableau matriciel doit cependant être calibré par la partie intéressée.

Figure 9 – Processus pour un scénario universel

matrice.de.risques.universelle

Une matrice de risques doit être calibrée pour son contexte avec ses grandeurs. De préférence, une matrice universelle doit être adimensionnelle.

La matrice est ici basée sur des pourcentages le long des deux axes. Toutefois, conformément aux principes énoncés plus haut, les cellules indiquent le genre de réponse requis au lieu de chiffres. La réponse est également représentée par le système courant de feux tricolores, c’est-à-dire vert, jaune et rouge.

routine

How the analysis is done is depicted in the following diagram (Figure 9). The essential part is to decide on an action plan for serious-ranking risks and to monitor that the plan is executed. In order to facilitate the analysis there are some guidelines included, among others regarding ranking of risks by a matrix table, indicated in the diagram. The matrix table is however to be calibrated by the relevant stakeholder.

Figure 9 – Process in universal scenario methodology

universal risk matrix

A risk matrix must be calibrated in its own context with its dimensions. A universal matrix should preferably be dimensionless.

The matrix here is based on percentages along both axes. However, the cells state, according to the principles above what kind of response is required rather than stating numbers. The response is also represented by the popular traffic light system, green, yellow and red.

Page 38: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

72 2010R01 732010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Pro

babi

lité Très élevée Examen Mesure Mesure Mesure

élevée Examen Examen Mesure Mesure

Modérée Acceptation Examen Examen Mesure

Faible Acceptation Acceptation Examen Mesure

Faible Modéré Grave Très grave

Impact

Figure 10 - Matrice d’appréciation des risques / Priorités des réponses

La base numérique est présentée ci-après. Les bandes ont des largeurs égales de 0,25. L’interprétation au point extrême est respectivement de 100% de perte et d’une certitude absolue d’occurrence au cours de la période. Pour chaque cellule, on calcule les produits (fréquence x impact) des quatre coins de la cellule et la valeur numérique de chaque cellule est la moyenne de ses quatre valeurs de coin, chaque coin ayant la même pondération Ce nombre est la valeur attendue pour chaque cellule.

La plupart des décideurs n’accepteront « probablement » pas des pertes attendues dépassant 0,5 voire 0,3. Ils accepteraient éventuellement 0,02, au moins pour certains dangers. Comme on le peut le voir, la conception et l’interprétation doivent être adaptées à chaque ensemble de circonstances, mais une matrice universelle peut être utilisée comme base d’une matrice de réponse pour la direction.

Pro

babi

lité Très élevée 0,11 0,33 0,55 0,77

élevée 0,08 0,23 0,39 0,55

Modérée 0,05 0,14 0,23 0,33

Faible 0,02 0,05 0,08 0,11

Faible Modéré Grave Très grave

Impact

Figure 11 – Matrice d’évaluation des risques / Priorités des réponses

Analyse.des.risques.de.base.pour.des.objectifs.du.tableau.de.bord

Cette méthode est une application fortement simplifiée des principes de base de la gestion des risques et de l’approche par scénario. Son utilisation est prévue dans le cadre de la procédure annuelle de planification par rapport à la série d’objectifs du tableau de bord. Le but est d’assurer une procédure systématique générale de planification.

Prob

abili

té Très élevée Examen Mesure Mesure Mesureélevée Examen Examen Mesure Mesure

Modérée Acceptation Examen Examen MesureFaible Acceptation Acceptation Examen Mesure

Faible Modéré Grave Très graveImpact

Figure 10 – Risk assessment matrix / Response priorities

The numerical basis is demonstrated below. The bands have equal widths of 0.25. The end point interpretation is 100% loss and absolute certainty of occurrence during the period respectively. For each cell the impact of the corner products times the frequency is calculated and the number in each cell is the mean of the corner values, all with equal weights. The number is the expected value for each cell.

Most decision-makers would “probably” not accept expected losses in excess of 0.5 or even 0.3. They would possibly accept 0.02, at least for some hazards. As can be seen, the design and interpretation must be adapted to each set of circumstances but a universal matrix could be used as a basis for a management response matrix.

Prob

abili

té Très élevée 0,11 0,33 0,55 0,77élevée 0,08 0,23 0,39 0,55

Modérée 0,05 0,14 0,23 0,33Faible 0,02 0,05 0,08 0,11

Faible Modéré Grave Très graveImpact

Figure 11 – Risk assessment matrix / Response priorities

Basic risk analysis for scorecard targets

This method is a much simplified application of basic risk management principles and the scenario approach. It is intended to be used as part of the annual planning process in respect of the scorecard targets set. The aim is to assure a systematic overall planning process.

Page 39: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

74 2010R01 752010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

En outre, il faut répondre à trois questions relatives à une vision du risque plus large.

Ce type d’analyse génère des appréciations basées sur la connaissance, l’expérience et un esprit d’ouverture. Une séance de remue-méninges (« brainstorming ») facilite l’identification des prérequis et des facteurs de risque.

La figure suivante représente la procédure. Chaque étape est décrite plus en détails par la suite.

Figure 12 – Analyse des risques des objectifs du tableau de bord

Procédure.étape.par.étape

Voici l’ensemble des étapes :

1. Identification des prérequis pour l’objectif annuel concerné2. Classement des prérequis3. Danger spécifique4. Identification des facteurs de risque

In addition there are three questions to be answered concerning a broad view of the risk.

This kind of analysis produces assessments based on knowledge, experience and an open mind. A brainstorming session could facilitate the identification of prerequisites and risk factors.

This is the procedure. Each step is described in more detail further on.

Figure 12 – Risk analysis of scorecard targets

Procedure step by step

These are all the steps:

1. Identification of the prerequisites for the annual target at hand.2. Ranking of the prerequisites.3. Specific hazard.4. Identification of risk factors.

Page 40: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

76 2010R01 772010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

5. Estimation de la probabilité d’un facteur de risque spécifique6. Choix des mesures7. Appréciation globale8. Désignation des responsabilités9. Propositions de plans d’actions10. Surveillance et révision

1.. Identification.des.prérequis.pour.l’objectif.de.tableau.de.bord.concernéDe quoi dépend l’objectif ? Les ressources nécessaires pour les objectifs, c’est-à-dire les actifs, les processus ou les autres facteurs de performance doivent être identifiées.

Les prérequis doivent toutefois être indépendants les uns des autres, puisqu’ils doivent être analysés un par un. L’identification des prérequis est cruciale puisqu’elle constitue la base pour le reste de l’analyse.

2.. classement.des.prérequisLe classement a pour but de déterminer le degré auquel chaque prérequis aura un impact nuisible sur l’objectif s'il disparaît totalement ; on détermine donc le niveau de sensibilité de l’objectif. Le classement est fondé sur la parfaite connaissance globale de chaque prérequis.

Il est habituel de choisir les classes suivantes d’impact sur l’objectif : mineur (0-33 %), majeur (33-67 %) et grave (67-100 %). Poursuivre l’analyse jusqu’à l’étape 5 pour une condition préalable à la fois. Commencer par celles classées comme « grave », puis continuer avec celles considérées comme « majeure » ou « mineure ».

Noter que même dans la classe « mineure », une action peut être nécessaire en cas de fréquence élevée de nombreux facteurs de risque et de dangers associés.

3.. danger.spécifiqueDans la présente application, le danger spécifique sera toujours la perte totale d’une condition préalable. C’est toujours le pire cas qui sera analysé.

4.. Identification.des.facteurs.de.risqueLes facteurs de risque sont les causes sous-jacentes ou celles déclenchant l’apparition d’un danger. Il faut identifier le plus grand nombre possible de facteurs de risque pertinents qui peuvent conduire à la perte de chaque condition préalable. Les facteurs de risque doivent être indépendants les uns des autres.

5. Estimation of the probability of a specific risk factor.6. Choice of action.7. Overall assessment.8. Assignment of responsibility.9. Action plan proposals.10. Monitoring and review.

1. identify the prerequisites for the scorecard target at handWhat does the target depend on? The resources necessary for the targets, i.e., assets, processes or other performance factors are to be identified.

The prerequisites should however be independent of each other, since each is to be analyzed one at a time. Identifying the prerequisites is crucial as it is the basis for the rest of the analysis.

2. ranking of prerequisitesThe ranking aims at determining the degree to which each prerequisite will have a harmful impact on the target if it is totally lost; i.e., determine how sensitive the target is. The ranking will be based on the total combined knowledge about each prerequisite.

It is common to use the classes Minor (0-33%), Major (33- 67%), Serious (67-100%) for the impact on the target. Continue the analysis as far as step 5 for one prerequisite at a time. Start with those classified as “serious” and then continue with those classified as “major” or “minor”.

Note that even in the “minor” class, action may be necessary if there is a high frequency of numerous related hazards and risk factors.

3. Specific hazard In this application the specific hazard will always be the total loss of a prerequisite. It is always the worst case that will be analyzed.

4. identification of risk factorsRisk factors are the underlying causes or those that trigger the appearance of a hazard. Identify as many relevant risk factors as possible that could lead to the loss of each prerequisite. The risk factors should be independent of each other.

Page 41: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

78 2010R01 792010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

5.. Estimation.de.la.probabilité.d’un.facteur.de.risque.spécifiqueDans la présente analyse, nous allons estimer la probabilité de chaque facteur de risque. Il faut toujours fixer une période de temps. Il s’agit normalement d’une année pour les objectifs du tableau de bord. La probabilité doit être exprimée sous forme de pourcentage pour chaque facteur de risque. 0% signifie qu’il ne survient pas du tout et 100% correspond à une certitude absolue.

L’estimation sera fondée sur la combinaison des connaissances et de l’expérience. Les mesures de réduction des risques déjà prises ou autres circonstances favorables existantes seront prises en compte. Elles seront notées et documentées comme il convient.

D’autres situations sont-elles comparables ? La fréquence a-t-elle été enregistrée (par exemple, la survenance d’un facteur de risque dans des circonstances similaires) ?

évaluer la probabilité de chaque facteur de risque selon trois classes : élevée, moyenne ou faible. Si des fréquences sont disponibles, les transformer en probabilité comme suit.

Fréquence Probabilitédésignation Période/.occurrences désignation Pourcentage

élevée Plus d’une fois en 2 ans élevée 50-100 %

Moyenne Une fois en 2-10 ans Moyenne 10-50 %

Faible Moins d’une fois en 10 ans Faible 0-10 %

6.. choix.des.mesuresUtiliser cette matrice d’évaluation pour hiérarchiser les mesures pour chaque facteur de risque. Ceci entraîne trois classes de priorités : rouge (1), mesure à prendre ; jaune (2), mesure à examiner plus en détails ; vert (3), à laisser normalement tel quel.

Si un facteur de risque a été identifié pour deux ou plusieurs prérequis, il faut lui accorder une attention particulière. Si le cas se présente, il est recommandé d’augmenter la probabilité de ce facteur de risque d’un niveau, par exemple en passant de « mineure » à « moyenne ».

5. Estimation of the probability of a specific risk factorIn this analysis the likelihood of each risk factor will be estimated. The focus is always on the relevant period of time. This would normally be one year for scorecard targets. The probability is to be expressed as a percentage for each one. Nil percent means that it does not occur at all and 100 percent means absolute certainty.

The estimation will be based on the combined knowledge and experience. Consideration will be given to risk reducing actions already taken or other existing favorable circumstances. They will be properly noted and documented.

Are there comparisons with other situations to be made? Is there a track record of frequency (e.g. the occurrence of a risk factor under similar circumstances)?

Assess the probability of each risk factor in 3 classes: High, Medium or Low. If there are frequencies available, transform to likelihood as per the following.

Frequency Probability

designation Period/occurrences designation Percentage

High More than once in 2 years High 50-100 %

Medium Once in 2-10 years Medium 10-50 %

Low Less than once in 10 years Low 0-10 %

6. choice of actionUse this evaluation matrix for priority of action for each risk factor. This result in three classes of priority, Red (1) - Action to be taken, Yellow (2) – Action to be further investigated and Green (3) – Normally leave as is.

If one risk factor has been identified for two or more prerequisites, it should be given special attention. If so, it is recommended that the probability for this risk factor be raised one grade, e.g. from Minor to Medium.

Page 42: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

80 2010R01 812010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

nuisance.possible.de.l’objectif.(%)..en.cas.de.perte.de.la.condition.préalable

Facteurs.de.risques mineure0-33.%

majeure34-67.%

Grave68-100.% Priorité.de.mesure

Prob

abilité.(%

) élevée50-100 2 1 1 1 : mesure à prendre

Modérée34-67 3 2 2 2 : examen approfondi

Faible0-33 3 3 3 3 : laissez normalement tel quel

Figure 13 – Matrice d’appréciation des risques : exemple

L’analyse des risques de base pour un objectif du tableau de bord est maintenant terminée. Passer à l’objectif suivant.

7.. Appréciation.globaleAprès avoir traité complètement tous les facteurs de risque pour tous les objectifs du tableau de bord, une appréciation globale sera effectuée. Sur la base de l’analyse de risque, le groupe de travail déterminera ce qui suit pour chaque objectif :

• Accepter le risque pour l’objectif.• Envisager une analyse plus détaillée.• Réviser l’objectif et son mode de réalisation et l’analyser à nouveau en

utilisant de nouveaux prérequis.

8.. désignation.des.responsabilitésLe groupe de travail a maintenant accepté le risque pour l’objectif. L’étape importante suivante consiste à élaborer les plans de mesure pour les facteurs de risque comme requis selon la matrice. Un responsable est désigné pour chaque facteur de risque.

9.. Propositions.de.plans.d’actionsLa personne en charge de la gestion de chaque facteur de risque doit élaborer une proposition de mesures de réduction du risque. Les propositions doivent être rassemblées en un plan d’actions approuvé à intégrer dans le document de planification annuelle.

Dans le cas de solutions alternatives se rapportant à chacun des différents facteurs de risque, il convient de choisir la solution la plus rentable.N.B. : Les objectifs annuels et les prérequis seront spécifiés. Dès lors, les seules mesures possibles de réduction de risque sont celles qui réduisent la probabilité d’un facteur de risque. Toute mesure peut uniquement provoquer un déplacement vers le bas dans la matrice d’appréciation des risques pour les objectifs du tableau de bord.

Possible harm to target % by loss of prerequisite

risks factors minor0-33%

major34-67%

Serious68-100% Priority of action

Lik

elih

ood

(%) High

50-100 2 1 1 1: action to be taken

Medium34-67 3 2 2 2: further investigation

Low0-33 3 3 3 3: normally leave as is

Figure 13 – Risk assessment matrix example

The basic risk analysis for one scorecard target is now completed. Go on to the next one.

7. overall assessmentAfter a complete run-through of all risk factors for all scorecard targets, an overall assessment will be made. The division shall, on the basis of the risk analysis, determine the following for each target:

• Accept the risk for the target.• Consider a more detailed analysis.• Review the target and its mode of production and analyze again using new

prerequisites.

8. assignment of responsibilityThe division has now finally accepted the risk for the target. The next important step will be to prepare action plans for risk factors as required according to the matrix. Officers in charge are to be appointed for each risk factor.

9. action plan proposalsThe person in charge of managing each risk factor is to prepare a proposal for risk reduction action. The proposals are to be collated as an approved action plan to be integrated in the annual planning document.

In the event of alternative solutions pertaining to each different risk factor, the most cost-efficient solution should be selected.N.B. Annual targets and prerequisites will be fixed. Therefore the only possible risk reduction actions are those that reduce the likelihood of a risk factor. Any action can only result in moving downwards in the risk assessment matrix for scorecard targets.

Page 43: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

82 2010R01 832010R01

10...surveillance.et.révisionL’analyse des risques et le plan d’actions doivent être suivis dans le cadre des activités normales de gestion.

Profil.de.risque.supérieur.consolidé

Un exemple de matrice des 20 principaux risques d’une entreprise se trouve ci-après, de manière globale(figure 14, page suivante) et détaillée (figure 15). Les descriptions et les critères sont inclus dans la matrice des risques. Pour la matrice des opportunités, les critères doivent encore être développés.

PRoBABILIté

AttRActIVIté

Très élevée Envisager Mise en œuvre Mise en œuvre Mise en œuvre

élevée Envisager Envisager Mise en œuvre Mise en œuvre

Modérée Acceptation Envisager Envisager Mise en œuvre

Faible Acceptation Acceptation Envisager Envisager

Mineure Modérée Majeure Considérable

BénéFIcE

Figure 15 – Matrice des opportunités

tEcHnIQuEs.dE.GEstIon.dEs.RIsQuEs

techniques.de.gestion

En général, la gestion des risques pourrait être interprétée comme l'ensemble des techniques ou des moyens technologiques pour réduire ou éliminer les causes et les effets néfastes de toutes sortes. Ce n’est cependant pas le sujet ici. Au contraire, nous sommes plutôt axés « techniques de gestion », c’est-à-dire tout simplement tournés vers la manière d’amener les gens à faire de la gestion des risques.

10. monitoring and reviewThe risk analysis and the action plan are to be monitored as part of regular management activities.

consolidated top risk profile

An example of an enterprise “top twenty” risk matrix is given below, in total (figure 14, next page) and in parts (figure 15). Descriptions and criteria are included for the risk matrix. For the opportunity matrix criteria is still to be developed.

Pro

Ba

BiL

ity

attractivEnESS

Very high Consider Implementation Implementation Implementation

High Consider Consider Implementation Implementation

Medium Removal Consider Consider Implementation

Low Removal Removal Consider Consider

Minor Moderate Major Considerable

BEnEFit

Figure 15 – Opportunity matrix

riSK manaGEmEnt tEcHniQuES

management techniques

Generally this could be understood as the multitude of technical or technological means to reduce or eliminate adverse causes and effects of all kinds. This is however not the subject here. Instead we are rather focusing “management techniques”, i.e. simply how to get people to do managing risks.

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Page 44: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

84 2010R01 852010R01

Rép

onse

s au

x ris

ques

Probabilité /Fréquence

Très

élé

vée

L'év

énem

ent s

e pr

odui

t plu

sieu

rs fo

is

par a

n au

sei

n de

l'or

gani

satio

n4

Enq

uête

Mes

ures

Mes

ures

Mes

ures

éle

vée

L'év

énem

ent s

'est

pro

duit

au s

ein

de

l'org

anis

atio

n3

Enq

uête

Enq

uête

Mes

ures

Mes

ures

Moy

enne

L'év

énem

ent s

'est

pro

duit

dans

le p

ays

2A

ccep

tatio

nE

nquê

teE

nquê

teM

esur

es

Faib

leL'

évén

emen

t ne

s'es

t jam

ais

prod

uit

dans

le p

ays

1A

ccep

tatio

nA

ccep

tatio

nA

ccep

tatio

nE

nquê

te

Asp

ect

12

34

Type d'actifs

Inco

rpor

els

Con

fianc

e/

répu

tatio

nC

ouve

rture

et a

ttent

ion

des

méd

ia n

égat

ives

Col

onne

uni

que

Loca

lR

égio

nal

Nat

iona

l

Tem

ps e

t effo

rt de

la

dire

ctio

n / a

ttent

ion

néga

tive

Uni

téD

irect

ion

de l'

unité

Cad

res

dirig

eant

sC

onse

il / i

nves

tisse

urs

/ M

inis

tère

Bie

nsD

omm

ages

Infra

stru

ctur

e /

équi

pem

ents

/ bâ

timen

ts, e

tc.

≤ 1

mill

ion

€≤

50 m

illio

ns €

≤ 20

0 m

illio

ns €

> 20

0 m

illio

ns €

Per

sonn

els

Usa

gers

de

la ro

ute

Aug

men

tatio

n du

taux

d'

acci

dent

s

Acc

iden

ts m

ineu

rsP

lusi

eurs

acc

iden

tsU

n dé

cès

ou p

lusi

eurs

ac

cide

nts

grav

esP

lusi

eurs

déc

ès e

t ac

cide

nts

grav

es

Em

ploy

és

Fina

ncie

rs

Act

ivité

sA

rrêt

Cou

rt ar

rêt

Cou

rt ar

rêt d

'une

uni

téA

rrêt

d'u

ne u

nité

à p

lus

de 5

0 %

pen

dant

plu

s d'

une

jour

née

Arr

êt d

'un

orga

ne d

irect

eur

à pl

us d

e 50

% p

enda

nt

plus

d'u

ne jo

urné

e

Cap

acité

de

tran

spor

tR

éduc

tion

de la

ca

paci

té d

e tra

nspo

rtB

arra

ge d

'une

rout

e se

cond

aire

pen

dant

qu

elqu

es h

eure

s ou

d'

une

zone

Barra

ge d

'une

rout

e pr

inci

pale

ou

sec

onda

ire p

enda

nt

> 12

h o

u d'

une

zone

pen

dant

qu

elqu

es h

eure

s

Barra

ge d

'une

rout

e pr

inci

pale

pen

dant

pl

usie

urs

heur

es o

u d'

une

rout

e se

cond

aire

pe

ndan

t > 2

4 h

ou d

'une

zo

ne p

enda

nt >

12

h

Bar

rage

d'u

ne ro

ute

prin

cipa

le p

enda

nt >

24h

ou

d'u

ne z

one

pend

ant

> 48

h

Env

ironn

emen

taux

Dét

ério

ratio

nS

urve

nanc

e un

ique

/ pr

ogre

ssiv

eTe

mpo

raire

, min

eur

Tem

pora

ire, g

rave

Per

man

ent,

min

eur

Per

man

ent,

grav

e

Min

eur

Moy

enM

ajeu

rC

ritiq

ue

Impa

ct

Ris

k re

spon

se

Probability/Frequency

Very

hig

hEv

ent o

ccur

s sev

eral

tim

es p

er y

ear

with

in th

e re

alm

of t

he o

rgan

isat

ion

4In

vest

igat

ion

Act

ion

Act

ion

Act

ion

Hig

hEv

ent h

as o

ccur

red

with

in th

e re

alm

of

the

orga

nisa

tion

3In

vest

igat

ion

Inve

stig

atio

nA

ctio

nA

ctio

n

Med

ium

Even

t has

occ

urre

d in

the

coun

try2

Acc

epta

nce

Inve

stig

atio

nIn

vest

igat

ion

Act

ion

Low

Even

t nev

er o

ccur

red

in th

e co

untry

1A

ccep

tanc

eA

ccep

tanc

eA

ccep

tanc

eIn

vest

igat

ion

Asp

ect

12

34

Type of asset

Inta

ngib

les

Con

fiden

ce/

repu

tatio

nN

egat

ive

med

ia

cove

rage

and

atte

ntio

nSi

ngle

col

umn

Loca

lR

egio

nal

Nat

iona

l

Man

agem

ent t

ime

and

effo

rt / n

egat

ive

atte

ntio

nU

nit

Uni

t man

agem

ent

Exec

utiv

e to

p m

anag

emen

tB

oard

/ in

vest

ors/

m

inis

try

Prop

erty

Dam

age

Infr

astru

ctur

e /

equi

pem

ent /

bu

ildin

gs, e

tc.

≤ 1

mill

ion

USD

≤ 50

mill

ions

USD

≤ 20

0 m

illio

ns U

SD>

200

mill

ions

USD

Pers

onna

lR

oad

user

sIn

crea

sed

acci

dent

rate

Min

or in

jurie

sM

ultip

le in

jurie

sSi

ngle

dea

th o

r m

ultip

le se

rious

in

jurie

s

Mul

tiple

dea

ths a

nd

serio

us in

jurie

sEm

ploy

ees

Fina

nce

Ope

ratio

nsD

ownt

ime

Shor

t dow

n-tim

eSi

ngle

uni

t dow

n fo

r sho

rt pe

riod

Sing

le u

nit d

own

mor

e th

an 5

0% fo

r m

ore

than

1 d

ay

Sing

le g

over

ning

uni

t do

wn

mor

e th

an 5

0% fo

r m

ore

than

1 d

ay

Tran

spor

t ca

paci

tyR

educ

ed tr

ansp

ort

capa

city

Seco

ndar

y ro

ad

shut

dow

n fo

r a

few

hou

rs o

r on

eare

a sh

ut d

own

Mai

n ro

ad o

r sec

onda

ry sh

ut

dow

n fo

r > 1

2 hr

s or o

ne

area

for a

few

hrs

Mai

n ro

ad sh

ut d

own

for s

ever

al h

rs o

r se

cond

ary

road

s for

>

24 h

rs o

r one

are

a fo

r >12

hrs

Mai

n ro

ad sh

ut d

own

for

> 24

hrs

or o

ne a

rea

for

> 48

hrs

Envi

ronm

ent

Impa

irmen

tSi

ngle

occ

uren

ce /

grad

ual

Tem

pora

ry, m

inor

Tem

pora

ry, s

erio

usPe

rman

ent,

min

orPe

rman

ent s

erio

us

Min

orM

oder

ate

Maj

orC

ritic

al

Impa

ct

Figu

re 1

4 –

Mat

rice

des

risqu

es p

our l

es g

estio

nnai

res

Figu

re 1

4 –

Ris

k m

atrix

, exe

cutiv

e le

vel

Page 45: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

86 2010R01 872010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Nous essayons de développer un certain comportement et d’améliorer les performances à travers toute une organisation. Nous souhaitons mettre en place, appliquer et faire fonctionner un système de gestion intégrée, un système de gouvernance, pour la gestion globale des risques dans les organisations de transport, qui dans la plupart des cas, sont des organismes publics ou gouvernementaux ou des agences. Vu le contexte actuel et l’évolution de la gestion des risques, cela représente un défi de taille. Nombre de domaines professionnels et de cultures doivent être réunis pour ce faire.

développements.récents.en.gestion.des.risques

La gestion des risques dans les organisations s’est développée et élargie considérablement au cours des dernières années. Elle est partie des secteurs des accidents, des maladies, des forces naturelles, des actes criminels et de l’assurance pour se retrouver dans la plupart des causes menant à des sinistres, même dans une perspective sociétale. Les parties prenantes de tous les milieux sont omniprésentes, et ces acteurs sont de plus en plus actifs dans les processus de décision et de gestion des risques, notamment dans le domaine de la santé publique et de la sécurité. Les décideurs doivent tenir compte aussi de la « perception » des risques.

Même des comportements contraires à l’éthique au sein d’une organisation pourraient tomber dans le domaine de la gestion de risques, particulièrement si ces comportements sont en contradiction avec la culture de l'organisation ou ce que les gens pensent. Toute une série de nouveaux règlements visant à améliorer le suivi, la reddition de comptes et l’information (transparence) dans les organisations ont été mis en place, également dans le secteur public. Tous les écarts possibles par rapport aux objectifs et aux plans sont vus comme des incertitudes et des risques. Un nouveau cadre est dorénavant présent et amène la notion de risque universel et une nouvelle structure de gestion des risques.

Les incertitudes et les effets négatifs des activités et des décisions ont toujours été une préoccupation de gestion. Les nouveaux concepts de risque et de gestion des risques ont désormais été introduits dans de nombreux domaines de la gestion en général et de la société où des questions identiques avaient été traitées auparavant, mais pas sous une rubrique universelle de risque.

Nul doute que cette évolution a été stimulante, à bien des égards. Cependant, l’attention est actuellement sur le suivi, l’audit et la reddition de comptes, qui visent à assurer la « conformité » avec les plans et les documents de référence. Où sont les préoccupations tournées vers l’avenir ? Le risque est une préoccupation qui se situe toujours dans le futur.

We are trying to achieve a certain behaviour and performance throughout an entire organisation. We wish to introduce, implement and operate an integrated management system, a governance system, for the overall management of risk in a road transport organisation, which we in most cases can take to be a public or governmental body, an agency. Given the background and the latest development in risk management this is a challenging task. A number of professional fields and cultures need to be brought together.

recent development of risk management

Risk management in organisations has developed and expanded immensely during recent years. It has moved from the area of accidents, diseases, natural forces, criminal acts, insurance etc. into all adverse outcomes out of all causes, also in a societal perspective. Stakeholders of one kind or another are omnipresent and they are increasingly active in decision and processes concerning risk, especially in the area of public health and safety. Decision makers need to pay heed also to “perceived” risk.

Even unethical behaviour in an organisation could fall in the “risk” category if it at odds with “soft regulation”, what people think. A whole host of new regulations aiming at improved monitoring, accounting and reporting (transparency) in organisations has been introduced, also in the public sector. All aspects of possible deviations from goals and plans are seen as uncertainties and risks. A whole new framework has developed presenting a new universal risk and risk management structure.

Considering uncertainties and adverse outcomes of activities and decisions has always been a matter for management. The new concepts of risk and risk management have now been introduced in many areas of general management and society where identical issues have been handled before, but not under the universal heading of risk.

No doubt this development has been good in many ways. However, just now the focus seems to be on monitoring, auditing and reporting, a good deal of rear-view relating to “compliance” and conformity with plans and documents. Where is the lookout into the future? Risk is always about the future.

Page 46: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

88 2010R01 892010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

La nouvelle approche met l’accent autant sur la gestion des opportunités que sur les risques. Les mêmes approches pour faire face à l’incertitude et aux effets négatifs peuvent être utilisées tant pour les « accidents purs » ou des « projets ayant échoué » bien que la nature des causes et des effets puissent être complètement différents. Pour une agence routière, la responsabilité principale doit être d’assurer la fiabilité des infrastructures et la sécurité routière. Dans ce domaine, comme ailleurs, il y a toujours possibilité d’amélioration et cette opportunité doit être regardée et utilisée.

Les.risques.traditionnels.dans.le.monde.de.la.routeDans les organisations routières traditionnelles, il ya toujours eu une attention portée aux risques. Les « ingénieurs » ont toujours traité des risques, des « vrais risques » selon eux. Ils ont considérés les incertitudes comme des difficultés pour la conception des ouvrages et considéré les phénomènes naturels aléatoires extrêmes, soudains et imprévus, comme des « risques » semblables à l'approche des assurances.

Cette image suivante présente la perspective traditionnelle où le génie et les aspects opérationnels ont prévalus avec l’apparition progressive d'autres aspects. Peu à peu, des considérations moins techniques, telle que la perte de confiance du public, ont été de plus en plus intégrées comme facteur.

nouvelle.perspectiveLa nouvelle manière de regarder tous les « écarts » de performance engendrés par le processus de gestion des risques peut apparaître peu familière. Les différents points de vue doivent être intégrés dans un contexte, à savoir l’amélioration continue et sans impact sur les performances d’un système de transport routier au service du public.

Les gestionnaires d’un organisme de transport routier doivent être bien conscients du changement de culture inhérent au processus. Il est important de parvenir à une compréhension commune de l’objectif de la démarche. La « gestion intégrée des risques » implique toutes les parties d’une opération. La force motrice de la gestion du risque d’entreprise est de réduire les incertitudes, d’améliorer la transparence et de permettre une utilisation efficace des ressources, surtout dans les organisations professionnelles. Cependant, le cadre réglementaire est devenu, dans une large mesure, un élément prépondérant dans le secteur public. Les ingénieurs d’une organisation en transport doivent se conformer à ces normes et procédures de gestion. Elle donne une autre perspective à la gestion des risques et apporte un nouveau contexte. La situation peut être décrite comme sur la figure 16, page suivante.

The new approach emphasises as much the management of opportunity as much as of risk. The same approaches for dealing with uncertainty and adverse outcomes can be used both for “pure accidents” or “unsuccessful projects” although the nature of causes and effects may be completely different. For an agency the main responsibility however must be infrastructural reliability and road safety. But then again, there is always opportunity for improvement and that opportunity must be spotted and utilized.

traditional road transport risksIn a typical road transport body there has always been focus on risks. The “engineers” have always been dealing with risks, no doubt “real risks” in their own view. They have probably regarded uncertainties as design challenges and only regarded random and extreme natural events, sudden and unforeseen, as “risks”, equal in many cases to insurable risks.

This picture may possibly show the traditional perspective where the engineering and operational aspects prevailed and the additional aspects emerged gradually. Gradually “soft aspects” such as loss of public confidence has been growing as a factor.

new perspectiveThe new way of looking at all “deviations” as risks may appear a little unfamiliar. The various views need to be integrated into one context, namely the efficient, continuous and safe performance of a road transport system in the service of the public.

The management of a road transport body must be well aware of the “cultural” change inherent in the situation. It is important to achieve an understanding of the common goal. “Total risk management” involves all parts of an operation. The driving forces behind the new concept, “enterprise risk management” is to reduce uncertainty, enhance transparency and make efficient use of resources, primarily in business organisations. However the regulatory framework has to a large extent been adopted also in the public sector. The engineers in the core activity of a road transport body must also comply with these new management procedures and standards. It gives another perspective to risk management and brings a new context. Possibly the situation may be depicted as in figure 16, next page.

Page 47: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

90 2010R01 912010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Comme on peut le constater, il existe de nombreux postes et fonctions touchant le risque. Il est essentiel de les prendre en considération pour atteindre les résultats. Il est également essentiel que les nouvelles tâches que le personnel est « chargé » d’accomplir en gestion de risques soient assez simples et pertinentes. Sinon, le système ne sera pas accepté.

Dans de nombreuses situations, les évaluations de risques ne sont pas destinées à produire des prédictions fiables et précises de l’avenir, mais plutôt à présenter un classement des risques en vue d’identifier les actions à prendre pour mettre en place les mesures appropriées, et de démontrer que toutes les mesures raisonnables sont en place. Il est également essentiel qu’il existe une décision documentée quant à la gestion des risques majeurs lorsque la situation est jugée acceptable dans le but de « clore le dossier ».

éléments.clé.de.la.gestion.des.risquesL’expérience montre qu’il y a certains éléments clés dans la gestion des risques. Ils ne sont pas différents des autres domaines de la gestion, mais doivent être adaptés à la question quelque peu floue de risque.

La figure 17, page suivante présente une vue générale sur le processus de gestion des risques et de son contexte.

Tout d’abord, la politique de gestion des risques doit couvrir tous les aspects, y compris et à commencer par les orientations générales relatives à la sûreté et

As can be seen, there are many positions and functions dealing with risk. It is essential to achieve alignment. It is also essential that the new tasks that staff is “burdened with” is simple enough and yet relevant and objective. Otherwise the system will not be accepted.

In many or even most situations risk assessments are not aimed at producing reliable and accurate predictions of the future but rather to achieve a ranking of risks in order for management to take appropriate action and to demonstrate that all reasonable measures are in place. It is also essential that there is an informed management decision regarding major risks that the situation is considered acceptable in order to “close the case”.

Key elements to risk managementExperience shows that there are some key elements in risk management. They are not different from other management areas but must be adapted to the somewhat elusive matter of risk.

For a general view on the risk management process and its context reference is made to next Figure 17, next page.

First of all there should be a risk management policy covering all aspects of risks and risk management including and starting with policy statements relating

Perspective du cycle de vie

Planning Conception Constructions Exploitation Démolition / destuction

Manque de connaissances

Domaine possible pour des situations nouvelles vers l'intérieur ou vers l'extérieur

résultat de toute combinaison

Type d'impact / conséquence

événements aléatoires : forces naturelles, accident, actes de malveillance, fait de l'homme, erreur

Base

Perte de biensPréjudice corporelFinancière (passif)

Opérationnelle

TempsQualitéEfficacité

Supplémentaire

EnvironnementConfiance du publicAutres actifs incorporels

Figure 16 — Les considérations techniques en gestion des risques pour les organisations dans le domaine du transport routier, incluant les usagers et d’autres partenaires

Life cycle perspectivePlanning Design Construction Operation Demolition /

destuction

Lack of knowledge Possible arena for emerging situations "inwards" or "outwards" out of any combination

Type of impact / consequenceRandom events: natural forces, accidents, malicious acts, man-made, error

Basic

Property lossBodily injuryFinancial (liability)

Operational

TimeQualityEfficency

Additionnal

EnvironmentPublic confidenceOther intangibles

Figure 16 - Engineering risks aspects for road transport bodies including users and others stakeholders

Page 48: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

92 2010R01 932010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

la sécurité qui impliquent les partenaires. Plus précisément, il doit y avoir des directives qui donnent des orientations pour tous les secteurs concernés.

La signification de risque devrait être expliquée et les dimensions, les valeurs ou les indicateurs de risque qui sont destinés à être utilisés doivent être donnés. De préférence, ils devraient être quantifiables ou du moins comparables. En outre, il devrait y avoir des directives pour la mise en place des solutions reconnues.

Des indicateurs de risques devraient toujours être quantitatifs. Il faut bien comprendre que quantitatif ne signifie pas chiffré. Des aspects tels que « mieux que » et « plus grand que » peuvent permettre un classement. Les résultats comme la méthode doivent être crédibles et ouverts à la discussion.

Il y a toute une gamme d’outils en matière de gestion de risques apparentés à la science, comme les mathématiques et les statistiques, l’ingénierie de nombreux domaines, mais également le domaine financier. Ils dépendent tous de modèles déterministes ou statistiques pour déterminer la probabilité d’un résultat. Les outils de gestion stratégique, de conformité et de performance ne se prêtent généralement pas à l’analyse quantitative, mais les évaluations fondées sur les meilleures connaissances et les combinaisons de probabilité et d’impact peuvent très bien servir.

Routine.annuelleLa haute direction d’une organisation devrait créer un système commun de gouvernance, intégrant la gestion des risques avec une approche commune de la méthode, de l’application, de l’établissement des critères, du suivi etc. Il devrait être intégré dans le cycle annuel de planification, incluant la prévision, la budgétisation, le suivi, le rapport.

Il faut créer un tissu de personnes et de processus intégrés couvrant tous les aspects de la gestion des risques, la gouvernance et la responsabilité organisationnelle.

to safety and security for all stakeholders. More specifically there should be guidelines that give directions for all areas concerned.

The meaning of risk should be explained and dimensions, values or indicators of risk that are intended to be used should be given. Preferably they should be quantitative, at least comparable. Furthermore there should be instructions regarding accepted solutions.

Risk indicators should always be quantitative. Please appreciate that quantitative does not mean numerical. Aspects like “better than” and “bigger than” or points schemes allow ranking. The credibility of methods and results must be open to discussion.

There is a whole range of tools in risk and science, such as mathematics and statistics, engineering of all sorts but also in the financial area. They all depend on either known deterministic models or statistics in large numbers to determine the probability of an outcome. The management tools regarding strategy, political percussions, compliance, performance and do generally not lend themselves to numerical analysis but assessments based on best knowledge and combinations of probability and impact serve very well.

annual routineTop management should create one common governance system including risk management with a common approach to structure, application, reporting, monitoring etc. It should be integrated in the annual cycle of planning including budgeting, monitoring, reporting, etc.

It is necessary to create one integrated fabric covering all aspects of risk management, governance and organizational responsibility.

Exec mgt / Board Finance Operations Information

securityRisk mgt /

securityInternal

auditHuman

ressources Compliance

Strategic

Financial

Operational

Compliance

Communications Purchasing IT Safety Controlling Production Design

Figure 17 — Total (entreprise)risk management

Conseil d'administration Finances Exploitation Sécurité de

l'informationGestion de la sécurité Audit interne Ressources

humaines Respect

Stratégie

Finances

Exploitation

Respect

Communications Achats Technologies (IT) Sécurité Contrôle Production Design

Figure 17 — La gestion de risques pour l’organisation

Page 49: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

94 2010R01 952010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Pour tous les secteurs de risque, il devrait y avoir des critères d'acceptabilité des niveaux de risque. Ils devraient être étalonnés par rapport à des événements connus en termes de conséquences et de réactions, de ramifications et de répercussions de toutes sortes, des opinions des parties prenantes comme par exemple le facteur d’indignation, etc.

Le rapport de gestion des risques rédigé conformément aux exigences internes devrait être remis systématiquement à l’exécutif de l’organisation par exemple durant le 3ème trimestre de chaque année. Le rapport devrait décrire les risques et les mesures proposées pour amener le niveau de risque à un niveau acceptable. La haute direction doit ensuite contresigner approuvant ainsi le fait que la situation est jugée suffisamment gérée. Ceci est crucial pour les deux niveaux de gestion.

Relations.et.processusLa figure 20, page 98 montre la logique et la séquence du processus annuel de planification des mesures en relation avec le processus de gestion des risques.

For all risk areas there should be criteria for levels of risk that are acceptable. They should be calibrated against known events in terms of consequences and reactions, ramifications and repercussions of all sorts and stakeholder opinions have been formed, e.g. the “outrage” factor, etc.

The risk report in accordance with the internal requirements should be delivered to the executive top management during for instance the 3rd quarter each year. The report should describe the risk and the measures proposed to bring the risk level down to an acceptable level. Top management should then countersign that the situation is considered adequately managed. This is crucial to both management levels.

Flow chart and relationsFigure 20, page 99 depicts the logic and sequence of the annual action planning process in relation to the risk management process. It illustrates where the assessment matrices fit in.

Figure 18 — éléments clés du système de gestion des risques

Documents de référencePolitique de gestion du risqueOrientations / processus généralInstructions / solutions généralement reconnues

Ensemble de matrices, aussi pour les opportunités

Routine annuelleRapportCommunication

Paramètres pour l'évaluation des risques

Critères d'acceptation des risques / matrices

Processus d'administration

Figure 18 — Risk management system key elements

Governing documentsRisk management policyGuidelines / general processInstructions / generally accepted solutions

Set of derived matrices, also for opportunity

Annual routineReportingCommunication

Parameters for risk assessment

Overall risk acceptance criteria / matrices

Governing process

Page 50: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

96 2010R01 972010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

RéférencesHANSeN, J. & NILSSON, L., SWeDISH ROAD ADMINISTRATION. “An Approach to Risk Management in a Road Transport Authority”. XXIIIrd WORLD ROAD CONGReSS PARIS 2007

PIARC C18, Committee Report (2002)

QUeeNSLAND GOVeRNMeNT, Department of emergency Services, Zamecka, Alice and Buchanan, Graham, “Disaster Risk Management”, p. 32

SWeDISH ROAD ADMINISTRATION, Risk Management Process Manual (2007)

TRANSIT NeW ZeALAND, Risk Management Process Manual (2007)

.

referencesHANSeN, J. & NILSSON, L., SWeDISH ROAD ADMINISTRATION. “An Approach to Risk Management in a Road Transport Authority”. XXIIIrd WORLD ROAD CONGReSS PARIS 2007

PIARC C18, Committee Report (2002)

QUeeNSLAND GOVeRNMeNT, Department of emergency Services, Zamecka, Alice and Buchanan, Graham, “Disaster Risk Management”, p. 32

SWeDISH ROAD ADMINISTRATION, Risk Management Process Manual (2007)

TRANSIT NeW ZeALAND, Risk Management Process Manual (2007)

Opérations d'analyse (analyse de risque)

évaluation / amélioration

Planification stratégique

Planification de l'action

Réalisation / suivi

établissement de rapports annuels

Assurance du C.A. sur le contrôle

interne

Saisie des opérations répétées de l'analyse (analyse de risque)

Figure 19 — Routine annuelle

Operations analysis

(risk analysis)

Evaluation / improvement

Strategic planning

Action planning

Directing / monitoring

Annual reportingThe assurance

of the Board on internal control

Input for repeated operations analysis

(risk analysis)

Figure 19 — Annual routine

Page 51: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

98 2010R01 992010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Environnement d'exploitation

d'études, SWOT, analyses

Tableaux de bord de gestion des risques (risques

vs cibles), opérations de gestion des

risques

Matrice d'opportunité

en gestion

Projet de gestion des risques (temps/coût/

fonction)

Opportunités

Gestion des risques

opérationnels dans le cadre de projets

et de processus

Mission, besoins des clients, réglements, politiques, instructions, etc.

Risques d'ambiance

internes

Plans stratégiques incl. propositions de ligne d'unités

Tableaux de bord, engagements, plans d'action

Proposition d'activités, projets, amélioration du processus

Certaines activités, projets, amélioration des procédés

Gouvernance, gestion, activités approuvées, projets, amélioration des processus

Environnement d'exploitation

d'études, SWOT, analyses

Tableaux de bord de gestion des

risques, opérations de gestion des

risques

Matrice d'opportunité

en gestion

Projet de gestion

des risques (temps/coût/

fonction)

Opportunités

Gestion des risques opérationnels dans le cadre de projets

et de processus

Mission, besoins des clients, réglements, instructions, etc.

Risques d'ambiance internes

Plans stratégiques incl. propositions de ligne d'unités

Tableaux de bord, engagements, plans d'action

Proposition d'activités, projets, amélioration du processus

Certaines activités, projets, amélioration des procédés

Gouvernance, gestion, activités approuvées, projets, amélioration des processus

Figure 20 — Relations et processus Figure 20 — Flow chart and relations

Page 52: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

100 2010R01 1012010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

GEstIon.dEs.RIsQuEs.PouR.LEs.méGAPRoJEts

La gestion des risques dans les méga-projets répond aux mêmes principes que ceux développés dans les paragraphes précédents. Néanmoins, compte tenu du facteur d’échelle qui les caractérise, il convient d’être encore plus vigilant, particulièrement sur tous les aspects relatifs aux risques technologiques, financiers, environnementaux. Exceptionnels par leurs caractéristiques intrinsèques, les méga-projets le sont également par le nombre de parties ou enjeux qui leurs sont associés (enjeux économiques, sociaux, technologiques, politiques ou médiatiques). à chacun de ces enjeux correspond un certain nombre de risques qu’il convient d’évaluer, de quantifier, de hiérarchiser et finalement de tenter de minimiser. Ces exigences concernent tant la fiabilité de l’ouvrage lui-même que ses conséquences pour les usagers, les riverains, l’environnement, les partenaires techniques, économiques et financiers.

Pour être efficaces et pertinentes, la prise en compte et la gestion des risques doivent être entreprises dès les premières phases de planification et de conception et se poursuivre aux stades de la construction et de l’exploitation de l’ouvrage. L’anticipation des risques et la continuité de leur gestion entre les différents responsables et intervenants au cours des différentes phases du méga-projet ont prouvé être des éléments clés de réussite. De plus en plus, la gestion intégrée des risques fait partie intégrante des choix de conception et constitue un paramètre majeur dans la définition même de l’architecture, des matériaux, des méthodes de construction et donc des coûts.

déFInItIon.Et.cARActéRIstIQuEs.dEs.méGA-PRoJEts

La définition de méga-projet s’applique de façon courante aux projets reconnus internationalement comme étant exceptionnels de par leurs dimensions, leur coût, leur architecture ou leur technicité. hier, les ponts d’Oakland et du Golden Gate à San Francisco, aujourd’hui le viaduc de Millau en France, le pont de Rion-Antirion en Grèce, le pont Akashi Kaikyo au Japon ou encore le tunnel de Storebaelt au Danemark et peut-être demain le pont de Messina entre l’Italie et la Sicile sont des exemples évidents de méga-projets.

Du point de vue de l’ingénieur, la notion de méga-projet paraît assez subjective et s’applique de façon générale aux projets cumulant volume (dimensions, coûts, ...) et difficultés techniques. Les défis architecturaux, l’utilisation de structures ou matériaux innovants ou encore les difficultés relatives au site d’implantation peuvent en effet, indépendamment des dimensions de l’ouvrage, conduire à cette qualification. Afin de fixer quelques ordres de grandeur, on

riSK manaGEmEnt For mEGa-ProJEctS

Risk management for mega-projects is based on the same principles as those described in the preceding paragraphs. However, considering the scale of these projects, the level of risk awareness should be even higher, particularly with respect to technological, financial and environmental risks. Mega-projects are exceptional by their intrinsic characteristics and by the number of parties and/or issues that are connected to them, either economically, socially, technologically, politically or through the media interest which these projects generate. Each of these issues entails a number of risks that need to be evaluated, quantified, prioritised and eventually reduced. The risks are related to the reliability of the structure itself, as well as the consequences for users, residents, the environment, technical and financial stakeholders.

In order to be efficient and relevant, the consideration and management of risk should be undertaken early in the planning and design stages and continued throughout the construction and operational stages. Anticipating risk and ensuring continuity in its management, between the various managers and contractors and over the various phases of the mega-project, have proven to be key elements of success. Integrated risk management is increasingly an integral part of design choices and is a major consideration in the decision-making process, influencing architecture, materials, construction methods, and therefore costs.

mEGa-ProJEct dEFinition and cHaractEriSticS

The mega-project term generally states for projects internationally recognized to be exceptional because of their dimensions, cost, architecture or technical specificities. Yesterday’s San Francisco Golden Gate and Oakland Bay Bridges, today’s Millau Viaduct in France, Rion-Antirion Bridge in Greece, Akashi Kaikyo Bridge in Japan or Storebaelt Tunnel in Denmark and maybe tomorrow’s upcoming Messina Bridge between Italy and Sicily are obvious examples of mega-projects.

From an engineering perspective, the definition of mega-projects is quite subjective and generally refers to projects associating great volumes (dimensions, costs) and techniques. Architectural challenge as well as difficulties relative to the site can thus lead to this definition, independently from size considerations. In terms of dimension and cost considerations, one can consider bridges of total length greater than 1000 meters and global cost higher than 100 millions euros (120 M

Page 53: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

102 2010R01 1032010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

pourra traditionnellement considérer comme des méga-projets des ponts d’une longueur supérieure à 1 000 mètres ou d’un coût supérieur à 100 millions d’Euros (120 M USD) et des tunnels de longueur supérieure à 10 km ou d’un coût de 500 millions d’Euros (600 M USD) ou plus. Concernant les ponts, la définition peut être affinée en considérant non pas la longueur totale de l’ouvrage mais la longueur des travées, plus représentative de la performance technique réalisée. La notion de méga-projet peut par ailleurs être étendue à une portion entière d’itinéraire (boulevard périphérique d’une agglomération, autoroute, etc., …) et comprendra dans ce cas l’ensemble de la structure routière, son intégration dans son environnement, les ouvrages d’art qui la constituent, etc. Elle peut enfin différer en fonction de l’étendue et du domaine d’influence de l’autorité responsable : Etat, région ou ville et dépendra en général du niveau de technicité du pays considéré ; la définition ou les caractéristiques d’un méga-projet seront par exemple différentes selon que l’on se trouve dans un pays développé ou dans un pays en développement.

Du point de vue du manager ou du maître d’ouvrage, le méga-projet se définit essentiellement en termes de coûts, de chiffre d’affaires, d’organisation, de planification et de responsabilités que ce soit vis-à-vis du public concerné ou de l’environnement du projet. Pour mémoire, l’Administration des autoroutes fédérales américaine (FhWA) définit les méga-projets comme ceux dont le coût total dépasse 500 M USD et qui reçoivent une assistance financière fédérale du fait de leur importance, tant du point de vue de leur perception dans la conscience collective du public et des autorités politiques que de celui de leur rôle hors norme au sein du réseau national de transports3.

Ainsi, la notion de méga-projet pourra être étendue à tous les projets exceptionnels en raison de leurs caractéristiques (coût, dimensions, architecture, technicité) ou parce qu’ils sont particulièrement exposés à certains risques naturels ou anthropiques ; le caractère exceptionnel étant à définir en référence à l’autorité ou à l’organisme responsable. Exceptionnels par leurs caractéristiques intrinsèques, ils peuvent malheureusement l’être également par l’ampleur des désastres qu’ils sont susceptibles d’engendrer lorsque les risques qui les menacent sont mal gérés. L’objectif du paragraphe suivant est de fournir un cadre et des conseils pour la gestion des risques dans les méga-projets.

USD) and tunnels of total length greater than 10 km and global cost higher than 500 millions euros (600 M USD) as mega-projects. For what concerns bridges, the proposed definition can be made more accurate considering the span length which is more representative of the achieved technical performance instead of the total length. The mega-project definition can also be extended to an entire section of any road network (for instance city ring roads, highways, etc…) and will include in this case the whole road infrastructure, including bridges, tunnels, environmental insertion, etc. Moreover, mega-projects qualification can vary with the size and impacting domain of the responsible authority: State, county, city… And it can also differ from one country to another, depending on the level of development and techniques: mega-projects definition will for instance apply to different structure characteristics depending if it is built in a developed country or in a developing country.

From a manager or owner perspective, mega-projects are essentially defined in terms of costs, cash flow, organization, planning and responsibilities towards users and project environment. As an example, the American Federal highway Administrations define mega-projects as projects with total estimated cost greater than 500 M USD and which receive federal financial assistance because of their importance in public or congressional attention and because they have extraordinary implications for the national transportation system3.

Finally, the mega-project definition can be extended to any project, considered of exceptional characteristics (cost, dimensions, architecture, technique) or because it is particularly exposed to some natural or manmade risks. The exceptional attribute is to be defined relatively to the responsible authority or company. Exceptional by their intrinsic characteristics, mega-projects can also unfortunately happen to be exceptional by the size of the disasters they can engender when risks are not or badly managed. The next paragraph aims to provide general framework and guidelines risks management in mega-projects.

3 Gestion des risques pour les projets majeurs, Daniel C. WOOD, P.E., Federal highway Administrations, USA. 3 WOOD, D.C., “Risk Management of major Projects”, P.E. Federal Highway Administrations.

Page 54: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

104 2010R01 1052010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

cAdRE.PouR.LA.GEstIon.dEs.RIsQuEs.dAns.LEs.méGA-PRoJEts

Facteurs.et.partenaires.associés.à.la.gestion.des.risques.dans.les.méga-projets

Les méga-projets présentent la particularité d’associer dans un contexte commun plusieurs partenaires, organismes ou éléments environnementaux dont les enjeux, la culture ou les intérêts peuvent être très différents et parfois incompatibles. Les chantiers de grands projets impliquent donc inévitablement des risques pour toutes ces parties qui participent directement ou indirectement au projet. Par nature, ils impliquent des risques importants pour le maître d’ouvrage. Souvent l’ampleur ou les ambitions du projet seront amenées à changer pendant son développement ou sa mise en œuvre. Aux premières étapes du projet, les changements peuvent être dus par exemple aux incertitudes sur le tracé exact, les normes techniques, les interfaces du projet ou les conditions géotechniques et environnementales. Ces incertitudes peuvent entraîner des dépassements de coûts importants et des difficultés liées au retard. En outre, dans le cas des méga-projets, il y a potentiellement un risque d’accident de grande ampleur pendant la phase de travaux, et pour les zones habitées, il convient également de considérer le risque de dégâts causés à des tiers ou à des biens. Enfin, il existe un risque que le déroulement du projet soit perturbé par l’opposition du public et par les mesures politiques découlant des problèmes que le projet peut causer aux riverains.

La figure 21 présente le contexte général et les partenaires associés directement ou indirectement à un méga-projet. Pour chacune de ces entités, les risques sont à envisager dans les deux sens : risques induits par l’ouvrage sur son environnement (naturel ou anthropique) et risques induits par l’environnement sur l’ouvrage.

Figure 21 — Contexte et partenaires associés à un méga-projet

riSK manaGEmEnt FramEWorK and GuidELinES For mEGa-ProJEctS

Factors and partners associated with risk management in mega-projects

Mega-projects have the particularity to associate in a common context many partners, companies, political authorities or environment issues, the culture, the critical objectives and considerations of which can differ and sometimes be incompatible. Mega-projects construction works involves risks for all parties directly and often indirectly involved in the project. By their nature, they also entail considerable risks for the owner. Often the project scope or ambition level will change during project development and implementation. Changes may be due to uncertainty at the early project stages for example on the exact corridor, the technical standards, project interfaces or the geotechnical and environmental conditions. Significant cost overrun and delay difficulties may arise from these uncertainties. In addition, there is a potential for large-scale accidents during mega-project work and, for mega-projects in inhabited areas, there is a risk of damage to a range of third party persons and property. Finally there is a risk that the course of the project may be affected by public protest and political reactions arising from the problems that the mega-project may cause to the public.

Figure 21 below presents the general framework and associated partners that are directly or indirectly connected to mega-projects. For each of them, risks are to be considered in both ways: risks induced by the project on its environment (natural or human) and risks induced by the context on the project.

Figure 21 — Mega-project framework and associated partners

Page 55: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

106 2010R01 1072010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

L’usager est le principal bénéficiaire de l’infrastructure. Sa relation au méga-projet est associée à plusieurs types de risques : tout d’abord le risque financier, puisque la rentabilité de l’infrastructure est directement liée à son attractivité (études d’opportunité, gain de temps, confort) ; ensuite, les risques liés à la sécurité, car un ouvrage routier mal conçu ou mal équipé met en danger la vie ou la santé de l’usager (profil routier accidentogène, barrières de sécurité sous-dimensionnées, défaut de fonctionnement des extracteurs de fumée à l’intérieur d’un tunnel, etc.). Inversement, un accident causé par un automobiliste imprudent risque d’endommager la structure ou d’altérer sa fonctionnalité (incendie de tunnel, chocs sur des dispositifs latéraux, renversement de matières dangereuses, etc.).

Le maître.d’ouvrage (ou le concessionnaire) est le propriétaire et le financeur de l’infrastructure nouvelle. Ses principaux soucis concernent donc généralement les risques financiers, les risques de dépassement des délais de construction, ceux liés à l’exploitation et à la pérennité de l’ouvrage, mais également, et de plus en plus, une responsabilité morale et juridique vis-à-vis des utilisateurs et de l’environnement, tout au long de la vie de l’ouvrage (ou de la durée de concession). La réglementation européenne définit notamment depuis 1976 six exigences essentielles obligeant les maîtres d’ouvrage publics à se préoccuper des risques et de l’environnement et à mesurer les conséquences socio-économiques et juridiques des termes de la commande publique4. Pour les infrastructures et leurs composants, nous retiendrons les exigences vis-à-vis des résistances, de la sécurité (construction, service, incendie), de la protection (hygiène, santé, bruit, environnement), de l’économie (énergie, isolation). La nouvelle approche de la normalisation européenne passe d’une logique descriptive à une logique performantielle. Les maîtres d’ouvrage publics doivent traduire des choix en termes de résultats plutôt que de moyens. De façon corollaire, les Eurocodes n’anticipent pas sur les décisions de maîtrise d’ouvrage ; par exemple, ils ne fixent pas d’hypothèses de risque et s’en tiennent aux méthodes. Autrement dit, les Eurocodes engagent pleinement la responsabilité des maîtres d’ouvrages et ne leur permettent pas de se reposer entièrement sur les ingénieurs5.

L’architecte, les bureaux.d’études et les entreprises.de.construction sont en charge respectivement de la conception et de la réalisation de l’infrastructure et se trouvent donc concernés par tous les risques qui y sont rattachés : risques financiers, tenue des délais de construction, accidents de chantier, qualité de la réalisation, respect et protection du milieu environnant. Une mauvaise gestion de ces risques est susceptible de remettre en cause l’achèvement dans les temps du projet, mais également la réputation et la santé financière de l’entreprise. De même, l’adjonction d’organismes. de. contrôle qualifiés et indépendants constitue une condition indispensable du succès de l’opération.

The drivers are the main clients of the infrastructure. Their relation to the mega-project is associated with different sorts of risks: financial risk first as the cost effectiveness of the project is directly dependent on its attractiveness (opportunity studies, time saving, comfort); risk related to the drivers security then because a badly designed or poorly equipped road structure is susceptible to endanger users’ life or health (accident predisposing profiles, deficient crash barriers, ill-functioning fumes extractors inside tunnels, etc.). Conversely, an accident caused by a careless driver can damage the structure and reduce its serviceability (fires in tunnels, crashes on barriers, dangerous goods pouring…).

The owner (or the contractor) is the ones who finance the upcoming infrastructure. Their main issue is therefore generally associated to financial risks, construction delays, risks related to operation phases and structural ageing. However they are also increasingly concerned with issues related to moral and juridical responsibilities towards drivers and environment all along the structure service life (or contracting time). Since 1976, European legislation for instance has defined six basic requirements to oblige public owners to be concerned with risks and environment and to account for the public command socio-economical and juridical consequences4. As far as public infrastructures and their components are concerned, we will mention requirements dealing with structural resistance, security (construction related risks, service related risks, fire resistance), as well as protection (hygienic working conditions, health protection, noises, and environment), and saving (energy, isolation)… The new normalization approach thus moves from a descriptive approach to a performing approach. Therefore, public owners have to make choices in terms of results instead of means. At the same time, the Euro codes do not anticipate on owners’ choices. For instance, they do not fix the risk assumptions but are just aimed at describing the methods to take them into account. So to say, the Euro codes considerably increase owner’s responsibility as they do not allow them to rely exclusively on engineers5.

architects, design offices and constructing companies are in charge with design and construction of the structure. They are therefore involved in all related to these critical phases of the project: financial risks, construction delays, work accidents, construction quality, respect and protection of the environment… An unsatisfying risk management during those stages might hazard the completion of the project on times but also the standing and financial health of the company. In the same way, contributions of independent, qualified control organisms are indispensable conditions of success.

4 Guide à l’intention des maîtres d’ouvrage et des maîtres d’œuvre, (UE – 1976, JO n° 2009)5 Maîtrise d’ouvrage publique en Europe – Eléments de repères spécifiques aux ponts – Sétra, 2006.

4 “Guidelines for public infrastructures owners and contractors”, OJ n°2009, EU – 19765 “Civil structures owners in Europe – Specific elements relative to bridge structures”, Sétra, 2006

Page 56: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

108 2010R01 1092010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

En fonction de son site d’implantation, le méga-projet peut se trouver exposé à un certain nombre de contraintes.naturelles d’ordre climatologique (tempêtes, cyclones, pluie, neige, froid, verglas, milieu atmosphérique agressif, …), géotechnique (glissement de terrain, chutes de pierres …), hydraulique (crues, inondations, …) ou sismique (tremblement de terre, liquéfaction, tsunami, …). Inversement, et plus rarement, un méga-projet peut lui-même, par ses dimensions, modifier ces niveaux de contrainte en modifiant la géomorphologie du site. C’est le cas notamment des grands barrages ou tunnels, parfois à l’origine de petits séismes, effondrements, instabilités de pentes, crues, inondations,…

De part leurs dimensions, les méga-projets impactent directement et inévitablement l’environnement. Les aspects environnementaux, qui se trouvent de plus en plus au cœur des préoccupations politiques et sociales de nombreux pays, recouvrent tout ce qui concerne l’écologie du site (la faune, la flore, la présence éventuelle d’espèces protégées, la pollution, l’eau, le bruit, …), l’insertion paysagère, l’architecture, la proximité éventuelle de monuments historiques ou la présence de vestiges archéologiques. Les études de projet doivent donc prendre en considération un certain nombre de mesures de protection de l’environnement (ou éventuellement des mesures compensatoires) et prévoir une campagne de communication pertinente. Dans le cas contraire, le maître d’ouvrage risque d’exposer le projet à l’opposition du public, des autorités politiques et des associations écologiques, situation pouvant engendrer un retard ou une remise en cause de l’acquisition des terrains et des droits d’accès au site ou menacer le bon déroulement du chantier.

Dans le même ordre d’idée, les riverains et leurs représentants. politiques.sont directement concernés et exposés à des risques liés à la construction d’un méga-projet (nuisances sonores, risques de pollution, perturbation du trafic, modification du contexte socio-économique, coût de l’habitat, pression médiatique, …). Une bonne communication est là aussi essentielle, car ces aspects peuvent perturber ou remettre en cause le bon déroulement du projet. Le domaine ferroviaire est par exemple très vigilant sur le sujet. Il préconise tout un ensemble de dispositions à mettre en œuvre pour éviter les déraillements de trains à proximité des ouvrages (bâtiments, quais de gare, ponts), qui, lorsqu’ils se produisent, peuvent avoir des effets très négatifs en termes d’image. Dans le domaine routier, des effets négatifs peuvent également être consécutifs à des fermetures de tronçons d’autoroute, des évacuations de population, lors des incendies de tunnel ou en cas d’accidents graves. Les conséquences des accidents ne doivent donc pas être évaluées uniquement sous l’angle technique (tenue d’un ouvrage), mais aussi sous l’angle socio-économique, voire politique (gêne aux usagers, dangers pour les populations riveraines)5.

Depending on its implantation site, mega-project can be exposed to several natural constraints of climate nature (wind storm, hurricanes, rain, snow, cold, ice-storm, aggressive ambient atmosphere…), geotechnical nature (landslides, rock falling…), hydrologic nature (floods…) or seismic nature (earthquakes, liquefaction, tsunami…). On the contrary and more rarely, a mega-project, because of its dimensions, can modify those levels of constraints by altering the site geomorphology. It is sometimes the case for instance for large dams or tunnels that can generate small earthquakes, rock fallings, slope instabilities, floods…

Due to their dimensions, mega-projects directly and fatally impact environment. Environmental aspects are increasingly critical political and social preoccupations in many countries. They gather several issues such as site ecology (fauna, flora, protected species, pollution, water, noise…), landscape insertion, architecture, historic buildings proximity or archaeological remains. Project studies must therefore anticipate on a certain number of environment protection measures (or eventually counter-measures) as well as adapted communication campaign. If not, the owner may face public contest and political authorities and ecologic associations disapproval, resulting in delays and difficulties in acquiring land, right-of-entry for land parcels or construction work disruption.

On the same idea, local inhabitants and politics are directly concerned by risks related to mega-project construction (noise disturbs, pollution risk, traffic disruption, modification of the social-economical environment, housing cost, media coverage and pressure…). A good adapted communication campaign is once again essential. Rail transportation domain is for instance very concerned on this matter. Many preventive dispositions are thus undertaken in order to prevent any derailment close to civil structures like buildings, train stations, bridges that might have very bad consequences in terms of image. In the road domain, negative image effects can also result from highway closing, population evacuation, within tunnel fires or catastrophic accidents. Consequences of an accident must therefore be considered not only through the technical perspective (structural integrity) but also through the social-economical and sometimes political angle (drivers’ disturbance, risks for local environment)5.

5 Maîtrise d’ouvrage publique en Europe – Eléments de repères spécifiques aux ponts – Sétra, 2006. 5 “Civil structures owners in Europe – Specific elements relative to bridge structures”, Sétra, 2006

Page 57: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

110 2010R01 1112010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Enfin, l’ouvrage peut se trouver menacé par tout.autre.type.de.risques, plus ou moins prévisibles ou anticipés, tels que les collisions.de.bateaux, les accidents.d’avions ou encore les actes terroristes, dont les conséquences sont souvent dramatiques à la fois pour l’infrastructure et les tiers impliqués.

Notons, en ce qui concerne notamment les usagers et l’environnement, que les risques doivent être établis, analysés et évalués non seulement vis-à-vis de la période de construction et de la mise en service de l’ouvrage mais pour toute sa durée de vie. La gestion des risques dans les méga-projets doit donc répondre aux attentes et préoccupations des populations d’aujourd’hui tout en s’interrogeant sur celles des générations futures, conformément à la notion désormais mondialement reconnue et partagée de « développement durable ».

Les grands projets routiers exigent donc un équilibre entre des facteurs aussi divers et variés que la gestion financière, la planification et la conception, les acquisitions de terrain, la gestion des chantiers de construction, les impacts sur l’environnement, la sécurité et l’exploitation du trafic, les installations futures et l’entretien, ainsi que les relations publiques. La sensibilité des populations vis-à-vis de ces différents aspects sont néanmoins variables d’une société à l’autre, selon la notion de risque perçu.

Dans l’évaluation de ces éléments, les chefs de projets doivent à la fois prendre en compte les risques qui peuvent être définis par l’équipe de projet (risques connus) et ceux qui ne peuvent pas être anticipés tels que les catastrophes naturelles ou les réductions budgétaires. Alors que certains risques peuvent être évités en changeant les plans du projet ou la manière de l’exécuter, la plupart nécessitent un plan d’atténuation ou d’intervention (acceptation ou transfert d’une partie des risques).

La.gestion.des.risques.au.cours.des.différents.stades.des.méga-projets

Les méga-projets s’étalent souvent sur des décennies. Il est donc essentiel que la prise en compte de ces facteurs et la gestion des risques associés soient entreprises aux différents stades du projet :

• Planification (étude d’opportunité),• Conception,• Construction,• Exploitation et entretien (y compris la gestion des situations post-crises).

Il est par ailleurs primordial d’assurer une cohérence entre ces différents stades afin de garantir le suivi et la continuité dans la gestion des risques, plutôt qu’un

Lastly, the mega-project can be endangered by any other type of hazard, more or less predictable or anticipated, such as ship collisions, aircraft crashes, terrorism, the consequences of which are most of the time dramatic for the infrastructure as well as implicated third party.

For what concerns drivers and environment in particular, one will note that risks must be established, analyzed and evaluate not only for the construction and service opening periods but for all along the expected service life of the structure. Risk management in mega-projects must therefore not only represent an answer to nowadays people needs and preoccupations but also anticipate on those of future generations, thus responding to the worldwide recognized and shared concern of “sustainable development”.

Major projects of road infrastructures thus demand a balancing of various factors such as financial management, planning and design, right-of-way, construction management, environmental impact, safety and traffic operations, future operations and maintenance, and public relation. Population’s sensitivity tone or the other of those aspects can vary from one society to another, relatively to the notion of “percept risk”.

In assessing these elements, project managers have to consider both risks that can be identified by the project team (known risks) and those that cannot be anticipated in advance, such as a catastrophic event or future budget cuts. To manage a major project effectively, both types of risks must be planned for. While some risks can be avoided by changing the project plans or the way the project is performed, most will require a mitigation or risk response plan (risk acceptation and/or transfer).

risk management at different mega-project stages

Mega-projects often last for decades in the making. It is therefore essential to consider and perform risk management at each stage of the project:

• Planning (opportunity studies);• Design;• Construction;• Operation (including post-crises management).

Moreover it is also essential to assure a satisfying coherence between those successive stages so that to guaranty certain risk management continuity instead

Page 58: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

112 2010R01 1132010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

schéma (rendant impossible l’attribution des risques communs), dans lequel les risques seraient traités et assumés de façon indépendante et non coordonnée par les différents partenaires.

Il convient de noter que compte tenu des enjeux colossaux que revêt un méga-projet, les processus de gestion des risques au cours des phases en amont sont particulièrement importants puisqu’ils permettent d’anticiper au maximum les éventuels problèmes plutôt que de se contenter de les traiter.

Parmi les risques à gérer, on notera notamment les risques liés à la sécurité des ouvriers en phase de travaux, aux délais et à l’organisation, les risques juridiques, ceux liés à la qualité technique et à la tenue des objectifs peformantiels et fonctionnels relatifs à la perception et aux attentes du public et des autorités politiques, les risques environnementaux et architecturaux et enfin les risques financiers.

Le tableau 3 permet d’identifier les étapes au cours desquelles ces risques sont les plus importants et fournit quelques outils pratiques pour l’anticipation de ces risques.

tABLEAu.3.—.LEs.étAPEs.cRItIQuEs.du.PRocEssus.d’éLABoRAtIon.du.PRoJEt.Au.REGARd.dEs.REsPonsABILItés.du.mAîtRE.d’ouVRAGE.-.outIL.d’AIdE.à.L’éLABoRAtIon.d’un.contRôLE.EXtéRIEuRENJEUX POUR LEMAITRE D’OUVRAGE

PhASES OU LE RISQUE EST LE PLUS FORT

POINTS DE CONTROLE POSSIBLE EN AMONT

Sûreté • En phase d’exécution, lors des opérations exceptionnelles

• En fin de chantier

• Choix de construction pouvant intervenir dès l’avant-projet

• Mise au point de la mission du coordonnateur sécurité

• Mémoire sur les hypothèses de risques du projet

Délais, organisation • Lors de la mise en place du financement

• A la mise en service

• Revue de projet• Choix du ou des maîtres

d’œuvre• Qualité des processus de

publicité et de consultation• Qualité de la concertation et de

la communication

of a scheme where risks would be assumed and treated independently and in uncoordinated way by the different partners (resulting in an indefinable ownership of the joint risks).

Because of tremendous issues that are related to mega-projects, risk management processes during preparing phases are of leading importance, mostly because they allow anticipating problems instead of just treating them.

Among the risks to be managed, those related to workers security, schedule delays, juridical risks, scope and performance creep, political and public expectations and perceptions, financial, architectural and financial risks have been recognized to be the most critical.

The Table 3 enables to identify phases with risks is the most critical and provides some practical guidelines to anticipate those risks.

taBLE 3 - criticaL StaGES WitHin tHE ProJEct EStaBLiSHmEnt ProcESS From oWnEr PErSPEctivE - ExtErnaL controL orGaniZation

RISKS FOR THE OWNER PHASES WHERE THE RISK IS THE STRONGEST

POSSIBLE ANTICIPATING CONTROL MEASURES

Security • During the construction phase• During exceptional operations• At the end of the construction

• Construction method choices during the planning phase

• Definition of the security coordinator task

• Report on the project risks evaluation

Delays, organization • During the financing program• Operation inauguration

• Project revue• Definition of the construction

responsibilities• Quality of the organization of

design and construction team designation

• Quality of exchanges and communication

Page 59: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

114 2010R01 1152010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Qualité juridique • Phase d’attribution du ou des marchés de maîtrise d’œuvre

• Phase d’attribution du ou des marchés Travaux

• Qualité des processus de publicité et de consultation

• Evaluation du coût prévisionnel• Mise au point des marchés

Qualité technique • Phase de projet• Phase de réception

• Mémoire justifiant les écarts éventuels par rapport à la réglementation et aux normes

• Mémoire sur les hypothèses de dimensionnement de la résistance et de la stabilité de l’ouvrage, sur les hypothèses de durée de vie de l’ouvrage, sur les hypothèses liées à la sécurité d’exploitation et de maintenance

• Définition du contrôle d’exécution

• Préparation des opérations de réception de travaux

Qualité fonctionnelle • Etudes préliminaires • Programme de l’ouvrage

Qualité environnementale • Etudes préliminaires• Phase d’exécution

• Programme de l’ouvrage

Qualité architecturale • Etudes d’avant-projet • Programme de l’ouvrage

Coût • Projet• Négociation ou mise au

point du ou des marchés• Travaux / réception• Achèvement des garanties

y compris des garanties particulières

• Programme de l’ouvrage• Revue de projet• Mise au point des marchés• Engagement contractuel des

différents associés, notamment du maître d’œuvre et du concepteur

Des conseils et des outils pratiques pour la prise en compte des risques, leur évaluation et leur traitement à chacun des stades du projet sont décrits et détaillés ci-après :

A.. En.phase.de.planification

1. Définir les caractéristiques. principales. de. l’ouvrage (dimensions, nombre de voies, coût, …) et son contexte (aspects socio-économiques, environnementaux, responsabilités du maître d’ouvrage, équipements proches, rôle en situation de crise). C’est également lors de cette première phase que se pose la question de la durabilité de l’ouvrage, étroitement liée

Juridical quality • Project attribution for design and construction

• Quality of competition procedure and advertising

• Cost estimation• Project finalization

Technical quality • Design phase• End of construction

• Report explaining and justifying eventual differences with regulations and codes

• Report on design hypotheses for structural resistance and stability, expected service life, operation security and maintenance

• Internal and external control procedures definition

• Work reception preparedness.

Operation quality • Preliminary design • Project program

Environmental quality • Preliminary design and studies• Construction procedures

• Project program

Architectural quality • Preliminary studies • Project program

Cost • Design• Project negotiation with working

companies• Construction phase and work

reception• Finishing and particular

guaranties

• Project program• Project revue• Project negotiation• Contractual engagement of the

different partners, particularly the construction manager and the designer

Some guidelines and practical tools are described and detailed below, for risks consideration, evaluation and treatment at each stage of the project:

a. during the planning phase

1. Define the mega-project principal characteristics (dimensions, number of lanes, cost…) and context (social aspects, owner responsibilities, environment issues, adjacent facilities, role in crisis and emergency situations). The question of the structure durability must also be raised during this first phase because it conditions the long term financial opportunity of the project, its maintenance

Page 60: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

116 2010R01 1172010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

à sa rentabilité à long terme, au coût des travaux d’entretien, ainsi qu’à la probabilité d’occurrence des différents aléas par rapport à sa durée de vie et de service.

2..Identifier. et. estimer. (quantifier). les. aléas. locaux selon les règlements.existants (cartes d’aléas) et/ou des campagnes.d’investigations.sur.site et expertises (sismicité, inondations, conditions de sol, …).

3. définir. des. objectifs. de. performance (tenue vis-à-vis des évènements extrêmes, durabilité, fiabilité) pour l’ouvrage en accord avec la normalisation et les choix du maître d’ouvrage.

Note : Les objectifs de performance sont généralement définis dans le cadre d’une matrice de risque dont la forme la plus classique est représentée ci-dessous.

Prob

abilité.d’occurrence

Af < 1 anTrès fréquent

B1 < f < 10 ansFréquent

C10 < f < 100 ansOccasionnel

D100 < f < 1 000 ansRare

E1 000 < f < 10 000 ansTrès rare

Ff < 10 000 ansExceptionnel

IMineur

IIModéré

IIIMajeur

IVCritique< 50 morts

VCatastrophique> 50 morts

niveau.de.sévérité.des.conséquences

Figure 22 - Exemple de matrice de risque

Dans cette matrice, les diagonales verte, jaune et rouge correspondent typiquement aux différentes classes d’importance des ouvrages, définies en fonction de leur coût, du trafic qu’ils supportent et de leur importance stratégique dans le cadre de la gestion des crises et de leur durée d’utilisation prévue. Par

costs as well as the different risks occurrence probabilities during its expected service life.

2. identify and estimate (quantify) local hazards according to existing codes (national hazard mapping) and/or site investigations and expertise (seismicity, floods, soil conditions…).

3. define objectives of performance (extreme events resistance, durability, reliability) in accordance with design codes and owner strategic choices.

Note: Objectives of performance are generally defined within a so-called risk matrix; the most usual form of it is presented below:

occ

urre

nce

prob

abili

ty

Af < 1 yearVery frequent

B1 < f < 10 yearsFrequent

C10 < f < 100 yearsOccasional

D100 < f < 1,000 yearsRare

E1,000 < f < 10,000 yearsVery rare

Ff > 10,000 yearsExtremely rare

IMinor

IIModerate

IIIMajor

IVCritical

< 50 deaths

VCatastrophic> 50 deaths

consequences severity

Figure 22 - Example of risk matrix

In this risk matrix, green, yellow and red diagonals typically correspond to different importance classes of the structures, defined on the basis of such considerations as cost, carried traffic, strategic importance in terms of crisis management and predicted operation life. By nature, mega-project will usually state in highest

Niveau de performance inacceptable

Unacceptable level of performance

Page 61: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

118 2010R01 1192010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

nature, les méga-projets ont vocation à être rangés dans la classe d’importance la plus élevée (diagonale verte), c’est-à-dire celle correspondant aux objectifs de performance les plus exigeants.

Notons par ailleurs que l’évaluation des niveaux de sévérité (mineurs, modérés, majeurs, critiques) associés aux conséquences de tel ou tel événement peuvent varier en fonction des pays, des sociétés ou organismes associés au méga-projet, et peuvent être affinés selon divers critères d’évaluation, tels que la couverture médiatique (locale, nationale, internationale), les dégâts subis par la structure et le coût des réparations, le nombre de morts ou de blessés et la gravité des blessures (pour les usagers, les employés et les tiers), l’impact sur l’environnement et l’étendue géographique et, dans le temps de cet impact, la durée de rétablissement du fonctionnement normal, le niveau de responsabilité engagé pour le maître d’ouvrage (responsabilité financière, civile ou pénale), etc.

B.. En.phase.de.conception

4. évaluer.et.hiérarchiser.les.risques sur l’ouvrage, si besoin en complétant et en affinant les premières investigations réalisées (études d’impact, probabilités d’occurrence, perception du risque et niveau d’acceptation par la société).

5. Définir la meilleure conception pour l’ouvrage (implantation des appuis, choix des matériaux et de la géométrie, méthode de construction) afin de réduire.la.probabilité.d’occurrence.du. risque.sur. l’ouvrage.en.diminuant.son.exposition.et/ou.sa.vulnérabilité.

Note : Les étapes 4 et 5 ci-dessus peuvent être synthétisées en un même tableau de recensement des risques permettant, après avoir attribué un coefficient de pondération (hiérarchisation) à chacun des risques envisagés, de comparer les sensibilités (indice ou note de vulnérabilité) de différentes solutions conceptuelles pour le méga-projet en question.

FIGuRE.23.—.EXEmPLE.dE.tABLEAu.d’AnALysE.dEs.RIsQuEs

Risques considérés Coef. de pondération

Conception 1 Conception 2 Conception 3

Nat

urel

s

Glissement de terrainInnondationsSéismesChutes de pierresTempête de vent / cyclonesIncendies de forêt

012050

+++++

++++--

+++

++++---

++++--++++++

importance class (green diagonal), which is the most challenging one.

One will note that the evaluation of severity levels (minor, moderate, major, critical) associated with the consequences of a given event can differ from countries and societies to others. They can be precise based on several criteria such as media coverage (local, national, worldwide), structural damages and repair cost, number of death and injuries and gravity of injuries (for road users, employees and third party), impact on environment and geographical and time spreading of this impact, time to re-establish a normal situation, level of owner responsibility engaged (financial, civil or penal responsibility), etc.

B. during the design phase

4. Evaluate and prioritize the risks on the structure, if needed by completing the first site investigations made (impact studies, occurrence probabilities, risk perception and acceptance by society).

5. Define the best design of the structure (bearing positioning, choice of materials and geometry, construction method) in order to reduce the risk occurrence on the structure by reducing its exposure and/or vulnerability.

Note: Steps 4 and 5 above can be gathered in one single risk identification and analysis table. This table enables, after having defined a priority coefficient for each identified risk, to compare sensi-tivities (vulnerability grades or indices) of different design solutions for the future mega-project.

FiGurE 23 — ExamPLE oF riSK anaLySiS taBLE

Considered risk Priority coefficient

Design 1 Design 2 Design 3n

atur

als

LandslidesFloodsEarthquakesRock fallingWind storm / hurricaneForest fires

012050

+++++

++++--

+++

++++---

++++--++++++

Page 62: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

120 2010R01 1212010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

FIGuRE.23.—.EXEmPLE.dE.tABLEAu.d’AnALysE.dEs.RIsQuEs

Risques considérés Coef. de pondération

Conception 1 Conception 2 Conception 3

Ant

hrop

ique

s

Accidents de circulationSurcharges (poids, hauteur)Collision de bâteauAccident d'avionsTransport de matières dangereusesVandalismeTerrorisme Feu

41023333

++-

- -+

++--

+++++-+-

- --

+++++- -+

++-

++

Tech

niqu

es

Dimensions de l'ouvrageComplexité de l'architectureDegré d'innovationChoix des matériauxAspects géotechniquesChoix de la méthode de construction

333144

-- -++--

-+- -+++

-- -- -++- -

Soc

io-p

oliti

ques

et

écon

omiq

ues

Coûts (estimés+niveau d'incertitude)AttractivitéImpact sur l'environnementImpact sur le paysageGêne aux riverainsGrèvesDépassement des délais de constructionContexte socio-politiqueEnjeux juridiques

5544325

55

++- -- -- -- -- -

+- -

-+++++++-+

++- -

- -++-

- -- --

+- -

Note globale

- 26 25 -26

Dans la figure 23, les risques considérés et les coefficients de pondération sont donnés à titre indicatif. Ils sont propres à chaque projet et doivent être explicitement justifiés et discutés entre les différents partenaires associés au projet, car la méthode revêt inévitablement une part de subjectivité. Il en va de même des notes attribuées à chaque solution (notées ici de -- à ++). en particulier, les coefficients de pondération doivent tenir compte des niveaux d’aléas correspondant au site d’implantation de l’ouvrage, en termes d’impact et de probabilité d’occurrence, mais également de la façon dont ces aléas sont perçus et acceptés par les usagers et la société. On sait par exemple que le risque de subir un accident, même mortel, est globalement mieux accepté par les usagers de la route que par ceux du rail. Par conséquent, le risque majeur lié à toute collision de train tourne généralement autour des dommages aux

FiGurE 23 — ExamPLE oF riSK anaLySiS taBLE

Considered risk Priority coefficient

Design 1 Design 2 Design 3

man

-mad

es

Traffic accidentsOverloadingShip collisionAirplane crashTransport of dangerous goodsVandalismTerrorism Fire

41023333

++-

- -+

++--

+++++-+-

- --

+++++- -+

++-

++

tech

nica

l

Structure dimensionsArchitectural complexityInnovating degreeMaterial choicesGeotechnical aspectsConstruction method

333144

-- -++--

-+- -+++

-- -- -++- -

Soci

o-po

litic

al

and

econ

omic

al

Costs (estimated+incertainties)AttractivenessEnvironment impactLandscape impactLocal inhabitants disturbsStrikesWork delays exceedanceSocio-political contextJuridical issues

5544325

55

++- -- -- -- -- -

+- -

-+++++++-+

++- -

- -++-

- -- --

+- -

Global grade

- 26 25 -26

In the figure 23, considered risks and priority coefficients are indicative. They must be re-evaluated and explicitly justified for each new project, as well as grades given to each design solution (noted -- to ++) for each considered risk. The method still fatally exhibits some part of subjectivity and must therefore be discussed among the different partners evolved in the project. In particular, priority coefficients must take into account the hazards level on site, in terms of impact and occurrence, but also the perception and acceptance of these hazards by road users and society. It is well known for instance that traffic accidents related risks, even lethal, are generally better accepted by road users than by rail users… As a consequence, major risks to be considered in the case of a train collision generally concern train passengers security. Consequences can be very dramatic and in this field, most european and international codes propose

Page 63: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

122 2010R01 1232010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

personnes circulant à bord du train. Les conséquences peuvent être très graves et, dans ce domaine, les recommandations européennes et mondiales proposent des méthodologies d’évaluation de risques visant notamment à réduire le nombre de victimes. Cette stratégie peut conduire par exemple à concevoir des piles pouvant se briser sans effondrement du pont devant un train déraillé.

6. Dimensionner la structure selon la normalisation en vigueur et les considérations d’ingénieur (règles de l’art) afin de réduire.les.conséquences.du.risque.sur.l’ouvrage. En fonction des durées de vie et de service garanti visées pour la structure, des mesures visant à augmenter sa durabilité devront être prises au moment du choix des matériaux, des équipements et en anticipant les désordres éventuels afin de faciliter la surveillance de l’ouvrage et les futurs travaux d’entretien (protection des aciers dans le béton par exemple).

7. Lister la série de mesures de prévention contre les risques et les perturbations majeures en service et comparer.les.risques.avec.les.critères.d’acceptation.stipulés.et/ou.exigés.pour.prendre.des.mesures.d’atténuation (mesure.des.écarts.par.rapport.aux.objectifs.de.performance.initiaux).

8. communiquer.sur.les.procédures.de.gestion.du.risque et sur les objectifs de performance requis pour l’ouvrage. Cet échange avec les riverains, leurs représentants et les futurs usagers sur la finalité du projet, les choix stratégiques et les options retenues permet l’appropriation du projet par les différentes parties et permet de limiter les risques de manifestations et de perturbations diverses. Le cas du viaduc de Millau développé plus loin fournit un excellent exemple de communication réussie.

C’est au cours de cette phase de conception que sont effectués les principaux choix (résistance, dispositions constructives, contrôles, …) visant à construire une structure pouvant résister de façon proportionnée à des évènements comme les explosions, les catastrophes naturelles, les chocs de toute nature ou les conséquences d’erreurs humaines. Les principes de base guidant ces choix étant, en fonction de l’analyse des risques potentiels réalisée et de la définition des priorités, de réduire les dangers, de minimiser les conséquences dommageables suite à un désordre plus ou moins localisé, et d’éviter les effondrements sans signe précurseur.

Le projet doit être examiné en termes de compétence et de vigilance, par référence à un corpus, le plus actuel possible de connaissance et de bonnes pratiques. Les niveaux de fiabilité doivent être définis en considérant :

methodologies aimed at evaluating and reducing risks related to the number of deaths. This strategy can for instance lead to design bridges column so that they could break without the bridge to collapse in front of a derailed train.

6. Calculate the structure according to existing codes and engineers considerations (state-of-the-art) in order to reduce the risk consequences on the structure. Depending on the expected guaranteed service life of the structure, measures aiming at increasing its durability, within the material and equipment choices will have to be taken so that to anticipate on future pathologies and facilitate structural inspections and maintenance works (steel reinforcement protection in concrete structures for instance).

7. List the prevention measures against risks and major disruptions in the operational phase and compare the risks with the outlined wished and/or required acceptance criteria in order to take adapted reducing measures (measurement of eventual differences with initial performance objectives);

8. communicate on the risk management procedure and the objectives of performances required for the structure. This exchange with local inhabitants, their representatives and future road users, on project final objectives, strategic choices and adopted options enables project appropriation by the different parts and limits protestations and project disruption risks. The case of the Millau Viaduct developed further in the text is an excellent example of good communication practice

It is during this design phase that main choices are taken that make the structure able to withstand to an appropriate extend events such as explosions, natural disasters, crash forces or consequences of human mistakes. Based on risks analysis and priority definitions, the basic principles for those choices are first to reduce hazards, then to minimize localized default consequences and finally to prevent collapse without any visible announcing damage.

The project must be looked at in terms of competences and carefulness, referring to the most actual state-of-the-art, knowledge and good practices. Reliability levels should be defined considering:

Page 64: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

124 2010R01 1252010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

• Les risques pour les biens matériels et immatériels et les personnes ;• La prévention et ses aspects économiques ;• Le degré d’aversion de la société vis-à-vis d’une défaillance. Ce paramètre

sociétal important peut varier d’un pays à l’autre, voire d’une région à l’autre.

Des classes de fiabilité peuvent être proposées, qui tiennent compte des conséquences de désordre ou de mauvais fonctionnement, en termes de conséquence sur la perte en vies humaines, en termes de conséquences économiques, sociales ou environnementales et en termes de types de structures.

Les choix correspondant à la prise en compte des risques peuvent exiger la mise en œuvre de mesures ou d’équipements locaux (choix d’un type de barrières de sécurité sur un pont, extracteurs de fumées dans les tunnels, peinture spéciale contre la corrosion, protection des piles de ponts contre les chocs, etc.). Ils peuvent également remettre en cause des solutions architecturales et la conception générale de l’ouvrage (réduction du nombre de piles intermédiaires dans le cas d’un pont exposé aux chocs de bateaux ou de camions, choix des matériaux, mode de construction, choix d’une structure robuste ou au contraire d’une structure souple qui « plie mais ne rompt pas », etc.) en accord et sous la responsabilité du maître d’ouvrage. Nous voyons donc que dans le domaine des méga-projets, les choix techniques initiaux et, par conséquent, le coût des ouvrages, peuvent être guidés par des considérations simplement liées à la sécurité. Ces choix peuvent et doivent être remis en cause si des solutions apportent de meilleures garanties5 (voir tableau 5, page 150).

c..En.phase.de.construction

9. Prévoir. et. respecter. des. procédures. de. qualité. et. de. sécurité pour garantir la surveillance des travaux et de leurs impacts, particulièrement pendant les phases critiques.

10. Prévoir. des. procédures. de. contrôle. adaptées et réalisées par des organismes qualifiés et indépendants.

11. Privilégier.toujours.les.aspects.sécurité,.environnement.de.travail.et.environnement en ne perdant pas de vue les impératifs de rentabilité, fonctionnalité et qualité.

12. Poursuivre.la.communication avec les riverains, leurs représentants et les futurs usagers sur la finalité du projet, les choix techniques, les méthodes de construction, les nuisances éventuelles.

• risks towards material or immaterial goods and persons;• prevention and its economical aspects;• level of acceptance of the society for the considered sort of risk. This essential

societal parameter can differ from a country to another, sometimes from a given region to another.

Reliability classes can be defined, that take into account consequences of disorders or bad behavior in terms of human losses, economical, social or environmental consequences and for different types of structures.

Choices related to risks management can lead specific measures or local equipments (security barriers for bridges, fume extractors in tunnels, special paintings against corrosion, and crash protections for bridge columns…). They can also modify the architectural and global design of the structure (reducing of the number of columns in case of a bridge exposed to ship or truck collisions, constitutive material, construction method, choice of a strong or slender type of structure, etc…) in agreement and under the responsibility of the owner of the project. One can thus see that in the field of mega-projects, initial technical choices and therefore global costs can be imposed by considerations simply related to security. Those choices can and should be recalibrated if alternative solutions lead to better guaranteed performances5 (see Table 5, page 151).

c. during the construction phase

9. Plan and respect some quality and security procedures in order to guaranty a good monitoring control of works and their impact, in particular during the most critical phases.

10. Plan adapted control procedures to be executed by qualified independent organisms.

11. always prioritize safety, working environment and environment along with Time-Budget-Function / Quality.

12. carry on communicate with local inhabitants, their representatives and future road users, on project final objectives, technical choices, construction method, eventual disturbance.

5 Maîtrise d’ouvrage publique en Europe – Eléments de repères spécifiques aux ponts – Sétra, 2006. 5 “Civil structures owners in Europe – Specific elements relative to bridge structures”, Sétra, 2006

Page 65: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

126 2010R01 1272010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

13. tester.la.fiabilité.de.la.structure sous sollicitations normales, puis extrêmes ou accidentelles, avant la mise en service (validation des simulations informatiques par des épreuves de charges, tests grandeurs nature sur site, situations d’incendie en tunnel pour tester les extracteurs de fumée, etc.).

14. Anticiper.la.gestion.de.la.crise (accessibilité, barrières amovibles, postes téléphoniques, stockage d’équipement pour les réparations éventuelles, plans de gestion de crise, PC de surveillance, plan d’intervention des secours, etc.).

d..En.phase.d’exploitation

en situation normale

15. Instrumenter.et.enregistrer.la.réponse.de.la.structure pendant la phase de service (charges de trafic, vent, séismes…) et recalibrer éventuellement les modèles de calculs.

16. Procéder. à. une. inspection. régulière. de. la. santé. de. l’ouvrage, des matériaux et des dispositifs spécifiques.

en situation post-crise

17. Inspecter et évaluer la capacité résistante résiduelle (et éventuellement réparer) la structure.

18. Informer.toutes.les.entités.concernées.(police,.ambulances,.sécurité.civile,.usagers,.…).

19. Prévoir.un.retour.d’expérience sur les cartes d’aléas, les caractérisations locales du risque et sur les règlements et pratiques de conception.

E.. Prescriptions.générales.et.management.des.projets

Au-delà des recommandations spécifiques à chaque étape du projet, il est essentiel de prévoir également un certain nombre de mesures transversales globales de façon à garantir une bonne gestion des risques tout au long du projet et une transition efficace entre les différentes étapes de celui-ci. Parmi les plus nécessaires, on pourra citer :

• décider d’un plan général de gestion des risques à l’échelle du projet ;• prévoir une entité (individu ou organisme) dédiée à la gestion des risques ;

13. test the structure reliability under service and extreme or accidental loading before service opening (computer simulations validations by reduced scaled model testing, full scale on-site testing, fire tests in tunnels…);

14. anticipate on emergency management (accessibility, moveable barriers, phone cabs, equipment stocking for repair, crisis and intervention planning, monitoring center…).

d. during operation phase

In normal situation…

15. instrument and record the structure response within the service state (traffic load, wind, earthquakes…) and eventually recalibrate the computer models.

16. inspect regularly the health of structure, materials and specific devices.

In post-crisis situation…

17. Inspect and evaluate residual resisting capacity (and eventually repair) the structure.

18. communicate and inform every concerned identity (police, ambulances, civil security services, and drivers).

19. Eventual feed back to hazard maps, local risk characterization and design codes and practices;

E. General prescriptions and management aspects

Beyond recommendations specific to each stage of the project, it is essential to plan some transversal global measures in order to guaranty a good risk management all along the project life and an efficient transition between its different phases. Among the most essential, one will note the followings:

• Decide a general plan for the project’s Risk Management;• Have a coordinator dedicated to Risk Management in the management;

Page 66: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

128 2010R01 1292010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

• faire en sorte que le risque considéré soit systématiquement géré par l’entité la plus compétente du domaine associé ;

• transmettre d’une phase à l’autre une liste de 10 risques prioritaires, et des suggestions pour les plans d’actions associés ;

• contractualiser l’aspect gestion des risques avec l’entreprise de construction ;• actualiser le plan de gestion des risques en fonction des évènements.

Différents outils sont disponibles et ont été développés, par exemple aux états-Unis, pour aider le gestionnaire dans sa tâche3 :

• le.plan.de.gestion.de.projet qui doit établir la feuille de route en termes d’objectifs, de coûts, de planning, de qualité et de partage des responsabilités ;

• le.plan.financier.initial.et.ses.mises.à.jour.annuelles dont le rôle est de dresser un bilan comptable périodique de l’opération ;

• le.contrôle.comptable.extérieur qui fournit un regard neutre sur l’estimation et la gestion financière de l’opération et qui doit anticiper les difficultés et la conjoncture à venir ;

• les rapports.d’étape.mensuels ;• les indicateurs. de. projets relatifs aux difficultés à prévoir et à l’état

d’avancement qui fixent, éventuellement sur la base d’audits, des fourchettes optimistes et pessimistes d’objectifs périodiques à atteindre en termes de productions, de délais, de coûts, de qualité et de sécurité5.

Les prescriptions introduites ci-dessus constituent en quelque sorte un schéma idéal, un objectif à atteindre. Notons que la gestion des risques dans la très grande majorité des pays n’a pas encore atteint un stade où elle est spécifiquement et formellement réglementée et standardisée. Néanmoins, l’analyse a posteriori des méga-projets couronnés de succès, y compris dans ces pays, montre clairement que les procédés particuliers mis en œuvre à chacune des phases de planification, de conception, de réalisation et d’exploitation s’insèrent parfaitement dans ce cadre pré-établi. L’application rigoureuse des règlements, l’état de l’art, les bonnes pratiques, le sens de l’ingénieur, les retours d’expériences, l’organisation générale des projets et les procédures qualité permettent sans doute, tous réunis, d’expliquer ces succès.

A contrario, les expériences malheureuses (accidents catastrophiques survenus en cours de construction ou pendant l’exploitation, pertes financières) correspondent quasi-systématiquement à un maillon manquant de la chaîne, c’est-à-dire à une gestion discontinue des risques. Les risques auront dans ce cas été gérés indirectement grâce à des décisions techniques prises pendant le déroulement du projet et répartis de manière non réfléchie entre les parties du méga-projet. Chaque partie se sera ensuite attachée à ses propres risques ;

• Make the best qualified to deal with the risk undertake it;

• At the end of each stage, deliver the project’s top 10 prioritized risks to the next phase with suggestions for action;

• State demands in the contract for the contractor’s own Risk Management;• Keep the analysis up to date.

Several risk management tools are available and were developed for instance in the USA in order to help the manager in his task:

• the project management plan that must define the roadmap in terms of scope, cost, schedule, quality and responsibilities;

• the financial plan and annual updates which the role is to establish a periodic financial evaluation of the operation;

• the independent cost estimate verification that provides an external unbiased evaluation of the financial situation of the project in regards with forecast difficulties and conjuncture;

• monthly reports on status;• project indicators, eventually based on audits, that must reflect trend lines in

terms of costs, production rates, schedule, quality and safety5.

Prescriptions listed above should be considered as some sort of ideal scheme, an objective to achieve. In fact, Risk Management in most countries has not yet reached a level where it is specifically and formally codified and standardized. However, post-analysis of successful mega-projects, included in those countries, clearly demonstrates that particular processes that were carried out at each phase of planning, design, construction and operation perfectly fit to this pre-established scheme. Design codes, state of the art, good practices, engineers good sense, experiences feed back, project organizational and quality procedures certainly enable, all together, to explain this success.

On the opposite, unlucky experiences (catastrophic work accidents, operation or financial disasters) almost always correspond to a missing link within the risk management chain. In these situations, risks were managed indirectly through the engineering decisions made during the project development. Unintentionally, risks have often been divided between the mega-project parties. Each party then focused on the risk of its primary interest which often results in an indefinable ownership of the joint risks. However, the complexity should not be a surprise

5 Maîtrise d’ouvrage publique en Europe – Eléments de repères spécifiques aux ponts – Sétra, 2006. 5 “Civil structures owners in Europe – Specific elements relative to bridge structures”, Sétra, 2006

Page 67: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

130 2010R01 1312010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

ce qui mène inévitablement à l’impossibilité d’attribuer les risques communs. Pourtant cette complexité ne devrait pas être une surprise pour le planificateur expérimenté, étant donné que pour les méga-projets, l’occurrence d’évènements imprévus est la norme plutôt que l’exception.

Nous encourageons donc fortement les responsables concernés (maîtres d’ouvrages, concepteurs, constructeurs, autorités administratives) à adopter, formaliser et systématiser une telle démarche de gestion des risques dans le domaine des méga-projets, que ce soit dans le but de consolider les bonnes pratiques déjà appliquées de façon intuitive ou pour prévenir d’éventuelles situations, potentiellement à risques, dont les conséquences peuvent s’avérer catastrophiques. Cette action nécessite l’attribution des risques et des responsabilités, la définition et l’évaluation des risques, le développement de stratégies d’intervention et d’actions spécifiques : observation des symptômes, plans de repli et réserves de précaution pour les imprévus de temps ou de coût.

Certains pays comme les états-Unis6, le Canada, l’Australie, la Nouvelle-Zélande ou encore le Danemark7 ont déjà franchi le pas d’une gestion des risques intégrée pour les méga-projets. Les résultats montrent qu’une gestion des risques systématique pour justifier les décisions et améliorer considérablement celles des ingénieurs, permet de définir clairement les problèmes potentiels, de façon à ce que des initiatives de réduction des risques adaptées puissent être mises en œuvre à temps. Cette approche proactive de la définition des risques et de la mise en place de mesures visant à les éviter ou les atténuer s’avère systématiquement bénéfique. Elle permet notamment, en assurant la bonne réalisation du projet et la maîtrise de son budget, de construire des infrastructures nouvelles importantes, innovantes ou controversées, tout en instaurant la confiance du public. Par ailleurs, l’évaluation et l’étude des incertitudes dans les coûts permettent d’obtenir une meilleure qualité, des estimations plus fiables et des calendriers de projets à la fois plus réguliers et plus réalistes.

EXEmPLEs.dE.BonnEs.PRAtIQuEs

Dans ce paragraphe sont présentés des extraits de bonnes pratiques de gestion de risques dans divers méga-projets dans le monde entier. Les articles complets figurent en annexe F, page 324.

to the experienced planner as the occurrence of a certain number of unplanned events is the norm rather than the exception in mega-projects.

We therefore strongly encourage responsible partners involved in mega-projects (owners, designers, constructing companies, administrations…) to adopt, formalize and systematize an integrated risk management procedure, so that to consolidate existing intuitive good practices or to prevent any eventual risky situation, the consequences of which can lead to a catastrophy. This action involves defining risk ownership and assigned responsibilities, identifying and describing risk, developing response strategies and specific actions: symptoms-warning, fallback and time/cost contingency reserves that provide risk tolerance for risk owners.

Some countries like the USA6, Canada, Australia, New-zealand and Denmark7 have already made the choice of an integrated risk management for mega-projects. Results show that applying a systematic risk management in various forms to qualify decisions and to significantly improve engineer’s decisions, help to clearly identify potential problems such that appropriate risk reduction initiatives can be implemented in time. This proactive approach to identifying risks and planning for how best to avoid or mitigate those risks reap major benefits. In particular, it allows, by ensuring successful project completion within budget, to build vital new infrastructures, typically high profile and sometimes controversial, while increasing public trust and confidence. Moreover, by evaluating and communicating uncertainties in project costs, a higher quality, more reliable estimate is produced, resulting in smoother and more realistic project schedules.

ExamPLES oF Good PracticE

In this paragraph are presented some abstracts of good practices of risk management in mega-projects all over the world. Full related articles are provided in Appendix F, page 324.

6 « Pour les grands projets, la gestion des risques est vraiment payante », Rodney BARRY – ROUTES N°329 (AIPCR)7 « Gestion des risques pour les méga-projets, exemple d'analyse de risque opérationnelle », Anders PLOVGAARD – ROUTES N°329 (AIPCR)

6 BARRY, R., “For major projects, risk management brings real world rewards”, Roads no 329 (PIARC).7 PLOVGAARD, A., “Risk management on mega-projects, an example of operational risk analysis”, Roads no 329 (PIARC).

Page 68: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

132 2010R01 1332010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Le.pont.de.Rion-Antirion

Le pont autoroutier de Rion-Antirion construit entre Grèce continentale et Péloponnèse, à proximité de la ville de Patras, est un pont à haubans d’une longueur totale de 2 883 mètres pour une largeur de tablier de 27 mètres et un coût total de 800 millions d’Euros. Ses pylônes mesurent 227 mètres de haut, dont 63 mètres au-dessous du niveau de la mer.

Figure 24 — Plan de situation Photo 1 —Vue aérienne du pont de Rion-Antirion

Parmi les risques majeurs pris en compte lors de la conception de l’ouvrage et la réalisation du projet : les séismes, le vent, les risques de collision de bateau, les risques géotechniques et les risques liés à la construction ont été les plus marquants. Ainsi, le nombre de piles a été réduit au maximum afin de réduire la probabilité d’un choc de bateau, influençant directement la longueur des travées et la géométrie globale de l’ouvrage. Vis-à-vis des phénomènes sismiques, le pont a été conçu pour résister à une accélération horizontale de 0,48 g et à un déplacement entre les deux rives résultant d’un mouvement de faille de 2 mètres dans n’importe quelle direction. Ces valeurs correspondent à un événement d’une période de retour de 2000 ans au niveau du site d’implantation, avec acceptation d’un niveau de dommages limités et réparables.

Notons par ailleurs que des exigences de performance différentes vis-à-vis des risques sismiques d’une part, et liés au vent ou aux collisions de bateaux d’autre part, ont conduit les ingénieurs à imaginer une conception très particulière basée sur l’emploi de dispositifs fusibles et d’amortisseurs de séismes. Ces dispositifs spécifiques permettent à la structure de se comporter de façon très rigide sous l’effet d’un vent de 250 km/h ou sous celui du choc d’un pétrolier de 180 000 tonnes lancé à une vitesse de 16 nœuds, et de s’assouplir en dissipant de l’énergie sous l’action d’un tremblement de terre extrême. Les conditions géotechniques particulièrement contraignantes et une forte susceptibilité à la liquéfaction ont

the rion-antirion Bridge

The highway bridge of Rion-Antirion was built to connect continental Greece to Peloponnesus, close to Patras city. It is a cable-stayed bridge of a total length of 2883 meters and a deck width of 27 meters for a total cost of 800 Millions Euros. The pylons are 227 meters high, including 63 meters below sea level.

Figure 24 — Situation map and aerial Photo 1 — View of the Rion-Antirion Bridge

Among the major risks that were taken into account within the structure design and project completion, earthquakes, strong winds, ship collisions, geotechnical risks and construction related risks were certainly the most challenging. Thus the number of piers was minimized so that to reduce the ship collision occurrence probability, directly influencing on the bridge span length and global geometry. Regarding seismic phenomena, the bridge was designed to resist a horizontal acceleration of 0.48g and a relative displacement between the two banks resulting from a fault opening of 2 meters in any direction. Those values match with a 2 thousands years return period seismic event on the bridge site, with an acceptance for light and reparable damages.

Different performance objectives for seismic risks compared to wind risks and ship collision however lead the engineers to imagine a very specific design based on use of fuse devices and seismic dampers. Those particular devices make the structure behave as a very rigid body in case of 250 km/h wind speed or a 180 thousands tons petrol tanker vessel running at 16 knots, while softening and dissipating energy in case of an extreme seismic event. Geotechnical conditions were also very constraining and a strong susceptibility to liquefaction lead the geotechnical engineers to design innovating foundations based on the association of large footings, gravel layer and inclusions-reinforced soil.

Page 69: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

134 2010R01 1352010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

d’autre part conduit les géotechniciens à concevoir des fondations innovantes basées sur de larges semelles superficielles amenées par barges et reposant sur l’association d’un matelas de gravier et d’un sol renforcé par inclusions.

Figure 25 — Dispositifs fusibles et principe de fondations du pont de Rion-Antirion

La conception et la construction du méga-projet du pont de Rion-Antirion ont été relayées par un grand nombre de médias et d’articles scientifiques dans la presse spécialisée. L’ouvrage a été inauguré en 2004 à l’occasion des Jeux Olympiques d’Athènes, après cinq ans de travaux.

Le.viaduc.de.millau

Le viaduc de Millau, dont la construction s’est achevée en décembre 2004 et aura duré à peine 38 mois au total, a été construit pour offrir une seconde liaison autoroutière continue entre Paris et le sud de la France, et plus généralement, entre le nord de l’Europe et l’Espagne. Cet ouvrage aux dimensions exceptionnelles se distingue notamment par sa longueur totale de 2 460 mètres et surtout par sa hauteur record (245 mètres pour la pile P2).

Photo 2 — Vue générale du viaduc de Milau en fin de construction

Figure 25 — Fuse devices and foundation of the Rion-Antirion Bridge

The design and construction of the Rion-Antirion Bridge was covered and related by many media and scientific papers in specialized journals. The bridge was inaugurated in 2004 during the opening ceremony of the Athens Olympic Games, after 5 years construction works duration.

the millau viaduct

The Millau Viaduct was built to open a new link between Paris and South of France, and more generally Northern Europe and Spain. Its construction ended en December 2004 after a very short construction period of 38 months. This structure of exceptional dimensions is easily identifiable by its 2460 meters total length and above all by its world record height (245 meters for P2 pier).

Photo 2 - General view of the Millau Viaduct at the end of its construction

Page 70: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

136 2010R01 1372010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Les risques liés aux aspects techniques, en particulier la stabilité au vent et les difficultés liées à l’érection d’une construction routière à une si grande hauteur, ont joué un rôle prépondérant dans les choix de conception de cet ouvrage hors-normes.

Ainsi, après un certain nombre d’études d’avant-projet réalisées par les services de l’Etat en France, il a finalement été décidé de procéder à un concours de conception/architecture international et de passer un contrat de concession de 75 ans avec une entreprise privée pour la construction et l’exploitation de l’ouvrage. La solution architecturale retenue correspond au choix d’un jury de 20 personnes constitué du directeur des routes français, d’experts techniques, de spécialistes des finances publiques ainsi que d’élus et de représentants locaux et régionaux. Durant les phases de planification et de construction, un grand soin a été apporté aux aspects environnementaux et des campagnes de communication permanentes ont permis d’expliquer les enjeux du projet et les choix de conception, de décrire les mesures compensatoires et de faire ainsi en sorte que les usagers et les riverains acceptent cet ouvrage et se l’approprient. Le projet du grand viaduc de Millau dans sa globalité, depuis les études préliminaires jusqu’à la construction fut donc largement influencé par des considérations relatives à l’analyse des risques. En phase d’exploitation, une grande partie de ces risques, en particulier les risques techniques liés aux conditions de sol, au comportement et au vieillissement de la structure ou encore à la sécurité des usagers font l’objet d’une surveillance spécifique (mesures de déformations de la structure, mesures de vibration des haubans, capteurs de corrosion, détecteurs de verglas disposés dans la chaussée, anémomètres, caméras de surveillance, …). Mais plus encore que les risques techniques, ce sont les aspects liés aux risques socio-politiques et financiers qui se sont avérés prépondérants dans le cadre de ce méga-projet.

Risks related to technical aspects, especially stability under strong wind conditions and difficulties resulting from building a road infrastructure at such a height played a critical role in the design choices of this exceptional mega-project.

Thus, after a certain number of preliminary studies made by the French State technical services, it was finally decided to set a very unusual design process consisting in an international architectural/engineering competition, and to pass a 75 years concession contract with a private company for the construction and operation of the new infrastructure. The chosen architectural solution corresponds to the vote of a 20 persons committee made of the French director of roads, technical experts, public finance specialists and local and regional representatives. During the planning and construction phases a great concern was given to environment aspects, and permanent communication campaigns enabled to explain project issues, design choices, to describe mitigation measures and make road users and local inhabitants accept and appropriate this new infrastructure. The overall great Millau Viaduct mega-project from preliminary studies to construction was deeply influenced by considerations related to risk analysis. During the operation phase, most of those risks, particularly foundation technical risks, bad-ageing risk and risks related to users’ security, are submitted to specific control and monitoring: deformation measurement, cable-stayed vibration control, corrosion control, ice detectors installed in the pavement structure, anemometers, video surveillance... Even more than the technical risks, financial risks and social/political aspects seemed to be very critical for the completion of this mega-project.

Photos 3 et 4 — Essais en soufflerie et érection de la pile P2 Photos 3 and 4 - Wind tunnel tests and pier P2 erection

Page 71: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

138 2010R01 1392010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Au final, 16 années de préparation et de négociations politiques, soit deux mandats présidentiels et sept ministères de l’équipement et des Transports, furent nécessaires à l’aboutissement de ce méga-projet dont le coût total s’élève à 394 millions d’Euros (y compris la construction du viaduc et de la barrière de péage, les études, les frais financiers et les frais généraux).

Le.pont.tunnel.Øresund.Link

Plusieurs nouveaux projets danois ont systématiquement appliqué la gestion des risques sous des formes diverses pour documenter les décisions et pour améliorer de façon significative les décisions d’ingénieur. L’utilisation de ces techniques a montré que les problèmes potentiels peuvent être clairement identifiés et que les initiatives de réduction des risques peuvent être appliquées durant le projet. Le plus récent méga-projet danois (suédois/danois) utilisant la gestion des risques dans toute l’organisation est l’Øresund Link, projet de pont et de tunnel reliant la Suède et le Danemark.

Le Øresund Link (ponts et tunnels) a ouvert le 1er juillet 2000, il comprend 8 km de pont et 4 km de tunnel immergé, rejoints par une île artificielle de 4 km de long. Comme partie intégrante du projet de l’Øresund Link, un système de gestion et d’analyse des risques (ORA) opérationnels a été utilisé. Le but de l’ORA est de déterminer les installations vulnérables et le risque de graves perturbations dans la phase opérationnelle de l’Øresund Link, pour ensuite comparer le risque avec des critères d’acceptation et, si possible, et/ou de prendre des mesures de réduction.

Finally 16 years of preparation and political processes, what represents 2 President periods and 7 Ministries of Public Works and Transportation, were necessary to complete this mega-project. The total cost is 394 Millions Euros, including viaduct construction, toll barrier, studies, financial and general fees.

the Øresund Link tunnel and bridge

Several new Danish mega projects have applied systematic risk management in various forms to qualify decisions and to significantly improve engineer’s decisions. The use of these techniques has shown that potential problems can be clearly identified such that appropriate risk reduction initiatives can be implemented in time. The most recent Danish (Swedish/Danish) mega project using risk management throughout the organization is the Øresund Link tunnel and bridge project connecting Sweden and Denmark.

The Øresund Link (bridge and tunnel) opened on 1 July 2000; it includes 8 km of bridge and 4 km of immersed tunnel, joined by a 4 km long artificial island. As an integrated part of the Øresund Link Risk Management System the Operational Risk Analysis (ORA) was compiled. The purpose of the ORA is to summarize the risk facilities and major disruptions in the operational phase of the Øresund Link, to compare the risk with the acceptance criteria outline and if possible and/or required to take reducing measures.

Photo 5 — Campagne de communication autour du projet Photo 5 — Communication campaign around the project

Page 72: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

140 2010R01 1412010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Dans ce rapport, les éléments suivants sont présentés comme des exemples pratiques pour la gestion des risques de façon proactive et cohérente tout au long du projet :

• identification des dangers ;• critères d’acceptation des risques sur la ALARP (As Low As Reasonably

pratiques) de domaine ;• pour la route : moins de 33 morts pour 1 milliard de passages du Lien ;• pour le rail : moins de quatre morts pour 1 milliard de passages de la Lien ;• risque individuels et sociétaux ;• mesures de réduction des risques.

Les véhicules et les trains devraient être arrêtés dans le cas d’un effondrement du tunnel ou du pont. La ventilation dans les tubes du tunnel routier est essentielle dans le cas d’un accident avec des marchandises dangereuses ou toxiques, et ainsi de suite.

Figure 26 — Dangers possibles dans le pont tunnel Øresund Link

In this report, followings elements are introduced as the practical examples for the management of risk proactively and consistently throughout the project.

• Hazard Identification;• Risk Acceptance Criteria on the ALARP (As Low As Reasonably Practical)

domain;• for road: less than 33 fatalities per 1 billion passages of the Link;• for rail: less than 4 fatalities per 1 billion passages of the Link; • User Risk as individual risk and societal risk;• Risk reducing measures (Assumption).

Vehicles and trains should be stopped in case of a collapse of the Tunnel or the Bridge. Ventilation in the road tunnel tubes is working in case of an accident with dangerous goods or toxic materials and so on.

Figure 26 — Possible hazards on the Øresund link

Page 73: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

142 2010R01 1432010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Figure 27 — Contributions aux risques de perte de vies humaines pour les utilisateur de la route et du train

tABLEAu.4.—.RIsQuE.dE.PERtE.dE.VIEs.HumAInEs.PouR.LA.RoutE.Et.LE.tRAIn.(nombre.de.décès.par.milliard.de.passages.du.lien)Route / Rail Nombre moyen annuel de décès Risque individuel Critères d’acceptation

Route 0.1871 21.3 33

Rail 0.0451 4.6 4

Le.lien.routier.dans.le.sud.de.stockholm

La gestion du risque pour les projets implique des éléments de planification, de conception et de construction du processus de gestion des réseaux routiers. Les aspects opérationnels doivent être pris en compte dans les phases de planification et de conception. La Suède a des lignes directrices pour la gestion des risques dans les sous domaines : tableau de bord équilibré, projet, gestion des réseaux, sécurité interne et gestion des crises.

Le processus de gestion des risques comporte les étapes suivantes : l’identification des risques, l’évaluation des risques et l’exécution des mesures. L’identification des risques et l’évaluation comprennent les aspects liés au temps, aux coûts, à la fonctionnalité, à la propriété (propriété par les responsables du

Figure 27 — Contributions to the individual risk for road and rail way users

taBLEau 4 — individuaL riSK For road and raiLWay(number of fatalities per billion passages of the link)

Road / Rail Yearly average number of fatalities Individual risk Acceptance criteria

Route 0.1871 21.3 33

Rail 0.0451 4.6 4

the Stockholm South Link

Risk management for projects involves the components planning, design and construction of the management process for road networks. The operational aspects have to be considered in the phases planning and design. Sweden has guidelines for risk management in the following sub areas: balanced scorecard, project, network management, internal safety, and crisis management.

The risk management process consists of the following steps: risk identification, risk evaluation, and execution of measures. Risk identification and evaluation includes the aspects of time, cost, function, property (owned by the project or external), human (staff, road user, and third party), intangible assets (image,

Page 74: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

144 2010R01 1452010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

projet ou externe), à l’humain (employés, usagers de la route, partenaires), les actifs incorporels (image, réputation, etc.), et à la protection de l’environnement. L’évaluation des risques est fondée sur une matrice d’analyse de la probabilité et des conséquences des risques.

Une étude de cas sur la gestion des risques pour les mégaprojets est le lien routier dans le Sud de Stockholm. Sur la base de cet exemple, les interfaces de gestion des risques avec le partenaire du projet, la gestion de projet, le produit, et des intervenants externes ont été illustrées. Voici une liste de contrôle pour les projets de gestion des risques :

• décider d’un plan pour la gestion des risques du projet ;• pour les projets plus importants désigner un coordinateur pour la gestion des

risques ;• la personne la mieux qualifiée pour traiter le risque devrait être désignée

responsable ;• les 10 risques les plus importants devraient être identifiés et accompagnés de

suggestions de mesures à la phase suivante ;• exigences dans le contrat pour la responsabilité de la gestion des risques ;• effectuer l’analyse des risques pour les deux grandes étapes :

• étape de la construction,• étape de l’utilisation ;

• au cours de la construction, toujours prioriser la sécurité, l’environnement de travail, les échéances et la protection de l’environnement parallèlement au contrôle des coûts et des délais ;

• maintenir l’analyse à jour.

La conclusion principale est que la gestion des risques a besoin du soutien actif de la direction pour réussir.

Le.tunnel.du.Fréjus

Le tunnel autoroutier du Fréjus a ouvert le 12 juillet 1980. Il relie la ville de Bardonecchia en Italie à la ville de Modane en France par le biais d’un tunnel bidirectionnel de 12 985 m de long (figure 28, page suivante). Dans les six premiers mois de 2005, le tunnel alpin du Fréjus a enregistré un trafic journalier moyen de 5 360 véhicules. Depuis son ouverture en juillet 1980, le trafic a augmenté constamment et proportionnellement en fonction de flux commerciaux qui traversent les Alpes.

Le tunnel du Fréjus est un tunnel italien-français international qui fait partie du réseau transeuropéen. En 2001, la Commission intergouvernementale a décidé d’évaluer les techniques et les risques naturels liés à l’exploitation du tunnel du

human resources, etc), and environment. The risk evaluation is based on a matrix considering the probability and the consequences of the risks. Evaluating risk, all aspects mentioned before need to be considered and balanced.

A case study of risk management for projects is the Southern Link in Stockholm. Based on this example, the interfaces of risk management with the project sponsor, the project management, the product, and external stakeholders has been illustrated. A checklist for project risk management has been provided:

• Decide on a plan for the project’s risk management;• For larger projects appoint a coordinator for risk management;

• Best qualified to deal with the risk should undertake it;

• Project’s top 10 ranking risks delivered to the next phase with suggestions for measures;

• Requirements in the contract for the contractor’s own risk management;• Perform risk analysis based on the 2 perspectives:

• Contractor phase;• Road using phase;

• During construction always prioritize safety, working environment, and environment along time-cost-function;

• Keep the analysis up to date.

The key conclusion is that risk management needs active support from management to be successful.

the Frejus tunnel

The Fréjus motorway tunnel, opened on July 12th 1980, connects the city of Bardonecchia in Italy to the city of Modane in France through a bidirectional tunnel, 12.985 m long(Figure 28, next page). The Fréjus alpine tunnel in the first six months of 2005 recorded an average daily traffic of 5.360 vehicles. Since its opening in July 1980, traffic has constantly and proportionately increased according to trade flows crossing the Alps.

Fréjus is an Italian/French international tunnel and it is part of the trans-European network. In 2001 the Intergovernmental Commission decided to assess the technical and natural risks related to the operation of the Fréjus tunnel, in order

Page 75: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

146 2010R01 1472010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Fréjus, dans le but de déterminer des mesures correctives et compensatoires et d’inciter leur mise en place afin de réduire les risques.

Les gestionnaires du tunnel SITAF et SFTRF ont effectué une « analyse des risques sur le tunnel du Fréjus », afin d’évaluer tous les risques liés à l’exploitation de ce tunnel autoroutier.

La fluidité de la circulation a également été prise en compte, ainsi que les considérations liées à la circulation des véhicules légers et lourds, autocars, véhicules transportant des marchandises dangereuses et les convois exceptionnels.

L’exploitation du tunnel a ensuite été analysée en tenant compte des ressources humaines, de la structure organisationnelle, de la sécurité des installations et des équipements, ainsi que des critères d’utilisation du tunnel.

to define any corrective and compensation action aiming to the reduction of the risks.

According to this instruction the tunnel operators SITAF and SFTRF performed a “Risk analysis on the Frejus tunnel and the relevant plazas” in order to assess all the risks related to the operation of this motorway tunnel.

Traffic flow has also been taken into account, as well as the relevant split in terms of light and heavy vehicles, coaches, vehicles carrying dangerous goods and exceptional convoys.

The operation of the tunnel has then been analyzed in terms of human resources, organizational structure, safety installations and equipment and relevant criteria of use.

East

Gauges 4,30 m

Emergency call

Traffic lights

hydrant

Water pipeDrenaje

Emergency call box

Lighted panels

Lights for guidance

Fresh air

Fresh air duct Exhaust

air duct

4,54

m

West East

Gauges 4,30 m

Emergency call

Traffic lights

hydrant

Water pipeDrenaje

Emergency call box

Lighted panels

Lights for guidance

Fresh air

Fresh air duct Exhaust

air duct

4,54

m

West

Figure 28 — Le tunnel du Fréjus Figure 28 - The Fréjus Tunnel

Page 76: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

148 2010R01 1492010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

The chart here below shows a methodological overview of the risk scenarios study, where the interactions of the various traffic anomalies into consideration have been taken into consideration, as well as the effects of a possible fire and human reactions to emergency situations.

Figure 29 - The chart of overview of the risk scenarios study

External environment Tunnel environment

Mechanic breakdowns

"Downstream" users

"On the spot" users

"Upstream" users

Breakdowns

ostacles FireGas & smoke

Heat

Leaks of dangerous materials

Liquid gas, explosion

Other StoppedAccidents

Users' behaviour

1

10

11

5

4

7

6

2

89

3

Environnement externe Environnement du tunnel

Pannes mécaniques

Conducteurs "en aval"

Conducteurs "sur place"

Conducteurs "en amont"

Panne

ostacle IncendieGaz.et.fumées.

chaleur

Fuites.de.matières.dangereuses

Gaz.liquides,.explosion

Autre à.l'arrêtAccident

Comportement des conducteurs

1

10

11

5

4

7

6

2

89

3

Le graphique ci-dessous montre un aperçu de la méthodologie des scénarios de risque, où les interactions des différentes anomalies de la circulation ont été prises en considération, ainsi que les effets d’un éventuel incendie et les réactions des utilisateurs aux situations d’urgence.

Figure 29 — Le processus de l’étude des différents scénarios

Page 77: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

150 2010R01 1512010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Les conséquences des risques ont été classées d’après les critères suivants.

tABLEAu.5.—.cLAssEmEnt.dEs.conséQuEncEs.du.RIsQuEG Classe Description

I Mineure Pas de dommages supplémentaires à l’égard de la situation extérieure

II Important Blessures légères ou graves blessures pour les usagers du tunnel les plus vulnérables, généré dans l’environnement du tunnel

III Critique Blessures graves (irréversibles) ou mort pour les plus vulnérables des usagers du tunnel, généré dans l’environnement du tunnel

IV Catastrophique Décès de personnes, indépendamment de leur capacité physique, généré dans l’environnement du tunnel

V Grave catastrophe Décès d’un grand nombre de personnes (> 50), indépendamment de leur capacité physique, généré dans l’environnement du tunnel

sûREté.du.RésEAu.RoutIER

IntRoductIon

Tel que démontré dans les chapitres précédents, les processus de gestion du risque jouent un rôle crucial dans l’efficacité, l’accomplissement et la réussite de projets. Par suite, l’application de ces processus jouera un rôle tout aussi important afin de réduire l’impact des désastres naturels et anthropiques. Ces processus fournissent les moyens nécessaires afin d’utiliser efficacement les ressources, d’établir les priorités et de mettre en place des mesures appropriées afin d’obtenir une réduction optimale des risques, et ce, aux meilleurs coûts possibles.

L’infrastructure reliée au domaine des transports comprend, entre autres : les routes, les tunnels, les ponts, les administrations et les autorités routières, les édifices administratifs et les centres de contrôle de la circulation. Cette infrastructure représente des effectifs cruciaux dans l’atteinte du fonctionnement efficace des activités quotidiennes requises par le monde moderne. Comme la vulnérabilité de cette infrastructure aux activités criminelles et terroristes a pu être démontrée, il est important d’intégrer les aspects reliés à la sûreté au sein des processus de la gestion du risque afin d’offrir une meilleure protection contre ce type de désastre.

Au cours des dernières années, l’application de méthodologies de gestion du risque au domaine des désastres naturels est devenue plus répandue grâce

The consequences of risks have been classified according to the following Table:

taBLEau 5 — cLaSSiFication oF tHE conSEQuEncES oF riSKG Class DescriptionI Minor No additional damages with respect to the same external situation.

II Significant Light injuries, or severe injuries for the most vulnerable tunnel users, generated in the tunnel environment.

III Critical Severe injuries (irreversible) or death for the most vulnerable tunnel users, generated in the tunnel environment.

IV Catastrophic Death of people regardless of their physical ability, generated in the tunnel environment.

V Severe catastrophy

Death of a high number of people (>50), regardless of their physical ability, generated in the tunnel environment.

HiGHWay SyStEm SEcurity

ovErviEW

As supported in previous chapters, risk management processes have been demonstrated to play a critical role in the efficient completion of successful projects. Accordingly, the application of this process in the reduction of impacts from natural and anthropogenic disasters will also play a very important role. These processes provide the means to effectively utilize existing resources, establish priorities and implement appropriate measures to attain the highest cost-beneficial risk reduction possible.

The transportation infrastructure includes roads, tunnels, bridges, road authority administration buildings and traffic control centers amongst others all of which are critical for the effective daily functions of modern life. This infrastructure has been shown to be vulnerable to terrorist and criminal activities. Therefore the importance for security concerns to become an integral part of the Risk Management process and provide increased protection from these types of disasters.

Over the last few years, the application of Risk Management methodologies to natural hazards has become more widespread due to the availability of more

Page 78: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

152 2010R01 1532010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

à une plus grande disponibilité et fiabilité de l’information reliée aux événements, ainsi qu’aux pertes financières associées à ces risques. Par contre, l’application de méthodologies de gestion du risque aux désastres reliés aux activités humaines est moins évidente à cause des incertitudes reliées au potentiel de risque ainsi qu’à l’impact socio-économique de ces événements. Il apparaît toutefois dorénavant nécessaire de considérer des méthodologies qui incorporent également des aspects reliés à la sûreté.

L’objectif de ce chapitre est de présenter une vision d’ensemble des méthodologies reliées au domaine de la sûreté qui permettra de fournir une assistance aux autorités routières dans l’intégration des aspects de sûreté au sein de leur processus existant de gestion du risque.

concEPts. Et. métHodoLoGIEs. GénéRAuX. d’éVALuAtIon. dE. LA.VuLnéRABILIté

Ce chapitre se concentre principalement sur la description de trois différentes méthodologies et approches afin d’offrir une vue d’ensemble de l’état de l’art dans ce domaine. Toutefois, l’accessibilité et la disponibilité de l’information dans les domaines de l’évaluation de la vulnérabilité sont partiellement documentées dans la section de la bibliographie. La description de ces méthodologies vise à fournir des exemples pratiques de gestion du risque et à servir de guide dans l’élaboration de la vulnérabilité des actifs cruciaux.

Les deux premières méthodes s’appliquent particulièrement aux routes et aux ponts, mais peuvent également être utilisées pour d’autres types de structures. Malgré le fait que leur mise en application est différente, elles peuvent être utilisées individuellement ou conjointement. La troisième méthodologie est basée sur un concept informatique ainsi que sur un accès par Internet et s'applique à toutes les d’infrastructures, tout en tenant compte de leurs interdépendances. Il est primordial de noter l’importance de l’établissement d’équipes multi-discipli-naires afin d’utiliser efficacement ces méthodologies.

Ce chapitre n’a pas pour objectif principal d’offrir une revue exhaustive des différentes approches et méthodologies en gestion du risque et de l’évaluation de la vulnérabilité, mais plutôt de proposer une introduction à ce domaine de connaissances. Une analyse plus approfondie et détaillée des différentes méthodologies est disponible à l’annexe D, page 311 de ce rapport.

reliable occurrence information as well as financial loss data associated with these hazards. The application of risk management methodologies to manmade disasters is less evident due to the associated uncertainties in terms of threat potential as well as the related socioeconomic impact of such events. However, it has become necessary that security-related methodologies be considered.

Our objective is to present a general overview of such security related methodologies to assist road authorities in the integration of security aspects within their existing Risk Management process.

GEnEraL vuLnEraBiLity aSSESSmEnt concEPtS and mEtHodoLoGiES

The availability of information in the area of vulnerability assessment is demonstrated in the bibliography section, however, this chapter focuses on three different methodologies and approaches in an attempt to provide a good overview of the state-of-the-art. The methodologies presented are intended to provide examples and serve as guides to the preparation of risk management of asset security vulnerability.

Their individual application is different however they can be used individually or could be used in conjunction with each other. The first two methods were developed with roads, tunnels and bridges as their main focus but can still be used for other types of infrastructures. The third method is computer-based as well as web-based and addresses all infrastructures including their interdependencies. We cannot stress enough the importance of the multidisciplinary teams that need to be established in order to effectively utilize any of these methodologies.

This chapter is not intended to provide an exhaustive review of existing approaches and methodologies but rather to provide an accessible introduction to the subject matter. A more detailed analysis of different methodologies and approaches is provided in Appendix D, page 311 of this report.

Page 79: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

154 2010R01 1552010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

PREmIèRE.métHodoLoGIE.PRoVEnAnt.du.GuIdE.d’éVALuAtIon.dE.LA.VuLnéRABILIté.du.RésEAu.RoutIER

La première méthodologie qui sera décrite est une des premières qui fut développée pour l’évaluation de la vulnérabilité du réseau routier. Elle a été financée par le National Cooperative highway Research Program (NChRP), préparée par Science Application International Corporation (SAIC) et parrainée par American Association of State highway and Transportation Officials’ Security Task Force (AAShTO). Elle est présentée sous forme de guide intitulé « A Guide to highway Vulnerability Assessment for Critical Asset Identification and Protection, May 2002 ». Pour plus d’information, consultez le site Internet suivant :http://security.transportation.org/sites/security/docs/guide-VA_Appendices.pdf

Ce guide a été développé afin de servir d’outil aux ministères des Transports (DOT) des Etats des Etats-Unis, mais il peut être utilisé par des autorités routières partout dans le monde afin :

• d’évaluer la vulnérabilité des biens physiques, comme les ponts, les tunnels, les routes et les installations d’inspection et de régulation de la circulation, notamment ;

• d’élaborer les contre-mesures possibles pour décourager, déceler et retarder les conséquences de menaces terroristes vis-à-vis de ces biens ;

• d’évaluer les coûts en capital et opérationnels de telles contre-mesures ;

• d’améliorer la planification opérationnelle en matière de sûreté en vue d’une meilleure protection contre des actes de terrorisme futurs.

La mise en application de cette méthodologie est basée sur un processus en six étapes qui représente une approche intégrée et interactive d’évaluation de la vulnérabilité.

FirSt mEtHodoLoGy From “a GuidE to HiGHWay vuLnEraBiLity aSSESSmEnt”

The first methodology to be described was one of the first to be developed for highway vulnerability assessment and was funded by the National Cooperative Highway Research Program (NCHRP), prepared by Science Application International Corporation (SAIC) and sponsored by the American Association of State Highway and Transportation Officials’ Security Task Force (AASHTO). It is presented in a Guide entitled “A Guide to Highway Vulnerability Assessment for Critical Asset Identification and Protection, May 2002”. More information can be found at the following web site: http://security.transportation.org/sites/security/docs/guide-VA_Appendices.pdf

This guide was developed as a tool for State Departments of Transportation (DOTs) but can be utilized by Road Administrations worldwide to:

• Assess the vulnerabilities of their physical assets such as bridges, tunnels, roadways, and inspection and traffic operation facilities, among others;

• Develop possible countermeasures to deter, detect, and delay the consequences of terrorist threats to such assets;

• Estimate the capital and operating costs of such countermeasures; and

• Improve security operational planning for better protection against future acts of terrorism.

The application of this methodology, as shown in Figure 30, is based on a six-step process that represents an integrated and iterative approach to vulnerability assessment.

étape 1 : Détermination

des actifs cruciauxétape 4 :

Détermination des contre-mesures

étape 6 : Examen de la planification opérationnelle de la sûreté

étape 5 : Estimation du coût

des contre-mesures

étape 2 : évaluation

des points de vulnérabilité

étape 3 : évaluation des conséquences

Figure 30 - Six étapes pour la tenue d’une évaluation de la vulnérabilité

Step 1: Identify critical

assets

Step 4: Identify

countermeasures

Step 6 : Operational security planning

Step 5: Estimate

countermeasures cost

Step 2: Assess

vulnerabilities

Step 3: Assess

consequences

Figure 30 - Six steps for conducting a vulnerability assessment

Page 80: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

156 2010R01 1572010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Le résultat de l’évaluation dépend fortement de la composition de l’équipe multidisciplinaire, du nombre de membres, du niveau de leur expérience, ainsi que de leur formation. Les membres de l’équipe devraient posséder une connaissance pratique de la mission, des actifs cruciaux, des politiques, des plans et des procédures de l’organisation. L’information reliée aux menaces, aux vulnérabilités ainsi qu’aux conséquences proviendra probablement de sources externes à l’organisation, telles que les services d’incendie, la sécurité publique, la santé publique et la gestion des mesures d’urgence.

Les six étapes que comporte l’évaluation de la vulnérabilité de cette méthodologie sont décrites en détail plus loin dans ce document et sont menées en trois phases principales, tel que présenté à la figure 31.

Figure.31.–.trois.phases.de.l’évaluation.de.la.vulnérabilitéTâche Déc. Janv. Févr. Mars Avril Mai Juin

Pré-évaluationDétermination des actifs cruciaux

Pré-évaluation

évaluationAnalyse des menacesévaluation des points de vulnérabilitéévaluation des conséquences

évaluation

Post-évaluationDétermination des contre-mesuresEstimation du coût des contre-mesuresExamen des plans de sûreté opérationnelle

Post-évaluation

Phase.1 (Pré-évaluation)Identification des membres de l’équipe d’évaluation, tenue d’exercices de formation, implication d’organismes externes, planification du processus d’évaluation de la vulnérabilité et du calendrier des échéances, et rassemblement des ressources requises.

Phase.2 (évaluation)Mise en application de l’évaluation de la vulnérabilité en utilisant les sources de données disponibles, examen des actifs cruciaux, entrevues avec le personnel, évaluation des données et recommandations sur les contre-mesures.

The outcome of the assessment is dependent on the composition of a multidisciplinary team, the number of members, their level of experience and training. Members should be well versed in the organization’s mission, critical assets, policies, plans and procedures. Information related to threats, vulnerabilities and consequences will probably come from external sources such as law enforcement, fire services, public safety and public health.

The six steps involved in this vulnerability assessment methodology are described in detail later and are accomplished within three major phases as indicated in the figure 31:

Figure 31 – three phases of a typical vulnerability assessmentTask Dec. Jan. Feb. Mar April Mai June

Pre-assessmentIdentify Critical Assets Pre-assessment

assessmentAnalyze ThreatsAssess VulnerabilitiesAssess Consequences

Assessment

Post-assessmentIdentify CountermeasuresEstimate Countermeasures CostReview Operational Security Planning

Post-assessment

Phase 1 (pre-assessment) Identify the assessment team members, conduct training exercises, identify and involve external organizations, plan and schedule the vulnerability assessment process and collect the required resources.

Phase 2 (assessment) Conduct the vulnerability assessment by using available data sources, physically examining critical assets, interviewing personnel, assessing the data, and making recommendations on countermeasures.

Page 81: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

158 2010R01 1592010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Phase.3 (post-évaluation)élaboration d’une stratégie en vue de la mise en œuvre des contre-mesures recommandées. Les activités au cours de cette phase peuvent inclure des analyses coûts-avantages et des études de rentabilité, ainsi que l’acquisition d’équipements et de services. Le guide encourage la prise de mesures d’approvisionnement immédiates, car l’évaluation est inutile sans la mise en œuvre de l’équipement et des services de contre-mesure appropriés.

Enfin, le processus produit un rapport intégré qui fusionne l’information obtenue au cours de l’évaluation de la vulnérabilité. Le rapport devrait au moins inclure :

• une évaluation des actifs cruciaux identifiés ;• une analyse des menaces à l’encontre de ces actifs et des points de

vulnérabilité de ces derniers ;• une analyse des conséquences des menaces à l’encontre de ces actifs et

des points de vulnérabilité de ces derniers ;• des recommandations visant à réduire les points de vulnérabilité et à atténuer

les conséquences au moyen de contre-mesures ;• toute autre information essentielle à l’élaboration de plans de sécurité

opérationnels visant à atténuer les conséquences.

Les six étapes seront maintenant décrites plus en détail.

étape.1.–.détermination.des.actifs.cruciaux.

1a.—.création.d’une.liste.exhaustive.des.actifs.cruciauxL’identification des actifs cruciaux débute par la mise sur pied d’une équipe formée des personnes expérimentées les plus familières avec les actifs de l’organisation. Les actifs à considérer se trouveront dans une des quatre catégories suivantes : infrastructure ; installations ; équipement ; personnel. Un bon exemple est fourni dans le tableau page suivante :

Phase 3 (post-assessment) Develop a strategy for the implementation of recommended countermeasures. This may involve cost-benefit analyses as well as equipment and services procurement. The Guide encourages immediate procurement action, as the assessment serves no purpose without actually installing the proper countermeasures equipment and services.

Finally, the objective of the above process is to produce a comprehensive report that should include:

• Assessment of identified critical assets,• Analysis of the threats to and vulnerabilities of those assets,

• Analysis of the consequences of the threats to and vulnerabilities of those assets,

• Recommendations to reduce vulnerabilities and mitigate consequences by means of countermeasures, and

• Other information essential for the development of operational security plans to mitigate the consequences.

The six-step process will now be described in more detail.

Step 1 – critical assets identification

1a – create an all-inclusive list of critical assetsThe identification of assets deemed critical for achieving the organization’s primary mission is conducted by the team members that are the most experienced and familiar with the organization. These assets would be included in any of the following four categories; Infrastructure, Equipment, Facilities and Personnel. A good example of critical transportation assets is shown in Table, next page:

Page 82: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

160 2010R01 1612010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

tABLEAu.6.–.ActIFs.dE.tRAnsPoRt.cRucIAuXINFRASTRUCTURE INSTALLATIONS éQUIPEMENT PERSONNEL

• Routes de dégagement - Routes inter-Etats

• Ponts - Viaducs • Dispositifs de

sécurité • Routes sur

barrages • Tunnels

• Aires d’entreposage de produits chimiques

• Points de ravitaillement • Bâtiments de l’AC • Ateliers/aires de maintenance • Laboratoires d’essai de matériel • Points d’entrée • Complexes de district/régionaux • Aires de repos • Stations de pompage des eaux

pluviales • Postes de péage • Centres de circulation routière • Postes d’inspection de véhicules • Postes de pesage

• Matières dangereuses

• Surveillance des voies

• Réseaux de signalisation et de régulation

• Système de signalisation variable

• Véhicules • Systèmes de

communication

• Entrepreneurs • Employés • Fournisseurs • Visiteurs

1b.–.établissement.et.assignation.de.valeurs.aux.facteurs.de.criticitéAvant de commencer l’évaluation, les membres de l’équipe devraient convenir des facteurs à considérer et des valeurs assignées à ces facteurs. Une fois les facteurs et les valeurs connexes déterminés, la liste de facteurs doit demeurer la même pendant toute la durée de l’évaluation. En fait, si les modalités d’assignation des valeurs et de notation des actifs ne font pas l’objet d’un examen attentif visant à en assurer l’uniformité et la cohérence, l’assignation de facteurs et de notations par des équipes multiples pourrait entraîner des incohérences dans l’établissement de l’ordre de priorité des actifs cruciaux.

Les facteurs de criticité présentés à la figure suivante sont utilisés afin d’identifier et de déterminer la priorité des actifs cruciaux. Les valeurs assignées sont basées sur l’importance du facteur dans la désignation d’un actif comme étant « crucial ». Les valeurs attribuées aux facteurs vont de « extrêmement important » (5) à « moins important » (1). On notera que les valeurs sont assignées aux actifs selon un mode binaire, c’est-à-dire que si un facteur s’applique à l’actif évalué, la valeur correspondante est attribuée à l’actif ; si, au contraire, le facteur ne s’applique pas, la valeur 0 est assignée à l’actif pour le facteur considéré.

taBLE 6 – criticaL tranSPortation aSSEtS

INFRASTRUCTURE FACILITIES EQUIPMENT PERSONNEL

• Arterial • Roads• Interstate Roads• Bridges• Overpasses• Barriers• Roads Upon Dams• Tunnels

• Chemical Storage Areas• Fueling Stations• Headquarters Buildings• Maintenance Stations/Yards• Material Testing Labs• Ports of Entry• District/Regional Complexes• Rest Areas• Storm Water Pump Stations• Toll Booths• Traffic Operations Centers• Vehicule Inspection Stations• Weigh Stations

• Hazardous Materials• Roadway Monitoring• Signal & Control

Systems• Variable Messaging

System• Vehicules• Communications

Systems

• Contractors• Employees• Vendors• Visitors

1b – Establish and assign values to the critical asset factorsThe multidisciplinary assessment team should agree on the list of factors and their individual values. Once factors and values have been determined, they must remain constant throughout the entire assessment otherwise, multiple teams assigning critical asset factors and scores could result in inconsistencies in the prioritization of critical assets.

The critical asset factors listed in Figure 28 are used to identify and prioritize critical assets. Each factor is assigned a value based on the importance of the factor in establishing an asset as “critical”. The values assigned range from “extremely important” (5) to “less important” (1). Note that the assignment of these factor values to assets is binary meaning that if the factor does not apply, the asset is assigned a value of 0 for that factor.

Page 83: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

162 2010R01 1632010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

FIGuRE.32.–.FActEuRs.Et.VALEuRs.d’ActIF.cRucIALFActEuR.dE.cRItIcIté VALEuR dEscRIPtIonFacteurs.de.dissuasion/défenseA Capacité à offrir une

protection1 L’actif est-il dépourvu d’un système de mesures de

protection (physiques ou force d’intervention) ?

B Vulnérabilité relative aux attaques

2 L’actif est-il relativement vulnérable à une attaque (en raison de son emplacement, de son importance ou d’autres facteurs) ?

conséquences.en.pertes.et.dommagesC Risque de pertes de vie

humaine 5 Une attaque risque-t-elle de causer des blessures

graves ou des pertes en vie humaine ?

D Impact environnemental 1 Une attaque aurait-elle un impact écologique modifiant l’environnement ?

E Coût de remplacement 3 En cas d’attaque, le coût de remplacement de l’actif (ce qu’il en coûterait pour remplacer l’actif par un nouvel actif d’une efficacité égale) serait-il important ?

F Temps de remplacement/panne

3 Une attaque entraînera-t-elle un temps de remplacement/panne important ?

conséquences.pour.les.services.publicsG Fonction d’intervention

d’urgence 5 L’actif remplit-il une fonction d’intervention

d’urgence et cette fonction sera-t-elle touchée ?

h Continuité du gouvernement 5 L’actif est-il nécessaire au maintien de la poursuite des activités du gouvernement ?

I Importance militaire 5 L’actif est-il important militairement ?

conséquences.pour.la.populationJ Solution de rechange

disponible 4 Cet actif est-il le seul actif en mesure de remplir

sa fonction primaire (c’est-à-dire, il n’existe pas d’installations de remplacement adéquates si cet actif est endommagé ou détruit) ?

K Dépendance pour les communications

1 Les communications dépendent-elles de cet actif ?

L Répercussion économique 5 L’endommagement de cet actif aura-t-il un effet sur les moyens de subsistance, les ressources ou la richesse d’une région ou de l’état ?

M Importance fonctionnelle 2 Le fait que l’actif fonctionne ou demeure opérationnel a-t-il une valeur ?

N Importance symbolique 1 L’actif a-t-il une importance symbolique ?

FiGurE 32 – criticaL aSSEt FactorS and vaLuEScriticaL aSSEt Factor vaLuE dEScriPtiondeter/defend FactorsA Ability to Provide Protection 1 Does the asset lack a system of measures for

protection? (i.e. Physical or response force)B Relative Vulnerability to

Attack2 Is the asset relatively vulnerable to an attack?

(i.e. Due to location, prominence, or other factors)

Loss and damage consequencesC Casualty Risk 5 Is there a possibility of serious injury or loss of

life resulting from an attack on the asset?D Environmental impact 1 Will an attack on the asset have an ecologival

impact of altering the environment?E Replacement Cost 3 Will significant replacement cost (the current

cost of replacing the asset with a new one of equal effectiveness) be incurred if the asset is attacked?

F Replacement/Down Time 3 Will an attack on the asset cause significant replacement/down time?

consequences to Public ServicesG Emergency Response Function 5 Does the asset serve an emergency response

function and will the action or activity of emergency response be affected?

H Government Continuity 5 Is the asset necessary to maintain government continuity?

I Military Importance 5 Is the asset important to military functions?consequences to the General PublicJ Available Alternate 4 Is this the only asset that can perform its

primary function? (i.e. There asre non alternate facilities that will substitute adequately if this asset is damaged or destroyed)

K Communication Dependency 1 Is communication dependent upon the asset?

L Economic Impact 5 Will damage to the asset have an effect on the means of living, or the resources and wealth of a region or state?

M Functional Importance 2 Is there an overall value of the asset performing or staying operational?

N Symbolic Importance 1 Does the asset have symbolic importance?

Page 84: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

164 2010R01 1652010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

1c.–.détermination.de. l’ordre.de.priorité.des.actifs.cruciaux.dans. la. liste.exhaustiveAu cours de cette étape, l’équipe d’évaluation assigne un ordre de priorité aux actifs cruciaux. Les lettres A à N, dans la figure suivante, correspondent aux facteurs de criticité énumérés à la figure 33. Les valeurs applicables sont consignées pour chaque actif. La somme de ces valeurs (x) représente la notation totale pour cet actif. Ces notations sont placées en ordre décroissant. La valeur de criticité maximale possible (Cmax), basée sur les valeurs utilisées dans la figure 32, page précédente, est 43. La valeur maximale pour chaque agence variera en fonction des valeurs assignées aux facteurs de criticité.

FIGuRE.33.–.notAtIon.dEs.ActIFs.cRucIAuX

ACTIF CRUCIALFACTEUR DE CRITICITé

NOTE TOTALE (x)A B C D E F G h I J K L M N

Actif 1

Actif 2

Actif 3

Actif 4

Actif 5

Actif n

La note totale (x) calculée au cours de cette étape sera utilisée comme suit dans le calcul de la coordonnée de criticité (X) de chaque actif à l’étape 3 :

coordonnée.de.criticité.(X).=.(x/.cmax)*100

Une fois les notes calculées et l’ordre de priorité des actifs cruciaux établis, un seuil de sélection est appliqué – « les premiers dix pour cent (10 %) » par exemple – pour éliminer les actifs qui ont obtenu une note faible. L’équipe d’évaluation fixe le seuil en fonction de son expérience, de sa familiarité avec les actifs et des besoins de l’organisation. Les actifs choisis forment la liste des actifs cruciaux prioritaires, et feront l’objet d’une évaluation visant à déterminer les menaces, les points de vulnérabilité, les conséquences et les contre-mesures.

étape.2.–.évaluation.de.la.vulnérabilité

L’évaluation de la vulnérabilité vise à identifier et à évaluer systématiquement les actifs cruciaux du point de vue de leur susceptibilité aux attaques terroristes et des conséquences de telles attaques.

1c – Prioritize the all-inclusive list of critical assetsIn this step, the assessment team assigns priorities to critical assets. For each asset, the applicable critical asset factor values are entered. The sum of these values (A to N) represents the total score (x) for that asset. These scores are ordered from the highest to the lowest in Figure 33. The maximum possible criticality value (Cmax) based on the values used in Figure 32, previous page is 43. Cmax for each organization will vary based on the values assigned to Critical Asset factors in Figure 32.

FiGurE 33 - criticaL aSSEt ScorinGCRITICAL ASSET

CRITICAL ASSET FACTOR TOTAL SCORE (x)A B C D E F G H I J K L M N

Asset 1Asset 2Asset 3Asset 4Asset 5Asset n

The total score calculated in this step (x) will be used in calculating the “Criticality Coordinate” (X) of each asset to be used later in Step 3 (Consequence assessment), as follows:

criticality coordinate (x) = (x/cmax) * 100

The assessment team can set a screening threshold based on their experience, familiarity with the assets, and the needs of the organization. For example, a “top ten percent” criteria could be applied to eliminate lower-scoring assets. The selected assets form the prioritized critical assets list, which will be assessed in the next steps to determine threats, vulnerabilities, consequences and countermeasures.

Step 2 – vulnerability assessment

The vulnerability assessment is designed to systematically identify and evaluate critical assets in terms of their susceptibility to and the consequences of terrorist attacks.

Page 85: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

166 2010R01 1672010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

2a.–.caractérisation.de.la.menaceCette étape est particulièrement difficile pour les organisations parce que si l’évaluation de la vulnérabilité est typiquement effectuée sur une base périodique (par exemple, chaque année ou chaque semestre), la menace, elle, est dynamique et faite d’incertitudes.

Les états-Unis ont mis en place le « Homeland Security Advisory System » (système consultatif de sécurité de la patrie) ayant pour objectif d’améliorer la coordination et la communication entre les divers niveaux de gouvernement, voir la figure 34. Ce système offre un cadre national afin de communiquer la nature et le degré des menaces terroristes entre les élus et les citoyens qu’ils représentent. Le système utilise une variété de facteurs pour évaluer la menace dont :

• Est-ce que la menace est crédible ?• Est-ce que la menace est corroborée ?• Est-ce que la menace est spécifique et/ou éminente ?• Est-ce que la menace est grave ?

étant donné la nature dynamique et le niveau d’incertitude des menaces, l’approche la plus efficace consiste à considérer les critères qui suivent et à porter un jugement éclairé quant à l’application de ces facteurs aux actifs d’intérêt en matière de transport :

• Existence – Existe-t-il un groupe ou un individu ayant ou pouvant avoir la capacité de créer et/ou utiliser une arme de destruction massive, à l’intérieur de la juridiction ?

• Antécédents – La juridiction a-t-elle fait face à des activités terroristes dans le passé ?

• Intention – Existe-t-il des menaces crédibles touchant l’usage de la force ou de la violence, ou des actes ou des préparatifs prouvant l’intention de créer ou d’utiliser une arme de destruction massive ?

• capacité – Existe-t-il de l’information crédible à l’effet qu’un groupe ou un individu possède la formation, les compétences, les moyens financiers et l’accès aux ressources requis pour mettre au point ou acquérir une arme de destruction massive ?

• cible – Existe-t-il de l’information crédible indiquant la tenue de préparatifs en vue d’opérations terroristes spécifiques contre un actif crucial ?

2a – characterize the threatThis step is particularly challenging for organizations because, while the vulnerability assessment will typically be done periodically, the threat is dynamic and clouded with uncertainty.

The United States have established the “Homeland Security Advisory System” to improve coordination and communication among all levels of government, see Figure 34. It provides a national framework for communicating the nature and degree of terrorist threats. The system uses a variety of factors to assess the threat, such as:

• Is the threat credible?• Is the threat corroborated• Is the threat specific and/or imminent?• How grave is the threat?

Given the dynamic nature and the level of uncertainty of the threat, the most effective approach may be to consider the following criteria and make an informed judgment as to whether any or all of these factors apply with respect to transportation assets of interest:

• Existence – Is there a group or individual that is known to or potentially could be operating within the jurisdiction with the capability to create and/or to use a Weapon of Mass Destruction (WMD)?

• History – Has the jurisdiction experienced any past terrorist activity?

• intent – Are there credible advocacy/threats of force or violence, or acts, or preparations to act, evidencing the intent to create a WMD or to use a WMD?

• capability – Is there credible information that a specific group or individual possesses the needed training, skills, finances, and access to resources to develop or acquire a WMD?

• target – Is there credible information indicative of preparations for specific terrorist operations against a critical asset?

Figure 34 – Système consultatif de sécurité de la patrie

Figure 34 – Homeland security advisory system

Page 86: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

168 2010R01 1692010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Une réponse affirmative à n’importe laquelle de ces questions suffit à soulever des inquiétudes quant à l’existence de menaces à l’encontre d’actifs de transport. Une réponse affirmative à la dernière question indique l’existence d’une menace imminente. Manifestement, les réponses à ces questions peuvent changer avec le temps, de sorte qu’il serait bien avisé d’adopter une planification prudente, relativement aux actifs cruciaux (c’est-à-dire, supposer l’existence d’une menace crédible), même si aucune agence d’application de la loi ne dispose d’information confirmant l’hypothèse.

2b.-.Assignation.de.facteurs.de.vulnérabilité.aux.actifs.cruciauxLe présent guide utilise les facteurs de vulnérabilité définis à la figure 35, page suivante, pour analyser les points de vulnérabilité potentiels des actifs cruciaux. Il est à noter que les valeurs assignées aux actifs cruciaux devraient refléter les jugements portés lors de l’analyse concernant les menaces réelles ou potentielles de l’étape 2a, page précédente.

Dans la figure 35, page suivante, l’expression « accès protégé », sous Niveau de sécurité (D), signifie l’utilisation de mesures de sécurité structurelles et/ou électroniques comme des clôtures, des alarmes, des caméras ou des verrous. L’expression « accès contrôlé » signifie que l’entrée est validée par du personnel, comme des gardiens armés ou sans arme. Enfin, par l’expression « force d’intervention », il faut entendre que du personnel est disponible pour intervenir en cas de violation d’un accès protégé ou contrôlé.

A “yes” to any of these questions is sufficient to raise concerns about threats to transportation assets. The answers to these questions can change over time and the organization would be well advised to plan conservatively for critical assets therefore assume a credible threat exists, even though no solid intelligence or law enforcement agency information may be available to substantiate the assumption. With this in mind, the next sub-steps in the vulnerability analysis should be based on assumptions about the real or potential intent and capability of the threat.

2b - assign vulnerability factors to the critical assetsThe Guide uses vulnerability factors to analyze the potential vulnerabilities of critical assets as shown in Figure 35, next page. Note that the scores assigned to critical assets should reflect judgments made based on analysis regarding the existence and capabilities of real or potential threats to the assets as discussed in sub-step 2a, previous page.

In Figure 35, next page, under sub-element D, Security level, “protected access” represents structural and/or electronic security measures such as fencing, alarms, cameras, or locks. “Controlled access” represents entry validated by personnel such as armed or unarmed guards. A “Response force” is where personnel are available to respond to either protected or controlled access violations.

Page 87: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

170 2010R01 1712010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

FIGuRE.35.–.FActEuRs.dE.VuLnéRABILIté.-.VALEuRs.PAR.déFAut.Et.déFInItIonsFACTEURS DE VULNéRABILITé ET VALEURS PAR DéFAUT

DéFINITIONS

Visibilité.et.fréquentation NIVEAU DE

RECONNAISSANCE (A)

1 Largement invisible dans la communauté

2 Visible par la communauté

3 Visible à la grandeur de l’état

4 Visible à la grandeur du pays

5 Visible mondialement

FRéQUENTATION/ UTILISATEURS (B)

1 Moins de 10

2 10 à 100 (incident majeur selon FEMA)

3 100 à 1 000

4 1 000 à 3 000

5 Plus de 3 000 (Incident catastrophique selon FEMA)

Accès.à.l’actif

PROXIMITé D’ACCèS (C)

1 Actif sans circulation routière et avec interdiction de stationner à moins de 50 pieds

2 Actif sans circulation routière non autorisée et avec interdiction de stationner à moins de 50 pieds

3 Actif avec circulation routière, mais avec interdiction de stationner à moins de 50 pieds

4 Actif avec circulation routière, mais avec interdiction de stationner à moins de 50 pieds pour les véhicules non autorisés

5 Actif avec accès ouvert à la circulation routière et stationnement à moins de 50 pieds

NIVEAU DE SéCURITé (D)

1 Sécurité d’accès contrôlée et protégée, et force d’intervention disponible

2 Sécurité d’accès contrôlée et protégée, sans force d’intervention disponible

3 Sécurité d’accès contrôlée, mais non protégée

4 Sécurité d’accès protégée, mais non contrôlée

5 Sécurité d’accès non contrôlée et non protégée

Risqu

es.spécifiq

ues.au.site EFFETS SUR LES

RéCEPTEURS (E)

1 Pas d’effets sur les récepteurs environnementaux ou humains

2 Effets toxiques aigus ou chroniques sur les récepteurs environnementaux

3 Effets aigus ou chroniques sur les récepteurs environnementaux

4 Effets aigus ou chroniques sur les récepteurs humains

5 Effets aigus ou chroniques sur les récepteurs environnementaux et humains

VOLUME (F)

1 Aucun matériel présent

2 Petites quantités de matériel unique présentes

3 Petites quantités de matériels multiples présentes

4 Grandes quantités de matériel unique présentes

5 Grandes quantités de matériels multiples présentes

FiGurE 35 – vuLnEraBiLity Factor dEFauLt vaLuES and dEFinitionSVULNERABILITY FACTOR and DEFAULT VALUE

DEFINITION

vis

ibili

ty a

nd a

tten

danc

e LEVEL OF RECOGNITION (A)

1 Largely invisible in the community

2 Visible by the community

3 Visible Statewide

4 Visible Nationwide

5 Visible Worldwide

ATTENDANCE/USERS (B)

1 Less than 10

2 10 to 100 (Major Incident per FEMA)

3 100 à 1000

4 1000 à 3000

5 Greater than 3000 (Catastrophic Incident per FEMA)

acc

ess t

o th

e ass

et

ACCESS PROXIMITY (C)

1 Asset with no vehicle traffic and no parking within 50 feet

2 Asset with non unauthorized vehicle traffic and no parking within 50 feet

3 Asset with vehicle traffic but no vehicle parking within 50 feet

4 Asset with vehicle traffic but no unauthorized vehicle parking within 50 feet

5 Asset with open access for vehicle traffic and parking within 50 feet

SECURITY LEVEL (D)

1 Controlled and protected security access with a response force available

2 Controlled and protected security access without a response force

3 Controlled security access but not protected

4 Protected but not controlled security access

5 Unprotected and uncontrolled security access

Site

spec

ific

Haz

ards

RECEPTOR IMPACTS (E)

1 No environmental or human receptor effects

2 Acute or chronic toxic effects to environmental receptor(s)

3 Acute and chronic effects to environmental receptor(s)

4 Acute or chronic effects to human receptor(s)

5 Acute and chronic effects to environmental and human receptor(s)

VOLUME (F)

1 No materials present

2 Small quantities of a single material present

3 Small quantities of multiple materials present

4 Large quantities of a single material present

5 Large quantities of multiple materials present

Page 88: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

172 2010R01 1732010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

2c.–.notation.du.facteur.de.vulnérabilité.pour.chaque.actif.crucialAu cours de cette étape, la formule ci-dessous est utilisée pour calculer le facteur de vulnérabilité (y) pour chaque actif crucial. Dans la formule, les sous-éléments sont multipliés l’un par l’autre pour la visibilité et la fréquentation (A * B), l’accès à l’actif (C * D) et les risques spécifiques au site (E * F). Les trois valeurs résultantes sont ensuite additionnées.

Facteur.de.vulnérabilité.(y).=.(.A.*.B.).+.(.c.*.d.).+.(.E.*.F.)

Après qu’une notation totale ait été calculée pour chaque actif crucial, les notations sont classées en ordre de priorité décroissant à l’aide de la figure 36.

FIGuRE.36.–.notAtIon.du.FActEuR.dE.VuLnéRABILIté

ACTIF CRUCIALFACTEUR DE CRITICITé

NOTE TOTALE (x)(A1-5

**

B)1-5

++

(C1-5

**

D1-5)

++

(E1-5

**

F)1-5

Actif 1

Actif 2

Actif 3

Actif 4

Actif 5

Actif n

Selon la figure 36, la notation la plus basse possible pour le facteur de vulnérabilité applicable à tout actif crucial est 3, et la notation la plus élevée possible est 75.

Comme à l’étape 1, lors du calcul de la coordonnée de criticité (X), la coordonnée de vulnérabilité (Y) qui sera utilisée à l’étape 3 (évaluation des conséquences) est calculée comme suit :

coordonnée.de.vulnérabilité.(y).=.(y/75)*.100

étape.3.–.évaluation.des.conséquences

L’évaluation des conséquences aide à déterminer les actifs qui, s’ils étaient attaqués, généreraient les plus grands risques de résultats indésirables pour un ensemble donné de circonstances et de conditions.

3a.–.Report.des.valeurs.de.criticité.et.de.vulnérabilité.de.l’actif.crucialCette étape permet de prioriser les actifs cruciaux en fonction de l’importance

2c – Score the vulnerability factor for each critical assetIn this step, the following formula is used to calculate the vulnerability factor (y) for each critical asset. In the formula, the sub-elements are multiplied by each other and the resulting numbers are then added:

vulnerability Factor (y) = (a*B) + (c*d) + (E*F)

After calculating a total score for each critical asset, the scores are prioritized from highest to lowest utilizing Figure 36.

FiGurE 36 – vuLnEraBiLity Factor ScorinG

CRITICAL ASSET

VULNERABILITY FACTORTOTAL SCORE (y)(A

1-5**

B)1-5

++

C)1-5

**

D)1-5

++

E)1-5

**

F)1-5

Asset 1Asset 2Asset 3Asset 4Asset 5Asset n

According to Figure 36, the highest attainable vulnerability factor score is 75.

As in Step 1, where the Criticality Coordinate (X) was calculated, we will now calculate the Vulnerability Coordinate (Y) that will be used in Step 3 (Consequence Assessment)

vulnerability coordinate (y) = (y/75) * 100

Step 3 – consequence assessment

The consequence assessment helps identify assets that, if attacked, produce the greatest risks for undesirable outcomes given a specific set of circumstances and conditions.

3a – Plot criticality coordinate versus vulnerability coordinateThe following step, the assessment of consequences, consists in plotting the

Page 89: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

174 2010R01 1752010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

des conséquences, d’après les facteurs de criticité et les points de vulnérabilité évalués précédemment lors de l’étape 2. Comme démontré à la figure 37, le quadrant I regroupe les actifs qui présentent la coordonnée de criticité (X) et la coordonnée de vulnérabilité (Y) les plus élevées, en vue de la mise en œuvre de contre-mesures.

FIGuRE.37.–.mAtRIcE.dE.cRItIcIté.Et.dE.VuLnéRABILIté

Vuln

érab

ilité

(Y) Quadrant.IV

Criticité basse et vulnérabilité élevéeQuadrant.I

Criticité élevée et vulnérabilité élevée

Quadrant.IIICriticité basse et vulnérabilité basse

Quadrant.IICriticité élevée et vulnérabilité basse

Criticité (X)

3b.–.considération.des.conséquences.pour.les.actifs.cruciaux.du.«.quadrant.I.»Les actifs placés dans le quadrant I sont à la fois cruciaux pour l’organisation ou la région, et jugés vulnérables aux menaces identifiées. Les conséquences spécifiques d’attaques contre ces actifs dépendent de la nature de l’attaque et des répercussions de la perte de l’actif pour l’organisation ou la région. Les conséquences peuvent aller de pertes en vies humaines et de pertes matérielles associées à l’attaque, à la perte d’une partie importante de l’infrastructure de transport nécessaire au soutien de l’activité économique, du déploiement militaire ou de la capacité à répondre efficacement à d’autres urgences (par exemple, perte d’un important chemin d’évacuation).

Au cours de la prochaine étape, qui porte sur la détermination des contre-mesures appropriées aux conséquences possibles, l’équipe d’évaluation de la vulnérabilité devrait commencer par les actifs placés dans le coin supérieur droit de la matrice et traiter ensuite les actifs progressivement plus près de l’origine, en se servant pour ce faire de leur expérience collective et de leur jugement.

étape.4.–.contre-mesures

Cette étape permet d’identifier des contre-mesures typiques afin de protéger les actifs cruciaux contre les menaces et vulnérabilités analysées lors des étapes précédentes.

L’élaboration de ces contre-mesures repose sur un partenariat efficace entre les ingénieurs et le personnel de sécurité. Ces contre-mesures se retrouvent sous trois catégories principales :

Criticality Coordinate (X) calculated in Step 1 versus the Vulnerability Coordinate (Y) calculated in Step 2 inside Figure 37, the Criticality and Vulnerability Matrix.This step helps prioritize critical assets by the greatest level of consequence with Quadrant I identifying the assets with the highest criticality and vulnerability for implementing countermeasures.

FiGurE 37 – criticaLity and vuLnEraBiLity matrix

Vul

néra

bilit

y (Y

)

Quadrant ivLow criticality and high vulnerability

Quadrant iHigh criticality and high vulnerability

Quadrant iiiLow criticality and low vulnerability

Quadrant iiHigh criticality and low vulnerability

Criticality (X)

3b – consider consequences for Quadrant i critical assetsAssets that fall into Quadrant I are both critical to the organization and judged to be vulnerable to the identified threats. The specific consequences of attacks on these assets depend on the nature of the attack and the impact of the loss of the asset to the organization. Consequences can vary from loss of life and property associated with the attack to loss of an important part of the transportation infrastructure needed to support economic activity, military deployment, or the ability to respond effectively to other emergencies.

In the next Step, the vulnerability assessment team should begin with assets in the upper right corner of the matrix and work toward the origin, using their collective experience and judgment to work through the asset list in identifying countermeasures appropriate to the potential consequences.

Step 4 – countermeasures

This step identifies typical countermeasures to protect the critical assets from the threats and vulnerabilities assessed in the preceding steps.

The development of countermeasures depends on effective partnerships between engineers and security personnel. Countermeasures fall under three main categories:

Page 90: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

176 2010R01 1772010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

• dissuasion – Un agresseur potentiel qui constate qu’il risque d’être pris peut être dissuadé d’attaquer un actif. L’efficacité de la dissuasion varie en fonction du degré de sophistication de l’agresseur, de l’intérêt de l’actif et de l’objectif de l’agresseur.

• détection – La détection pressent un acte d’agression, évalue la validité de la détection, et communique l’information appropriée à une force d’intervention. Un système de détection doit jouer ces trois rôles pour être efficace.

• défense – Les mesures de défense protègent un actif contre les agressions en retardant ou empêchant l’accès à l’actif, ou en protégeant l’actif contre les armes et les explosifs. Les mesures de défense : 1) retardent l’accès d’un agresseur au moyen d’outils, en cas d’entrée par effraction, 2) empêchent l’accès par un agresseur et 3) protègent l’actif des effets des outils, armes et explosifs.

La figure 38 présente un ensemble de contre-mesures jugées applicables, en vue de la protection des actifs de transport, et indique la fonctionnalité de chacune, c’est-à-dire dissuasion, détection ou défense.

FIGuRE.38.–.APPLIcAtIons.dEs.contRE-mEsuREs.AuX.cAtéGoRIEs.d’ActIF.cRucIALCONTRE-MESURES POSSIBLES Catégorie

d’actif crucialFonction de la contre-mesure

Infra

stru

ctur

e

Inst

alla

tions

équ

ipem

ent

Per

sonn

el

Dis

suas

ion

Dét

ectio

n

Déf

ense

Augmenter les efforts d’inspection visant à repérer les dispositifs explosifs possibles et à déceler les activités criminelles accrues ou suspectes.

• • • • •

Instituer une surveillance à temps plein des actifs les plus cruciaux, lorsque les chemins de remplacement sont limités ou inexistants. • • • •

éliminer le stationnement sous la totalité des ponts les plus cruciaux. On peut éliminer le stationnement au moyen de barrières en béton. • •

Placer les barrières de façon qu’un véhicule ne puisse pas facilement atteindre l’actif. • • • • •

Installer des systèmes de sécurité dotés d’une capacité vidéo à toutes les installations du MdT. • • • • • •

Protéger les bouches de ventilation au moyen de barrières. • • • •Installer des systèmes d’arrêt d’urgence de la ventilation et protéger ces systèmes. • • •

• deterrence – A potential aggressor who perceives a risk of being caught may be deterred from attacking an asset. The effectiveness of deterrence varies with the aggressor’s sophistication, the asset’s attractiveness, and the aggressor’s objective.

• detection – Detection senses an act of aggression, assesses the validity of the detection, and communicates the appropriate information to a response force. A detection system must provide all three of these capabilities to be effective.

• defense – Defensive measures protect an asset from aggression by delaying or preventing an aggressor’s movement toward the asset or by shielding the asset from weapons and explosives. Defensive measures: (1) delay aggressors from gaining access by using tools in a forced entry, (2) prevent an aggressor’s movement toward an asset, and (3) protect the asset from the effects of tools, weapons, and explosives.

Figure 38 identifies countermeasures considered applicable to protecting transportation assets, as well as the functionality these countermeasures provide in terms of deterrence, detection and defense.

FiGurE 38– aPPLyinG countErmEaSurES to criticaL aSSEt catEGoriESCOUNTERMEASURE Critical asset

categoryCountermeasure function

Infr

astru

ctur

e

Faci

litie

s

Equi

pmen

t

Pers

onne

l

Det

er

Det

ect

Def

end

Increase inspection efforts aimed at identifying potential explosive devices as well as increased or suspicious potential criminal activity.

• • • • •

Institute full-time surveillance at the most critical assets where alternate routes are limited or have not been identified. • • • •

Eliminate parking under the most critical bridges. Elimination of the parking can be accomplished with concrete barriers.

• •

Place barriers in such a way as to eliminate ease of access where a vehicule could be driven right up to the asset. • • • • •

Install security systems with video capability at all DOT facilities. • • • • • •

Protect ventilation intakes with barriers. • • • •

Install and protect ventilation emergency shut off systems. • • •

Page 91: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

178 2010R01 1792010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

FIGuRE.38.–.APPLIcAtIons.dEs.contRE-mEsuREs.AuX.cAtéGoRIEs.d’ActIF.cRucIALCONTRE-MESURES POSSIBLES Catégorie

d’actif crucialFonction de la contre-mesure

Infra

stru

ctur

e

Inst

alla

tions

équ

ipem

ent

Per

sonn

el

Dis

suas

ion

Dét

ectio

n

Déf

ense

Appliquer des feuilles de Mylar du côté intérieur des fenêtres pour protéger les employés contre les éclats de verre en cas d’explosion. • • •

Placer un agent de sécurité à temps plein dans une guérite pour contrôler l’accès à l’actif. • • • • •

Verrouiller toutes les barrières d’accès et installer des barrières actionnées à distance au besoin. • • • • •

élaborer et mettre en œuvre une politique de sécurité à la grandeur du ministère. • • • • •

Mettre en place un système de badges de sécurité limitant l’accès à tous les bâtiments, et qui identifie et contrôle toutes les entrées. • • • • • •

Former tout le personnel du MdT à être de meilleurs observateurs de leur environnement, et à repérer les colis, boîtes, personnes, etc. potentiellement dangereux.

• • •

Améliorer l’éclairage • • • •Augmenter la surveillance aux tunnels en installant des caméras reliées au Centre de la circulation routière (CCR). • • • •

Ajouter des détecteurs de mouvement aux clôtures. • • • •

L’efficacité des contre-mesures s’évalue subjectivement. Pour ce faire, on détermine dans quelle proportion l’application des contre-mesures réduit la possibilité ou les conséquences des attaques contre les actifs, pour des menaces et des points de vulnérabilité donnés. Les organisations devraient répéter le processus de notation des étapes 1 et 2 pour déterminer si la contre-mesure proposée fait passer les conséquences (étape 3) à un quadrant inférieur (voir la figure 37, page 174). Dans l’affirmative, l’équipe d’évaluation devrait aller à l’étape 5 pour estimer les coûts en capital, les coûts de fonctionnement et les coûts de maintenance pour la contre-mesure considérée, dans le cadre d’une analyse coûts-avantages. Si les conséquences demeurent les mêmes, il conviendrait d’envisager une autre contre-mesure ou un ensemble de contre-mesures pour réduire les menaces à l’endroit des actifs cruciaux hautement prioritaires, ainsi que les points de vulnérabilité de ces derniers.

FiGurE 38– aPPLyinG countErmEaSurES to criticaL aSSEt catEGoriESCOUNTERMEASURE Critical asset

categoryCountermeasure function

Infr

astru

ctur

e

Faci

litie

s

Equi

pmen

t

Pers

onne

l

Det

er

Det

ect

Def

end

Install Mylar sheeting on inside of windows to protect employees from flying glass in the case of an explosion. • • •

Place a full-time security officer in a guard shack to control access. • • • • •

Lock all access gates and install remote controlled gates where necessary. • • • • •

Develop and implement a department-wide security policy.• • • • •

Limit access to all buildings through the issuance of a security badge with specific accesses identified and controlled through the card.

• • • • • •

Train all DOT personnel to be more observant of their surroundings and potentially dangerous packages, boxes, people, etc.

• • •

Improve lighting. • • • •Increase surveillance at tunnels by installing cameras linked to the TOC. • • • •

Add motion sensors to fences. • • • •

The effectiveness of countermeasures is measured subjectively by assessing how well its application reduces either the potential for or consequences of attacks on assets given specific threats and vulnerabilities. The assessment team should re-evaluate Step 1 and Step 2 to determine whether the countermeasure shifts the asset from Quadrant I to a lower Quadrant. If that is the case, the team will then utilize step 5 in order to estimate the capital, operating and maintenance costs for the countermeasure as part of a cost-benefit analysis. If the consequence remains the same, selecting another countermeasure or a set of countermeasures should be considered to reduce the threats and vulnerabilities to high-priority critical assets.

Page 92: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

180 2010R01 1812010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

étape.5.–.Estimation.des.coûts

Cette étape permet d’évaluer des coûts reliés aux contre-mesures potentielles identifées lors de l’étape précédente. Les coûts peuvent être élevés (é), moyens (M) ou faibles (F). Les fourchettes relatives associées aux coûts élevés, moyens et faibles sont très subjectives, et dépendent de nombreuses variables. La figure suivante indique une estimation des coûts associés aux contre-mesures, leur fonction ainsi qu’à leur type (entretien, fonctionnement, investissements).

Figure.39.–.coûts.estimés.des.contre-mesures

DESCRIPTION DES CONTRE-MESURES

FONCTION DE LA CONTRE-MESURE

COûT RELATIF ESTIMé (é/M/F)

Dis

suas

ion

Dét

ectio

n

Déf

ense

Inve

stis

sem

ents

Fonc

tionn

emen

t

Ent

retie

n

Augmenter les efforts d’inspection visant à repérer les dispositifs explosifs possibles et à déceler les activités criminelles accrues ou suspectes.

• F M F

Instituer une surveillance à temps plein des actifs les plus cruciaux, lorsque les chemins de remplacement sont limités ou inexistants.

• • é é é

éliminer le stationnement sous la totalité des ponts les plus cruciaux. On peut éliminer le stationnement au moyen de barrières en béton.

• F F F

Placer les barrières de façon qu’un véhicule ne puisse pas facilement atteindre l’actif. • • F F F

Installer des systèmes de sécurité dotés d’une capacité vidéo à toutes les installations du MdT. • • é M F

Protéger les bouches de ventilation au moyen de barrières. • • F F F

Installer des systèmes d’arrêt d’urgence de la ventilation et protéger ces systèmes. • F F F

Appliquer des feuilles de Mylar du côté intérieur des fenêtres pour protéger les employés contre les éclats de verre en cas d’explosion.

• • M F F

Placer un agent de sécurité à temps plein dans une guérite pour contrôler l’accès à l’actif. • • • M M F

Verrouiller toutes les barrières d’accès et installer des barrières actionnées à distance au besoin. • • é M M

élaborer et mettre en œuvre une politique de sécurité à la grandeur du ministère. • F F F

Step 5 – cost estimation

In this step, general guidelines are provided to calculate the preliminary costs for implementing the selected countermeasures. The relative ranges described as high (H), medium (M) and low (L) are very subjective and depend on many variables. Figure 38 provides a list of estimated costs.

FiGurE 39 – EStimatEd countErmEaSurES coStS

COUNTERMEASURE DESCRIPTION

COUNTERMEASURE FUNCTION

ESTIMATED RELATIVE COST (H/M/L)

Det

er

Det

ect

Def

end

Cap

ital

Ope

ratin

g

Mai

nten

ance

Increase inspection efforts aimed at identifying potential explosive devices as well as increased or suspicious criminal activity.

• L M F

Institute full-time surveillance at the most critical assets where alternate routes are limited or have not been identified.

• • H H H

Eliminate parking under the most critical bridges. Elimination of the parking can be accomplished with concrete barriers.

• L L L

Place barriers in such a way as to eliminate ease of access where a vehicule could be driven right up to the asset. • • L L L

Install security systems with video capability at all DOT facilities. • • H M L

Protect ventilation intakes with barriers. • • L L L

Install and protect ventilation emergency shut off systems. • L L L

Install Mylar sheeting on inside of windows to protect employees from flying glass in the case of an explosion. • • M L L

Place a full-time security officer in a guard shack to control access. • • • M M L

Lock all access gates and install remote controlled gates where necessary. • • H M M

Develop and implement a department-wide security policy. • L L L

Page 93: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

182 2010R01 1832010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Figure.39.–.coûts.estimés.des.contre-mesures

DESCRIPTION DES CONTRE-MESURES

FONCTION DE LA CONTRE-MESURE

COûT RELATIF ESTIMé (é/M/F)

Dis

suas

ion

Dét

ectio

n

Déf

ense

Inve

stis

sem

ents

Fonc

tionn

emen

t

Ent

retie

n

Mettre en place un système de badges de sécurité limitant l’accès à tous les bâtiments, et qui identifie et contrôle toutes les entrées.

• • M M F

Former tout le personnel du MdT à être de meilleurs observateurs de leur environnement, et à repérer les colis, boîtes, personnes, etc. potentiellement dangereux.

• • M M F

Améliorer l’éclairage • • F F F

Augmenter la surveillance aux tunnels en installant des caméras reliées au Centre de la circulation routière (CCR). • • é M M

Ajouter des détecteurs de mouvement aux clôtures. • • F F F

étape.6.–.Planification.opérationnelle.de.la.sécurité

Cette étape vise à améliorer la sécurité des actifs cruciaux en les protégeant contre les conséquences possibles d’actes de terrorisme par l’entremise de la planification opérationnelle de la sécurité.

L’ajout de considérations reliées au terrorisme et aux armes de destruction massive au contexte de gestion des mesures d’urgence devrait être considéré par l’organisation concernée. Comme il est mentionné à une étape précédente, la menace terroriste est à la fois dynamique et incertaine. Par conséquent, le plan de sûreté opérationnel doit faire preuve d’une compréhension des modalités de modification des mesures de sûreté en prévision d’activités spécifiques, ou en réponse à ces activités (par exemple, événements spéciaux qui peuvent augmenter l’attrait d’un actif crucial comme cible terroriste) ou à de l’information fiable sur les activités terroristes, de manière générale ou par rapport à des actifs et à des groupes terroristes déterminés.

Il se pourrait que des considérations spéciales d’intervention reliées au domaine du transport soient nécessaires. De nouveaux risques pour les premiers intervenants d’urgence doivent également être pris en considération. Ces considérations suggèrent le besoin d’effectuer des modifications appropriées et/ou des améliorations reliées au contexte terroriste et aux armes de destruction massive

FiGurE 39 – EStimatEd countErmEaSurES coStS

COUNTERMEASURE DESCRIPTION

COUNTERMEASURE FUNCTION

ESTIMATED RELATIVE COST (H/M/L)

Det

er

Det

ect

Def

end

Cap

ital

Ope

ratin

g

Mai

nten

ance

Limit access to all buildings through the issuance of a security badge with specific accesses identified and controlled through the card.

• • M M L

Train all DOT personnel to be more observant of their surroundings and potentially dangerous packages, boxes, people, etc.

• • M M L

Improve lighting. • • L L L

Increase surveillance at tunnels by installing cameras linked to the TOC. • • H M M

Add motion sensors to fences. • • L L L

Step 6 – Security operational Planning

The objective of this step is to improve the security of critical assets by guarding against potential consequences caused by acts of WMD terrorism through security operational planning.

The organization should consider integrating security operations related to acts of WMD terrorism within their established emergency plans. Since the terrorist threat is both dynamic and uncertain as previously noted, the security operational plan must reflect an understanding of how security measures change in anticipation of or in response to specific activities (for example special events that may increase the attractiveness of a critical asset as a terrorist target) or reliable information about terrorist activities, either in general or with respect to specific assets and terrorist groups.

There may be a need for special transportation responses to be introduced. A set of new hazards for first responders must be a consideration. These and other issues suggest the need to consider appropriate modifications and/or improvements that may be appropriate to the WMD context. Organizations may determine that, under certain threat conditions, they need to impose access controls and other

Page 94: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

184 2010R01 1852010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

aux plans existants de gestion du risque. Les organisations pourraient déterminer, sous certaines conditions, qu’il soit nécessaire d’imposer des contrôles d’accès et d’autres mesures de sûreté pour protéger les ponts, les tunnels, les centres opérationnels, et même certains grands échangeurs, qui sont cruciaux du fait de leur importance ou de leur proximité par rapport à d’autres actifs cruciaux.

L’élaboration de bons plans, programmes et politiques est le début de l’état de préparation. La mise en œuvre de programmes de sensibilisation, de formation et de qualification dans le cadre de la planification opérationnelle de la sûreté aide à déterminer l’efficacité d’une organisation à composer avec une crise. L’expérience et les données disponibles montrent que les activités de formation et d’exercice sont une façon pratique et efficace de se préparer à affronter des crises. Elles éprouvent la résistance essentielle, font ressortir les difficultés de procédure, et procurent un plan en vue de mesures correctives pour améliorer les capacités de gestion de crise sans entraîner les conséquences négatives qui seraient possibles au cours d’une crise réelle. Les activités de formation et d’exercice offrent également une occasion d’apprentissage unique pour synchroniser et intégrer l’intervention d’urgence interfonctionnelle et intergouver-nementale.

Il est important de noter et fortement recommandé d’utiliser ce guide conjointement avec son document accompagnateur intitulé « A Guide to highway Vulnerability Assessment for Critical Asset Identification and Protection », Appendices A – F, également subventionné par le NChRP, préparé par SAIC et parrainé par l’AAShTO.

dEuXIèmE.métHodoLoGIE.PRoVEnAnt.dEs.REcommAndAtIons.PouR.LA.sûREté.dEs.Ponts.Et.tunnELs

La seconde méthodologie ou approche à être décrite fut produite à la requête d’AAShTO et a été élaborée par le Blue Ribbon Panel (BRP) sur la sûreté des ponts et tunnels.

Cette méthodologie d’ordre général a été développée en 2003 par un groupe d’experts américains en considérant particulièrement les ponts et tunnels en sol américain étant potentiellement vulnérables à une attaque terroriste. Leur travail d’équipe a produit un guide général de stratégies à court, à moyen et à long terme afin de guider les propriétaires ou opérateurs de ces infrastructures à développer ou d’adopter ces directions visant à améliorer la sûreté et la sécurité des ponts et tunnels dans l’ensemble des états-Unis. Pour plus d’information, consultez le site Internet suivant : http ://www.fhwa.dot.gov/bridge/security/brptoc.htm.

security measures to protect critical bridges, tunnels, operations centers, and even major interchanges because of their importance or because of their proximity to other critical assets.

Security operational planning must be combined with awareness training and exercise activities as a practical and efficient way to prepare for crises. In addition, they permit testing critical resistance, identify procedural difficulties and provide a plan for corrective actions to improve crisis and consequence management response capabilities without the penalties that might be incurred in a real crisis. They also provide unique learning opportunity to synchronize and integrate cross-functional and intergovernmental emergency response.

It is important to note and is highly recommended to use this guide in conjunction with its accompanying document entitled: “A Guide to Highway Vulnerability Assessment for Critical Asset Identification and Protection, Appendices A – F, also funded by the NCHRP, prepared by SAIC and sponsored by AASHTO.

SEcond mEtHodoLoGy From rEcommEndationS For BridGE and tunnEL SEcurity

The second methodology or approach to be described was produced at the request of AASHTO and prepared by The Blue Ribbon Panel (BRP) on Bridge and Tunnel Security.

This general methodology was produced in 2003 by a panel of American experts, focusing on bridges and tunnels on American soil potentially vulnerable to terrorist attack. Their team efforts yielded a BRP general guide on strategies to develop and adopt on the short-, medium-, and long-term and provide guidance to highway infrastructure owners/operators to improve the security and safety of bridges and tunnels throughout the United States. More information can be found at the following web site: http://www.fhwa.dot.gov/bridge/security/brptoc.htm

Page 95: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

186 2010R01 1872010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

À cet égard, le panel émet sept recommandations d’ensemble pour atteindre l’objectif de réduire la vulnérabilité des ponts et tunnels aux attaques terroristes. Ces recommandations se retrouvent sous trois groupes respectifs : institutionnel, fiscal et technique, où les deux premiers sont des pré-requis à une mise en place efficace des recommandations d’ordre technique.

Le rapport BRP se concentre principalement sur des recommandations d’ordre technique qui comportent des méthodes d’identification des ponts et tunnels cruciaux, des mesures opérationnelles de sûreté, des approches conceptuelles et d’ingénierie visant la réduction des vulnérabilités des infrastructures cruciales, ainsi que la recherche et le développement afin d’atteindre une meilleure compréhension du comportement et de la réaction des structures aux attaques et aux contre-mesures afin d’éviter ou de réduire leurs conséquences potentiellement négatives.

Le Blue Ribbon Panel a identifié une liste clé de sujets reliés à la sûreté dont la majorité s’applique à l’infrastructure de transport et dont plusieurs autres s’appliquent plus directement aux ponts et tunnels. Comme le démontre la figure 40, les sujets de planification, conception et ingénierie par exemple, nécessitent des solutions qui excèdent celles qui pourraient être requises afin de réduire les vulnérabilités et améliorer la sûreté des actifs cruciaux des autres types d’infrastructures et elles seront donc la cible des recommandations du rapport BRP.

FIGuRE.40.–.QuEstIons.toucHAnt.LA.sûREté.dEs.Ponts.Et.dEs.tunnELsSujets clés en sûreté des infrastructures Questions spécifiques

1 Fondement des politiques • Critères établissant les priorités d’investissement • Continuité institutionnelle

2 Planification, Conception et Ingénierie

• Révision des designs pour des structures sûres• Recherche et développement requis pour supporter

le design pour la sûreté’• Critères de design• Spécifications de design

3 Gestion et pratiques opérationnelles • Meilleures pratiques• Revue des pratiques• Relations institutionnelles• état de la préparation• Sûreté du personnel et des véhicules• Communications et information

4 Sûreté de l’information • Pratiques d’acquisition• Sûreté de l’information

5 Mobilisation (notification) et intervention (trans-événement)

• Préavis des menaces• Intervention rapide• Intervention initiale

6 Récupération (post-événement) • évaluation des dommages• Continuité fonctionnelle

In this regard, the panel makes seven overarching recommendations to accomplish the overall goal of reducing the vulnerability of bridges and tunnels to terrorist attacks. These recommendations fall into three areas: institutional, fiscal and technical with the first two being prerequisites to the effective implementation of recommendations in the technical area.

The primary focus of the report is on technical recommendations that include methods for identifying critical bridges and tunnels, operational security measures, engineering and design approaches for reducing the vulnerability of critical infrastructure, and research and development to gain a greater understanding of structural responses to attacks and countermeasures to avoid or mitigate potential negative consequences.

The Blue Ribbon Panel identified a list of key security topics where most are applicable to all transportation infrastructure and where others relate more directly to bridges and tunnels. As shown in Figure 40, the topic of Planning, Design and Engineering, for example, requires solutions that go beyond what might be needed to reduce the vulnerability and improve the security of other infrastructure assets and are the focus of the recommendations of the BRP report.

FiGurE 40 – BridGE and tunnEL SEcurity iSSuESKey Topics in Infrastructure Security Specific Issues1 Foundations for Policy • Criteria Establishing Investment Priorities

• Institutional Continuity2 Planning, Design and Engineering • Design Review for Secure Structures

• Research and Development (R&D) Needed to Support “Design for Security”

3 Management and Operational Practives • Best Practices• Practice Review• Institutional Relationships• Preparedness• Personnel and vehicle Security• Communication/Outreach

4 Information Security • Procurement Practices• Information Security

5 Mobilization (“Notice”) and Response (“Trans-event”)

• Threat Warning• Early Response• Initial Response

6 Recovery (Post-event) • Damage Assessment• Functional Continuity

Page 96: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

188 2010R01 1892010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Le Blue Ribbon Panel a tout d’abord élaboré un cadre d'analyse de la sûreté des ponts et des tunnels. Ceci comporte les éléments essentiels suivants afin de formuler des recommandations :

• Une méthode d’identification des ponts et tunnels « critiques » par l’entremise de la gestion du risque et de la priorisation :• Le processus d’identification des cibles probables est la priorisation.• La gestion du risque est le processus par lequel une méthode permettant

de vaincre une attaque sera sélectionnée.

• Désignation des risques spécifiques devant être considérés comme des « attaques terroristes » :• Explosifs conventionnels de bas et de haut niveau technologique.• Engins explosifs formés pour la pénétration.• Engins manuels de bas niveau technologique.• Explosifs conventionnels en quantité par camion ou barge.• Agents chimiques/biologiques dispersés dans un tunnel.• Explosifs incendiaires conventionnels.• Marchandises dangereuses déversées dans un tunnel.• Collision intentionnelle par navire ou barge.

• Détermination des types de dommages concernés :• Menace à l’intégrité de la structure.• Dommage qui paralyse ou inhibe la fonctionnalité de la structure pour une

période de temps prolongée.• Contamination d’un tunnel résultant en une fermeture prolongée ou perte

de fonctionnalité.• Défaillance catastrophique résultant d’une attaque basée sur les menaces

décrites ci-dessus.

• Contre-mesures considérées en réponse aux menaces et dommages potentiels• Les contre-mesures sont souvent regroupées en actions ou en technologies

afin de dissuader une attaque, de refuser l’accès, de détecter la présence, de défendre l’installation, ou de renforcer le design des structures afin de minimiser les conséquences à un niveau acceptable. Grâce à son expertise, le BRP s’est préoccupé principalement de la dernière catégorie mentionnée ci-dessus. Toutefois, dans plusieurs situations, d’autres contre-mesures non-reliées au design pourraient s’avérer plus appropriées et plus économiques pour une installation donnée. Une description de ces contre-mesures apparaissent à l’annexe B du rapport BRP.

The BRP first established a framework for addressing bridge and tunnel security. It includes the following elements deemed essential to developing sound recommendations:

• A means of identifying “critical” bridges and tunnels, through prioritization and risk assessment:• Prioritization is the process of identifying the likely targets.• Risk assessment is the process by which methods of defeating the attack will

be selected.

• Designation of the specific threats to be considered “terrorist attacks”:

• Low-tech and high-tech conventional explosives.• Explosively formed penetrating devices.• Low-tech, hand-held devices.• Truck size/barge size conventional explosives.• Chemical/biological agents released in tunnels.• Incendiary conventional explosives.• HAzMAT releases in tunnels.• Intentional ramming via ship or barge.

• Determination of the kinds of damage of concern:• Threats to the integrity of the structure.• Damage that inhibits the structure’s functionality for an extended period of

time.• Contamination of a tunnel resulting in extended closure or loss of functionality.

• Catastrophic failure resulting from an attack based on the threats described above.

• Countermeasures considered in response to potential threats and damage:• Countermeasures are often grouped into actions or technologies to deter attack,

deny access, detect presence, defend the facility, or design structural hardening to minimize consequences to an accepted level. Because of its expertise, the BRP dealt primarily with the last category of countermeasures however, in many cases, non-design countermeasures may be the most appropriate and cost-effective solutions for a given facility. Such countermeasures are listed in Appendix B of the BRP report.

Page 97: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

190 2010R01 1912010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

• La capacité des connaissances courantes ainsi que la disponibilité des codes et des spécifications afin de permettre aux concepteurs professionnels de moderniser les installations existantes et de faire le design de nouvelles installations plus résistantes.

• Un agenda en recherche afin de combler les lacunes dans la compréhension des phénomènes et des réponses est présenté dans le rapport.

Le Blue Ribbon Panel présente une méthodologie de revue et de priorisation comme suit.

Le très grand nombre de ponts (600 000) et tunnels (500) se prête bien à une approche en deux étapes : la priorisation et la gestion du risque.

La première étape, la priorisation, est typiquement accomplie plus efficacement en deux sous-étapes.

La première sous-étape consiste à un recueil de données tel que l’approche utilisée par le Texas Department of Transportation (TxDOT), afin d’assigner un ordre d’importance pour les ponts en se servant de critères communément admis. Le National Bridge Inventory (NBI) des états-Unis fournit la vaste majorité des données requises afin d’accomplir cette sous-étape.

Lors de la seconde sous-étape de priorisation, des données additionnelles proviennent des propriétaires et des exploitants qui sont familiers avec les caractéristiques spécifiques des installations et des services qu’ils rendent disponibles.

Lors de cette première étape, la priorisation des ponts et tunnels devrait être basée sur des caractéristiques et critères tels que les suivants :

• Le potentiel pour de multiples victimes basé sur le volume moyen de circulation quotidien (Average Daily Traffic (ADT)) et les niveaux d’occupation en périodes pic.

• Criticité pour l’évacuation et pour l’intervention aux urgences.• Mobilisation militaire ou pour la défense.• Routes alternatives de capacité appropriée.• Potentiel de large couverture médiatique et réaction du public ; valeur

symbolique (jusqu’à quel point l’installation représente un idéal ou les valeurs importantes de la population, son symbolisme visuel).

• Ponts et tunnels d’utilisation mixte où la route et le rail sont co-localisés.• Potentiel de dommages collatéraux (terrestre, maritime, ferroviaire), incluant

les propriétés et les utilités.

• The adequacy of current knowledge and available codes and specifications to enable design professionals to retrofit existing facilities and design hardened new facilities:

• A research agenda to fill the gaps in current understanding of phenomena and response is presented in the report.

The Blue Ribbon Panel presents a review and prioritization methodology as follows.

The large number of bridges (600,000) and tunnels (500) lends itself to a two-tier approach: prioritization and risk assessment.

The first tier, prioritization, is typically most efficiently done in two steps.

The first step is a data-driven approach, such as that used by the Texas Department of Transportation (TxDOT), for ranking bridges using common criteria. The National Bridge Inventory (NBI) provides much of the data needed for this step.

In the second step of prioritization, additional data comes from owners and operators familiar with specific characteristics of the facilities and the services they provide.

In this first tier ranking, prioritization of bridges and tunnels should be based on characteristics such as the following:

• Potential for mass casualty based on Average Daily Traffic (ADT) and associated peak occupancies.

• Criticality to emergency evacuation and response to emergencies.• Military or defense mobilization.• Alternative routes with adequate available capacity.• Potential for extensive media exposure and public reaction; symbolic value (to

what extent does the facility represent ideals and values that are important to the American public, also visual symbolism, e.g., “signature bridges”).

• Mixed-use bridges and tunnels where highway and rail are co-located.• Potential for collateral damage (land, marine, rail), including collateral property

and utilities.

Page 98: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

192 2010R01 1932010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

• Longueur maximale d’une travée de pont en fonction du temps requis pour son remplacement.

• Mélange et volume de véhicules commerciaux versus passagers en fonction de l’impact économique.

• Dimension des ponts et des tunnels (comme guide pour la valeur monétaire et pour le temps de remplacement).

• Importance des revenus (par exemple les péages) associés à l’installation.• Ponts et tunnels aux points frontaliers internationaux.

La seconde étape est une évolution du risque pour les ponts de haute priorité tels qu’identifiés lors de la première étape (priorisation) afin de déterminer la vulnérabilité et d'évaluer les contre-mesures pour de dissuader une attaque et/ou de réduire ses dommages. Le risque R, pour une installation est déterminé en utilisant une approche similaire à celle utilisée pour la modernisation des structures pour mieux résister aux secousses sismiques et s’exprime comme suit :

R.=.o.x.V.x.I

o. =.occurrence : Dans la formule générale de cette équation du risque, ce facteur est directement relié au risque et changera donc selon la nature du risque. Dans le contexte présent, ce facteur offre une approximation de la vraisemblance qu’un actif crucial sera attaqué par des terroristes. Cette approximation comporte des variables comme l’attrait de l’installation (sous la perspective d’une menace), le niveau de sûreté, l’accessibilité du site, la publicité générée par une attaque, et le nombre de menaces précédentes.

L’information reliée à ce facteur provient généralement des forces de l’ordre et des organisations de renseignement familières avec les menaces et les mesures de sûreté opérationnelles.

V.=.Vulnérabilité : Dans la formule générale de cette équation du risque, ce facteur de vulnérabilité est une indication du niveau de dommage ou de destruction qu’une infrastructure subirait en se basant sur la réponse ou réaction de celle-ci face à un risque particulier. Dans le contexte présent, la vulnérabilité représente le dommage vraisemblable résultant de diverses menaces terroristes (type d’armement et localisation). Ce facteur représente une combinaison du dommage anticipé, du résultat de l’événement, du nombre de victimes potentielles, de la perte d’utilisation de l’infrastructure, ainsi que de toutes les autres particularités de l’installation.

L’information reliée à ce facteur provient généralement d’expertises et d’analyses en ingénierie.

• Maximum single span length as it relates to the time required to replace the facility.

• Commercial vehicle vs. passenger vehicle mix and volume as a surrogate for economic impact.

• Bridge or tunnel dimensions (as a surrogate for replacement time/cost).

• Significance of revenue streams (e.g., tolls, fares) associated with the facility.• Bridges and tunnels at international border crossings.

The second tier is a risk assessment of high priority bridges taken from the first tier (prioritization) to determine vulnerabilities and evaluate countermeasures to deter attack and/or mitigate damages. The risk, R, to the facility is determined following an approach similar to that developed for seismic retrofit and can be expressed as follows, where:

r = o x v x i

o = occurrence: In the general form of the risk equation, this factor is hazard oriented and will change with the nature of the hazard. In the context of this report, the occurrence factor approximates the likelihood that terrorists will attack the asset. It includes target attractiveness (from the perspective of the threat), level of security, access to the site, publicity if attacked, and the number of prior threats.

Input into this factor typically comes from the law enforcement and intelligence communities familiar with threat and operational security measures.

v = vulnerability: In the general form of the risk equation, vulnerability is an indication of how much the facility or population would be damaged or destroyed based on the structural response to a particular hazard. In the context of this report, vulnerability is the likely damage resulting from various terrorist threats (weapon type and location). It is a measure of expected damage, outcome of the event, expected casualties, and loss of use, all features of the facility itself.

Input into this factor typically comes from engineering analysis and expertise.

Page 99: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

194 2010R01 1952010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

I.=.Importance : Dans le contexte présent, l’importance est une caractéristique de l’infrastructure ou des installations et non du risque. En principe, l’importance est toujours la même, et ce, indépendamment du risque. L’importance est une indication des conséquences pour la région ou la nation dans l’éventualité où l’installation est détruite ou non disponible. Est-ce que l’installation se trouve sur une route d’évacuation ou de mobilisation ; est-ce qu’il est probable que l’installation soit utilisée par les intervenants d’urgence pour répondre à un événement ; quelle est sa signification historique ; quelle est son utilisation en période pic ?

L’information reliée à ce facteur provient généralement des propriétaires, des exploitants, des utilisateurs, et des bénéficiaires de ces installations, souvent de sources gouvernementales, et sera reliée à des facteurs semblables à ceux utilisés lors de la première étape soit celle de la priorisation.

Cette formule exprime de façon appropriée l’interaction qui existe entre ces trois facteurs. Les facteurs dominants augmentent le risque ; les facteurs négligeables le diminuent. D’autres types de formules, tel que les modèles qui additionnent les facteurs, ne réussissent pas à tenir compte de leurs effets interactifs. Par exemple, en l’absence de menace (« O » = 0), le risque devrait être zéro tel qu’offert par ce modèle-ci ; les modèles additifs présenteraient tout de même un risque résiduel.

Les contre-mesures qui réduisent le risque associé à un actif peuvent être conçues afin de réduire le facteur d’occurrence (par exemple rendre l’actif moins accessible) ; le facteur vulnérabilité (par exemple renforcir l’installation afin qu’elle subisse moins de dommages) ; ou le facteur importance (par exemple ajouter des installations redondantes afin de réduire les dépendances à l’actif original).

Examen.des.critères.de.conceptionL’acceptabilité d’une menace est le critère clé afin de déterminer la façon de concevoir l'ouvrage pour y faire face. Le niveau de performance pour la conception est basé sur l’établissement d’hypothèses et en fixant des attentes et des objectifs. Ces facteurs peuvent inclure les menaces, les victimes, les dommages ainsi que la récupération. Afin d’établir des critères de niveau de performance, le processus de conception doit d’abord être décrit en tenant compte des menaces potentielles pour le pont ou tunnel existant ou projeté. Pour ce faire, le panel recommande aux propriétaires et exploitants de ponts et tunnels d’utiliser un processus en six étapes tel que décrit dans le document BRP.

• Utiliser la valeur « R » de risque déterminée précédemment pour chaque pont ou tunnel, soit existant ou planifié, en utilisant le modèle R = OVI.

i = importance: Importance is a characteristic of the facility, not the hazard. In principle, importance is the same for any hazard. Importance is an indication of consequences to the region or nation in the event the facility is destroyed or unavailable. Is the facility on an evacuation or military mobilization route; is it likely to be used by first responders to emergencies; what is its historic and associated significance; what is its peak occupancy?

Input into this factor typically comes from owners, operators, users, and beneficiaries of the facilities, often governmental sources, and will use factors similar to those used in the first tier prioritization.

This formula properly expresses the interaction among the three factors. Dominant factors magnify risk; negligible factors diminish it. Other formulas, such as models that add the factors, fail to account for their interactive effects. For example, in the absence of a threat (“O” = 0), the risk should be zero as this model provides; additive models would have a residual risk.

The countermeasures that reduce the risk associated with an asset may be designed to reduce the occurrence factor (e.g., make the asset less accessible); the vulnerability factor (e.g., harden the facility to reduce damage); or the importance factor (e.g., add redundant facilities to reduce dependence on the asset).

design criteria considerations and assessment:The acceptability of a threat is the criterion for determining how to design for the threat. Performance level design is based stating assumptions and setting expectations and goals. These factors could include threats, casualties, damage, and recovery. To set a performance level design criteria, the design process must first be described, taking into account the potential threats to the existing or planned bridge or tunnel. The panel recommends that bridge and tunnel owners and operators use a six-step process described in the BRP document.

• Use previously determined “R”, the risk for each bridge or tunnel, whether existing or planned, determined using the R = OVI model

Page 100: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

196 2010R01 1972010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

• Déterminer les menaces. Plusieurs menaces potentielles existent et leur magnitude potentielle est présentée à la figure 41, page suivante.

• Déterminer les conséquences basées sur les menaces potentielles.• Déterminer l’acceptabilité des conséquences. Si ces dernières sont acceptables,

alors les propriétaires pourraient décider de ne prendre aucune mesure. • Si les conséquences sont jugées inacceptables, une des deux options

suivantes sont possibles :• Atténuation des menaces.• Atténuation des conséquences.

• Estimer le coût de réduction et d’atténuation des menaces ou des conséquences.• Recalculer le R = OVI basé sur l’approche recommandée d’atténuation afin

de déterminer la réduction du risque accomplie.• Les actifs qui ont une valeur R élevé devraient être catégorisés comme des

structures de haute priorité. Des mesures devraient être prises afin de réduire les plus grandes menaces reliées à la situation. La conception devrait éviter des dommages irréparables afin que l’infrastructure redevienne opérationnelle dans une période ne dépassant pas 30 jours.

• Les actifs qui ont une valeur R faible devraient être catégorisés comme des structures de basse priorité. Le critère à considérer pour ces structures est que dans l’éventualité d’une grande menace, une perte totale de l’infrastructure soit acceptable.

• Comparer les coûts et les bénéfices (réduction des risques) de diverses stratégies et combinaisons de solutions d’atténuation pour les scénarios d’analyse établis.

• Determine threats. Several potential threats exist and their potential magnitude is presented in Figure 41, next page

• Determine the consequences based on potential threats.• Determine the acceptability of consequences. If the consequences are acceptable,

then the owner may decide to do nothing• If the consequences are unacceptable, then one of two options exists:

• Mitigate the threat• Mitigate the consequences

• Estimate the cost of mitigating the threat or consequence.• Recalculate the R = OVI based on the recommended mitigation approach to

determine the risk reduction achieved• Assets that receive a high R score should be categorized as a “high priority”

structure. Steps should be taken to mitigate the largest possible threat in this situation. Designs should be performed so that in the event of this threat there would be no irreparable damage and the structure could return to operable condition in 30 days.

• Assets that receive a low R score should be categorized as a “low priority” structure. The criteria for these structures, in the event of the largest possible threat, is that the total loss is acceptable.

• Compare the costs and benefits (risk reduction) of varying mitigation combinations and strategies under designated analysis scenarios.

Page 101: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

198 2010R01 1992010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

FIGuRE.41.–.mAGnItudE.dEs.mEnAcEstype.de.menace La.plus.grande.possible La.plus.probableExplosif conventionnel Camion* : 20 000 lbs

Barge : 40 000 lbsBombe** dans une automobile : 500 lbs

Collision avec la structure (par exemple la dimension d’un véhicule qui pourrait percuter la structure)

Camion : 100 000 lbsGVW navire maritime : dépend du cours d’eau

Camion : h-15Navire maritime : (voir AAShTO spéc. LRFD pour un impact avec un navire)

Incendie La plus grande citerne de carburant ou de propaneLe plus grand navire ou citerne de carburant

Camion d’essence (3S-2)Barge de carburant

Marchandise dangereuse (chimique ou biologique)

Ces menaces existent, toutefois, le panel ne se sent pas qualifié pour les quantifier. Donc, d’autres experts devraient évaluer ces menaces de la façon présentée ici.

* La plus grande quantité d’explosif conventionnel — pour un camion, basé sur la plus grande bombe-camion explosée internationalement lors d’un acte terroriste — pour une barge, basé sur l’hypothèse que ceci est la plus grande quantité d’explosif qui pourrait passer inaperçue et sans détection par les systèmes de sûreté couramment en place sur les voies navigables.

** La grosseur d’une charge explosive qui peut être dissimulée dans le coffre d’une automobile qui pourrait échapper à une inspection visuelle.

Les recommandations touchant les critères de conception sont basées sur plusieurs stratégies d’atténuation variées. Les propriétaires ont le choix d’atténuer la menace (prévenir l’accès aux installations par des terroristes), de réduire l’effet des conséquences d’une attaque, ou l’application en concert de ces deux options.

Les exemples suivants représentent des approches afin d’atténuer les menaces :

• établir un périmètre de sécurité à l’aide de barrières physiques.• Inspection, surveillance, détection, télévision en circuit fermé (CCTV).• Présence visible d’effectifs de sûreté.• Réduction du temps d’accès à la cible.

Les exemples suivants présentent des approches servant à réduire l’impact des conséquences :

• création.de.distance.d’éloignement. Le premier niveau d’atténuation afin de réduire l’impact d’une attaque terroriste est d’incorporer des distances de protection pour les composantes structurelles primaires. L’établissement de ces distances est fortement recommandé.

• Ajout.de.considérations.de.redondance.dans.la.conception. Systèmes structurels qui offrent une grande redondance des composantes de la

FiGurE 41 – maGnitudE oF tHrEatSthreat type Largest Possible Highest ProbabilityConventional explosives Truck* : 20,000 lbs

Barge: 40,000 lbsCar bombe**: 500 lbs

Collision to structure (i.e. the size of a vehicle that could collide with a structure)

Truck: 100,000 lbsGVW water Vessel: depends on waterway

Truck: H-15Water Vessel: (see AASHTO spec. LRFD on vessel impact)

Fire Largest existing fuel or propane tankLargest fuel vessel or tanker

Gasoline truck (3S-2)Fuel barge

Chemical/biological HAzMAT

These threats exist; however, the panel is not qualified to quantify them. Therefore, other experts should assess these threats in this way.

* Largest possible conventional explosive – for a truck, based on largest truck bomb over detonated internationally by a terrorist act. For a barge, bases on the assumption that it is the largest explosive that could pass by unnoticed by current security at place at major waterways.

** The size of an explosive charge that can be concealed within the truck of an automobile without being visually detected when inspecting the automobile.

The recommendations for design criteria are based on various mitigating strategies. Owners have the choice to mitigate the threat (preventing terrorists facility access), mitigate the consequence effect (lessening the effect from an attack), or apply both options.

The following are examples of approaches to mitigate threats:

• Establishing a secure perimeter using physical barriers.• Inspection surveillance, detection and enforcement, closed circuit television (CCTV).• Visible security presence.• Minimize time on target.

The following are examples of approaches to mitigate consequences:

• create Standoff distance. The first level of mitigating terrorist attacks should be to incorporate sufficient standoff distances from primary structural components. Providing standoff distance is highly recommended.

• add design redundancy. Structural systems that provide great redundancy among structural components will help limit collapse in the event of severe

Page 102: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

200 2010R01 2012010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

structure afin de limiter la possibilité d’effondrement suite à un acte terroriste imprévisible causant de sévères dommages structurels.

• durcissement/renforcement. des. éléments. de. la. structure. La modernisation et le renforcement structurel de durcissement devraient être assignés prioritairement aux éléments critiques essentiels à l’atténuation de l’étendue de l’effondrement. Les éléments structurels secondaires devraient être considérés, pour leur part, en ayant pour objectif d’atténuer les blessures et les dommages.

• développement.d’un.plan.accéléré.d’intervention.et.de.remise.en.état. Un plan d’évacuation et des routes alternatives devraient être connus et bien établis.

Le BRP présente également un tableau de mesures à envisager basées sur le niveau des menaces à la figure 42 :

FIGuRE.42.–.mEsuREs.BAséEs.suR.LEs.nIVEAuX.dE.mEnAcEniveaux.de.menace..pour.les.ponts

mesures.de.sûreté.additionnelles..(haute.priorité,.ponts.ayant.une.grande.valeur.R)

Sévère • Restreindre l’accès à l’aide de gardiens, des barrières, et des fouilles de véhicules

• Toutes les mesures listées ci-dessous

haut • Augmentation de la fréquence des patrouilles et vérifications• Conduite non-cédulée d’exercices du plan d’intervention d’urgence• Remettre à plus tard l’entretien non-essentiel• Coordination avec la Garde nationale ou les forces de l’ordre en vue

d’une éventuelle fermeture et fouilles de véhicules lorsque le niveau sévère sera atteint

• Toutes les mesures listées ci-dessous

élevé • établissement d’une cédule de patrouilles policières régulières• Toutes les mesures listées ci-dessous

Protégé • Révision et mise à jour des procédures d’intervention d’urgence• Augmentation de la fréquence de vérification des caméras vidéo, des

clôtures, etc.• Toutes les mesures listées ci-dessous

Faible • Surveillance des systèmes de sûreté en place (incluant les vérifications périodiques)

• Dissémination d’information au personnel au sujet des menaces• Amélioration continue et exercice du plan des opérations d’urgence• Formation des intervenants d’urgence• Mise à jour continue de l’évaluation des menaces et des vulnérabilités

structural damage from unpredictable terrorist acts.

• Hardening/Strengthening the Elements of the Structure. Structural retrofitting and hardening priority should be assigned to critical elements that are essential to mitigating the extent of collapse. Secondary structural elements should be dealt with to minimize injury and damage.

• develop an accelerated response and recovery Plan. Alternative routes and evacuation plans should be known and established.

The BRP also presents a Threat Level Based Measures table as shown in Figure 42:

FiGurE 42 – tHrEat LEvEL BaSEd mEaSurESthreat Level to Bridges additional Security measures

(“High Priority” — bridges that score a high r)Severe • Restrict access with guards, barriers, and vehicle searches

• All other meaures listed belowHigh • Increase frequency of patrols and checks

• Conduct unscheduled exercise of emergency response plan• Postpone non-essential maintenance• Coordinate with National Guard or law enforcement for possible

closure and vehicle searches when severe level is reached

Elevated • Implement regularly scheduled police patrols• All other measures listed below

Guarded • Review and update emergency response procedures• Increase frequency of periodic checks of cameras, fences, etc.

• All other measures listed belowLow • Monitor security systems in place (including periodic checks)

• Disseminate threat information to personnel• Regularly refine and exercise emergency operations plan• Conduct emergency responder training• Continually update threat and vulnerability assessments

Page 103: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

202 2010R01 2032010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

.EXEmPLE.3.:.métHodoLoGIE.du.cEntRE.d’EXPERtIsE.En.InFRAstuctuRE.dE. L’InstItut. nAtIonAL. En. InFRAstRuctuRE. (NATIONAL INFRASTRUC-TURE INSTITUTE CENTER FOR INFRASTRUCTURE EXPERTISE)

La troisième méthodologie ou approche est CARVER2 tel que décrit dans « Methodological Framework Paper Identification and Assessment of Vulnerable Assets in the Road Transportation System », ministère des Transports, Service de la sécurité civile, mars 2006.

Cette méthodologie a récemment été développée par le National Infrastructure Institute (NI2) Center for Infrastructure Expertise, grâce à une subvention du United States Department of Commerce National Institute of Standards and Technology en coopération avec le US National Emergency Management Association et le US Department of homeland Security, entre autres. L’acronyme CARVER représente les termes suivants : Criticality Accessibility Recoverability Vulnerability Espyability Redundancy. Pour plus d’information, le site Internet suivant fourni plus de détails : http ://www.ni2cie.org/CARVER2.asp.

La méthode CARVER2 est une application informatique programmée en Microsoft Access® qui utilise un tableur afin de permettre des calculs automatiques à partir de données entrées au sujet de tous les types d’infrastructures, incluant celles de transport. Ce programme offre une méthode facile, rapide et conviviale pour prioriser les cibles (actifs, infrastructures, etc.) jugées vulnérables à de potentielles attaques terroristes. Cet outil compare et évalue les actifs cruciaux et l’infrastructure compris dans un inventaire d’actifs en assignant une valeur numérique à chaque cible potentielle. Cette méthode comparative est un outil de valeur pour les utilisateurs qui envisagent la conduite d’analyses plus approfondies à une date ultérieure.

CARVER2 fonctionne sur ordinateur personnel. Le Centre NI2 d’expertise en infrastructure offre gratuitement l’outil CARVER2 au personnel gouvernemental au niveau fédéral, étatique et municipal. Les agences gouvernementales désirant se procurer l’outil CARVER2 sur disque compact devraient contacter le Centre par courriel à l’adresse suivante : [email protected].

tHird mEtHodoLoGy From nationaL inFraStructurE inStitutE cEntEr For inFraStructurE ExPErtiSE

The third methodology or approach is CARVER2 as described in the “Methodological Framework Paper Identification and Assessment of Vulnerable Assets in the Road Transportation System from the Ministère des Transports, Service de la Sécurité civile, March 2006.

This methodology was recently developed by the National Infrastructure Institute (NI2) Center for Infrastructure Expertise, through a grant from the United States Department of Commerce National Institute of Standards and Technology in cooperation with the US National Emergency Management Association and the US Department of Homeland Security, among others. The acronym CARVER stands for: Criticality Accessibility Recoverability Vulnerability Espyability Redundancy. More information can be found at the following web site: http://www.ni2cie.org/CARVER2.asp.

CARVER2 is a computer program based on Microsoft Access® that uses a spreadsheet to automatically calculate the data entered about all kinds of infrastructure, including for transportation. It offers an easy, quick, and user-friendly method for prioritizing targets (assets, infrastructure, etc.) deemed vulnerable to potential terrorist attacks. The tool compares and assesses infrastructure and critical assets within the asset inventory area by assigning a numerical score to each potential target. This broad-based comparison tool is of great value for users who plan to carry out more in-depth vulnerability studies at a later date.

CARVER2 is a PC-based system. The NI2 Center for Infrastructure Expertise is providing the CARVER2 tool to federal, state, and local government officials free of charge. Government agencies wishing to receive a copy of the CARVER2 CD should contact the Center by email at [email protected].

Page 104: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

204 2010R01 2052010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Figure 43 – Vue d’écran d’un fichier d’inventaire CARVER2

NI2 a produit une version interactive via Internet de l’application CARVER2. Ceci rendra possible l’analyse d’un nombre illimité de points de données en lien avec la cartographie en temps réel par l’utilisation de ‘Maps online’ (Communication personnelle avec Ron Peimer, directeur adjoint, NI2, décembre 2005). En fait, la capacité de cartographier en temps réel est possible grâce aux systèmes GPS/USGS/agences étatiques/systèmes privés. Cette version interactive par Internet est également gratuite pour les agences gouvernementales.

Figure 43 – Screenshot of a CARVER2 inventory record

NI2 has made available a web-based CARVER2 application. This will make it possible to analyze an unlimited number of data-entry points (inputs), coupled with real-time mapping capability using MapsOnLine. In fact, real-time mapping capability is possible via GPS/USGS/state agencies/proprietary systems. This web-based version is also free-of-charge to government agencies.

Page 105: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

206 2010R01 2072010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Figure 44 – Vue d’écran de CARVER2 version internet

sûREté.IntERnE.(PERsonnEL.–.InstALLAtIons.–.InFoRmAtIon)

Ce chapitre traite de la sûreté interne, un domaine spécifique de la gestion des risques. Sûreté interne signifie sûreté du personnel, des installations (par ex., bâtiments et équipements) et sûreté des technologies d’information, qui sont des facteurs essentiels au fonctionnement opérationnel des réseaux routiers. Les risques spécifiques et les contremesures sont soulignés. Les risques spécifiques doivent être traités selon la méthode classique de gestion des risques : définir le contexte, identifier les risques, les analyser, les évaluer et les traiter.

GénéRALItés

La sûreté interne traite de la sûreté du personnel, des installations (par exemple les bâtiments et les équipements) et de l’information.

Figure 44 – Screenshot of a CARVER2 web screen

intErnaL SEcurity (PErSonnEL – FaciLitiES – inFormation tEcHnoLoGy conSidErationS)

This chapter deals with internal security which is a specific field related to risk management. Internal security means the security of personnel, facilities (e.g. buildings and equipments) and information technology (IT) which are essential factors for the operational ability of the road system. The specific risks and the counter measures are outlined. These specific risks have to be treated according to the generic risk management process: define the context, identify the risks, analyze the risks, evaluate the risks, treat the risks.

GEnEraL

Internal Security deals with the security of personnel, facilities (e.g. buildings and equipments) and information technology (IT).

Page 106: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

208 2010R01 2092010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Les risques sont :

• les risques naturels ;• les risques anthropogéniques :• force majeure : incendie, explosion, grèves, manque de personnel, panne de

systèmes techniques, catastrophe technique (par exemple, un accident en centrale nucléaire) ;

• déficiences de l’organisation : accès non autorisé, manque de réglementation, manque de contrôle, manque de formation, etc. ;

• erreur humaine : non-respect des règlements, négligence, risques émanant de collaborateurs externes, etc. ;

• défaillance technique : panne du système de sûreté, panne des systèmes techniques, perte de données, panne d’alimentation électrique, etc. ;

• actes malveillants : vandalisme, sabotage, vol, manifestation, occupation, agression, acte de forcené, prise d’otage, alerte à la bombe, branchement clandestin, attaque logiciel (pirate, virus, etc.), etc.

Les risques mentionnés ci-dessus doivent être traités selon la procédure générique de gestion des risques : définir le contexte, identifier les risques, analyser les risques, évaluer les risques, traiter les risques. Les contre-mesures ont pour objectifs de protéger les vies humaines et d’assurer la capacité fonctionnelle de l’organisation et de ses systèmes. Il y a deux groupes de contre-mesures : la prévention et les plans d’urgence. Ce chapitre aborde les deux aspects.

La sûreté du personnel est la première priorité. Elle est la clé de l’exploitation, de l’entretien et de la construction du réseau routier. Le niveau de sûreté nécessaire pour les installations et l’information est déterminé par leur pertinence pour les processus de gestion.

La plupart des pays sont dotés d’une réglementation relative à la sûreté interne. Elle est souvent divisée en deux parties : une relative au personnel et aux installations et une autre relative à l’information. Cette subdivision sera adoptée dans ce chapitre.

PERsonnEL.Et.InstALLAtIons

La notion de personnel comprend les collaborateurs et les visiteurs. Celle d’installations englobe les bâtiments administratifs, les centres d’entretien, les laboratoires de contrôle des matériaux, les aires de repos, les stations de péage, les centrales de gestion du trafic et des tunnels, les stations de pesage, etc.

The risks are:

• Natural risks (See chapter 4.2.2)• Anthropogenic risks• Force majeure: fire, explosion, strikes, outfall of staff, breakdown of technical

system, technical disaster (e.g. accident in atomic power plant);

• Organizational deficiencies: unauthorized access, lack of regulation, lack of control, lack of training, etc.;

• Human mistake: non respect of regulations, negligence, endangerment by external manpower, etc.;

• Technical failure: blackout of security system, blackout of technical systems, loss of data, blackout of supply, etc.;

• Malicious acts: vandalism, sabotage, theft, demonstration, sit in, aggression, amok, hostage taking, bomb threat, wiretapping, attack against software (hacker, viruses, etc.) etc.

The above mentioned risks have to be treated according to the generic risk management process: define the context, identify the risks, analyze the risks, evaluate the risks, treat the risks. The objectives of countermeasures are protecting human lives, ensuring the operational ability of the organization and its systems. There are two groups of countermeasures: prevention and emergency plans. This chapter addresses both aspects.

The security of the personnel is the first priority. They are keys to the operation, maintenance and construction of the road network. The security level needed for facilities and IT is determined by their relevance for the management processes.

Most countries have regulations regarding internal security. They are often divided into two parts: one related to personnel and facilities and the other one related to information technology. This subdivision will be adopted in this chapter.

PErSonnEL and FaciLitiES

The term personnel include employees and visitors. The term facilities covers head quarters buildings, maintenance stations, material testing laboratories, rest areas, tollbooths, traffic or tunnel operation centres, weigh stations, etc. In this context we will focus on headquarters buildings. The statements are to a certain extent applicable to other facilities such as traffic operation centres.

Page 107: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

210 2010R01 2112010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Dans le cadre de ce rapport, l’accent sera mis sur les bâtiments administratifs. D’une manière générale, les considérations seront cependant aussi valables pour les autres installations, par exemple pour les centrales de gestion du trafic.

Les mesures de prévention et d’intervention peuvent être de trois types : organisationnelles, constructives ou techniques. Elles visent toutes à assurer la sûreté des personnes, des installations, de l’information et des processus opérationnels. La prise en compte du risque débute dès la phase de projet d’une installation (bâtiments compris) et comprend l’élaboration d’un concept de sûreté. Un plan d’intervention d’urgence doit venir s’ajouter à celui-ci lors de la mise en service. Pour un bâtiment, le dispositif d’intervention d’urgence consiste en un concept d’alarme et d’évacuation, ainsi qu’en un centre de commande et de premiers soins. Pour des bâtiments de moindre importance, l’équipement de ces centres peut être élémentaire. Les responsables doivent être désignés nommément dans le plan d’intervention. Ils doivent en outre disposer d’une formation adéquate et leurs responsabilités doivent être clairement définies.

L’accès au bâtiment et aux locaux doit être contrôlé et limité aux personnes qui doivent y exécuter des tâches.

Dans les bâtiments, il faut prendre des mesures pour parer aux risques suivants :

• Incendie : détecteurs de fumée, extincteurs, chemins de fuite ainsi que concepts d’alarme, d’évacuation et de lutte contre l’incendie.

• Explosion : concept d’évacuation et d’intervention.• Objets suspects.• Manifestations.• Occupation.• Menaces émanant de collaborateurs.• Attaque à main armée et prise d’otages.• Alerte à la bombe.

Pour faire face à une alerte à la bombe, il est intéressant d’établir une liste de contrôle qui inclut les points suivants :

• Attribution des différentes zones et pièces à fouiller aux responsables.• Définition de l’ordre selon lequel le bâtiment doit être fouillé.• Comportement en cas de découverte d’un objet suspect.

Les bâtiments des administrations routières abritent les archives qui sont essentielles pour la maintenance du patrimoine routier. Ces archives doivent être protégées contre l’incendie, les inondations et l’humidité. Leur accès doit être contrôlé et limité.

The preventive and emergency measures cover three aspects: organizational, constructional and technical measures. They aim to securing personnel, facilities, material assets, information and operation processes.

The risk management starts in the planning phase of facilities (buildings), which includes the development of a security concept. An emergency plan has to be worked out when the facilities are taken into operation. Such a plan includes, for buildings, an alarm and evacuation concept, an emergency operation centre and a first aid station as mandatory elements. The equipment of the operation centre and the first aid station may be basic. The persons in charge must be designated in the emergency plan. They have to be trained and their responsibilities have to be clearly specified.

The access to the building and to its different rooms should be controlled and limited to those who really need it to perform their jobs.

In buildings, countermeasures should be taken for the following risks:

• Fire: fire detector, extinguisher, escape ways, concepts for alarm, evacuation and fire fighting;

• Explosion: concepts for evacuation and intervention;• Suspicious objects;• Demonstration;• Sit in;• Threat by employees;• Hold up and hostage;• Bomb alarm.

There should be checklists for bomb alarm and building search. The latter should include:

• the assignment of the different zones and rooms to the persons in charge;• stipulate the order of the searching action;• specify how to behave when suspicious objects are detected.

The buildings of the road administrations contain the archives which are essential for the maintenance of the road infrastructure. The archives must be protected against fire, floods, and humidity. Access has to be controlled and limited.

Page 108: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

212 2010R01 2132010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

InFoRmAtIon

Les services administratifs modernes ont des règlements pour la planification de l’infrastructure informatique et la gestion de l’information. Les mesures de sûreté sont en général basées sur des normes internationales, comme par exemple la norme ISO/IEC 17799.

Ces réglementations définissent des exigences de sûreté et des mesures de protection concernant :

• l’intégrité et l’état de fonctionnement des services informatiques et des sources d’information,

• la confidentialité, l’intégrité, la disponibilité et la traçabilité des données.

à un niveau supérieur de l’administration, un comité est responsable de la sûreté informatique. Il émet des directives et règle l’attribution de droits et de mandats relevant de la sûreté informatique, en particulier pour ce qui est des pare-feu (firewalls), des droits d’accès et des privilèges.

Au sein de chaque service, les personnes responsables de la sûreté informatique doivent être désignées nommément. Le niveau de protection requis doit être établi et les mesures nécessaires doivent être prises. Les incidents doivent être répertoriés et communiqués à la personne ou à l’autorité compétente qui les examinera.

Aux risques mentionnés au point 7.1 viennent s’ajouter des risques spécifiques aux technologies de l’information et de la communication :

• Force majeure : humidité, poussière, champs magnétiques.• Déficiences organisationnelles : manque de tests et de contrôles, complexité

du système ou de ses composants, gestion du changement insuffisante.• Erreur humaine : administration déficiente, erreurs de comportement des

utilisateurs.• Défaillance technique : défaillance du système informatique (hardware), point

faible d’un logiciel, panne de courant.• Actes malveillants : piraterie informatique, chevaux de Troie, virus, données

falsifiées, abus de droits d’accès, exploitation de points faibles.

Les risques qui menacent l’infrastructure informatique et son bon fonctionnement doivent être contrés par des mesures telles que :

• Une segmentation des réseaux en zones de sûreté séparées avec des politiques de sûreté sur mesure. Les pare-feu font partie de cette segmentation.

inFormation tEcHnoLoGy (it)

Modern administrations have regulations for planning and using IT. The security measures are usually based on international standards like ISO/IEC 17799.

These regulations define security standards and specify protection measures for:

• integrity and operational availability of the IT-systems and;

• confidentiality, integrity, operational availability and traceability of the data.

At a higher level of the administration, an organization is responsible for the IT-security. The so called IT-security board issues guidelines and allocates the security relevant authorizations and assignments, especially regarding firewalls, access rights, and privileges.

Within the administrative units, the persons in charge of the IT-security have to be designated. The required protection level has to be established and the appropriate measures have to be implemented. Security incidents have to be reported to the persons or organization in charge, which will examine them.

In addition to the risks mentioned above under General there are specific risks related to IT:

• Force majeure: humidity, dust, magnetic field;• Organizational deficiencies: lack of tests and control, complexity of systems or

components, deficient change management;• Human mistake: deficient administration, incorrect behavior of the users;

• Technical failure: hardware defect, software weak point, breaks out of power supply;

• Malicious acts: hacker, Trojaner horses, viruses, falsified data, abuse of access rights, exploitation of weak points.

These risks which endanger the IT infrastructure need to be faced with countermeasures such as:

• Segmenting networks into separate security zones each with its own tailored security policy. Firewalls are part of this segmentation; they control the

Page 109: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

214 2010R01 2152010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Ils contrôlent la transmission des données entre des réseaux qui ont des niveaux de sûreté différents.

• Des mesures de prévention contre les intrusions comprenant une combinaison de techniques, telles que l’analyse des anomalies du protocole ainsi que l’analyse des signatures et des comportements. Le contrôle des accès, les mots de passe, la protection contre les virus et la collecte de données à l’insu de l’utilisateur (spyware) appartiennent à cette catégorie de mesures.

• Une analyse de la corrélation entre les incidents de sûreté et une gestion visant à isoler et à prioriser les menaces en temps réel.

• Une procédure de gestion de la vulnérabilité efficace comprenant des audits réguliers de l’environnement local du réseau.

• La sauvegarde des données, logiciels et configuration (back up) ainsi que procédure de récupération en cas de désastre.

Selon l’article « Prévention des failles de la sûreté interne » (Preventing Internal Security Breaches) de G. Daly dans Intranet Journal, les entreprises ont tendance à se concentrer sur la protection contre les menaces extérieures et le vaste monde qui apparemment fait peur (www.intranetjournal.com/articles/200607/ij_07_13_06a.htlm). Pourtant, une enquête effectuée à la demande de Computing Technology Industry Association Inc. (CompTIA) en 2005 a montré que 60 % des failles du système de sûreté des entreprises pouvaient être attribuées à des erreurs humaines, 20 % à des disfonctionnements techniques et le reste à une combinaison des deux. Nous consacrons peut-être trop de temps à tenir les loups éloignés de la maison alors qu’en réalité ce ne sont quelques mauvaises poules qui constituent le plus grand risque et causent les plus grandes pertes à l’entreprise. Un extrait de cet article est reproduit ci-dessous.

« Il y a plusieurs manières de protéger une organisation contre les menaces externes. De fait, toute une discipline de la technologie de l’information est dédiée à la sûreté et aux produits qui peuvent nous protéger des virus et autres attaques visant nos systèmes. Pare-feu, protection contre la collecte de données à l’insu de l’utilisateur, protection anti-virus, système d’identification de l’utilisateur externe, la liste des menaces potentielles et des solutions est presque infinie. Mais qui et quoi nous protège de nous-mêmes ?

en ce qui concerne le comportement humain, les deux types principaux de menace interne sont la malveillance et l’inadvertance. en prenant compte de la technologie, il nous faut ajouter une troisième menace, la défaillance technique. Si nous réfléchissons bien, ce sont les seules possibilités. Ou bien quelque chose flanche (matériel informatique, effet parasite, etc.), un collaborateur décide délibérément de nuire ou un collaborateur cause des

transition between networks with different security levels.

• Intrusion prevention leveraging a combination of detection methodologies such as a protocol anomaly analysis, signature analysis and behavior analysis. Access controls, passwords, anti-spy ware, and virus protection belong to this category of countermeasures.

• Security event correlation and management to isolate and prioritize security threats in real time.

• Effective vulnerability management process that includes regular audits of the internal network environment.

• Safeguard of data, software and configurations (backup) inclusive disaster recovery.

According to the article “Preventing Internal Security Breaches” by P.G. Daly in the Intranet Journal (www.intranetjournal.com/articles/200607/ij_07_13_06a.htlm), most of the focus tends to be on protecting the enterprise from external threats and the seemingly scary world at large. However, a study commissioned by the Computing Technology Industry Association Inc. (CompTIA) in 2005 found that 60 percent of the surveyed company’s security breaches could be attributed to human error, 20 percent to technical malfunctions, and the remainder to a combination of the two (1). Perhaps we are spending too much time keeping the wolves out of the hen house when it is in fact a few bad hens causing the greatest threat and loss to our organizations. Please find below an extensive extract of this article :

“There are many tangible ways to protect the organization from external threats. In fact an entire discipline within the information technology (IT) field is dedicated to security, and products abound to keep us safe from viruses and unwanted attacks on our systems. Firewalls, anti-spy ware, virus protection, authentication systems for the remote worker -- the list of potential threats and solution providers is almost endless. But, who and what are protecting us from ourselves?

When it comes to human behavior, the two main types of internal threats are intentional and accidental/inadvertent. If you’re dealing with technology you can add a third possible threat called technology malfunction. When you boil it all down, those are the only possibilities. either some “thing” breaks (hardware, glitch, etc.), an employee deliberately chooses to do damage (revenge), or they do so unintentionally. Unintentionally can be

Page 110: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

216 2010R01 2172010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

dégâts par inadvertance. L’inadvertance va de l’incompétence lors de la configuration du système, qui conduit à des failles du dispositif de sûreté, à la complaisance en matière de contrôles (par exemple attribution de la sûreté du système à de nouveaux employés).

Que pouvons-nous faire ? Vaut-il la peine de lutter contre les menaces internes ? S’agit-il d’une tâche impossible comme garder un troupeau de chats ? La recette est de s’efforcer constamment de trouver l’équilibre labile entre contrôles et liberté permettant aux collaborateurs de faire leur travail sans avoir les mains liées par des procédures. Le plus grand dilemme, quand vous avez un problème de sûreté, est que les personnes auxquelles vous devez faire confiance, les administrateurs du système, ressemblent à des héros de bande dessinée quand il s’agit de faire face à des dégâts affectant le fonctionnement du système. »

Vous trouverez ci-dessous quelques mesures éprouvées pour assurer la sûreté interne.

octroi.de.l’accès.au.systèmeQui a accès à quoi ? Ou bien il s’agit d’un nouveau collaborateur ou d’un collaborateur changeant de fonction au sein de l’organisation. De quel niveau d’accès ont-ils réellement besoin ? Ainsi, lorsqu’un collaborateur est affecté à d’autres tâches, son accès aux systèmes dont il n’a plus besoin doit être révoqué selon une procédure bien établie.

Révocation.de.l’accès.des.anciens.collaborateursQue le collaborateur ait été licencié ou soit parti à la retraite après de nombreuses années de loyaux services, retirez ses droits d’accès au système aussitôt que possible. Dans l’environnement actuel avec ses nombreuses possibilités d’accès à distance et ses systèmes disparates, il est primordial d’avoir une possibilité de révoquer l’accès général au système pour ensuite révoquer par cascades les privilèges relatifs aux systèmes spécifiques.

Automatisation.des.procédures.de.sûretéAutomatisez autant que possible. Les collaborateurs viennent et partent et sont surchargés. Vous ne pouvez pas vous permettre de risquer une défaillance grave du système de sûreté tout simplement parce que la boîte aux lettres de quelqu’un est pleine.

configuration.appropriée.du.matériel.informatique.et.des.logicielsNe pas accepter aveuglement les configurations par défaut, ni leur faire confiance

anything from not being properly trained in how to set up the system, which results in security holes, to simply becoming complacent about following prescribed checks and balances (for example, granting system security to new employees).

So, what can you do? Is guarding against internal threats futile? Is it akin to the impossible task of herding cats? The secret is in constantly striving to find that elusive balance between controls (battening down the hatch so insiders can’t knowingly or unknowingly blow up the ship) and freedom for employees to get the job done without being so bogged down in policy and procedure that their hands are tied. The biggest Catch 22 when it comes to system security is that the very people you need to trust - the system administrators - are the people with powers akin to comic book heroes when it comes to being able to wreak havoc on system operations.

Here are some tried and true best practices for internal security measures.

Granting System access Who gets access to what? Whether it’s a new employee or an existing employee changing roles, what level of access do they really need? Also, as employees bounce from role to role you need a process in place to revoke their access to systems for which they are no longer responsible. I can’t tell you how many times in my different jobs I have continued to have root access to systems simply because no one ever took my access away once I moved on.

revoking terminated Employee access aSaP Whether the employee was fired for cause or simply retired after many years of company loyalty, remove their system access as soon as possible. In today’s landscape of numerous remote access points and disparate systems, that means it is vital to have one way of removing overall network access and then cascading the revocation of privileges to other, specific systems.

automate Security Policies and Procedures To the extent you can, automate. Employees come and go and are overworked. You can’t risk having an important security policy fall by the wayside simply because someone’s inbox is full.

Proper configuration of Hardware and Software Don’t live blindly accepting and trusting in the defaults. Some of the most

Page 111: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

218 2010R01 2192010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

sans examen. Quelques-uns des logiciels de serveur et de réseau les plus utilisés font les choix les plus idiots pour la configuration standard par défaut (du point de vue de la sûreté). Prenez le temps de vérifier complètement et de comprendre les choix que vous faites.

Formation.continueLa technologie évolue à grande vitesse. Veillez à ce que les personnes clés, qui installent et configurent les logiciels avec des risques pour la sûreté importants, soient au courant des dernières informations, des meilleures pratiques et des lacunes de sûreté connues.

Registre.des.droits.d’accès.et.mots.de.passeN’accordez les droits qu’à ceux qui en ont réellement besoin pour exécuter leurs tâches. Veillez à ce que chaque personne ait un remplaçant. N’utilisez pas de mot de passe de groupe pour des activités qui peuvent mettre en cause le bon fonctionnement du système parce que dans ce cas il n’y a pas contrôle et pas de traçabilité.

Vérification.des.codes.et.procédures.de.gestion.des.versionsAucune personne ne devrait avoir la possibilité de créer, d’introduire et de remplacer des codes dans un environnement productif sans vérification par un tiers. La simple vérité que l’honnêteté se trouve renforcée par le regard d’un groupe de personnes est aussi valable quand il s’agit de codes et d’informaticiens. Prenez l’exemple de USB Paine Webber, où un employé qui voulait se venger a mis 2 000 serveurs hors service et produit un tel désastre que quatre ans plus tard, les dommages n’ont pas encore été complètement réparés. La combinaison d’une politique et d’un groupe de personnes exerçant un autocontrôle sur les activités journalières est décisive pour éviter qu’un individu ait toute liberté de faire ce qui lui fait envie.

mesures.élémentaires.de.protection.physiquesLes informaticiens sont très occupés, stressés, surchargés et pas toujours à leur affaire. Cela signifie que des mesures de protection physiques sont la première chose à mettre en place. Faire en sorte que les postes de travail soient automatiquement bloqués quand personne n’est là et que les accès des administrateurs au système informatique ne restent pas connectés s'ils ne sont pas utilisés sont des dispositions très efficaces.

contrôle.régulier.des.dispositifs.de.sauvegarde.(backup).et.de.récupération.des.donnéesCes mesures ne suffiront pas à elles seules à éviter une défaillance du système ; elles faciliteront toutefois grandement le retour à la normale. Elles ne seront pas seulement utiles si le système devait subir une agression, mais également en cas de catastrophe naturelle ou anthropogénique.

commonly used network and server software makes some of the dumbest choices for defaults (from a security standpoint). Take the time to thoroughly review and understand the choices you are making.

ongoing training Technology changes at warp speed. For key personnel who are installing and configuring software with far-reaching security risks (and what software doesn’t have that these days), keep them up to date with the latest information on best practices and known security holes.

root access accounts and Passwords Grant root access only to those who really need it to perform their jobs. Always have at least one person as a backup for each function. Do not use common “group” logins for root access activities, because activity cannot be monitored or traced to an individual.

code review and release Procedures No one person should have the power to create, implement, and release code into production environments without some checks and balances involving another person. The simple truth that there is an unspoken enforced honesty when a group of people are watching, and it’s true for coders as well. Take the case of USB Paine Webber, where one employee who wanted revenge planted a logic bomb which took down over 2,000 servers and wreaked such havoc that four years later the damage still hasn’t been completely repaired (2). The combination of policies coupled with a group of people self-policing daily activities is critical to preventing one individual from having free range to do what they please.

Basic Physical Safeguards As IT employees, we’re busy, stressed, overwhelmed, and burned out. That means basic safeguards are the first thing to get dropped. Ensuring workstations are automatically locked when no one is around and administrators accounts are never left idly logged in are simple yet effective preventative measures.

regularly test Backup and disaster recovery

While this step alone won’t prevent a breach from occurring, it’ll certainly make getting life back to normal much more bearable and certain. This step will not only help you in the event of an attack but also in the event of any unforeseen disaster, natural or manmade.

Page 112: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

220 2010R01 2212010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Audits.réguliersLes audits sont rarement appréciés par les personnes qui y sont soumises. Cependant, la surveillance continue effectuée par les propres services informatiques ainsi que les audits internes et externes ont le mérite de jeter un nouvel éclairage sur l’ensemble du dispositif de sûreté. Il est beaucoup moins coûteux et douloureux de mettre en œuvre quelques recommandations d’un audit que de se remettre d’une défaillance grave du système informatique.

BoîtE.à.outILs.tEcHnIQuEs.En.GEstIon.dEs.RIsQuEs

Le comité technique sur la gestion des risques pour les routes (CT 3.2) de l’AIPCR a élaboré une première version de la boîte d’outils techniques. Cette boîte est une base de données de technologies utiles pour la gestion des risques dans chaque phase de la gestion des routes, c’est-à-dire, de la planification, la conception, la construction, l’exploitation (maintenance) et reconstruction. Elle se compose de fiches d’inventaire et de leurs annexes.

Qu’Est-cE.Qu’unE.FEuILLE.d’InVEntAIRE.?

Les fiches d’inventaire sont conçues de façon à présenter aux pays en développement la technologie de gestion des risques utilisée principalement au Japon. Les outils de différents pays seront ajoutés à ceux-ci. L’inventaire a pour but d'assister dans les processus de budgétisation et de gestion des routes en utilisant une application facile à comprendre de gestion des risques.

Les fiches d’inventaire décrivent chaque technologie utilisée ou outil de gestion du risque (par exemple, l’efficacité et le coût), ainsi que des recommandations pour une utilisation future. Ils sont divisés en gestion des risques naturels et anthropiques. Chaque feuille d’inventaire est structurée en strates en fonction de l’exécution des phases de la gestion des routes : la planification, la conception, la construction, l’exploitation (l’entretien, la gestion et l’administration) et de la reconstruction.

Toutes les fiches sont classées en fonction de processus de gestion des risques : analyse des risques, évaluation des risques, le traitement, la communication des risques et de la gestion des risques.

audit regularly Auditing is rarely someone’s favorite word. However, ongoing monitoring by your operational department as well as internal and external audit professionals is worth the fresh perspective it lends to your overall security environment. It is far less costly and painful to implement a few audit recommendations than it is to experience and recover from a major breach.”

riSK manaGEmEnt tEcHnicaL tooLBox

PIARC technical committee on Risk Management for Roads (TC 3.2) has developed a first version of technical toolbox, which is a database of useful technologies for risk management in each road management phase, i.e., planning, design, construction, operation (maintenance) and reconstruction, and consists of the inventory sheets and their appendices.

WHat arE invEntory SHEEtS?

The inventory sheets are prepared to introduce the risk management technology used mainly in Japan to the developing countries, and the risk management technology/tools from different countries will be added to them. The inventory sheets aim to assist budgeting and road management with easy application of risk management technologies/tools.

The inventory sheets record the applicability (e.g., effectiveness and cost) of used individual technologies/tools of risk management and the perspective of technologies/tools for future use. They are divided into natural hazards management and man-made hazards management. Every inventory sheet is structured in strata according to the execution phases of road management: planning, design, construction, operation (maintenance, management and administration), reconstruction.

All sheets are classified according to risk management process: risk analysis, risk assessment, risk treatment, risk communication and risk management.

Page 113: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

222 2010R01 2232010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

utILIsAtIon.dEs.FEuILLEs.d’InVEntAIRE

Les fiches d’inventaire appropriées peuvent être sélectionnées comme le montre la figure ci-dessous :

• choisissez la fiche d’inventaire correspondant au type d’événements, soit naturel ou anthropique ;

• reportez-vous à la phase correspondante de l’exécution du projet et au processus de gestion des risques ;

• recherchez la feuille d’inventaire appropriée.

Figures 45 et 46 - Structure de la feuille d’inventaire et utilisation de la feuille d’inventaire

Les avantages des feuilles d’inventaire sont :

• de présenter des idées générales sur les technologies et les outils, les événements antérieurs, le coût, etc. ;

• de faciliter le processus de prise de décisions à adopter pour acquérir ou développer les meilleures technologies ou outils de gestion des risques selon le résumé de chaque feuille ;

• de faciliter la révision et l’amélioration des outils de gestion de risques ;• d'être un outil efficace de transfert de technologies vers les pays en

développement ; • d'établir un lien avec leur annexe pour plus de renseignements.

uSaGE oF invEntory SHEEtS

The appropriate inventory sheet can be selected as shown below figure:

• Choose the corresponding inventory sheet numbers according to natural or man-made event management;

• Refer to the corresponding phase of project-execution and to risk management process;

• Look up for the appropriate inventory sheet.

Figures 45 and 46 — Structure of inventory sheet and usage of inventory sheet

Advantages of the inventory sheets are:

• Provision of general idea of technologies/tools, precedents, cost, etc.;

• Easy decision-making to adopt best technologies/tools for risk management process according to the summary in each sheet;

• Easy revision and expansion based on their development in electrical availability;• Usage as an effective tools of technology transfer to developing countries;

• Linkage to their appendix for further reference.

Page 114: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

224 2010R01 2252010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

LEs.FEuILLEs.d’InVEntAIRE.PouR.LA.GEstIon.dEs.éVénEmEnts.nAtuRELs

Les principaux événement naturels pouvant causer des catastrophes routières sont les inondations, les tremblements de terre, les glissements de terrain, le vent, les vagues et les hautes marées, les tsunamis, les tempêtes de neige. Actuellement, 115 fiches d’inventaire pour la gestion d’événements naturels sont disponibles.

Des exemples de fiches d’inventaire pour la gestion d’événements naturels sont indiqués dans le tableau 7, page suivante.

LEs. FEuILLEs. d’InVEntAIRE. PouR. LA. GEstIon. dEs. éVénEmEnts.AntHRoPIQuEs

Les événements anthropiques pouvant causer des catastrophes routières sont classées en deux catégories : les événements liés à des activités courantes (les accidents de la circulation, le transport des marchandises dangereuses, la surcharge des véhicules et les incendies de tunnel) et les événements indirectes (accidents à proximité des routes qui ne sont pas causés par le trafic des utilisateurs, tels que les incendies, les accidents nucléaires, les explosions dans les usines, le terrorisme et la guerre). Actuellement, plusieurs fiches d’inventaire pour la gestion d’événements anthropiques sont disponibles.

Des exemples de fiches d’inventaire pour la gestion d’événements anthropiques sont indiqués dans le tableau 7, page suivante.

déVELoPPEmEnts. FutuRs. PouR. LA. BoîtE. à. outILs. tEcHnIQuEs. dE.GEstIon.dEs.RIsQuEs

Dans le futur, des exemples de divers pays devraient être ajoutés pour bonifier la boîte à outils techniques de gestion des risques, et élargir la couverture des feuilles d’inventaire en y intégrant de nouveaux éléments. La boîte d’outils techniques de gestion des risques sera publiée dans une brochure ou sur le site Internet de l’AIPCR.

invEntory SHEEtS For tHE naturaL EvEnt manaGEmEnt

Natural event prone to road disasters are flood, earthquake, landslide, windstorm, wave/surge, tsunami, snow damage, and others (settlement, volcano eruption). Presently 115 inventory sheets for the natural event management are available.

Examples of inventory sheets for the natural event management are shown Table 7, next page.

invEntory SHEEtS For tHE man-madE EvEnt manaGEmEnt

Man-made event prone to road disasters are classified into the direct event (traffic accidents, dangerous goods transport, overloading vehicles and tunnel fire) and the indirect event (accidents near roads not caused by traffic users, such as fire, effect of nuclear accident, explosion in the factories, terrorism and war). Presently inventory sheets for man-made event management are available.

Examples of inventory sheets for man-made event management are shown as below in Table 7, next page.

FuturE dEvELoPmEnt oF tEcHnicaL tooLBox For riSK manaGEmEnt

In the future, examples from various countries should be added to the technical toolbox for risk management, to expand the inventory sheets and to rearrangement of new items. The technical toolbox for risk management will be published in a booklet or on the PIARC website.

Page 115: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

226 2010R01 2272010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Table 7 — Table presenting the use of inventory sheets for risk managementTableau 7 - Exemple d’une feuille d’inventaire (prévention)

Page 116: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

228 2010R01 2292010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Figure 47 - Exemple d’une feuille d’inventaire (Tsunamis) Figure 47 — Example of inventory sheet

Page 117: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

230 2010R01 2312010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Figure 48 - Exemple d’une feuille d’inventaire (Glissement de terrain) Figure 48 — Example of inventory sheet (Tsunami signal planning)

Page 118: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

232 2010R01 2332010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Figure 49 - Exemple d’une feuille d’inventaire (Enlèvement de sol) Figure 49 — Example of inventory sheet (Slope framework)

Page 119: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

234 2010R01 2352010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Figure 50 - Exemple d’une feuille d’inventaire (Prévention de la rupture d’un tablier de pont) Figure 50 — Example of inventory sheet (Earth removal work)

Page 120: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

236 2010R01 2372010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Figure 51 - Exemple d’une feuille d’inventaire (Inspection d’un tunnel à l’aide du laser) Figure 51 — Example of inventory sheet (Bridge deck collapse prevention)

Page 121: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

238 2010R01 2392010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Figure 52 - Exemple d’une feuille d’inventaire (Réglementation concernant la circulation dans des tunnels) Figure 52 — Example of inventory sheet (Tunnel inspection using a laser scanner)

Page 122: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

240 2010R01 2412010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Figure 53 - Exemple d’une feuille d’inventaire (Structures de protection d’une poutre de pont) Figure 53 — Example of inventory sheet (Regulations for passage through large tunnels or under tunnels)

Page 123: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

242 2010R01 2432010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Figure 54 - Exemple d’une feuille d’inventaire (Matrice de risques, méthode du scénario universel) Figure 54 — Example of inventory sheet (Bridge beam protectives structures)

Page 124: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

244 2010R01 2452010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

concLusIon.Et.REcommAndAtIons

concLusIon.GénéRALE

L’évaluation des risques est de toute évidence devenue un élément incontournable dans l’évaluation de l’environnement et les questions de santé publique. C’est également et particulièrement vrai pour l’ensemble du processus de gestion des routes, soit de la conception à l’exploitation et la maintenance et à travers toutes les phases de planification, de conception et de construction d’un projet. De plus, une attention croissante est consacrée à la sûreté des systèmes d’autoroutes.

Figure 55 — Example of inventory sheet (Universal scenario method, risk matrix)

concLuSion and rEcommEndationS

GEnEraL concLuSion

Risk assessment is clearly a growing presence in the evaluation of environmental and public health issues. This is also and particularly true for the overall process of management of roads, from the conceiving to the operation and maintenance through all phases of planning, design and construction and a growing attention is devoted to the security of highways systems. The aim of PIARC CT 3.2 is to foster more and more the worldwide awareness on this specific subject.

Figure 55 - Exemple d'une feuille d'inventaire (Matrice de risques, méthode du scénario universel)

Page 125: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

246 2010R01 2472010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

L’objectif de l’AIPCR est de favoriser l’émergence d’une prise de conscience à l’échelle mondiale sur ce sujet.

Sur le terrain, nous pouvons observer que, grâce à de nouvelles connaissances, des compétences et des nouvelles technologies, il est maintenant possible de prédire avec plus de précision les phénomènes et, espérons, adopter des contre-mesures adéquates. La phase de prévention est certainement la plus décisive et cruciale dans la mesure où les véritables choix techniques sont pris. Des choix qui, à partir du point de vue de l’administration ne peuvent pas être autre chose que « appropriés » pour le besoin à court terme. Toutefois, en disant « appropriés », ces derniers visent à dire « suffisants » et « non redondants ». En fait, ce n’est certainement pas acceptable que seulement pour des raisons économiques, les administrations puissent décider de ne pas assumer les mesures nécessaires pour réduire les risques liés aux routes. D’autre part, il n’est pas acceptable que dans une période comme actuellement, avec de plus en plus de contraintes budgétaires publiques, que les ressources publiques soient gaspillées sur l’autel d’un vague critère de « principe de précaution », où il n’y a en fait pas un risque raisonnable.

En outre, les mesures prises pourraient difficilement être communes à l’échelle internationale. Elles doivent en effet être cohérentes avec les aspects sociaux, économiques, règlementaires, avec les types d’infrastructures et les changements climatiques. Tous ces facteurs varient fortement d’un pays à l’autre et se caractérisent par une forte dynamique évolutive.

C’est pourquoi l’une des questions les plus importantes concernant la gestion des risques est de garantir que le décideur sera constamment au fait de ces changements. L’élaboration, la transmission en temps opportun et le partage des informations font partie d’une série de défis pour l’avenir. Un autre défi sera le développement et la mise en place de mesures spécifiques qui sont « appropriés » pour protéger les systèmes et, en outre, renforcer la coopération et la coordination tant au niveau national qu’international. élever le niveau de conscience, de volonté et de dévouement permettra de faciliter la mise en œuvre de mesures préventives. Il est donc nécessaire que nous ayons la clé des connaissances qui pourraient être transférées là où elles sont nécessaires et que les notions liées à la prévention appliquées au niveau national soient rapidement transformées dans la mesure où cela est possible et raisonnable en de véritables « travaux de génie civil et équipements », puis dans la « pratique », ou encore mieux, dans des procédures standardisées adoptées à l’échelon des pays.

Les autorités de transport sont appelées à l’avant-garde dans les cas de crise. Elles ont alors besoin de vérifier l’ensemble des outils juridiques et réglementaires

On the specific field, we can observe that, thanks to new knowledge, competence, and technologies, it is now possible to predict phenomena more accurately and hopefully adopt adequate countermeasures. The prevention phase is certainly the most decisive and critical one in that the real technical choices are taken, choices that, from the administration point of view cannot be anything but “appropriate” for the need at hand. However, in saying “appropriate” it is meant to say “sufficient” and “not redundant”: in fact, it is certainly not acceptable that for only economic reasons the Administrations can decide not to assume the measures needed for reducing road risks, but on the other hand, neither it is acceptable that during a period like the current one, of increasing limitations on public budgets, that public resources are wasted on the altar of a vague criterion of “Precautionary Principle”, where there is in fact not a reasonable risk.

Furthermore, the measures taken could hardly be common at international level, they must in fact be coherent with a social, infrastructural, economic, settlement and climatic scenario. All the above factors are indeed strongly dependent from country to country and characterized with a strong evolutionary dynamics.

This is why one of the most significant issues regarding risk management is to guarantee that the decision-maker will be constantly updated concerning these changes. The elaboration, the transmission, and the timely use of information are part of a series of challenges for the future; another challenge will be the development and the realization of specific measures that are “appropriate” for protecting the systems; moreover, reinforcing cooperation and coordination on both national and international levels: raising the level of awareness, readiness, and dedication; increasing the implementation and the execution of preventive measures. It is therefore necessary that we the key knowledge could be transferred where it is needed, and that the concepts of prevention applied on a national level are rapidly transformed inasmuch as possible and reasonable into real “civil engineering works and equipment”, and then into “practice”, or even better, into “standard procedures” adopted at Country level.

And whereas transport authorities are called to the forefront in cases of crisis, they need to check all of the legal and regulatory tools at their disposal to take

Page 126: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

248 2010R01 2492010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

mis à leur disposition afin de prendre les mesures pour atténuer la menace et répondre adéquatement à la situation.

Une approche coordonnée en matière de sécurité est essentielle, tant au sein des gouvernements nationaux qu’entre les pays dans un cadre multilatéral. Ce forum multilatéral semble être plus développé à la fois pour le transport maritime et l’aviation, mais il n’a pas encore pleinement mis en place pour les autres modes de transport intérieur et, plus généralement, pour la chaîne de transport dans son ensemble.

Il est en effet inconcevable que l’efficacité et la sécurité ne puissent être assurées dans un système aussi géographiquement vaste et complexe sans une coopération efficace à tous les niveaux, c’est-à-dire non pas seulement entre les ministères au sein d’un pays et entre les pays, mais aussi et c’est tout aussi important, entre les ministères et les intervenants du secteur privé qui ont, dans plusieurs des pays, la responsabilité du fonctionnement des réseaux routiers (ASECAP en Europe, IBTTA, etc.), mais aussi les acteurs privés dans les domaines du transport, des communications, de la sécurité, et ainsi de suite.

La nécessité d’une plus grande coopération au niveau international provient des tendances actuelles et ressort clairement dans le présent rapport pour les domaines des infrastructures critiques, des catastrophes naturelles et de la sûreté.

En résumé, du point de vue des administrations routières, les conséquences des dommages sur le réseau routier peuvent être réduits suivant la figure 56, page suivante.

a). Planification.stratégiqueLe développement de la conscience du risque et d’une culture de sûreté et de sécurité ; créer les cadres nationaux et internationaux de coopération dans le but d’avoir une politique cohérente à travers des réseaux et de vastes zones soumises aux mêmes risques. Assurer également un meilleur partage des connaissances et des technologies entre les pays.

Renforcer le rôle du secteur privé dans la gestion des risques aussi choisir les bonnes mesures incitatives.

• Suivi de l’efficacité du réseau routier et de l’exploitation.• Maintenir à jour et efficace un système approprié de surveillance et de

contrôle du réseau.• Les exercices de formation et de partage d’informations entre tous les

intéressés, les organismes publics et privés peuvent jouer un rôle clé dans cet effort.

action to mitigate threat and respond to attack.

A coordinated approach to security is essential, both within national governments and among countries in a multilateral framework. This multilateral forum seems to be more developed for both maritime transport and aviation, but has yet to be fully established for inland transport modes and more generally, for the transport chain as a whole.

It is in fact inconceivable that efficiency and security can be assured in such a geographically vast and complex system without effective co-operation at all levels, i.e. not just among government departments within a country and between countries, but also and equally importantly between government departments and the private sector stakeholders that have in several countries the operation of the road (ASECAP in Europe, IBTTA, etc.), but also private stakeholders in transportation, communications, security, and so on.

The need for a greater cooperation at international level clearly comes from the current and future trends exposed in this report for the fields of critical infrastructures, natural disasters and security.

In synthesis, from the point of view of road Administrations, the consequences of public damages on the road network can be reduced by the figure 56, next page and explanation:

a) Strategic planningThe development of risk awareness and a safety and security culture; Create the National and International frameworks for co-operation in order to have a coherent policy across wide networks and wide areas subjected to the same risk, achieving also a better sharing of knowledge and technologies across countries;

Enhance the role of the private sector in risk management choosing also the right incentives.

• Monitoring of the road network efficiency and operation,• Keep up-to-date and effective an adequate system of surveillance and monitoring

of the network,• Training exercises and information sharing between all the interested public

and private bodies can play a key role in this effort.

Page 127: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

250 2010R01 2512010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Figure 56 —Operation and strategies

Le développement cohérent des nouvelles techniques et technologies pour la prévention et le déploiement du réseau afin de réduire la vulnérabilité du système routier vers une meilleure utilisation des capacités de production de remplacement du réseau routier et de construction des chaînons manquants peuvent rendre moins vulnérable l’ensemble du réseau, développer, déployer et utiliser les nouvelles technologies pour la prévention et l’atténuation des conséquences.

b). Planification.des.opérationsToutes les infrastructures ne peuvent être protégées contre toutes les menaces. Les stratégies et les mesures de protection doivent être proportionnelles au niveau du risque. En appliquant les techniques appropriées de gestion des risques, l’attention devrait être centrée sur les zones de plus grand risque, en tenant compte de la menace, de la criticité, du rapport coût-bénéfice, du niveau de protection de sécurité et de l’efficacité des stratégies d’atténuation disponibles.

• Analyse et priorisation : les contre-mesures doivent être mises en place suivant un programme réaliste tant sur le plan économique qui s’intègre parmi les plus hautes priorités de travaux liés à la route ou aux ouvrages de génie civil qui seront identifiées par l’administration et les autres propriétaires et exploitants, conformément aux méthodes d’évaluation des risques.

The development of coherent new techniques and technologies for prevention and deployment of the network to reduce the vulnerability of the road system with a better use of the alternative capacity of the road network and constructing the missing link that can make less vulnerable the network as a whole; to develop, deploy and use the new technologies for the prevention and mitigation of consequences;

b) operational PlanningProtection strategies and measures proportionate to the level of risk involved as not all infrastructures can be protected from all threats. By applying appropriate risk management techniques, attention would be focused on areas of greatest risk, taking into account the threat, relative criticality, cost-benefit ratio, the level of protective security and the effectiveness of available mitigation strategies;

• Review and Prioritization: countermeasures shall be put into a priority program achievable both from the economic and to the highest priority road or civil engineering works as identified by the Administration and other owners/operators in accordance with accepted risk assessment methodologies.

Figure 56 - Opérations et stratégies

Page 128: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

252 2010R01 2532010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

• Le développement de l’efficacité des critères coûts-avantages pour la mise en œuvre d’une intervention sur le réseau (évidemment avec des critères différents pour les routes existantes et futures).

Le problème le plus difficile qui reste à résoudre est lié à la faiblesse des ressources du secteur des transports. Les budgets et les ressources limitées font que les ressources pourraient être allouées suivant une logique budgétaire. Dans le contexte de sécurité du transport, l’évaluation du risque est essentielle afin d’allouer efficacement les ressources limitées vers des actions de la plus haute importance.

Une approche plus globale de gestion du risque qui prend en considération la différenciation des niveaux de menace, des contextes géographiques et modales en plus des arrangements institutionnels et de financement est indispensable afin d’aligner plus efficacement les risques d’actions terroristes avec des politiques visant à atténuer la menace.

La question se pose : quels sont les niveaux de risque acceptables de sécurité dans un scénario impliquant le transport routier ? Et à cette question, seuls les décideurs nationaux les plus élevés peuvent choisir le niveau d’efficacité souhaité. Par contre, le choix tient compte des réponses politiques considérées comme appropriées pour des niveaux de menace perçue.

Les principes eux-mêmes derrière la gestion du risque, considèrent que, très probablement alors que le risque ne peut être totalement éliminé, il peut être évalué de manière adéquate. Par la suite, les réponses politiques peuvent contribuer à atténuer la menace. De cette façon, l’utilisation de l’analyse des risques pourrait fournir les éléments les plus efficaces pour étayer la prise de décisions sur les questions de sécurité et sûreté des infrastructures routières.

REcommAndAtIons

Recommandations.aux.décideurs

Afin de réduire les pertes en vies humaines, les blessures et les dommages causés par les catastrophes, chaque pays devrait :

1. Adopter une approche globale et intégrée de la gestion des risques afin de concevoir une protection des infrastructures critiques contre une multitude de dangers. Cette stratégie intégrée doit être soutenue par toutes les parties prenantes comme un cadre intégré de gestion des risques de catastrophe, c’est-à-dire étroitement liée aux politiques, aux pratiques de gestion vers la

• The development of efficient benefit-cost criteria for the deployment of intervention on the network (obviously with different criteria for existing and future roads).

The most difficult problem still to be solved is related to the limited resources in transport sector budgets, and limited resources require that resources could be linked with the highest priority budgetary needs. In the transport security context, evaluation of risk is essential in order to efficiently allocate limited resources to actions of the highest importance.

A more comprehensive approach to risk management that takes into consideration differentiation of threat levels, geographic and modal contexts in addition to institutional arrangements and funding streams is indispensable in order to more efficiently align risk of terrorist action with policies to mitigate the threat.

The question arises: what are the acceptable levels of risk in a given security scenario involving the road transport? And to this question only the highest national decision-makers can choice the efficiency required, but the choice can be taken only after defining the cost of policy responses considered adequate for perceived threat levels.

The principles themselves behind risk management hold that, while risk most likely cannot be entirely eliminated, it can be assessed so that proper policy responses can help mitigate the threat. In this way, use of risk analysis-based approach could provide the proper underpinning for more efficient decision-making on road infrastructure security issues.

rEcommEndationS

recommendations to decision makers

In order to reduce the loss of life, injury and damage caused by Disasters, each country should:

1. Adopt comprehensive and integrated risk management strategies to develop critical infrastructures protection against a variety of hazards. Such an integrated strategy should be underpinned by all relevant stakeholders as a context of integrated disaster risk management which is closely related to the policies, practices for land management and the reduction of damages. Specific

Page 129: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

254 2010R01 2552010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

réduction des conséquences. Des recommandations spécifiques sont les suivantes :

• intégration de mesures structurelles et non structurelles, telles que la cartographie des risques, le zonage, la simulation des catastrophes, la lutte contre les catastrophes, la prévision et l’alerte, la formation et les actions de réponse rapide ;

• renforcement du cadre de gestion des catastrophes et de l’organisation politique, des lois et de la règlementation en ce qui concerne les mesures de prévention et de gestion des situations d’urgence sous l’angle des catastrophes qui ne peuvent jamais être totalement éliminées ;

• promouvoir le partage de l’information, de la compilation des données nécessaires et le renforcement des capacités pour un bon entretien et un fonctionnement optimal des installations de lutte contre les catastrophes, étant reconnu que la mauvaise gestion de ces installations peut aggraver les catastrophes ;

• élaboration de directives et de manuels de gestion des risques pour mettre en œuvre la gestion des risques dans le secteur routier dans le but d’inciter les contre-mesures efficaces et appropriées pour l’atténuation des pertes sociales essentielles ;

• développement de méthodes d’éducation, incluant le renforcement des capacités pour la gestion des risques pour les routes ;

• accorder de l’importance à la participation du public et à la coopération des collectivités locales dans la sensibilisation sur les impacts des catastrophes grâce à des politiques appropriées et des activités connexes.

2. Allouer des ressources suffisantes pour mettre en œuvre les projets nécessaires de gestion des catastrophes, conformément aux recommandations ci-dessus.

3. Coopérer avec les pays voisins et avec toutes les organisations gouvernementales et non gouvernementales, afin d’instaurer des programmes visant à atténuer les effets des catastrophes, y compris la participation à différents réseaux et la possibilité de dialogue tels que les séminaires internationaux organisés par l’AIPCR.

Recommandations.pour.les.administrations.routières.et.l’AIPcR

La gestion des risques est certainement une préoccupation croissante dans le secteur routier et plus d'attention est consacrée à la sûreté des réseaux routiers. Mais la gestion du risque technique n’est pas largement utilisée systématiquement à l’exception de certains pays avancés comme la Nouvelle-Zélande. Le CT 3.2 a mis l’accent sur trois questions : les techniques de gestion intégrée des risques,

recommendations are:

• Integration of structural and non-structural measures, such as hazard mapping, zoning, disaster proofing, disaster fighting, forecasting and warning, training and rapid response actions.

• Strengthening of framework of disaster policy and organization, laws, and legislation regarding preventative measures and emergency management from the viewpoint that disaster can never be totally eliminated.

• Promoting information sharing, compilation of necessary data and capacity building for proper maintenance and optimum operation of disaster control facilities based on the recognition that improper management of such facilities may aggravate disasters.

• Development of guidelines/manuals of risk management to implement and operate risk management in the road sector for the purpose of inducing the effective and appropriate countermeasures for the mitigation of essential social loss.

• Development of educational method including capacity building to risk management for roads.

• Giving importance to public participation and community based local cooperation in raising awareness regarding the impacts of disaster through appropriate policies and related activities.

2. Allocate adequate resources to implement the necessary disaster management projects in accordance with the above recommendations.

3. Cooperate with neighboring countries and with all relevant intergovernmental and non-governmental programs aimed at mitigating the effects of disaster including participation in the network systems and the opportunity of dialogue such as the international seminar organized by PIARC.

recommendations to international road organizations and Piarc

Risk management is surely a growing presence in the road sector and a growing attention is devoted to the security of highway systems. But risk management technique is not widely used systematically in many countries except some advanced countries like New zealand. The Technical Committee 3.2 (TC3.2) has focused on three issues on integrated risk management techniques, risk

Page 130: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

256 2010R01 2572010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

la gestion des risques pour les méga-projets routiers et la sûreté des systèmes routiers. La première mission de CT 3.2 était de savoir comment introduire et mettre en œuvre la gestion des risques dans le secteur routier.

Les sujets suivants sont recommandés pour le cycle suivant :

• étude sur plusieurs directives et manuels de la gestion des risques pour les routes du monde entier pour contribuer à la création de manuels intégrant les processus de gestion des risques.

• étude d'un plus grand nombre de cas des meilleures pratiques de gestion des risques pour les risques naturels et anthropiques, les risques liés aux méga-projets, ainsi que les organisations afin d'améliorer l’expertise des membres du CT 3.2 et les méthodes de gestion des risques.

• Création de stratégies de collaboration et de coopération avec des états, des organisations et des institutions régionales et des organisations internationales.

• Développement d’outils techniques de gestion des risques afin d’améliorer la coopération technique avec les pays en développement.

• Organiser des séminaires internationaux pour aider à promouvoir la gestion des risques, non seulement dans les pays en développement et aussi dans les pays développés.

Le CT 3.2 devrait fonctionner comme une vitrine de pratiques de gestion des risques des pays avancés.

management for mega-project and highways systems security. The primary mission of TC3.2 is how to introduce and implement risk management in the road sector.

The following subjects are recommended for further activities:

• Study on more guidelines/manuals of risk management for roads from all over the world to contribute to creating risk management process manuals;

• Study on more number of best practices of risk management for natural hazards and technological (man-made) hazards and mega-projects and organizations and the methodologies of risk management to improve expertise of the TC3.2 members;

• Creation of information sharing strategies in collaboration and cooperation with states, regional organizations and institutions, and international organizations;

• Development of risk management technical toolbox for technical cooperation improvement to developing countries;

• Organizing international seminars to help promote risk management in not only developing countries but developed countries.

TC3.2 should function as a showcase of risk management practices of advanced countries.

Page 131: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

258 2010R01 2592010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

BIBLIoGRAPHIE./.RéFéREncEs

BIBLIoGRAPHIE

1. AASHTO TASK FORCe ON SeCURITY, “Transportation Agency Security Principles”, January 2004.2. ASIAN DISASTeR ReDUCTION CeNTeR, “International Training Program on Total Disaster

Risk Management”, June 2003.3. ASIAN DISASTeR ReDUCTION CeNTeR, “Total Disaster Risk Management - Good Practices”,

January 2005.4. ASIAN TeCHNICAL COMMITTee ON GeOTeCHNOLOGY FOR NATURAL HAZARDS IN

ISSMFe, “Manual for Zonation on Areas Susceptible to Rain-induced Slope Failure”, 1997.5. AUSTRALIAN GeOMeCHANICS SOCIeTY, “Landslide Risk Management Concepts and

Guidelines, Australian Geomechanics”, vol. 35, no.1, pp. 51-92, March 2000.6. BARRY, R., “For major projects, risk management brings real world rewards”, Routes/Roads,

PIARC Magazine, n°329.7. BOYD A., SULLIVAN J. P., “emergency Preparedness for Transit Terrorism”, June 2000.8. CANADIAN STANDARDS ASSOCIATION, “Risk Management : Guidelines for Decision-

Makers”, 1997.9. CANADIAN STANDARDS ASSOCIATION, “Risk Analysis Requirements and Guidelines”, 1991.10. CIVIL STRUCTUReS OWNeRS IN eUROPe, “Specific elements relative to bridge structures”,

Sétra, 2006.11. eNTeRPRISe SYSTeMS ARTICLe 5/9/2006, “employees Cause Most Security Breaches, Yet

Response Lags” http ://esj.com/Security/article.aspx ?editorialsID=1769.12. eXPReSSWAY TeCHNOLOGY CeNTeR OF JAPAN, “Photographic Presentation of Highway

Maintenance”, April 1996.13. “Guidelines for public infrastructures owners and contractors”, OJ n° 2009, eU, 1976.14. HAM D. B., LOCKWOOD S., “National Needs Assessment for ensuring Transportation

Infrastructure Security”, October 2002.15. HAM, D. B., LOCKWOOD, S., PARSONS BRINCKeRHOFF (PB), “National Needs Assessment

for ensuring Transportation Infrastructure Security”, Requested by : American Association of State Highway and Transportation Officials (AASHTO) Transportation Security Task Force.

16. HANSeN, J. & NILSSON, L., (SWeDISH ROAD ADMINISTRATION). “An Approach to Risk Management in a Road Transport Authority”. XXIIIrd WORLD ROAD CONGReSS PARIS 2007

17. HOMeLAND SeCURITY, “National Incident Management System”, March 2004.18. ICF CONSULTING, “evaluation of US Commercial Motor Carrier Industry Challenges and

Opportunities”, March 2003.19. INFORMATION WeeK, June 12, 2006 «The Threat Within» http ://www.informationweek.com/

story/showArticle.jhtml ?articleID=188703447.20. INSTITUTe FOR SeCURITY TeCHNOLOGY STUDIeS AT DARTMOUTH COLLeGe, “On The

Road to Transportation Security”, IRIA/ISTS, February 2003.

BiBLioGraPHy / rEFErEncES

BiBLioGraPHy

1. AASHTO TASK FORCe ON SeCURITY, “Transportation Agency Security Principles”, January 2004.2. ASIAN DISASTeR ReDUCTION CeNTeR, “International Training Program on Total Disaster

Risk Management”, June 2003.3. ASIAN DISASTeR ReDUCTION CeNTeR, “Total Disaster Risk Management - Good

Practices”, January 2005.4. ASIAN TeCHNICAL COMMITTee ON GeOTeCHNOLOGY FOR NATURAL HAZARDS IN

ISSMFe, “Manual for Zonation on Areas Susceptible to Rain-induced Slope Failure”, 1997.5. AUSTRALIAN GeOMeCHANICS SOCIeTY, “Landslide Risk Management Concepts and

Guidelines, Australian Geomechanics”, vol. 35, no.1, pp. 51-92, March 2000.6. BARRY, R., “For major projects, risk management brings real world rewards”, Routes/Roads,

PIARC Magazine, n°329.7. BOYD A., SULLIVAN J. P., “emergency Preparedness for Transit Terrorism”, June 2000.8. CANADIAN STANDARDS ASSOCIATIOn, “Risk Management: Guidelines for Decision-

Makers”, 1997.9. CANADIAN STANDARDS ASSOCIATION, “Risk Analysis Requirements and Guidelines”, 1991.10. CIVIL STRUCTUReS OWNeRS IN eUROPe, “Specific elements relative to bridge structures”,

Sétra, 2006.11. eNTeRPRISe SYSTeMS ARTICLe 5/9/2006, “employees Cause Most Security Breaches, Yet

Response Lags” http://esj.com/Security/article.aspx?editorialsID=1769.12. eXPReSSWAY TeCHNOLOGY CeNTeR OF JAPAN, “Photographic Presentation of Highway

Maintenance”, April 1996.13. “Guidelines for public infrastructures owners and contractors”, OJ n° 2009, eU, 1976.14. HAM D. B., LOCKWOOD S., “National Needs Assessment for ensuring Transportation Infra-

structure Security”, October 2002.15. HAM, D. B., LOCKWOOD, S., PARSONS BRINCKeRHOFF (PB), “National Needs Assessment

for ensuring Transportation Infrastructure Security”, Requested by: American Association of State Highway and Transportation Officials (AASHTO) Transportation Security Task Force.

16. HANSeN, J. & NILSSON, L., (SWeDISH ROAD ADMINISTRATION). “An Approach to Risk Management in a Road Transport Authority”. XXIIIrd WORLD ROAD CONGReSS PARIS 2007

17. HOMeLAND SeCURITY, “National Incident Management System”, March 2004.18. ICF CONSULTING, “evaluation of US Commercial Motor Carrier Industry Challenges and

Opportunities”, March 2003.19. INFORMATION WeeK, June 12, 2006 “The Threat Within” http://www.informationweek.com/

story/showArticle.jhtml?articleID=188703447.20. INSTITUTe FOR SeCURITY TeCHNOLOGY STUDIeS AT DARTMOUTH COLLeGe, “On

The Road to Transportation Security”, IRIA/ISTS, February 2003.

Page 132: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

260 2010R01 2612010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

21. INTeRNATIONAL ORGANIZATION FOR STANDARDIZATION, “Guidelines for the inclusion of safety aspects in standards”, Guide 51, second edition, 1999.

22. INTeRNATIONAL ORGANIZATION FOR STANDARDIZATION, “Risk management — Vocabulary — Guidelines for use in standards”, Guide 73, first edition, 2002.

23. JAPAN HIGHWAY PUBLIC CORPORATION, “Design Manual Part 1 (earthwork)”, 1998 (in Japanese).

24. JAPAN RIVeR ASSOCIATION, “Manual for River Works in Japan Design 1, 2,” 2000 (in Japanese).

25. JAPAN ROAD ASSOCIATION, “Handbook of Counter measures for Rockfall”, 2000 (in Japanese).

26. JAPAN ROAD ASSOCIATION, “Specifications for Highway Bridges Part 4 Substructures”, 2002 (in Japanese).

27. JAPAN ROAD ASSOCIATION, “Specifications for Highway Bridges Part 5 Seismic Design”, 2002 (in Japanese).

28. JAPAN SOCIeTY OF CIVIL eNGINeeRS, “Site Investigation and Stabilization Methods for Rock Slopes”, 1999 (in Japanese).

29. JeNKINS, B. M., “Terrorism and the Security of Public Surface Transportation”, April 2004.30. MINISTeRe DeS TRANSPORTS, SeRVICe De LA SeCURITe CIVILe, “Methodological

Framework Paper, Identification and Assessment of Vulnerable Assets in the Road Transportation System”, March 2006.

31. MORGAN D. F., ABRAMSON H. N., “Improving Surface Transportation Security”, December 2000.

32. NATIONAL ACADeMY OF SCIeNCeS, “Transportation Research Board : Landslides Analysis and Control Special Report 176”, 1978.

33. NATIONAL INFRASTRUCTURe INSTITUTe (NI2), Center for Infrastructure expertise CARVeR2, Web flyer ; http ://www.ni2cie.org/CARVeR2.asp

34. NATIONAL INFRASTRUCTURe INSTITUTe (NI2), Center for Infrastructure expertise CARVeR2, Press release, Dec. 4, 2003 ; http ://www.ni2cie.org/CARVeR2.asp

35. NATIONAL INFRASTRUCTURe INSTITUTe (NI2), Center for Infrastructure expertise, CARVeR2Webdemo ; http ://www.ni2cie.org/downloads/CARVeR2web_demo.pdf

36. PARSONS BRINKeRHOFF – PB FARRADYNe, “A Guide to Updating Highway emergency Response Plans for Terrorist Incidents”, May 2002.

37. Étude sur la gestion des risques et des crises touchant les routes, PIARC C18, Committee Report, référence AIPCR 18.01.B, (2004)

38. PLOVGAARD, A., “Risk management on mega-projects, an example of operational risk analysis”, Routes/Roads, PIARC Magazine n° 329.

39. PROJeCT MANAGeMeNT INSTITUTe, “A Guide to the Project Management Body of Knowledge”, United States, 2000.

40. PUBLIC WORKS ReSeARCH INSTITUTe, “Design and execution Manual for Counter measures for Liquefaction” (draft), 1999 (in Japanese).

41. PUBLIC WORKS ReSeARCH INSTITUTe, “Manual for Highway earthworks in Japan”, ISSN 0386-5878, Technical Memorandum of PWRI, Japan, January 2004.

21. INTeRNATIONAL ORGANIZATION FOR STANDARDIZATION, “Guidelines for the inclusion of safety aspects in standards”, Guide 51, second edition, 1999.

22. INTeRNATIONAL ORGANIZATION FOR STANDARDIZATION, “Risk management — Vocab-ulary — Guidelines for use in standards”, Guide 73, first edition, 2002.

23. JAPAN HIGHWAY PUBLIC CORPORATION, “Design Manual Part 1 (earthwork)”, 1998 (in Japanese).

24. JAPAN RIVeR ASSOCIATION, “Manual for River Works in Japan Design 1, 2,” 2000 (in Japanese).

25. JAPAN ROAD ASSOCIATIOn, “Handbook of CounteGReasures for Rockfall”, 2000 (in Japanese).

26. JAPAN ROAD ASSOCIATION, “Specifications for Highway Bridges Part 4 Substructures”, 2002 (in Japanese).

27. JAPAN ROAD ASSOCIATION, “Specifications for Highway Bridges Part 5 Seismic Design”, 2002 (in Japanese).

28. JAPAN SOCIeTY OF CIVIL eNGINeeRS, “Site Investigation and Stabilization Methods for Rock Slopes”, 1999 (in Japanese).

29. JeNKINS, B. M., “Terrorism and the Security of Public Surface Transportation”, April 2004.30. MINISTÈRe DeS TRANSPORTS, SeRVICe De LA SÉCURITÉ CIVILe, “Methodological

Framework Paper, Identification and Assessment of Vulnerable Assets in the Road Transporta-tion System”, March 2006.

31. MORGAN D. F., ABRAMSON H. N., “Improving Surface Transportation Security”, December 2000.

32. NATIONAL ACADeMY OF SCIeNCeS, “Transportation Research Board: Landslides Analysis and Control Special Report 176”, 1978.

33. NATIONAL INFRASTRUCTURe INSTITUTe (NI2), Center for Infrastructure expertise CARVeR2, Web flyer; http://www.ni2cie.org/CARVeR2.asp

34. NATIONAL INFRASTRUCTURe INSTITUTe (NI2), Center for Infrastructure expertise CARVeR2, Press release, Dec. 4, 2003; http://www.ni2cie.org/CARVeR2.asp

35. NATIONAL INFRASTRUCTURe INSTITUTe (NI2), Center for Infrastructure expertise, CARVeR2Webdemo; http://www.ni2cie.org/downloads/CARVeR2web_demo.pdf

36. PARSONS BRINKeRHOFF – PB FARRADYNe, “A Guide to Updating Highway emergency Response Plans for Terrorist Incidents”, May 2002.

37. Study on Risk Management for Roads, PIARC C18, Committee Report, PIARC reference 18.01.B (2004)

38. PLOVGAARD, A., “Risk management on mega-projects, an example of operational risk analysis”, Routes/Roads, PIARC Magazine n° 329.

39. PROJeCT MANAGeMeNT INSTITUTe, “A Guide to the Project Management Body of Knowledge”, United States, 2000.

40. PUBLIC WORKS ReSeARCH INSTITUTe, “Design and execution Manual for CounteGReas-ures for Liquefaction” (draft), 1999 (in Japanese).

41. PUBLIC WORKS ReSeARCH INSTITUTe, “Manual for Highway earthworks in Japan”, ISSN 0386-5878, Technical Memorandum of PWRI, Japan, January 2004.

Page 133: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

262 2010R01 2632010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

42. QUeeNSLAND GOVeRNMeNT, Department of emergency Services, Zamecka, Alice and Buchanan, Graham, “Disaster Risk Management”, p. 32

43. SCIeNCe APPLICATIONS INTeRNATIONAL CORPORATION (SAIC), “Highway Vulnerability Assesment”, Transportation Policy and Analysis Center, for the American Association of State Highway and Transportation Officials, 2002.

44. SCIeNCe APPLICATIONS INTeRNATIONAL CORPORATION SAIC, TRANSPORTATION POLICY AND ANALYSIS CeNTeR, “A Guide to Highway Vulnerability Assessment for Critical Asset Identification and Protection”, Prepared for The American Association of State Highway and Transportation Officials, Security Task Force As National Cooperative Highway Research Program Project 20-07/Task 151BA, May 2002.

45. SCIeNCe APPLICATIONS INTeRNATIONAL CORPORATION SAIC, TRANSPORTATION POLICY AND ANALYSIS CeNTeR, “A Guide to Highway Vulnerability Assessment for Critical Asset Identification and Protection”, Appendices A F, Prepared for The American Association of State Highway and Transportation Officials” Security Task Force As National Cooperative Highway Research Program Project 20 07/Task 151BA, May 2002.

46. STIDGeR R. W., “Security and Our Road and Bridge Infrastructure”, April 2003.47. SWeDISH ROAD ADMINISTRATION, Risk Management Process Manual (2007)48. TeCHNICAL COMMITTee FOR eARTHQUAKe GeOTeCHNICAL eNGINeeRING, TC4,

ISSMFe : “Manual for Zonation on Seismic Geotechnical Hazards”, 1993.49. THe BLUe RIBBON PANeL ON BRIDGe AND TUNNeL SeCURITY, “Recommendations for

Bridge and Tunnel Security”, The American Association of State Highway and Transportation Officials (AASHTO) Transportation Security Task Force, September 2003.

50. THe JAPANeSe LANDSLIDe SOCIeTY, “Landslides in Japan the 6th revision”, 2002.51. THe JAPANeSe GeOTeCHNICAL SOCIeTY, “Method of Soil Investigations”, 1995 (in

Japanese).52. THe JAPANeSe GeOTeCHNICAL SOCIeTY, “Method of Soil Test and explanation”, 2000 (in

Japanese).53. THe JAPANeSe GeOTeCHNICAL SOCIeTY, “Design and execution Standard for Ground

Anchor”, 2000 (in Japanese).54. “The Threat Within”, Information Week, June 12, 2006http ://www.informationweek.com/story/

showArticle.jhtml ?articleID=188703447.55. TRANSIT NeW ZeALAND, Risk Management Process Manual (2007)56. US DOT, “effects of catastrophic events on transportation system management and operations”,

January 2003.57. US DOT, “Public Safety & Security Program”.58. WOOD, D. C. “Risk Management of major Projects”, P.e. Federal Highway Administrations.59. ZAMeCKA, A., BUCHANAN G., “Disaster Risk Management”, Queensland Government,

Department of emergency Services.

42. QUeeNSLAND GOVeRNMeNT, Department of emergency Services, Zamecka, Alice and Buchanan, Graham, “Disaster Risk Management”, p. 32

43. SCIeNCe APPLICATIONS INTeRNATIONAL CORPORATION (SAIC), “Highway Vulner-ability Assesment”, Transportation Policy and Analysis Center, for the American Association of State Highway and Transportation Officials, 2002.

44. SCIeNCe APPLICATIONS INTeRNATIONAL CORPORATION SAIC, TRANSPORTATION POLICY AND ANALYSIS CeNTeR, “A Guide to Highway Vulnerability Assessment for Critical Asset Identification and Protection”, Prepared for The American Association of State Highway and Transportation Officials, Security Task Force As National Cooperative Highway Research Program Project 20-07/Task 151BA, May 2002.

45. SCIeNCe APPLICATIONS INTeRNATIONAL CORPORATION SAIC, TRANSPORTATION POLICY AND ANALYSIS CeNTer, “A Guide to Highway Vulnerability Assessment for Critical Asset Identification and Protection”, Appendices A F, Prepared for The American Association of State Highway and Transportation Officials” Security Task Force As National Cooperative Highway Research Program Project 20 07/Task 151BA, May 2002.

46. STIDGeR R. W., “Security and Our Road and Bridge Infrastructure”, April 2003.47. SWeDISH ROAD ADMINISTRATION, Risk Management Process Manual (2007)48. TeCHNICAL COMMITTee FOR eARTHQUAKe GeOTeCHNICAL eNGINeeRING, TC4,

ISSMFe: “Manual for Zonation on Seismic Geotechnical Hazards”, 1993.49. THe BLUe RIBBON PANeL ON BRIDGe AND TUNNeL SeCURITY, “Recommendations for

Bridge and Tunnel Security”, The American Association of State Highway and Transportation Officials (AASHTO) Transportation Security Task Force, September 2003.

50. THe JAPANeSe LANDSLIDe SOCIeTY, “Landslides in Japan the 6th revision”, 2002.51. THe JAPANeSe GeOTeCHNICAL SOCIeTy, “Method of Soil Investigations”, 1995 (in

Japanese).52. THe JAPANeSe GeOTeCHNICAL SOCIeTY, “Method of Soil Test and explanation”, 2000 (in

Japanese).53. THe JAPANeSe GeOTeCHNICAL SOCIeTY, “Design and execution Standard for Ground

Anchor”, 2000 (in Japanese).54. “The Threat Within”, Information Week, June 12, 2006http://www.informationweek.com/story/

showArticle.jhtml?articleID=188703447.55. TRANSIT NeW ZeALAND, Risk Management Process Manual (2007)56. US DOT, “effects of catastrophic events on transportation system management and opera-

tions”, January 2003.57. US DOT, “Public Safety & Security Program”.58. WOOD, D. C. “Risk Management of major Projects”, P.e. Federal Highway Administrations.59. ZAMeCKA, A., BUCHANAN G., “Disaster Risk Management”, Queensland Government,

Department of emergency Services.

Page 134: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

264 2010R01 2652010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

WEB.sItEs

Value.management.:There are some useful references to Value Management websites. A useful site with links to UK and hong Kong is the Institute of Value Management Australia (www.value-management.com.au). Value Management (including the associated names of Value Analysis and Value Engineering – by which it is often called in some other countries) has been used world-wide for more than 50 years. In that time it has developed into a process that is directed towards maximizing the value from a total system, that is to “provide the required function at the lowest cost, without impairing quality or reliability.”

other.website.references.are.:US SAVE International www.value-eng.org Institute of Value Management www.ivm.comCanada Canadian Society for Value Analysis www.scav.csva.orgJapan Society of Japanese Value Engineering www.sjve.org/hp/englishUK Department of Trade and Industry www.dti.gov.uk

Research.on.Road.network.Risk.managementTransit New Zealand has conducted research into the assessment of hazards and the application of risk assessment for road networks. An approach to the application of risk assessment methodologies is reported in the following research reports.

BRABHAHARAN, FLeMING ; LYNCH, OPUS INTeRNATIONAL CONSULTANTS, “Natural Hazard Risk Management for Road Networks, Part I :Risk Management Strategies”, Research Report No 217, Wellington NZ.

BRABHAHARAN, MOYNIHAN ; OPUS INTeRNATIONAL CONSULTANTS, “Natural Hazard Risk Management for Road Networks, Part II : Implementation Strategies”, Research Report No 222, New Zealand.

DALZIeLL, NICHOLSON, WILKINSON, “Risk Assessment Methods in Road Network evaluation” ; Research Report No 148, University of Canterbury, New Zealand.

MONTGOMeRY WATSON NZ LTD, “The Security of New Zealand’s Strategic Roading System”, Research Report No 147, New Zealand.

WEB SitES

value management:There are some useful references to Value Management websites. A useful site with links to UK and Hong Kong is the Institute of Value Management Australia (www.value-management.com.au). Value Management (including the associated names of Value Analysis and Value Engineering – by which it is often called in some other countries) has been used world-wide for more than 50 years. In that time it has developed into a process that is directed towards maximizing the value from a total system, that is to “provide the required function at the lowest cost, without impairing quality or reliability.”

other website references are:US SAVE International www.value-eng.org Institute of Value Management www.ivm.comCanada Canadian Society for Value Analysis www.scav.csva.orgJapan Society of Japanese Value Engineering www.sjve.org/hp/englishUK Department of Trade and Industry www.dti.gov.uk

research on road network risk managementTransit New zealand has conducted research into the assessment of hazards and the application of risk assessment for road networks. An approach to the application of risk assessment methodologies is reported in the following research reports.

BRABHAHARAN, FLeMING; LYNCH, OPUS INTeRNATIONAL CONSULTANTS, “Natural Hazard Risk Management for Road Networks, Part I:Risk Management Strategies”, Research Report No 217, Wellington NZ.

BRABHAHARAN, MOYNIHAN; OPUS INTeRNATIONAL CONSULTANTS, “Natural Hazard Risk Management for Road Networks, Part II: Implementation Strategies”, Research Report No 222, New Zealand.

DALZIeLL, NICHOLSON, WILKINSON, “Risk Assessment Methods in Road Network evalua-tion”; Research Report No 148, University of Canterbury, New Zealand.

MONTGOMeRY WATSON NZ LTD, “The Security of New Zealand’s Strategic Roading System”, Research Report No 147, New Zealand.

Page 135: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

266 2010R01 2672010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

aPPEndicES

aPPEndix a - PrESEntationS madE By mEmBErS .................................................................... 267

aPPEndix B - tHE rESuLtS oF tHE intErnationaL SurvEy oF riSK manaGEmEnt 270A) GENERAL ...................................................................................................................................... 270B) RISK MANAGEMENT FOR NETWORKS .................................................................................. 270C) RISK MANAGEMENT FOR PROJECTS ..................................................................................... 271D) HIGHWAYS SECURITY ............................................................................................................... 271E) NATURAL HAzARDS .................................................................................................................. 271

aPPEndix c – intErnationaL SEminar rEcordS ................................................................... 2731ST INTERNATIONAL SEMINAR ON RISK MANAGEMENT FOR ROADS AND INTERNATIONAL WORKSHOP ON TSUNAMI, ORGANIzED BY PIARC TECHNICAL COMMITTEE 3.2, AND MINISTRY OF TRANSPORT, VIETNAM. ............................ 2732. THE SECOND INTERNATIONAL SEMINAR IN COLOMBIA ....................................................... 2953. BRIEF SUMMARY OF EACH SESSION ........................................................................................... 2974. TECHNICAL CONCLUSIONS ........................................................................................................... 309

aPPEndix d — ovErviEW oF riSK manaGEmEnt ProcESS manuaL, iSSuEd By tranSit nEW ZEaLand ................................................................................................... 311

RISK MANAGEMENT PROCESS MANUAL ....................................................................................... 311USING THE GENERAL APPROACH .................................................................................................... 312

aPPEndix E - comPariSon oF tHE mEtHodoLoGiES ............................................................. 316

aPPEndix F - BESt PracticES ExamPLES ..................................................................................... 324EXAMPLE 1: THE MILLAU VIADUCT (FROM RISK MANAGEMENT PERSPECTIVES) .......... 324EXAMPLE 2: RISK MANAGEMENT PROCESS IN ITALY: “THE FRéJUS TUNNEL” ................... 335EXAMPLE 3. MT RUAPEHU LAHAR RISK MANAGEMENT PROCESSES ................................... 340EXAMPLE 4: RISK MANAGEMENT FOR PROJECTS : THE SOUTH LINK ................................... 347EXAMPLE 5 : BRIDGE OVER THE SEA ............................................................................................. 349EXAMPLE 6 — LANDSLIDE IN JAPAN .............................................................................................. 363EXAMPLE 7 — SISMOA ........................................................................................................................ 374EXAMPLE 8: CASE OF A BRIDGE STRUCTURE PARTICULARLY EXPOSED TO RISKS: THE RION-ANTIRION BRIDGE ........................................................................................................... 381

aPPEndix a - PrESEntationS madE By mEmBErS

title country2nd committee meeting in torino, itaLyRisk management in Sweden, Johan Hansen SwedenHighway Systems Security, Michel Cloutier CanadaExample of a risk management process in Italy, “The Fréjus tunnel”, Roberto Arditi

Italy

3rd committee meeting in vaLEncia, SPainExample of a risk management process in Italy, Robert Arditi FrancePractice of a Mega Project considering RM, “Bridge over the sea”, Anders Plovgaard

Denmark

RM in making decisions: The West Ring of Bergen, Norway, Gunnar Lotsberg

Norway

Introduce Risk Management for Mega project, Denis Davi FranceCivil Protection at Ministry of Transport Quebec, Line Tremblay Canada-QuebecRisk Management in planning phase of a road project (175), Line Tremblay

Canada-Quebec

4th committee meeting in toKyo, JaPanAn analysis of landslide risk management on the basis of the movement characteristics, Kazuhori Fujisawa

Japan

Research on the quantitative risk estimation method of road slope disaster, Hidetoshi Kohashi

Japan

The research on the monitoring system of road slope disaster », Hidetoshi Kohashi

Japan

Risk management study on transportation blockage countermeasures for a scenario earthquake, Haruhiko Uetsuka

Japan

SH73 Springfield to, Arthur’s pass slope stability evaluation, Terry Brown New zealandRisk Management for the Swiss National Highway System and its Bridge Stock, Michel Donzel

Switzerland

Risks management related to climate change and its impact on infrastructures, Denis Davi (on behalf of Hervé Guérard)

France

The Millau Viaduct (from risks management perspectives), Denis Davi FranceMt Rapehu lahar risk management process, Terry Brown New zealandRisk management practice in the Southern Link Project in Stockholm, Johan Hansen.

Sweden

Page 136: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

268 2010R01 2692010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Prevention of Emergencies in Colombian roads, Enrique Martinez Arciniega

Colombia

Risk management for landslide disaster - in the case of the Higashi-Yokoyama landslide, Japan, Kazunori Fujisawa

Japan

The Traffic Regulation of RN1 in La Reunion Island, Jean-Louis Durville FranceThe Road Management in big disasters, Frederico Fernández Alonso SpainThe Road Management in Natural disasters, Hugo Gamboa Sánchez ColombiaRisk Management for the Swiss Highway System, Michel Donzel SwitzerlandA Risk Analysis for a New Sub Sea Tunnel Project, Gunnar Lotsberg NorwayProactive Risk Management Systems Before Big Catastrophes, Ruiz de Boada

Spain

An Approach to Risk Management in a Road Transport Authority, Johan Hansen

Sweden

Road safety Management in Concessioned roads in Colombia, Alejandro García Caden

Colombia

tc3.2 Session in 23rd xorld road congress in PariS, FrancERisk management for road in general and its application, Johan Hansen SwedenRisk management for mega projects, Denis Davi FranceRisk management for highway system’s security, Michel Cloutier CanadaImplementation of the Hyogo Framework for Action -Risk management for roads, Pedro Basabe

UNISDR

Taking account of risks in European public clients’ road-infrastructure choices, Denis Davi

France

Risk Management Process Manual, Roly Frost New zealandothersPIARC Risk management technical committee, MICHIO OKAHARA, KEIICHI, TAMURA, KEI TESHIMA, SHINJURO KOMATA, AKIRA SASAKI, HARUHIKO UETSUKA, 2nd International Symposium on Tunnel Safety & Security, March 15-17, 2006

Presented in Spain

Civil Protection risk identification and assessment, Line Tremblay Canada-QuebecTechnical toolbox for risk management, Shinjuro Komata Japan5th committee meeting in Ha noi, viEt namTechnical toolbox for risk management, Kei Teshima JapanRisk management techniques in the road sector, Johan Hansen SwedenRisk management for mega-project, Denis Davi FranceHighway systems security. Michel Cloutier CanadaPiarc international Seminar in Hanoi, viEt nam Risk Sharing in International Projects: In View of Incomplete Contracts JapanIntroduction of RM for roads, Terry Brown Roly Frost New zealandIntroduction of RM for projects, Denis Davi FranceIntroduction of RM for Highway Systems Security. Michel Cloutier CanadaPIARC activities and results of international survey, Hiroyuki Nakjima JapanClimate Change and Its impacts on Infrastructures, The GeRiCi Project, Hervé Guérard

France

Earthquake and Risk Management, M. Maeda JapanSeismic Risk Assessment Tool for Road Networks, Denis Davi FranceDevelopment of Road Slope Risk Management System Focusing on an Evaluation of Optimum Maintenance and Repair Plan

Japan

One Example of Road Tunnel Rout Modification Caused by Landslides JapanEmergency Response Guidebook CANUTEC, Michel Cloutier CanadaCivil Protection Risk Management and Assessment, Line Tremblay Canada-QuebecRisk management in Sweden, Johan Hansen SwedenRisk Management in the Planning Process for a Long Subsea Road Tunnel in Norway, Gunnar Lotsberg

Norway

6th committee meeting in aucKLand, nEW ZEaLandRisk management for roads, Roly Frost New zealandSweden National Report - An approach to risk management in a road transport authority, Johan Hansen

Sweden

Risk management for road disasters in Japan, Kei Teshima JapanHighway systems security, Michel Cloutier CanadaRisk management activities in Switzerland, Michel Donzel SwitzerlandPiarc international Seminar in cartaGEna, coLomBiaIntegrated Flood Risk Management for Urbanized River Basins in Japan, Akira Terakawa

Japan

Risk Management Process Manual in New zealand, Roly Frost New zealandRisk Management Toolbox, Shinjuro Komata Japan

Page 137: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

270 2010R01 2712010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

c) riSK manaGEmEnt For ProJEctS

The percentage of countries, where risk management is used for infrastructure projects, is 80% (20/25). The percentage of countries, which have specific risk management models to achieve Total Time-Quality-Budget is 36% (9/25). Further, the percentage of countries, which have specific risk management methods for detailed studies in environment, transportation of dangerous goods, road/tunnel/bridge construction is 68% (17/25).

d) HiGHWayS SEcurity

76% of the countries take into account the security aspects during the design stage of a project (19/25). For the planning stage of a network this percentage is 72% (18/25), in the operating stage it is 76% (19/25).

Italy and Sweden take into account the security aspects during the operating stage of a network, but not during the planning stage. Argentina takes into account the security aspects when planning a network, but not when operating it.

Events considered as a hazard for roads are natural hazards and man-made hazards as shown below figures, next page.

E) naturaL HaZardS

man-made (Human, Social, technical) Hazards

The second survey was done for the countries who answered the first survey in the hope that more detailed data would be provided but very few countries answered and couldn’t get the data expected.

aPPEndix B - tHE rESuLtS oF tHE intErnationaL SurvEy oF riSK manaGEmEnt

TC 3.2 planned an international survey to understand the current status of risk management techniques and practices, and thus to complement the expertise of the committee members. This international survey is two-fold, and the first survey was characterized as the first step to obtain more detailed information through the second survey.

The first questionnaire was prepared in three languages (English, French and Spanish) and TC3.2 had received 25 answers from 23 countries (2 answers from Canada and Norway) by April, 2006. The results of the survey are summarized below.

a) GEnEraL

The percentage of the countries, which use risk management in the organization’s decision-making system, is 76% (19/25), 53% have RM policies or guidelines (13/25), and 60% have general models for risk management (15/25). Canada (Quebec, New Brunswick), Italy, Norway (Eastern Region), Romania, and Switzerland have risk management policies or guidelines, but they don’t have general models for RM. Argentina, Finland, Mexico, Netherlands, Norway (Region Midt), Quebec, and USA have general models for risk management, but they don’t have risk management policies or guidelines.

After the survey, we learned that the US government has SAFETEA-LU “Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users” enacted August 10, 2005 as policy and guidelines.

It was expected that countries would develop first risk management policies or guidelines and then general models for risk management. In reality there are more countries that have general models for RM than countries that have developed risk management policies or guidelines.

B) riSK manaGEmEnt For nEtWorKS

The percentage of countries, which use risk management for road network projects at the general planning stage is 68% (17/25), 32% have specific risk management models for road networks (8/25).

Page 138: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

272 2010R01 2732010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

aPPEndix c – intErnationaL SEminar rEcordS

1. 1St intErnationaL SEminar on riSK manaGEmEnt For roadS and intErnationaL WorKSHoP on tSunami, orGaniZEd By Piarc tEcHnicaL committEE 3.2, and miniStry oF tranSPort, viEtnam.

• Venue: Melia Hotel, Hanoi, Vietnam• Date: April 26 to 28, 2006• Participants: some 150 (some 50 of them from out of Vietnam)• Program of the Seminar.

Wednesday, april 26, 2006

07:30 – 08:20 Registrationopening Session (moderator: dr. michio okahara)OS-1 08:30 Welcome Address, Minister, Ministry of Transport, VietnamOS-2 08:45 Opening Remarks, Chairperson of TC 3.2, PIARCOS-3 09:00 Keynote Speech, Risk Sharing in International Projects: In View of

Incomplete Contracts, Prof. Kiyoshi Kobayashi, Kyoto Univ., Japan09:30 Break

Session 1: introduction of risk management techniques in the road Sector (moderator: ms. Line tremblay)S1-1 09:45 Introduction of Risk Management for Roads, Mr. Roly Frost, New

zealandS1-2 10:15 Introduction of Risk Management for Projects, Mr. Johan Hansen,

SwedenS1-3 10:45 Introduction of Risk Management for Highway Systems Security,

Mr. Michel Cloutier, CanadaS1-4 11:15 PIARC activities and results of international survey, Mr. Hiroyuki

Nakajima, JapanS1-5 11:35 Risk Management Toolbox, Japan, Mr. Shinjuro Komata, Japan

11:55 Discussion12:15 Lunch

Session 2: risk management of natural Hazards (moderator: mr. Hiroyuki nakajima)S2-1 13:30 Climate Change and Its impacts on Infrastructures: The GeRiCi

Project, Mr. Hervé Guérard, FranceS2-2 13:50 Earthquake and Risk Management, Prof. Yoshito Maeda, Kyushu

Kyoritsu University, Japan

Page 139: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

274 2010R01 2752010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

S2-3 14:10 Seismic Risk Assessment Tool for Road Networks, Mr. Denis Davi, France

14:30 Discussion14:50 Break

S2-4 15:05 Development of Road Slope Risk Management System Focusing on an Evaluation of Optimum Maintenance and Repair Plan, Prof. Hiroyasu Ohtsu, Kyoto Univ., Japan

S2-5 15:25 One Example of Road Tunnel Route Modification Caused by Landslide, Mr. Kazunori Fujisawa, Public Work Research Institute, Japan

S2-6 15:45 Recent damages on roads from the Natural disasters and proactive and prevent measures to mitigate the damages in Viet Nam, Prof. Dr. Nguyen Xuan Dao, Vietnam

16:05 Discussion16:25 End of 1st day17:30 Welcome Dinner (Melia Hotel)

thursday, april 27, 2006

Session 3: risk management of manmade Hazards (moderator: mr. michel donzel)S3-1 08:30 Emergency Response Guidebook, Mr. Michel Cloutier, CanadaS3-2 08:50 Traffic Management Plans in Snowfall Situations, Mr. Miguel Angel

Rodriguez Jara, SpainS3-3 09:10 Risk Management in Road Transportation and Measures, Mr. Doan Van

Thien, Vice chairman of Vietnam Road Administration S3-4 09:30 The Artificial Road Accident Rate Prediction along Ayer Hitam-Batu Pahat

Johor, Ms. Munzilah Binti, MD., Rohani, Malaysia09:50 Discussion10:10 Break

Session 4: risk management for Projects and organizations (moderator: mr. michel cloutier)S4-1 10:30 Civil Protection Risk Management and Assessment, Ms. Line Tremblay,

Canada-QuebecS4-2 10:50 Risk Management in the Planning Process for a Long Subsea Road Tunnel

in Norway, Mr. Gunnar Lotsberg, NorwayS4-4 ----- Review of Best Practices in the Use of Public Private Partnership for

the Development of Local Roads, Mr. Hatem Chahbani, UK (without presenter/paper only)

S4-5 11:10 South East Asia Community Access Programme (SEACAP), A New Approach, Mr. David Salter, Canada

S4-6 11:30 The National Training Program on rural Road Management (SEACAP 11). The achievements and lessons learnt, Dr. Do Huan, VietNam

11:40 Discussion12:00 Lunch

international Workshop on tsunami (jointly organized by Piarc, ministry of transport, viet nam and Public Work research institute, Japan) (moderator : mr. akira Sasaki)IWT-1 13:40 Keynote Lecture, Dr. Shigeki Unjoh, Public Work Research Institute, JapanIWT-2 ----- Methodology of computing level fluctuations at Integrated Coastal zone

Management, Plink N.L., Kasharski, Nguyen Hong Lan; Institute for Marine Geology and Geography, Vietnam (without presenter/paper only)

IWT-6 14:10 Current Status of Indonesian Tsunami Warning System, Dr. Pariatmono Sukamdo, Ministry for Research and Technology, Republic of Indonesia

IWT-4 14:40 Recent Tsunami Disaster Stricken to Sri Lanka and Recovery, Prof. Ananda Jayawardane, University of Moratuwa, Sri Lanka

15:10 Discussionclosing SessionCS-1 15:30 Closing Remarks by Minister, Ministry of Transport, VietnamCS-2 15:45 Closing Remarks by TC 3.2 Chairperson

16:00 End of 2nd day18:00 Farewll Party hosted by the Ministry of Transport of Vietnam

Friday, april 28, 2006

Field trip to National Highway No. 5 and Halong Bay

Brief summary of each session

opening session

1. Welcome address by dr.tran doan tho, vice minister of transport of the Socialist republic of viet nam

In his speech he stressed the topic of this seminar drew great attention from the countries of the region including Viet Nam, where they suffer a lot by tropical monsoons, floods, rainstorms and other natural hazards and also expressed that this seminar gives great opportunities for both international and local participants to exchange their information and experiences on the risks for the road sector.

Page 140: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

276 2010R01 2772010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

2. opening remarks by dr. okahara, chairman of the tc3.2, Piarc

He expressed thanks to the Ministry of Transport, Vietnam and all the people who were involved in this seminar and workshop for their cooperation and contribution on behalf of PIARC and TC3.2. He briefly introduced the history of the TC3.2 by referring to the working group G2 and C18 (predecessor of TC3.2) and activities so far including the international survey done by the TC3.2. He also introduced the 4 sessions of this seminar: Introduction of RM techniques, RM of natural hazards, RM of manmade hazards and RM for projects and organizations together with the international workshop on Tsunami. He concluded his opening remarks by expressing his hope that the idea of risk management would be utilized more explicitly and effectively in the road sector worldwide through the activities of TC3.2 and the seminars like this.

3. Keynote Speech "risk Sharing in international Projects; in view of incomplete contracts" by Prof. Kiyoshi Kobayashi, Kyoto university

Successful international projects depend on the structure of project contract. But in case of infrastructure construction projects contract can’t help being an incomplete one. Because there are so many uncertain and complex aspects in the huge infrastructure construction and these uncertainties can’t be contained in the contract document.

Incomplete contract do not provide specific responses for all contingencies but importantly provide the rules to cope with contingencies. And two most important rules are the risk sharing one and the variation one.

The authors focus on the GCW form (The Standard Form of Agreement and General Conditions of Government Contract for Works of Building and Civil Engineering Construction: The Central Construction Industry Council of Japan, 1989) and the FIDIC form (Federation International des Ingeniers-Conseils: FIDIC, 1987), which can be regarded as typical examples of incomplete contract forms.

The project risks are classified into two categories: the exogenous risk and the endogenous risk.

Their conclusions are that there is no difference in risk sharing rules for exogenous risks between GCW and FIDIC, but that there is a substantial difference in rules to verify variations depending on the principal’s ability to verify.

Session 1 – introduction of risk management techniques in the road sector

introductionThe presentations of Session 1 were related to the different phases of the management process of road networks: planning, design, construction, operation and reconstruction. The objective was to illustrate applications and benefits of Risk Management (RM) Techniques specific to each phase. ISO/IEC Guide 73:2002 defined Risk Management (RM) as “Coordinated activities to direct and control an organization with regard to risk”.

This document summarizes the following presentations:

• Introduction of RM for Roads, Mr. Roly Frost, New zealand;• Introduction of RM for Projects, Mr. Johan Hansen, Sweden;• Introduction of RM for Highway Systems Security, Mr. Michel Cloutier, Canada;• PIARC Activities and Results of International Survey, Mr. Hiroyuki Nakajima,

Japan;• RM Toolbox, Japan, Mr. Shinjuro Komata, Japan.

The session’s moderator was Mrs. Line Tremblay, Canada.

1. introduction of rm for roads, mr. roly Frost, new ZealandThis presentation addressed all aspects of RM activities related to road administration.

Many parts of the world are at significant risk of natural and technological (man-made) disaster. New zealand is a country of approximately 269,000 sq/km set in the Pacific Ocean and as such is vulnerable to a wide range of natural disasters, which are a major source of risk. The country has a range of weather extremes and a topography ranging from sea level to mountains of over 3,500 meters. The coastline is extensive with deep fiords and glaciers in the south to protected bays in the north. For a country so beautiful to visit and live in, it has many natural hazards such as extreme wet weather events, earthquakes and volcanic eruptions.

Transit New zealand is a Crown Entity roaring authority managing the state highway network of New zealand. Transit’s approach to RM is to provide and encourage the use of a set of RM tools with the purpose of minimizing unplanned occurrences and maximizing chances of success through greater risk awareness and proactive management. RM has become part of the organization’s culture.

The paper discusses Transit’s approach to reducing risks and examines in detail specific areas of risk to the transportation system from natural hazards. In particular the paper shows mitigation effects put in place for the following:

Page 141: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

278 2010R01 2792010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

a) Lahar Management Risk ProcessMt Ruapehu is an active volcano situated in the centre of the North Island. On Christmas Eve 1953 the crater lake breached creating a Lahar of water, mud, rock and debris to flow down the mountainside. The Lahar struck a railway bridge causing collapse. 151 people died as the majority of the carriages were swept downstream in the Lahar. In 1995/96 the mountain erupted again with ash spread over a wide sector of the North Island. The crater’s lake refilling from rain and snow created a situation where water was retained by a relatively unstable dam, creating the probability of a Lahar. The paper discusses the mitigation that has been put in associated with this risk.

b) Seismic Risk to BridgesThe paper describes a systematic assessment of the seismic security of approximately 2,500 state highway bridges. The paper highlights the many variables that influence the results of a structural analysis and the significant amount of judgment required both in deciding the input parameters for the analysis and in interpreting the results.

c) AvalanchesAn example of best practice gained from visits to Canada and Europe is highlighted in the paper as an example of mitigation measures taken to protect one of New zealand’s most scenic routes from avalanche damage.

The paper also details the application of RM to vulnerable parts of the network, both in terms of the asset and the operation. It discusses the responsibility placed on the road authority in providing a roading system that builds a better New zealand within a sustained funding environment.

2. introduction of rm for Projects, mr. Johan Hansen, SwedenRM for projects involves the components planning, design and construction of the management process for road networks. The operational aspects have to be considered in the phases planning and design. Sweden has guidelines for RM in the following sub areas: balanced scorecard, project, network management, internal safety, and crisis management.

The RM process consists of the following steps: risk identification, risk evaluation, and execution of measures. Risk identification and evaluation includes the aspects of time, cost, function, property (owned by the project or external), human (staff, road user, and third party), intangible assets (image, human resources, etc), and environment. The risk evaluation is based on a matrix considering the probability and the consequences of the risks. Evaluating risk, all aspects mentioned before need to be considered and balanced.

As a case study of RM for projects, the Southern Link in Stockholm has been presented. Based on this example, the interfaces of RM with the project sponsor, the project management, the product, and external stakeholders has been illustrated.

Concluding this presentation, a checklist for project RM has been provided:

• Decide on a plan for the project’s RM;• For larger projects appoint a coordinator for RM;• Best qualified to deal with the risk should undertake it;• Project’s top 10 ranking risks delivered to the next phase with suggestions for

measures;• Requirements in the contract for the contractor’s own RM;• Perform risk analysis based on the 2 perspectives;• Contractor phase;• Road using phase;• During construction always prioritize safety, working environment, and

environment along time-cost-function;• Keep the analysis up to date.

The key conclusion is that that RM needs active support from management to be successful.

3. introduction of rm for Highway Systems Security, mr. michel cloutier, canadaThis presentation focused on the operation of road networks. It dealt with RM principles related to Highway Systems Security.

Following the terrorist events of September 2001, matters related to Highway Systems Security have become increasingly important over the last few years as the level of awareness has, itself, become more widespread. Therefore many organizations have become increasingly involved in this area of expertise and several methodologies and approaches were developed to assist responsible authorities in the assessment of vulnerabilities of their infrastructure and the identification of critical assets.

The presentation consisted in a summary of critical documents all elaborated in North America. Even if most of the other countries in the world are exposed to terrorism actions too, the level of awareness seems not to be the same. The identified targets for terrorism are:

• Public transportation Automobiles, trucks, buses, trains, subways, aviation, ships, etc.

Page 142: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

280 2010R01 2812010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

The inventory sheets record the applicability (e.g., effectiveness and cost) of individual technologies/tools of RM and the perspective of technologies/tools for future use. They are divided into natural hazards management and man-made hazards management. At present 109 inventory sheets are available for natural hazards and 11 for man-made hazards. Additional inventory sheets are being developed.

Session 2. — risk management of natural hazards

1. climate change and its impacts on infrastructures, the Gerici Project (tentative). mr. Hervé Guérard, FranceExperts through the world are nowadays convinced that Climate Change is taking place.

The conclusion of the ONERC (French National Observatory on Climate Warm-up Effects) report on this subject are clear: ”Simulations anticipate a general worsening of large scale extreme weather events in France”, and the vulnerability of transport infrastructures has to be studied, When facing an increase of heat waves, floods, storms, etc..

Therefore, the French Ministry for Infrastructure decided to finance a research program about this topic. The GeRiCi project was born and a consortium managed by Scetauroute is managing the project.

The project is scheduled to be completed by the end of 2006 and will help infrastructure owners with:

• Identifying major risk factors;• Determine the vulnerability of the infrastructure components (bridges,

pavement, culverts capacity, canopies, sign gantry, etc.), to wind, rain, floods, heat, etc.;

• Designing a GIS-based tool for Climate Risks Management and their impact n infrastructures. The tool will be open and adaptable and useful for Infrastructure managers, Operations managers and Regulatory Agencies.

2. typical damages and risk management of Expressways due to recent Strong Earthquakes in Japan. Prof. dr. yoshito maeda Kyushu Kyoritsu university JaPan.On January 17, 1995 the South Hyogo Earthquake caused the worst recorded damage in Japanese history which makes a significant turning point to revise Japan’s road structure design. After nearly ten years, there were 63 earthquakes occurred in the vicinity of Japan that caused human casualties. In recent years,

• Infrastructures Highways and roads, bridges, tunnels, etc.

Based on the “Blue Ribbon Panel Document” the speaker gave a definition of risk and an overview of the RM principles related to the Highway Systems Security:

• Risk is the product of Occurrence, Vulnerability and Importance:

r = o x v x i

RM principles related to the Highway Systems Security:

• Identify critical assets;• Assess vulnerability/consequences;• Identify countermeasures;• Estimate countermeasures costs;• Implement and review emergency plans.

An extensive bibliography is available in the documentation of the seminar.

4. Piarc activities and results of international Survey, mr. Hiroyuki nakajima, JapanThis presentation provided first in-depth information about the World Road Association PIARC and its activities. It then focused on the activities of the Technical Committee 3.2 Risk Management for Roads. In a third part, the results of the International Survey regarding the establishment and use of RM procedures amongst its member countries conducted in 2005 were presented.

By April 04, 2006, PIARC TC3.2 had received 25 answers of their first International Survey from 23 countries.

5. rm toolbox, Japan, mr. Shinjuro Komata, JapanThe PIARC technical committee on RM for Roads (TC 3.2) is developing a technical toolbox, which is a database of useful technologies for RM in each road management phase, i.e., planning, design, construction, operation (maintenance) and reconstruction. The toolbox is understood to be used as a common property of PIARC. It consists of the inventory sheets and their appendix.

The inventory sheets are prepared to introduce the RM technology used mainly in Japan to developing countries, RM technologies and tools from other countries will be integrated. The inventory sheets aim at assisting budgeting and road management with ready to use RM technologies/tools.

Page 143: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

282 2010R01 2832010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

earthquake-resistant measures are carried out not only to improve seismic performance of new bridge and road structures but also to retrofit existing old structures. In Japan’s expressway network. There are 14100 bridge piers that were designed before 1980 seismic design standard require reinforcement, and currently, approximately 90 % of these have been treated proper retrofit.

In the Mid Niigata earthquake which occurred on October 23, 2004, those bridges that were seismically retrofitted able to perform earthquake-resistance. On the other hand, embankments and excavations were severely damaged.

Prof. Dr Kyoritsu showed how the seismic design concept of expressway structures in Japan and discussed the method and affiance of securing transportation road in damaged expressways.

3. a Seismic risk assessment tool for existing roads networks. mr. denis davi, France.In comparison with some other European countries like Greece, Italy or Portugal, France seismicity is usually mentioned as low to moderate. Nevertheless, because most structures and facilities where designed and built before new seismic codes were published, the seismic risk is one of the big concerns of the state political authorities.

Initiated in 1997 under the supervision of the Directorate of Roads of the French Ministry of Public Works and Transportations, the SISMOA method was created in order to estimate the vulnerability assessment of the different parts of bridge structures such as the deck, abutments, piers, foundations..., was tested with success on several seismic critical areas of the French territory, chosen to be representative of certain type of construction as well as social and economical aspects. The purpose at that time was to get a toll able to determinate which bridges should be retrofitted in priority in order to meet seismic requirements.

In 2002 it was decided to extrapolate the method from isolated bridges approach to perform the same kind of analysis on other structures like retaining walls and tunnels and also to deal with other types of seismic induced hazards than code accelerations, such as liquefaction hazard, site effects, landslides, rock fallings etc. From a purely structural engineering issue, SISMOA therefore moved to an issue gathering knowledge and experience from structural engineers, geotechnical engineers as well as seismologists and geographic information systems (GIS) experts and was renamed SISROUTE. In addition to the establishment of retrofit priorities for bridges, the objective became the global risk assessment of a road being cut off for different earthquake scenarios. Currently SISROUTE is at a stage where it is tested and calibrated.

4. development of road Slope management Systems Focusing on an Evaluation of optimum maintenance and repair. Prof. dr. Hiroyasu ohtsu, Japan.Generally, infrastructure asset management is not concerned with the execution of repair work as the primary countermeasure. A number of infrastructure management systems have existed for several decades, such as pavement and bridge management systems. However, in consideration of road slopes, current infrastructure asset management systems are quite limited. Furthermore, considering long-term performance of the road slope, it is supposed to be affected by performance deterioration of remedial works such as ground anchor systems.

Using expected life cycle cost, LCC, as the judging criterion and taking into account the performance deterioration process, this study aims to propose a new evaluation methodology associated with the development of optimum maintenance/repair plans for road slope based on road infrastructure asset management concept assuming rainfall as the natural hazard event. Finally, by applying the proposed method for a given slope adjacent to a highway, results show that the proposed method is very effective to comprehensively determine the optimum interval for cleaning the groundwater system based on the evaluated LCC to restore its performance.

5. one Example of road tunnel route modification caused by landslide. mr. Kazunori Fujisawa, Japan.Road structures, in particular tunnels and bridges, cannot tolerate even slightly displacement caused by landslides. If the proposed new route has a potential for landslide and if it’s difficult to control the movement by countermeasures, it is suitable to avoid the landslide.

However, mass rock creeps do not show an ordinary landslide landform and are difficult to be found out. In some roads, the routes had to be changed after their completion.

To prevent the damage by landslides, the risk of landslide should be identified at initial stage of landslide displacement and the routes should be changed. It is essential to monitor deformations of road structures and conduct appropriate field inspections to minimize the risk.

This paper shows the typical example to change the tunnel route to mitigate the damage caused by landslide.

Page 144: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

284 2010R01 2852010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

6. recent damages on roads from natural disasters and Proactive and Prevent measures to mitigate the damages in vietnam. Prof. nguyen xuan dao, viet nam.Natural disasters (typhoon – strong rain – Flooding) always bring great difficulties to Vietnam. This report concentrates to present main data of tropical climate conditions in Vietnam with rainy season and tropical hurricane, of the size of road network, of the losses in transport sector every year by natural disasters.

Proposals for setting up some necessary policies in national level and sector level would make the community and road users awaken to these problems. Proactive technologies (Landslide protection, concrete pavement continuous reinforces, …) were presented as prevent measures to mitigate damages of transport infrastructures in Vietnam under hard condition of natural disaster.

Session 3 — risk management of manmade hazards

1. Emergency respond guidebook, mr. michel cloutier, canutec, canadaThe guide book started as a Canadian project. The first edition of North American Emergency Response Guidebook in 1996 was the result of an International collaboration effort among Canada, the United States and Mexico. The main purpose was to improve hazard communication among the three countries by harmonizing emergency response recommendations to transport incidents. A new edition has been edited every 4 years. 150 new materials were entered in 2000. The guidebook has been translated into many new languages. In addition there is an Internet version.

In 2004 the national numbers for Canada and USA were deleted and substituted with UN 12th and UN 13th editions. European Intervention Respond Cards were reviewed in this edition (ERIC-cards) and new shipping names were added. The complete database can be downloaded from the web-page and installed on a PC. It’s free to use for everybody.

Website: http://www.canutec.gc.ca

The web-page contains: CANUTEC brochure, registration information, statistics, articles written by advisors, chemical spill related links etc.

2. traffic management plan in snowfall situations, mr. miguel angel rodrigues Jara, SpainThe weather related problems in the latest years have led to various problems on the road network in Spain: closed roads, trapped vehicles, accidents with injured people and casualties and economic losses. Such incidences have induced the Traffic Control Centre in Valladolid to start a study for developing a traffic

management plan for weather incidences and centred on the issue of winter viability.

The final objective is to guarantee the viability of the road network, reducing the effects of any weather problems. It is therefore necessary to know where, when and how to act efficiently making use of the intelligent transport systems available. The plan will identify and deal with the two phases existent in every weather incident: the alert phase and the action phase, defining the organisms involved in the problem resolution and how the information should be exchanged efficiently.

Information to users is given by means of variable message signs. Actions during bad weather conditions can be like:

• Reduction of maximum speed limit to 100, 80 or 60 km/h;• Overtaking heavy vehicles prohibited;• Overtaking cars prohibited;• Trucks and articulated vehicles prohibited.

The number of fatalities was reduced by 40-50% after introduction of this system. (2005–2006).

3. risk management in road transport and measures, mr. doan van tien, vice chairman of vietnam road administrationThe road transport in Vietnam develops very fast in order to cope with requirements of the national growth in terms of domestic movements of goods and people and cross border movements as well. The negative aspect is the increasing number of traffic accidents and environmental impacts. The average accident rate is 12.5 deaths per 10 000 vehicles which is a high level in the region.

About 30-40 lives are lost on the roads every day and in addition there are a high number of injured persons. The road administration has a priority list of concrete measures. Enhancement of the road user’s compliance with traffic rules has first priority because bad user behaviour is the main cause of most accidents. In addition there is need for completion of the legal system and better coordination among relevant ministries.

In addition to air pollution, the road transport also damages the environment by causing noises and emissions that effects life because many houses are located close to the main roads. Control of the use of land along the roads has to change. A survey in 2005 at five toll collection station showed that the concentration of breathable dust is 4-6 times higher than the existing sanitation standard. The road administration will propose several new measures to reduce the problem.

Page 145: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

286 2010R01 2872010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

The artificial road accident rate prediction along Ayer Hitam-Batu Pahat, Johor, Malaysia Road Civil, Mrs. Munzilah Binti Md. Rohani, Kolej University Teknologi Tun Hussein Onn, Malaysia

Deaths and injuries from road accidents have reached epidemic proportions in Malaysia. A variety approaches has been employed to study the relationship between the geometric design of the road and accident trend. The purpose of the ongoing study is to predict the accident rate along a 29 km long 4-lane road with many access points and variations in geometry. The road has been rebuilt from a 2 lane road and there is no barrier between the two directions. The Hitam-Batu Pahat road was chosen because it has one of the highest accidents rates in the country. The accident rate per year is varying between 10 and 50 accidents per km road. Two types of geometric data have been collected:

1. Number of access points (both sides of the road)2. Type of road shoulder (width and paved/unpaved)

The accident data contains information about:

• Type of accident• Accident location• Type of accident vehicles• Cause of accident• Number of accidents per week

Session 4 — risk management for projects and organizations

introductionThe session 4 is about the integration of risk management in organization and, more specifically in projects. Risk Management becomes a way to improve the capacity to face disasters and provide the knowledge and tools to mitigate the consequences of disasters.

The following presentations were made during this session.

1. civil Protection risk management and assessment: ms. Line tremblay, canada-QuébecThis presentation is about the integration of risk management process in an organization.

The province of Quebec has faced many challenge disasters like Ice storm in 1998 and torrential rains in 1996. The Civil Protection Act was adopted by the

government of Quebec to improve the management of risks. The basis of the act has 4 dimensions: prevention, preparedness, response and recovery. Risk management became an obligation for many ministries and departments of government of Quebec.

But, it’s not only an obligation. It is also a good way to improve processes. For example, it leads to focus energy and resources on priorities, it provides tools and methods for identifying, assessing and managing risks and it leads the organization to manage risks instead of resorting to simple crisis management.

The risk management process used is a classic one with 7 steps: establish the context, identify risks, analyse risks, evaluate risks, treat risks, monitor and review, communicate and consult. These steps were broken down into 3: objectives, risks and controls.

The objectives were related to the specific context of risk management in Quebec. For example, the Ministry of Transportation has the responsibility to keep the road network operational. During a disaster, the Ministry is also responsible to supply the means of transportation which is not a day to day responsibility.

The second step was related to risks. The Ministry has identified 61 risks in a vast area: natural, technological, social, transportation, operation continuity, insufficient equipment and resources, communication and non-compliance. These risks were classed in a map depending on their consequences and the probability they can occur. 37 of them have serious consequences and a high probability to happen. Most of them are natural risks.

The next step was to identify the controls to face these risks. In many cases, existing control measures in place in the Ministry make it possible to reduce exposure to risks. But, it other cases, new control measures are necessary. For natural and man-made risks, it appears that the best control measures are vigilance, training and documentation.

Implement risk management process in an organization is not an easy task because we are not working with facts, we are working with probabilities. In this project, it is important to bring together experts in disaster management from many departments who have vast experience and to focus on consequences more than on probabilities. Also, before starting, make sure the task force understands risk management process. Risk management is a continuous project.

In conclusion, risk management process provided a way to share risk knowledge on a rigorous manner instead of an intuitive process.

Page 146: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

288 2010R01 2892010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

2. risk management in the planning process for a 14 km Subsea road tunnel in norway: mr. Gunnar Lotsberg, norwayThe Solbakk Tunnel is located in the Ryfast area in the North of Norway. The tunnel is constructed in one single tube with two-way traffic. The deepest point is 285 m under sea level.

Safety equipments put into place in the tunnel were:

• Emergency walkways.• Cross connection the emergency gallery every 250 m.• 24 m long lay-bus every 250 m.• Turning niches for heavy vehicles every 1000 m.• Traffic signals every 1000 m.• Safety and evacuation lighting.• Automatic fire ventilation programs.• Emergency telephones every 250 m.• Fire extinguishers every 125 m.• Radio communication for the fire brigade, police and ambulances in addition to

ordinary broadcasting programmes.• Video monitoring system.• Automatic speed monitoring.

During the planification step, a risk analysis was done in the perspective to mitigate or avoid the consequences.

• What can go wrong?• How often can it happen?• How bad can things go?• What is acceptable risk?• What can we do?• Identification of hazards?• Estimate frequencies.• Analyse consequences.• Acceptance criteria.• Identify risk reduction measures.

Basis on the historical data (vehicles per days, accidents number and fires), estimation for the year 2010 were made.

During the planification of the Ryfest Project, many scenarios were tested to verify the efficiency of the safety measures. In all risks in tunnel, a fire is a constant preoccupation.

To mitigate the risks, it is important to review all possible risk reduction measures: make a detailed description of each measure, analyse their advantages and disadvantages, and make an assessment of their cost effectiveness.

There are 2 kinds of measures: to reduce the probability of an accident (lighting, maintenance, speed limits …) and to mitigate the consequences of an accident (emergency action plan, communication systems, evacuation procedures …).

The results from the risk analysis were:

• The probability for a severe accident with fire is very low.• A on tube tunnel is acceptable because of the low traffic volume.• Recommended risk reduction measures:

• Education training of emergency personnel;• Audio marking of emergency exits;• Restricting the transport of dangerous good.

3. review of best Practices in the use of public private partnership for the development of local roads: mr. Hatem chahbani, united Kingdom The review aims to cover the following topics:

• Summary of global best practice common to countries with successfully implemented PPP transactions in the road sector, with a primary focus on the fiscal policies in place and the share of responsibilities between central and local governments;

• Recommendations as to the consequences of application of those policies.

The review was carried out over a simple of countries selected to be representative of a wide variety of PPP experience around the world to allow drawing conclusions that are applicable to a broad context of PPP initiation as well as governmental organizations. Consequently, the sample was selected to permit wide variations over the following three key parameters, expected to play major catalyst roles in the delivery of PPP transactions at the local level, to allow the stydy of their impacts:

Page 147: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

290 2010R01 2912010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

• Common vs. Civil Law countries;• State vs. Federal government structure;• Well established vs. infant structures in the process of implementing PPPs.

The resulting sample was organised in two categories. A first category (Group A) representing the most successful PPP experiences and includes variations among the first and second criteria above. The countries selected were:

• Australia;• Hungary;• Netherlands;• Portugal;• UK.

To this regard, a definition of what is a successful PPP experience at the local level was established.

The second category (Group B) included countries at the early stages of implementing PPPs with a mixture of failing and successful experiences. The following set of countries were selected to be representative of this category, where local authorities have already been involved in the process with no clear rules of decentralisation and share of responsibilities, and where PPP legislation still to be improved:

• Croatia;• Czech Republic;• Romania.

The review involved a desk research and interviews with key government agencies in charge of promoting PPPs as well as with major stakeholders. The review was geared towards understanding the specific reasons and measures behind success or failure of road PPP transactions. In particular, the following aspects were the main focus:

• the government structure and levels of decentralisation;• the PPP legislation in place;• the country regional fiscal policy;• the risk allocation, procurement process and funding methods;• the procurer’s experience with PPP transactions and level of use of advisors’

expertise;• the technical and financial viability of the approved schemes;• the country’s credit rating.

Management practices of local governments’ debt levels were also among the aspects considered during the review with the aim of providing answers to the following questions:

• How, and what extent municipal borrowing contributes to the State debt? what are the rules for taking on debt for a PPP within a local authority? and who has overall control of that debt level?

• What fiscal tools are available to local authorities and what freedom do they have to use them with/without prior state approval?

• How does the state monitor and manage the local debt levels? i.e. how local spend/borrowing levels are defined within the states PSBR levels?

The review was then completed with an understanding of how the arrangements between central and local Governments in relation to the above questions have contributed to the success and pitfalls of PPP transactions.

4. South East asian community access Program (SEacaP) – a new approach: mr. david Salter, canadaDependable access to social and economic opportunities is essential for reducing poverty and accelerating growth. Efficient and affordable transport is a necessary pre-condition for rural communities to access these opportunities. It facilitates trade and integration, is crucial for advances in agriculture, and is fundamental to human development, including the delivery of health and education services to poor women and men. Improved access is directly linked to improve to standard of living in rural communities.

DFID’s role in the transport sector is to influence regional policy and achieve sustainable poverty reduction, pro-poor growth and contribute to the effectively addressing gender related issues. Within the framework of the Global Transport Knowledge Partnership, DFID is funding SEACAP and working actively with other development partners, including the Asian Development Bank and the World Bank, and forging close links with recipient governments.

SEACAP is a poverty-targeted transport initiative, aimed at improving sustainable access focused on the needs of poor women and men in rural communities, with projects currently in Vietnam, Cambodia and Laos PDR. The programme’s goal is to identify and support the uptake of low cost, sustainable solutions for rural access. Fundamental to the approach is maximising the use of local resources, which include labour, materials and most importantly ingenuity. To do this, the Programme provides funding for applied research, its dissemination to implementing agencies and support to help them adopt improved techniques and approaches. This Programme has now expanded to twenty-four projects within

Page 148: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

292 2010R01 2932010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

the three countries. The individual projects demonstrate best practice responses to local demands and in combination create a comprehensive multi-level approach with high expectation of the results being mainstreamed into national practice.

In both man-made and natural disasters, re-establishing access to affected communities is often one of the highest priorities. SEACAP will be carrying out work that will help to provide the knowledge and tools to mitigate dangerous and costly slope failures on roadways in hilly and mountainous terrains. SEACAP’s work in appropriate road technologies has influenced work in Afghanistan through the National Emergency Employment Program, where after the man-made disaster of decades of violent conflict, the reconstruction of the rural road network has been the principle means of establishing year round access, productive rural infrastructure, generating employment and kick starting local economies. SEACAP has also influenced work in the Tsunami reconstruction in Sri Lanka, where rubble from the disaster has been used as a roadbase building material in reconstruction access roads.

5. the national training program on rural road management the achievements and lessons learnt: dr. do Huan, vietnam.SEACAP 11 — The National Training Program for Rural Road Management — is under the Southeast Asian Community Access Program funded by DFID. This Program is a demand-driven program on rural road management which supports the Rural Transport Project No 2 (RT2) through training and facilitation activities in 43 out of 64 provinces of Vietnam. This Program started in November 2004 and completer in April 2006.

The objectives of the program were:

• To improve the capacity of local authorities in RT2 provinces to manage and maintain their rural road network.

• To support RT2 provinces to put in place suitable systems to manage and maintain their rural road network.

• SEACAP 11 beneficiaries are rural transport staff, commune leaders and local people in 6000 communes, 357 districts and in 43 provinces in Vietnam as well as training staff in transport education and training institutions in Vietnam.

The main activities of SEACAP 11:

• To develop and implement demand-led training program for rural transport leader staff in districts and communes.

• To develop and implement a series of TOT training workshops for 100 trainers at provincial level and 720 trainers at district level who are capable of conduction and managing the demand-led training courses.

• To monitor and evaluate the progress of the training programs.• To carry out activities on awareness improvement and conduct handover

training and experience sharing activities.

The main project achievements records:

• 180 person (trainer) times at provincial level attended 6 TOT training workshops.• 720 key trainers from districts have been trained through 43 TOT training

courses.• More than 12,000 transport staff in 6,000 communes has been trained through

demand-led training courses.• 35 professional instructors in 9 selected transport education/training institutions

completed the Handover Training Course where the participants could families the new developed modular training curricula and material as well as upgrade adult TOT techniques and share experiences on the training courses implementation.

The main products of SEACAP 11:

• 7 Curricula for different types of courses for the trainers and rural transport staff.• 20 modules for rural road maintenance.• 7 modules for training of the trainers (TOT).• Master CD which contains all developed modules and supplementary document

(Ao format drawings, modules Matrix, Time schedules, course evaluation forms, etc.)

• Menu-based training/awareness improvement film.• Web site which includes all curricula, materials and project activities and

achievements.

What SEACAP 11 can share?

• Experiences on the competency-based training curriculum and material development.

• Experiences on demand-led training course implementation and monitoring.• TOT courses design and implementation.• How to use effectively the developed training material including training

modules, drawings and training film.

Page 149: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

294 2010R01 2952010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

international workshop on tsunami

Presentations in the workshop are as follows:

• Keynote Lecture, “Road Damage and the Lessons from 2004 Indian Ocean Tsunami” by Dr. Shigeki Unjoh, Public Works Research Institute, Japan;

• Methodology of Computing Level Fluctuations at Integrated Coastal zone Management` by Mr. Nguyen The Tiep, Director of Marine Geology and Geography, Vietnam;

• Current Status of Indonesian Tsunami Warning System` by Mr.Pariatomono Sukamdo, Ministry for Research and Technology, Republic of Indonesia;

• Recent Tsunami Disaster Stricken to Sri Lanka and Recovery` by Prof. Ananda Jayawardane Univ. of Moratuwa, Sri Lanka.

Background:Tsunami is the most destructive and unavoidable natural hazards, threatening lives, property and the sustainable development of many countries. There is an increasingly wide gap between the vulnerability of the poor to tsunami and the efforts to mitigate them. To mitigate the Tsunami damages, a comprehensive and integrated approach must be adopted including both preventative and responsive measures.

actions:National Governments should establish policies for the mitigation of the affects of all natural disasters, including Tsunami, backed by appropriate institutional arrangements. These should include the compilation and free and open exchange of all relevant data, information and expertise.

recommendations:In order to reduce the loss of life, injury and damage caused by Tsunami, each country should:

• Adopt comprehensive and integrated Tsunami management strategies based on vulnerable areas, giving full consideration to Tsunami control. Such an integrated strategy should be underpinned as a context of integrated disaster management which is closely related to the policies and practices for land management and the reduction of tsunami damages by all relevant stakeholders. Specific recommendations are:• Consideration of both direct and indirect damages, and Tsunami as a major

obstacle to implementing secure land use and economic activities and to protect urban poor. The vulnerability of the poor to Tsunami can be mitigated through better planning.

• Recognition of basic knowledge and continuous monitoring of seismic and oceanographic aspects, as an essential pre-requisite for effective tsunami management.

• Integration of structural and non-structural measures, supported by the social and economic sciences, such as hazard mapping, zoning, tsunami proofing, tsunami fighting, forecasting and warning, training and rapid response actions.

• Strengthening of framework of tsunami policy and organization, laws, and legislation regarding preventative measures and emergency management from the viewpoint that tsunami can never be totally eliminated.

• Promoting information sharing, compilation of necessary data and capacity building for proper maintenance and optimum operation of tsunami control facilities based on the recognition that improper management of such facilities may aggravate disasters.

• Giving importance to public participation and community based local cooperation in raising awareness regarding the impacts of tsunami through appropriate policies and related activities.

• Allocate adequate financial resources to implement the necessary tsunami management projects in accordance with the above recommendations.

• Cooperate with neighboring countries and with all relevant intergovernmental and non-governmental programs aimed at mitigating the effects of tsunami, including participation in the network systems.

closing session

Closing remarks by Mr. Nguyen Tuong, Deputy Director General of the Department of International Cooperation, Ministry of Transport, Vietnam and Dr. Michio Okahara, Chairman of TC3.2, PIARC.

2. tHE SEcond intErnationaL SEminar in coLomBia

2nd International Seminar on Risk Management for Roads organized by Technical Committee 3.2, PIARC and Ministry of Transport, Colombia.

*Venue: Centro de Formacion de la Cooperacion Espanola, Cartagena de Indias, Colombia*Date: May 3 and 4 2007*Participants: some 120 (some 20 of them from out of Colombia)

Page 150: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

296 2010R01 2972010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

thursday, 3 may 2007

opening Session: (moderator: mr. Federico Fernández alonso, associate director General, ministry of interior, Spain)09:00 Welcome Address, Mr. Gerardo Dominguez Graldo, Vice Minister, Ministry of

Transport, Colombia09:20 Welcome Address, Mr. Carlos Gómez-Múgica Sanz, Ambassador, Embassy of Spain

in ColombiaOpening Remarks, Dr. Michio Okahara, Chairperson of TC3.2, PIARC

09:40 Introduction of PIARC and TC3.2 Activities, Mr. Hiroyuki Nakajima, English Speaking Secretary, PIARC

10:00 Keynote Speech: Road Safety and Risk Management in Colombia, Mr. Francisco José Fernández

10:30 Keynote Speech, “Integrated Flood Risk Management for urbanized river basins in Japan”, Mr. Akira Terakawa, Japan

11:00 BreakSession 1: introduction of risk management techniques in the road sector (moderator: mr. Gerardo dominguez Giraldo, vice minister, ministry of transport, colombia)11:30 Risk Management Process Manual in New zealand, Mr. Roly Frost, New zealand 12:00 Risk Management Toolbox, Mr. Shinjuro Komata, Japan12:30 Prevention of Emergencies in Colombian roads Mr. Enrique Martinez Arciniegas,

Colombia13:00 Discussion13:30 LunchSession2: risk management of natural disasters (moderator: mr. mauricio Pineda, director, ministry of transport, colombia)15:00 Risk management for landslide disaster - in the case of the Higashi-Yokoyama

landslide, Japan, Mr. Kazunori Fujisawa, Japan15:30 The Traffic Regulation of RN1 in La Reunion Island, Mr. Jean-Louis Durville, France16:00 The Road Management in big disasters, Mr. Federico Fernández Alonso, Spain16:30 The Road Management in Natural disasters, Mr. Hugo Gamboa Sánchez, Colombia17:00 Discussion17:30 End of 1st day20:00 Welcome dinner.

Friday, 4 may 2007

Session 3: risk management for Highway Systems and Projects (moderator: mr. Jose Enrique rizo Pombo, Former minister of ministry of transport colombia)09:30 Risk Management for the Swiss Highway System, Mr. Michel Donzel, Switzerland10:00 A Risk Analysis for a New Sub Sea Tunnel Project, Mr. Lotsberg Gunnar, Norway 10:30 Break11:00 Proactive Risk Management Systems Before Big Catastrophes, Sr. Ruiz de Boada,

Spain11:30 An Approach to Risk Management in a Road Transport Authority, Mr. Johan Hansen,

Sweden12:00 Discussion12:30 Lunchiberoamerican session (moderator: mr. Federico Fernández alonso, associate director General, ministry of interior, Spain)14:00 Road safety Management in Concessioned roads in Colombia, Mr. Alejandro García

Cadena14:30 Encounter between the Spanish enterprises and Colombian administrations 16:00 Discussionclosing Session (moderator: mr. akira Sasaki, Seminar coordinator, tc3.2 Piarc)16:30 Closing Remarks, Vice Minister, Ministry of Transport Colombia

Closing Remarks, Associate Director General, Ministry of Interior, SpainClosing Remarks, Regional Representative Ministry of Foreign Affairs Spain

16:45 Closing Remarks, Dr. Michio Okahara, Chairperson of TC3.2, PIARC17:00 End of 2nd day

3. BriEF Summary oF EacH SESSion

opening session

Summary by Hiroyuki nakajimaModerator: Mr. Federico Fernandez Alonzo, Spanish speaking secretary, TC3.2

Welcome Address, Mr.Gerardo Dominguez Graldo, Vice Minister of Transport, Colombia, who expressed thanks for TC3.2, PIARC and Spanish government to have the Seminar on Risk Management in Colombia and welcomed all the participants.

In the address he briefly introduced the national development plan in Colombia and mentioned that Colombia put a lot of stress to build up the transportation

Page 151: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

298 2010R01 2992010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

infrastructures and thanks to these efforts the number of international visitors to this country doubled in these years. He also stressed the importance of Risk management is widely understood by the government and he expected that they can exchange knowledge on these matters through this Seminar and that this kind of activities surely help them develop and implement more and better infrastructures in Colombia.

Welcome address by mr. carlos Gomez, Spanish ambassador to colombiaHe expressed warm welcome to all the participants. He also expressed his expectation that through this Seminar new ideas and technologies will be disseminated and help improve human resources in the Risk Management fields.

He introduced the Spanish owned seminar house, which has long history and is one of the best facilities in Colombia and hoped successful and fruitful discussions would go on in this nice place.

opening remarks by dr. michio okahara, chairman of tc3.2He expressed his sincerest gratitude to the Ministry of Transport of Colombia and Colombian colleagues who successfully hosted the 2nd International Seminar on Risk Management for Roads. He also expressed his deepest thanks for the efforts and cooperation of Spanish colleagues and Spanish embassy in Colombia.

Then he briefly introduced the TC3.2 activities and the importance of risk management in road sector and program of the Seminar, which, he hoped, surely help Colombian audiences understand the techniques and ideas of risk management and at the same time help international participants understand the status quo of this field in Colombia.

Piarc and tc3.2 activities and results of international SurveyHiroyuki Nakajima, English Speaking Secretary, TC3.2, PIARC

C.f. Appendix B, page 270 for the results of the international survey.

Keynote speech “integrated Flood risk management for urbanized river Basin in Japan”, mr.akira terakawa, international center for Water Hazard and risk management (icHarm), Japan

He stressed in his speech the following matters,

• Importance of flood risk management• Comprehensive flood disaster prevention measures• Designated urban river inundation prevention act (2003)

Some 80% of natural disasters are water-related, most of which are caused by flood and wind storms. The number of water-related disasters in Asia represents some 1/3 of the world total.

In Japan 51% of the population lives in flood plain. Flood disaster examples in Japan, especially flooded urban area, were presented.

Flood risk management involves assessing and controlling the risk of flood and minimizing damage wit the least cost, and this will be done in the following order,

1. Understanding the risk of flood damage to life and properties in advance 2. Preventing and avoiding the risks 3. Mitigating damages caused by flood 4. Preventing the expansion of damages

The main points of risk management are the balance of proactive measures (prevention and mitigation) and reactive measures (emergency response and recovery).

These ideas were introduced by showing examples of the effects of urbanization on flood and examples of river improvements like embankment, dredging, construction of retarding basin and diversion tunnel. He also showed the examples of basin measures like construction of storm water detention pond, multi-purpose facilities, rainwater storage facilities and permeable pavement. As for the damage reduction measures examples like construction of high standard levees were shown.

He finished his speech by introducing ICHARM, whose missions are to act as an international center for providing and assisting the implementation of the most practical strategies to prevent and mitigate water related disasters.

Keynote speech “road Safety in colombia”, mr. Fracisco Jose Fernandez mejia, Fondo de Prevencion vial (road Prevention Fund), colombia

One of the greatest risks for road sectors in Colombia is traffic accidents. A lot of efforts were pumped in to reduce the traffic accidents in these 10 years or so. As a result the number of traffic accidents decreased and death tolls were also reduced from some 8000 ten years ago to some 5500 in 2006 in spite of the fact that the population grows during the same period. But there are still much to be done. Main causes for traffic accidents are lack of training or education of drivers as well as pedestrians, alcoholic or drug affected drivers, poor conditions of roads especially in rural areas, inadequate maintenance for roads, increasing number of motorcycles, and transportation of dangerous or illegal substances like petros and chemicals.

Page 152: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

300 2010R01 3012010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

But on the other hand number of traffic accidents decrease when the public transportation system improved in urban areas or when more money is put in for the improvement of road infrastructures and road designs and road safety measures. One of the good examples for the effect of improvement of mass transport system may be seen in Bogota, capital city of Colombia, where traffic accident casualties decreased drastically.

Other important countermeasures to reduce casualties caused by traffic accidents are enhancing public awareness campaigns organized by the non-profit private organization called FPV (Road Prevention Fund). By these campaigns more than 20,000 lives were saved in these ten years. But this is not good enough and now in Colombia together with other countries in Latin America they are trying to look at and refer to the successful experiences of other road safety-wise developed countries in the world and examine which approaches work here and why and to build up their own road safety models based on their culture, people and circumstances in Colombia. Organizations like PIARC are most expected to help build such models.

Session 1• Introduction of Risk Management Techniques in the Road Sector• Summary by Michel Donzel• Moderator: Mr. Gerardo Dominguez Giraldo, Vice Minister, Ministry of

Transport, Colombia

The moderator, Vice Minister Gerardo Dominguez Giraldo, started this session by giving an overview of the Columbian transportation system and the related investments. He continued providing an extensive introduction into Risk Management (RM).

Process Manual in New Zealand, Mr. Roly Frost, New Zealand

Many parts of the world are at significant risk of natural and technological (man-made) disaster. New zealand is no exception. Set in the Pacific Ocean, the country’s surface is approximately 269,000km2. Its topography ranges from sea level to mountains of over 3,500 metres and is therefore vulnerable to a wide range of natural disasters, including extreme weather events, earthquakes and volcanic eruptions.

Transit New zealand is a Crown Entity roading authority managing the state highway network of New zealand. The road networks are the most basic and reliable transportation infrastructure around the world and essential for maintaining daily life and the economy. Roads are so-called lifelines and road users expect them to be maintained at high levels of serviceability.

Transit’s approaches effects of natural and technological disasters with a comprehensive RM process. A set of RM tools is provided and encouraged to be used with the objective of minimizing unplanned occurrences and maximizing chances of mitigating risk through greater risk awareness and proactive management. RM has become part of the organization’s culture and is adopted from the Board level through to individual projects.

The speaker presented Transit’s approach to reducing risks and outlines the RM Process manual. The process consolidates the AS/NzS 4360 Manual with a special focus on residual risk. Risk communication and monitoring is emphasized, because reaching the ones who need to be informed and who can influence the outcome is key.

The presentation included three specific case studies:

a) Lahar management risk processPresentation of the mitigation measures put in place to accommodate the risk of a lahar and the results of the eventual failure of the crater on March 18, 2007.

b) Seismic risk to bridgesDiscussion of the many variables that influence the results of a structural analysis and the significant amount of judgment required, both in deciding the input parameters for the analysis and interpreting the results.

c) Avalanche managementDescription of a Programme to protect a 21 kilometer long section of a tourist road, which crosses 53 avalanche paths.

RM Toolbox, Japan, Mr. Shinjuro Komata, Japan

The PIARC technical committee on RM for Roads (TC 3.2) is developing a technical toolbox, which is a database of useful technologies for RM in each road management phase, i.e., planning, design, construction, operation (maintenance) and reconstruction. The toolbox is understood to be used as a common property of PIARC. It consists of inventory sheets and appendixes.

The inventory sheets are developed to introduce RM technology used mainly in Japan to developing countries , RM technologies and tools from other countries will be integrated. The inventory sheets aim at assisting budgeting and road management with ready to use RM technologies and tools.

The inventory sheets record the applicability (e.g. effectiveness and cost) of individual technologies and tools of RM and the perspective of technologies and

Page 153: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

302 2010R01 3032010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

tools for future use. They are divided into management of natural hazards and man-made hazards. At present 109 inventory sheets are available for natural hazards and 11 for man-made hazards. Additional inventory sheets are being developed.

Prevention of Emergencies in Colombian roads, Mr. Daniel Gracia Arezabaleta, Colombia

Mr. Garcia is a representative of the National Institute of Traffic Routes INVIAS (Instituto National of Vias) which is part of the Transport Direction in the Ministry of Transport. He presented the organization of the Columbian administration in the road sector and the assignment of tasks in case of disasters to the operation units at the different levels (national/local). A Disaster Prevention Office is subordinated to the executive board of INVIAS.

He provided information on the traffic infrastructure and illustrated the disasters with figures and pictures. He detailed the mode of operation of the Disaster Prevention Office and its main instruments: the work program, the system of risk assessment, and the mitigation of natural hazards. 80% of the interventions are reactive, 20% preventive.

Session 2• Risk management of Natural Disasters• Summary by Gunnar Lotsberg• Moderator: Mr. Mauricio Pineda, Director, Ministry of Transport, Colombia

Risk Management for landslide disaster – in the case of the Higashi-Yokoyama landslide, Japan. Mr. Kazunori Fujisawa, Japan

On April 11 a patch of slope collapsed and resulted in small rock deposit on a village road close to the Yokoyama dam in the Gifu prefecture in Japan. New cracks were found on the slope and detailed investigation was started. A big landslide might block the river and create a pool that could cause damage to two dams as well as a road on the opposite bank.

Extensometers were installed and the movements were monitored from April 28. Local civil works office arranged meetings for a delegation of responsibilities and started planning of activities. A response regime was set up with three levels based on the extensometer readings, and an information network was established.

The speed of the landslide was low at the beginning, but accelerated after a two hours rainfall on May 7. Three days later the sliding speed had exceeded 10 cm per hour, and it was expected that the main landslide would come in a day or two.

The road was closed for a length of 3 km and the area was evacuated. During 22 hours on May 12 and 13 there were several collapses and the frequencies of rock-falls and slope failures increased with time until the main cracks were connected and a volume of about 50,000 m3 slid down.In this case falling rocks and slope collapse was a useful indicator to predict the timing and scale of the subsequent landslide. Early detection and good liaison between the organizations responsible for dealing with the incident, was important to minimize the damage. Experience from landslides and expert knowledge is important to find the appropriate response and keep the damage as small as possible.

The Traffic Regulation of RN1 in La Reunion Island. Mr. Jean-Louis Durville, France

The RN 1 highway in La Réunion Island (Indian Ocean) is linking Saint-Denis, the largest town, to the harbor. The traffic is over 50,000 veh/day and is still growing. The 11 km long highway was built in 1976 along the coast, at the foot of a volcanic cliff higher than 150 m in some places. The cliff is formed of alternating fractured basalt flows and tuffaceous strata of Quaternary age. Rock falls are very frequent (one every four days on average), partly correlated to tropical rainfalls. Rockslides (5,000 to 50,000 m3) may also occur. Both rock falls and rockslides have caused about 20 victims since the construction of the road. 3 persons were killed last year and the risk is intolerable.

Statistical studies on rock falls show that the rocks hit mainly the two lanes on the cliff side and occur mostly after heavy rainfall. Since the 90’s this has lead to a risk management consisting of the closure of the two lanes on the cliff side when rainfall exceeds 15 mm/day. This traffic regulation decreased the probability of accidents but did not suppress it completely; moreover it causes large perturbations to traffic between town and harbor.

Huge wire nets are now being hung along the more dangerous parts of the cliff to prevent rock falls. Wire nets do not protect against rockslides, and their maintenance is difficult and expensive. Therefore a new route has to be designed to get a permanent and safe solution. The choice lies between tunnel (quite safe as regards rock fall hazard, but daily traffic jams would generate other problems) and embankment or viaduct off the coast (the design has to bring a high level of safety against rock falls, but also against waves and typhoons).

Embankment is the cheapest alternative and the tunnel has the highest construction cost. The operation cost for the tunnel will also be higher than for the embankment. The reliability during construction and operation should also be considered as well as the duration of work and the possibility for slicing due to financial resources.

Page 154: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

304 2010R01 3052010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Road Management in big disasters. Mr. Federico Fernándes, Spain

The Traffic General Directorate (La Dirección General de Tráfico) is organized under the Spanish Ministry of Interior. This organization is responsible for the emergency plans that include evacuation of persons and emergency routes in case of road and tunnel accidents as well as general emergency situations for three different situations: Flooding, nuclear accidents and terrorist attacks.

The first step is to define the possible scenarios and set up plans for evacuation and find access roads for the emergency services. The emergency plans are distributed to the responsible authorities; Civil Protection, Fire brigade, Medical coordinator, Civil guard and police in addition to the Traffic authorities.

There is a network of centres for traffic control and management in the great metropolitan areas. The traffic control centres are collecting information about the traffic situation, and the problems are divided into level 1-4 depending on type and severity. Television cameras along the road are used to supervise the traffic circulation, but can also be useful in case of heavy snowfall or a forest fire. In some areas helicopters are used to collect information and get a complete overview of the situation.

In case of big disasters and closing of a main route, information about alternative routes is given through the radio and by means of variable panels along the road. Variable panels are also used for access control.

Emergency plans for an incident at the nuclear power plant near Valencia and emergency plan for a terrorist attack were presented to illustrate different types of risks and methods to handle the risks. These plans give information about traffic scenarios, emergency routes, and coordination and information strategies.

Road Management in Natural Disasters, Mr. Hugo Gamba Sánchez, Colombia

Colombia has many challenges due to earthquakes, floods, landslides, volcanic eruptions, tsunamis and tropical storms. The Ministry of Transport is responsible for national and regional efforts to establish a guide with the purpose of taking care of a situation of a national disaster of a sudden or entropic character.

Main objectives:

• Define the responsibilities of the organizations of the sector.• Evaluate and provide basic information on the strengths and weaknesses of the

infrastructures for all the ways of transport (road, aerial, ships and ferries).

• Carry out diagnoses on the operation of the different ways of transport, being defined by the actors who take part in the benefit of the service.

• From the point of view of the accessibility and the transports, determine and identify the most sensible regions and the most significant impact, before the occurrence of a disaster.

• Establish procedures to follow on the part of the organizations of the sector, with the intention of facing an emergency.

• Offer alternatives for the benefit of the transport service.

The vice minister of Transport is leading a committee of accessibility and transport with members from several organizations including the police and military forces in addition to transport and infrastructure units.

The regional offices for prevention and attention of emergencies are responsible for:

• The preventive and reactive plans of contingencies.• Analysis of management of the infrastructure studies• Execute the programs adopted by the system. (National for the prevention and

attention of disasters).• Coordinate and evaluate the contracts.• Identify tactically important points and to design mechanisms and policies for

prevention of risks.• Maintain a system for permanent monitoring of critical sites.

The national office for prevention and attention of emergencies is responsible for:

• Annual programming of works based on historical information at regional level.• A system for the evaluation of risks of the national road network.• A project for the reduction of vulnerability from natural disasters.

The National institute of routes is responsible for construction, maintenance and consolidating the infrastructure of a national and international transport system in Colombia that contributes to a sustainable development and competitiveness. The vision is to be an organization recognized by the quality and functionality of infrastructures of transport that offers to security and well-being and able to generate and to obtain resources.

Page 155: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

306 2010R01 3072010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Session 3 - risk management for Highway Systems and Projects, Summary by roly FrostModerator: Mr. Jose Enrique Rizo Pombo, Ex Minister, Ministry of Transport, Colombia

risk management for the Swiss Highway System by michel donzel, Switzerland. The paper showed that the Swiss topography defined the living space and traffic flows with both the population and the traffic concentrated on the plateau. As a result of this, the two main risks in Switzerland are traffic accidents and natural hazards.

The paper outlined the government’s risk policy and its implementation and then concentrated on risk management for roads. In the past the prevailing behavior was to react on incidents to meet single protective measures. Currently the agencies begin to make risk-based decisions and have developed an integral risk management system. In the future risks will be assessed and treated consistently according to the principles of integral risk management.

The paper outlined the research programme relating to the highway system. This programme with a budget of US $1.6M is looking at the effectiveness of measures to review structural safety of bridges.

The main risk in the national state highway system are in order:

traffic accidents natural hazardsTransport of dangerous goods FloodsOverloading AvalanchesFire LandslidesVandalism Rock fallTraffic Jams Earthquakes

The Swiss have also instigated a national bridge seismic screening programme, which involves a two step assessment. The first step is a desktop study looking at a one-page checklist followed by a second step, which consists of a detailed assessment of the seismic safety. Step 1 involves classification of the bridge classes, surface type and other features followed by step 2 which focuses on the safety against unseating of the girders and the movement of support devices and joints.

a risk analysis for a new Sub Sea tunnel Project by mr Losberg Gunnar, norway.Norway has 91,450 kilometres of public roads, which includes 850 tunnels with a total length of about 800 kilometres. The proposed 24.5km Laerdal Tunnel is the world’s longest road tunnel.

The first sub sea tunnel was opened in 1982 and connected the mainland to the city of Vardoe in the northeast of Norway. This 2.9km tunnel is at the deepest point 88 metres under the sea level.

The paper showed that both the depth and the length of sub sea tunnels in Norway are increasing and the proposed new tunnel is unique in the sense that it has a T-connection connecting three tunnels.

In addition to ordinary traffic accidents and human errors, the main threats to safety in tunnels are fire, dense smoke and spillage of hazardous substances. The paper showed that there is a reduced likelihood for accidents in tunnels compared with the average accident frequency on road in Europe, but the potential for catastrophic consequences, however, is much higher in the case of tunnel accidents because of fire and explosions.

A new EU-directive on safety in road tunnels was implemented in 2004. This directive established preventive measures that provide a minimum of safety in the events of accidents in tunnels longer than 500 metres. The paper gave an overview of the risk analysis for a new 14km long sub sea tunnel project in Norway. The deepest point will be nearly 300 metres below the sea level, which has a special challenge because of steep gradients up to 7%. The paper outlined the risk analysis undertaken and the conclusion that a single tube tunnel with a parallel emergency tube will give an acceptable risk for the first years of operation. It is anticipated the construction of the second tube can be postponed until the traffic volume reaches 8,000 vpd.

Proactive risk management Systems before Big catastrophes by Sr. ruiz de Boada from Spain. The paper discussed the principles to be adopted in a mass emergency.

The paper focused on the information and how important it was to consider the accuracy and the effectiveness of the information in advance of a mass emergency. Misinformation, or unclear information can create greater chaos than the actual emergency event. For this reason, any communications Programme needs to be precise, homogeneous, well thought out, capable of being picked by CNN and presented in a way that understands the various cultures that may be involved in an emergency as part of the communication.

Page 156: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

308 2010R01 3092010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

The 11 March 2004 event in Madrid changed the emergency procedures in Spain for all time. An emergency military unit was established and funded by the government. This now takes charge. Since that time considerable training and information systems have been put in place along with increased security.

an approach to risk management in a road transport authority by mr Johan Hansen from Sweden. The paper describes the already widely established risk management discipline sometimes referred to as traditional risk management, which normally includes safety, security or loss prevention. It then goes on to describe the emerging fields which are called enterprise risk management which cover corporate governance, business continuity, planning, corporate responsibility and critical issues management.

The paper sets out the overall scenario for risk analysis using a step by step process involving identification, determination of impact and likelihood of a preparation of a risk management plan and communication of the final outcome.

The paper finished up discussing the Southern Link Project in Stockholm – a successful mega project.

iberoamerican Session • Summary by Hiroyuki Nakajima• Moderator: Mr. Federico Fernandez, Associate Director General, Ministry of

Interior, Spain

Road Safety Management in Concessioned Roads in Colombia, by Mr. Alejandro Garcia Cadena and Dr. Andres Arellano Samper

The concession system for the construction of roads in Colombia was first introduced. Now some 16 concessioned projects are under way in Colombia. As an example, some 86 km long Bogota-Villavicencio Highway Project was explained. This highway goes through natural hazard-prone areas like avalanches, earthquakes, land slides and so on. This makes this project even more difficult in terms of risk sharing among national, regional and local governments. The scheme of risk sharing was also explained.

Then the road safety management system in Colombia was presented. Traffic accidents due to speeding are increasing in accordance to the construction of good roads. In order to reduce accidents on roads they put much stress on education , especially one for the children like the usage of roads, the importance of abiding by the traffic rules, the toll road system, dangers of speeding and others.

Other important aspect for road safety is how effectively distribute road related information, which are now given to people through medias like newspapers, radios and local TVs. Sizable portion of traffic fines is used for these purposes and enhancement of road safety levels. He also talked about the Pilot Plans to encourage people to respect laws and contingency tunnel plans to preserve human lives from traffic accidents.

Finally he mentioned that various measures taken to reduce accidents are working successfully, but still they have long way to their projected goals.

Two presentations were given from engineers from ETRA and INDRA Corporations in Spain. They introduced their businesses as an concessionaries in Spain and showed their contributions in the area of operation, maintenance of roads and emergency management system for roads in Spain.

closing Session• Summary by Akira Sasaki • Moderator: Akira Sasaki, TC3.2, Japan• Closing Remark 1: by Mr. Gerardo Dominguez Graldo Vice Minister of

Transport, Colombia• Mr. Federico Fernández, Vice Director, Ministry of Transport, Spain• Mr. Jose Roberto Piqueras Director, Ministry of Foreign Affairs, Spain• Dr. Michio Okahara, Chairperson, TC3.2, Japan

4. tEcHnicaL concLuSionS

In order to reduce the loss of life, injury and damage caused by disasters, each country should:

• Adopt comprehensive and integrated risk management strategies. Such an integrated strategy should be underpinned as a context of integrated disaster risk management which is closely related to the policies, practices for land management and the reduction of damages by all relevant stakeholders. Specific recommendations are:

• Integration of structural and non-structural measures, such as hazard mapping, zoning, disaster proofing, disaster fighting, forecasting and warning, training and rapid response actions.

• Strengthening of framework of disaster policy and organization, laws, and legislation regarding preventative measures and emergency management from the viewpoint that disaster can never be totally eliminated.

Page 157: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

310 2010R01 3112010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

• Promoting information sharing, compilation of necessary data and capacity building for proper maintenance and optimum operation of disaster control facilities based on the recognition that improper management of such facilities may aggravate disasters.

• Development of guidelines/manuals of risk management to implement and operate risk management in the road sector for the purpose of inducing the effective and appropriate countermeasures for the mitigation of essential social loss.

• Giving importance to public participation and community based local cooperation in raising awareness regarding the impacts of disaster through appropriate policies and related activities.

• Allocate adequate financial resources to implement the necessary disaster management projects in accordance with the above recommendations. The concession strategies should be one of the solution to have flexible financial source.

• Cooperate with neighboring countries and with all relevant intergovernmental and non-governmental programs aimed at mitigating the effects of disaster including participation in the network systems and the opportunity of dialogue such as the international seminar organized by PIARC.

aPPEndix d — ovErviEW oF riSK manaGEmEnt ProcESS manuaL, iSSuEd By tranSit nEW ZEaLand

riSK manaGEmEnt ProcESS manuaL

The Risk Management Process Manual is issued by the Transit New zealand (Transit) that is responsible for the steward of New zealand’s state highways. The objective of risk management process is to provide a set of tools that will help to minimize threats to Transit’s business and maximize opportunities to enhance it. This manual consists of four sections and four appendices.

overview (Section 1)

Section 1 describes an overview of the risk management process manual. In terms of risks, risk is featured as “Opportunity and Threat.” “Opportunity” is an event that has the potential to move the outcome of this activity to move favorable position, and is favorable outcomes or identified enhancement or savings. “Threat” is an event that has the potential to move the outcome of this activity to move unfavorable position, and are unfavorable outcomes that may have associated opportunities or associated with pursuing opportunities.

Specifically, the risk management process is designed to raise awareness of threats and opportunities and to minimize such risks as program/project overturn, litigation, network unavailability/delay, death/injury, community and road user concern and environmental damage. In addition risk management helps to ensure that expectations (of quality, time, or cost) are achieved. Transit defines “Risk” in terms of both consequence and likelihood, and the risk management systematically manages the risks (threats and opportunities) associated with this uncertainty. “Risk treatment” is focused on limiting the impacts of potential threats and optimizing the impact of potential opportunities.

responsibilities (Section 2)

A number of specific responsibilities associated with the implementation of the risk management process are mentioned in this section. The Chief Executive of Transit is the sponsor of the risk management process.

Key tools (Section 3)

The “Key Tools” are the activity risk file and risk workshops. The activity risk file contains all risk-related documentation including the risk register and risk treatment plans. A risk register is used to record information about risks, and risk

Page 158: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

312 2010R01 3132010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

treatment plans set out the treatment type and treatment actions for a particular risk. Risk workshops are an effective way to identify risks associated with the specific activity or business level, and should at least establish the context for the risk exercise and the identification of risks.

application (Section 4)

Transit’s Risk Management Practices;Transit applies the following three approaches to risk management practices: Informal Approach, General Approach and Advanced Approach. The Informal Approach consists of the application of existing procedures and controls. It is applied where a formal risk management process is not necessary. The General Approach is to be used for all Transit activities where the informal approach is not used. This approach is a qualitative approach. It is targeted at achieving the appropriate management of opportunities and threats, through the systematic application of generalized risk management processes and qualitative tools. The Advanced Approach is to be used in particular circumstances as a “one off” or discrete application within a continuous General Approach.

uSinG tHE GEnEraL aPProacH

The key elements of risk management are shown in below figure.

Risk management process overview

1. Establish the contextEstablishing the risk management context of an activity is a pivotal step in the risk management process. It defines the basic parameters within which risks must be managed and sets the scope for the rest of the risk management process. When establishing the context of risk management for an activity consideration must be given to the objectives, obligations, stakeholder expectations and risk tolerance involved.

2. identify the riskAll risks (threats and opportunities) must be identified. To complete the risk identification, each risk must be recorded in a risk register for that activity or business level. The recorded risk must be given a unique identifying number, given a name, clearly described in the words, and assigned either emerging, live, parked or closed status.

3. analyze the risksThe General Approach provides a qualitative technique for analyzing the identified risks. This technique is useful for considering diverse types of risk exposure, which would not otherwise be readily comparable.

The analysis consists of Existing Controls, Consequence and Likelihood. The Existing Controls deals existing processes, devices, practices or controls that act to minimize threats or enhance opportunities, including an indication of how they might be of influence. The Consequence is a description and rating of the consequence of a risk, in terms of the loss or gain that may be experienced if the risk event occurs. The likelihood is a description and a rating of the likelihood of the risk for the full range of risk event consequences. In particular for opportunities it is the likelihood of the stated gain being realized if the opportunity is pursed. The analyzed consequences and likelihoods of each risk are those that apply after the application of existing control measures, but before the implementation of further risk treatment actions.

4. Evaluate the risksFor each given risk, the General Approach evaluates risk by establishing Risk Score, Risk Category and Risk Ranking. The Risk Score is the multiple of the ratings for likelihood and consequences for that specific risk. The Risk Category is a description of the risk score in words (i.e., “negligible”, “low”, “moderate”, “high”). The Risk Ranking is established by listing of all the risks associated with the activity or business level. The existence of one “extreme” risk or 5 “very high” risks within an activity or business level indicates a significant risk, and triggers the requirement for the Advanced Approach.

Risk management

Establish the context

Identify risks

Analyse risks

Evaluate risks

Treat risksM

onitor and review

Com

mun

icat

e an

d co

nsul

t

Page 159: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

314 2010R01 3152010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

5. treat the risksThe development of a risk treatment plan involves the selection of a treatment type and the identification of treatment actions. The decision of a treatment type is the first step in the risk treatment planning and should be made in consideration of the Risk Score. For opportunities or threats, there are four types of treatment: “Actively accept”, “Passively accept”, “Transfer/share” and “Avoid threats or reject opportunities.”

(b) rating the Likelihood (L) of an opportunity (Gain)Generally applicable to an active processLikelihood Probability* Description RatingAlmost Certain

>90% The opportunity is almost certain to be realized or a very high degree of confidence in delivering the gains has been established for the opportunity

5

Expected 75%-90% The opportunity is expected to be realized in most circumstancesor a high degree of confidence in delivering the gains has been established for the opportunity

4

Likely 50%-75% The opportunity will probably be realizedor a moderate degree of confidence in delivering the gains has been established for the opportunity.

3

Unlikely 25%-50% The opportunity is unlikely to be realizedor a low degree of confidence in delivering the gains has been established for the opportunity.

2

Very Unlikely

<25% The opportunity is very unlikely to be realizedor a very low degree of confidence in delivering the gains has been established for the opportunity.

1

* for long and short term activities

ratinG tHE conSEQuEncE oF tHrEat

Descriptor Health & Safety

Image/ Reputation Environment Stakeholder

Interest Cost Time Rating

Thre

at

Substantial Multiple fatalities

InternationalMedia Cover

Permanent widespread ecological damage

Commission of Inquiry

+$10M Many years

100

Major Several fatalities

Sustained National Media Cover

Heavy ecological damage, costly restoration

Ministerial Inquiry

+$1M to $10M

Years 70

Medium Serious Injuries

Regional Media Cover or Short Term National Cover

Major but recoverable ecological damage

Ministerial Questions or 3rd party investigation

+$100k to $1M

Months 40

Minor Minor Injuries

Local Media Cover

Limited but medium-term negative effects

Official Information Request

+$10k to $100k

Weeks 10

Negligible Slight Injuries

Brief Local Media Cover

Short-term damage

Minor Complaint

+$0k to $10k

Days 1

ratinG tHE LiKELiHood oF a tHrEat or oPPortunity(a) rating the Likelihood (L) of a threat (Loss) (Generally applicable to a passive process)Likelihood Probability* Frequency** Description RatingLikely >50% Greater than

once per yearThe threat can be expected to occur or a very poor state of knowledge has been established on the threat.

5

Quite Common

20%-50% Once per 1-5 years

The threat will be quite commonly occur or a poor state of knowledge has been established on the threat.

4

Unlikely 10%-20% Once per 5-10 years

The threat may occur occasionally or a moderate state of knowledge has been established on the threat.

3

Unusual 1%-10% Once per 10-50 years

The threat could infrequently occur or a good state of knowledge has been established on the threat.

2

Rare <1% Less than once per 50 years

The threat may occur in exceptional circumstances or a very good state of knowledge has been established on the threat.

1

* for short term activities such as asset improvement** for long term activities such as in asset management and corporate business

Page 160: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

316 2010R01 3172010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

aPPEndix E - comPariSon oF tHE mEtHodoLoGiES

comPariSon oF mEtHodoLoGiESAssessment and Characterization Criteria

AASHTO Guide Blue Ribbon Panel

CARVER CARVER2

Criticality √ √ Yes √ Yes. Analysis of similar potential terrorist targets

√ Yes. Analysis of dissimilar potential terrorist targets

Characterization of the Threat

√ √ Yes. Bridges and tunnels

√ Yes, but only for a kind of critical infrastructure

√ Yes, for many types of critical infrastructure

Characterization of Vulnerability

√ Yes (computerized methodology)

√ Yes (not computerized)

Partially only. One category of vulnerable assets is prioritized. (computerized methodology)

√ Yes. (computerized methodology)

Infrastructure Yes; road only: bridges, tunnels, viaducts.

√ Yes; structural and symbolic.

(image) Yes. √ Yes.

Concentration of Critical Assets and Interdependencies

No No No (specific targets only).

√ Yes; multiple targets.

Impact Assessment (public health & safety, transportation, environmental, economic)

√ Yes, with emphasis on impacts on road traffic, indirect economic impacts, the environment.

√ Yes, especially transportation effects; cost-benefit approach. CBNE attacks and general potential scenarios.

Transportation & local economies, regional only. Unspecified terrorist attacks.

√ Yes, interdependent multisectoral impacts.

Assessment of Response Capacity

√ Yes. √ Yes; general probability method for assessing risks.

√ Sectoral only. √ Yes.

Analyses of Risk Reduction

√ Yes. √ Yes; groups of criticality / vulnerability methods

√ Sectoral only. √ Yes.

Proposed Risk-Management Measures

√ Yes. √ Yes; multidisciplinary teams.

√ Sectoral only. √ Yes.

Prioritizing Assets √ Yes. Yes; committee of experts.

√ Sectoral only. √ Yes.

Field Tested √ Yes, by many US states, DOT, FBI, CSIS, CIA, FEMA.

√ Yes (via TRB and NCHRP).

√ Yes, FBI, CSIS, CIA, FEMA, and others.

√ Yes, many US states, DOT, FBI, CSIS, CIA, FEMA, Canadian Armed Forces, OPP, and others.

invEntory oF mEtHodoLoGiES For idEntiFyinG and aSSESSinG vuLnEraBLE criticaL aSSEtS in tHE road tranSPortation SyStEm (continuEd):Assessment and Characterization Criteria

Chemical Facilities Vulnerabilities

Sûreté du Québec – Sites Vulnerable to Terrorism

Colorado Critical Infrastructure & Key Assets (CIKA) Methodology

USDHS ViSAT

Criticality √ Stationary chemical facilities only.

√ Yes (To be completed)

√ Yes, for all critical infrastructure in the state.

√ Yes (To be completed) (computerized methodology)

Characterization of the Threat

√ Yes, terrorist attacks (internal and external)

√ Yes (To be completed)

√ Yes, CBRNE terrorist attacks (for all critical infrastructure in the state).

√ (computerized methodology)

Characterization of Vulnerability

√ Based on protection and prevention measures.

√ Yes (To be completed)

√ Yes, the full range of assessment of critical sites (computerized)

√ Yes (To be completed). (computerized methodology)

Page 161: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

318 2010R01 3192010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Infrastructure √ Yes, chemical production zones only.

√ Yes, all modes of transportation equipment and infrastructure, and all jurisdictions (public and private) are included in the assessments.

√ Carried out by Rubicon, a permanent multidisciplinary team dealing with transportation assets.

Yes (To be completed).

Concentration of Critical Assets and Interdependencies

No Unknown (To be completed)

√ Yes, many methodologies used concurrently.

Yes (To be completed).

Impact Assessment (public health & safety, transportation, environmental, economic)

Yes, very partial: loss of plant functionality, income, etc.

Unknown (To be completed)

√ Yes, the four components are considered and assessed.

√ Yes, the four components are considered and assessed for the range of vulnerable assets.

Assessment of Response Capacity

Yes, not very explicit.

Unknown (To be completed)

√ Yes. The assessments are a free service offered by Rubicon to public and private sites.

Yes (To be completed).

Analyses of Risk Reduction

√ Yes, but protection and prevention measures not very developed.

Unknown (To be completed)

√ Yes: Terrorism Protective Measures Resource Guide: Roads, Bridges, Tunnels, etc.

Yes (To be completed).

Proposed Risk-Management Measures

Unknown (To be developed).

√ Yes Yes (To be completed).

Prioritizing Assets Not applicable. √ Yes, by the Rubicon multidisciplinary team.

√ Yes, transportation, stationary chemical production facilities, other critical assets.

Field Tested Unknown. (To be completed)

√ Yes (To be completed).

invEntory oF mEtHodoLoGiES For idEntiFyinG and aSSESSinG vuLnEraBLE criticaL aSSEtS in tHE road tranSPortation SyStEm (continuEd):Assessment and Characterization Criteria

USEPA Chemical Hazards Evaluation Guide

MSP – Identification of Sites Vulnerable to Terrorism

Ministère des Transports du Québec - Identification of Strategic Road Nodes

North Carolina Terrorism Vulnerability Self-Assessment Guide

Criticality √ Yes. To be completed. Yes (To be completed)

Yes.

Characterization of the Threat

√ Yes, terrorist and accidental.

To be completed. To be completed. Yes, emphasis on terrorism.

Characterization of Vulnerability

√ Yes. (not computerized)

To be completed. To be completed. Yes. General guide in Excel® format (computerized)

Infrastructure Yes, TDG roads only.

√ Yes.

Concentration of Critical Assets and Interdependencies

No, sectoral analyses only.

No. No.

Impact Assessment (public health & safety, transportation, environmental, economic)

√ Yes, the four components are considered and assessed.

√ Yes, the four components are considered and assessed, but the emphasis is on health.

Assessment of Response Capacity

√ Yes, for transportation of dangerous goods.

√ Yes (general)

Analyses of Risk Reduction

√ Yes. No.

Proposed Risk-Management Measures

√ Yes. √ Yes (general)

Prioritizing Assets √ Yes, for TDG. No (subjective assessments)

Field Tested √ Yes, FEMA, federal agencies, states, etc.

√ Yes.

Page 162: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

320 2010R01 3212010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

invEntory oF mEtHodoLoGiES For idEntiFyinG and aSSESSinG vuLnEraBLE criticaL aSSEtS in tHE road tranSPortation SyStEm (continuEd):Assessment and Characterization Criteria

RADTRAN 5 RAMCAP (2004)

PSEPC and Transport Canada Critical Infrastructure Program (CIP)

NCHRP TRB Report 525, Volume 4, Roads, Bridges, and Tunnels

Criticality √ Yes, along route only.

√ Yes, the full range of assessment of critical sites (computerized)

To be completed. Yes, the full range of assessment of transportation critical sites (computerized)

Characterization of the Threat

√ Yes, all modes of TDG sectors (radiological agents).

√ Yes, CBRNE terrorist attack based primarily on economic impacts and risks.

To be completed. √ Yes, the full range of CBRNE terrorist weapons.

Characterization of Vulnerability

√ Yes. (not computerized)

√ Yes, based on cost-benefit analysis, protection and preventive measures.

To be completed. √ Yes, the full range of assessment of transportation critical sites (computerized)

Infrastructure No. √ Yes, study sectors modifiable.

Yes, to be completed.

√ Yes, method specific for roads, bridges, and tunnels.

Concentration of Critical Assets and Interdependencies

No. No. Yes, to be completed.

√ Yes, generally.

Impact Assessment (public health & safety, transportation, environmental, economic)

Yes, public health, risk of TDG accidents, exposure risks.

√ Yes, multi-sector: nuclear facilities; chemical plants; LNG plant and storage facilities; rail, road, and subway transportation; electrical transmission.

To be completed. √ Yes, sectoral and interdependent impacts considered in detail. Many have been computerized such as DIETT.

Assessment of Response Capacity

No. √ Yes, multi-sector.

Yes, to be completed.

√ Yes: Specific guide for road-transportation stakeholders during major public-health emergencies.

Analyses of Risk Reduction

No. √ Yes, multi-sector.

Yes, to be completed.

√ Yes, specific and detailed guide according to road infrastructure type (roads, bridges, tunnels).

Proposed Risk-Management Measures

No. √ Yes. Yes, to be completed.

√ Yes: As above.

invEntory oF mEtHodoLoGiES For idEntiFyinG and aSSESSinG vuLnEraBLE criticaL aSSEtS in tHE road tranSPortation SyStEm (continuEd):Assessment and Characterization Criteria

RADTRAN 5 RAMCAP (2004)

PSEPC and Transport Canada Critical Infrastructure Program (CIP)

NCHRP TRB Report 525, Volume 4, Roads, Bridges, and Tunnels

Prioritizing Assets

√ Yes, along route only (all modes).

No. Yes, to be completed

√ Yes: As above.

Field Tested Unknown. No (pilot projects underway).

Yes, to be completed.

√ Yes, by many US states, DOT, FBI, CSIS, CIA, FEMA, and others.

Page 163: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

322 2010R01 3232010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

invEntory oF mEtHodoLoGiES For idEntiFyinG and aSSESSinG vuLnEraBLE criticaL aSSEtS in tHE road tranSPortation SyStEm (continuEd):Assessment and Characterization Criteria

City of Montréal “Critical Vulnerable Assets”

City of Québec “Critical Vulnerable Assets”

VAM-CF (Sandia National Lab)

OECD / ECMT 2005 Intermodal Risks

Criticality To be completed. To be completed. √ Yes, for chemical-production sites and related transportation activities.

√ Yes, for ports, warehouses, and containerized transportation activities.

Characterization of the Threat

To be completed. To be completed. √ Yes, terrorist attacks (general).

√ Yes, CBRNE-specific terrorist attacks.

Characterization of Vulnerability

To be completed. To be completed. √ Yes: cost-benefit measures protection, prevention sites.

√ Yes, based on cost-benefit analysis, protection and preventive measures; intermodal sites.

Infrastructure To be completed. To be completed. √ Yes. (not computerized)

√ Yes, for intermodal sites in general. (not computerized)

Concentration of Critical Assets and Interdependencies

No. √ Yes, for intermodal sites and along the containerized chain. (not computerized)

Impact Assessment (public health & safety, transportation, environmental, economic)

√ Yes, with emphasis on site security and public health.

√ Yes, with emphasis of economic effects, impacts on site security and public health.

Assessment of Response Capacity

√ Yes, generally. √ Yes, generally.

Analyses of Risk Reduction

√ Yes, generally. √ Yes, generally.

Proposed Risk-Management Measures

√ Yes, generally. √ Yes, generally.

Prioritizing Assets √ Yes, based on the risk of attack on chemical plants.

√ Yes, generally along the complete containerized chain.

Assessment and Characterization Criteria

City of Montréal “Critical Vulnerable Assets”

City of Québec “Critical Vulnerable Assets”

VAM-CF (Sandia National Lab)

OECD / ECMT Intermodal Risks

Field Tested Unknown. Yes (partially).

Page 164: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

324 2010R01 3252010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

aPPEndix F - BESt PracticES ExamPLES

ExamPLE 1: tHE miLLau viaduct (From riSK manaGEmEnt PErSPEctivES)

Based on technical elements from several dedicated papers from scientific journals and local newspapers (see references).

General presentation of the mega-project

The Millau Viaduct was built to open a new link between Paris and South of France, and more generally between Northern Europe and Spain. This structure of exceptional dimensions is easily identifiable by its 2460 meters total length and above all by its world record height (245 meters for P2 pier).

General view of the viaduct

Even though the construction period that ended in December 2004 was very short (38 month), sixteen years of preparation and political processes, what represents 2 President periods and 7 Ministries of Public Works and Transportations, were necessary to complete this mega-project. The total cost was 394 Millions Euros, including viaduct construction, toll barrier, studies, financial and general fees.

The main objective of the Viaduct is to eliminate the traffic congestion in the city of Millau during summer vacation departure periods and to provide a straight, more comfortable connection between the north of France and the Mediterranean.

Traffic congestion at the entrance of the city of Millau

1. risk management issues

As most of mega-projects, the Millau Viaduct has the particularity to associate in a common context many partners, companies, political authorities or environment issues, of culture, critical objectives and considerations that may differ and sometimes be incompatible. By their nature, mega-projects entail considerable risks for the owner as well as for all parties directly and indirectly involved in the project. Significant cost overrun and delay risks may arise from early project stages uncertainties. In addition, there is a potential for large-scale accidents during mega-project work and it may also be affected by public protest and political reactions arising from the problems that the mega-project may cause to the public.

A synthetical representation of the main risks that were considered for the Millau Viaduct planning, design, construction and operation is presented on the figure, next page.

A Height World Record Highway The missing link on A75 between Paris and the south of France

Page 165: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

326 2010R01 3272010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

The Drivers Related Risks

the architectural / Environmental risk

At the beginning of the project, the design of the Viaduct was held, following a common procedure, by the design office of the French highways administration (Setra). Because of the dimension of the project and its impact on the environment and landscape, the French Directory of Roads finally decided in 1993 to set a very unusual design process, consisting in an international —design competition“. Five design teams, each one made of an architect and an engineering office, would compete to give their feeling about the multi-span cable-stayed original Setra solution and eventually propose a new architectural technical solution for the Viaduct …

In 1996, a committee of some 20 people, made of the French Director of Roads, technical experts, politicians, public finance specialists and local and regional representatives finally chose the Sogelerg-EEG-SerfœFoster multi-span cable stayed solution. The architect, Sir Norman Foster, main argument was to build a slender, as transparent as possible, structure with minimal impact on the landscape. Another point was to give the feeling of crossing the valley more than crossing the Tarn river, which is not very large.

Another particularity of the project also consisted in applying a “1% landscape policy” aimed at developing the tourist exploitation and environmental insertion of the Viaduct.

The Millau Viaduct Visitors Center An elegant insertion of the Viaduct within the beauty of the existing landscape

In addition, a specific Environment Respecting Plan (PRE) was applied to minimize the impact of the worksite on local existing animal and vegetal species.

The five proposed solutions

Page 166: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

328 2010R01 3292010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

This document was organized around 5 main objectives:

• identification of site environmental constraints; • identification of pollution risks related to each construction phases; • setting of preventive protection dispositions and processes; • control planning and formalization;• emergency intervention planning in case of accidental pollution.

the Financial / Economical risk

a) From the French State perspective Because of the huge cost of the project, the French Ministry of Public Works decided in 1998 to sign a 75 years operation contract with a private company. The contract included financing, design, construction, operating and maintenance. The Eiffage consortium won the contracting contest thanks to an original steel deck proposition.

The Eiffage consortium steel solution The Eiffage consortium steel solution

After 75 years of private operating (and possibly earlier in case of over-profit), the Viaduct will recover its State owned status.

b) From the constructing-operating company perspectiveThe challenge for the operating company was to build the Viaduct very fast in order to start to get reimbursed by the toll barrier as early as possible. The construction works were operated days and nights. Each pier construction treated as an independent worksite and specific fast setting concrete was used to speed up the construction.

The toll fees were adapted to remain attractive all over the year (4.90 ⁄/car during winter time and 6.50 ⁄/car during summer time). The rest of the A75 highway

being free makes the Viaduct very competitive compared to other ways connecting North and South.

An aesthetic toll barrier

the technical risk

Because of its impressive dimensions (length and height) and because of its location, the bridge is submitted to very strong wind and temperature effects. Based on on-site investigations, the bridge was designed to resist 185 km/h wind speeds during construction phases and 225 km/h in operating conditions. A series of tests in wind tunnel were performed in order to check the response of the structure under average and turbulent wind conditions.

Wind-tunnel tests Wind-tunnel tests

The whole design of the bridge was controlled and influenced at each stage by national and international experts in bridge engineering, geotechnical engineering, “days & nights” running construction

Page 167: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

330 2010R01 3312010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

dynamic studies and material behaviors, particularly M. Virlogeux who already designed the Normandy cable-stayed bridge. Because the steel deck is continuous and rigidly connected to the piers, those piers had to play the double function of adding some stiffness to the flexible deck under service load through rotation stiffness and accommodate with the longitudinal thermal expansion of the deck (about 1 m) through translation flexibility. Therefore, the —diapason-shape“ of the piers was strongly influenced by behavior of the bridge under service loads and temperature effects. From an architectural point of view, this geometrical solution also assured an elegant continuity between the concrete piers and the steel pylons and gives the impression of transparent piers pitching through the deck…

Specific structural and soil foundations monitoring devices were set in order to check the good behavior of the bridge under normal traffic conditions. Geotechnical risks such as slope sliding and soil punching were thus controlled through the measurement of structure overall geometry, pylons inclination, dilatation joints opening. Moreover, permanent video surveillance from the top of each pylon as well as periodic inspection of the dynamic structural behavior enable to detect any anormal situation (excessive deformation due to concrete creep and shrinkage, anormal stay cables vibrations, etc…).

the Bad-ageing risk

Following the “Durable Development Policy“ raised up by the French Government, the Viaduct was designed for a useful project life of 120 years. This was achieved throughout different design strategies and material choices :

• use of high performance concrete (B60) for the piers; • pre-stressing of the piers in order to limit cracking; • series of test aimed at validating the characteristics of materials and elements

(creep, shrinkage, durability and ageing testing for the concrete under Millau site specific conditions; fatigue and permeability testing for the cable-stays and associated coating; permeability and flexibility testing of the waterproofing course and pavement).

These aspects were also submitted to specific control aimed in detecting phenomenon such as steel deck corrosion, stay cables or reinforcing rebars

corrosion, bearings devices blocking, fatigue welding cracking or équipement bad-ageing.

the construction related risks

Considering the difficulty and danger of working at such height in strong wind conditions, it was decided to weld to steel deck elements on banks behind the abutments and to push it to its final position.

The construction phasing

The launching phase was performed under permanent wind speed recording in order to stop the process and block the deck on the piers in case of wind speeds exceeding 85 km/h. In addition, special training was provided to the workers teams in charge of piers formwork assembling and to the crane drivers in order to accommodate them with extremely high working conditions.

Extremely high working conditions Extremely high working conditions

The specific geometry of the piers

Page 168: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

332 2010R01 3332010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

the drivers related risks

Directly connected to the financial/economical risk, the driver related risks can be expressed in terms of attractiveness, comfort and security.

a) attractiveness The Viaduct enables to save up to 3 hours on a 10 hours trip from Paris to Montpellier. The rest of the A75 highway being free makes the Viaduct very competitive compared to other ways connecting North and South.

b) comfort and security The Viaduct is equipped with wind screens aimed at cutting the wind speeds and assure quasi-similar driving conditions on the viaduct as before entering it. Those 3 meters high wind screens are made of transparent fiberglass in order to enable the car occupants to enjoy the impressive view. They were also tested in wind tunnel to measure their effect on the whole structure aerodynamic characteristics and to limit induced noises.

On the architect‘s demand, the bridge geometry was designed with a gentle curve for drivers to have a view of the whole structure before entering it. On the first week of opening, highway patrols had to regulate the traffic, not as usual to slow down the cars, but to speed up the drivers enjoying the experience of crossing the highest bridge in the world…

As it is the case for technical risks and risks related to bad-ageing and structural maintenance, aspects related to users comfort and security were also submitted to permanent control : overloading detection, wind speed monitoring using anemometers, ice detector within the pavement structure, video surveillance from the top of the pylon to detect vehicles fires, tourist planes crashes or vandalism.

the Local Population related risks

At the very beginning of the project, the local population feared for a bad insertion of the structure in their landscape and the lack of benefits from traffic congestion in Millau city for the shops and restaurants.

Millau area inhabitants Millau area inhabitants

The risk for the company was to face manifestations and possibly worksite disturbance. Many communication campaigns were necessary to make local population accept, appropriate and be proud of “their Viaduct”.

The technical performance of the viaduct has made the little city of Millau famous all over the world.

3 meters high wind screens made of transparent fiberglass

Drivers enjoying the experience of crossing the highest bridge in the world

Page 169: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

334 2010R01 3352010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Finally, the viaduct construction permitted to employ a large proportion of local workers and to build many low cost housing facilities. The technical performance of the viaduct has made the little city of Millau famous all over the world and has brought thousands of tourists since the beginning of the construction. In end 2005, the governor of California invited the mayor of Millau to get some political advices on how to make such a big bridge and worksite accepted by the local population…

Touristic activities around the viaduct Touristic activities around the viaduct

conclusion

The Millau Viaduct was presented through the original perspective of risk management. It clearly comes out that the whole process, from preliminary studies to construction and operating, was strongly influenced by risk analysis considerations. During the operation phase, most of those risk, especially technical and geotechnical risks, as well as risks related to bad-ageing and user‘s security, are submitted to specific control and monitoring. Even more than the technical risks, the social, political, financial risks aspects seemed to be critical for this mega-project. Communication campaigns, quality control and good coordination between political authorities (State and local), the constructing operating company, technical experts and architects, were key elements of the success of the operation.

references

[1] Beideler, J., Donnaes, P., “Viaduc de Millau œ l’exploit œ”, Le Moniteur des Travaux Publics et du bâtiment, hors-série, avril 2005.

[2] Martin, J.P., Servant, C., “Le Viaduc de Millau œ M. Buonomo”, Bulletin Ouvrages d’art n°47, nov. 2004, Sétra.

[3] Tall Story, “Bridge Design & engineering”, n°26, 1 Quarter 2002. [4] Virlogeux, M., Servant, C., Martin, J.P., Buonomo, M., Cremer, J.M., “Millau Viaduct”, Struc-

tural engineering international, SeI Volume 15, Number 1, France. [5] Servant, C. (eiffage), “The Design of the Millau Viaduct”, Fib Symposium, 26-28 April 2004,

Avignon (France). [6] Calamoneri, C., Duclos, T., ello, P., Gausset, B., Hajar, Z., Ly, P.K., Simon, A., Vassord, J.,

Virlogeux, M., “Millau Viaduct : Detailed design of concrete piers”, Fib Symposium, 26-28 April 2004, Avignon (France).

[7] Lagouanère, M., “Viaduc de Millau : le chantier du vertige”, Midi Libre, 16 novembre 2003. [8] Solier, M.P., “L’accueil de Millau aux familles du chantier”, Le journal du Viaduc, n°3,

décembre 2002. [9] Gausset, B., (Arcadis), “A75, Viaduc de Millau, La phase de conception, mise au point du

projet”, Journée AFGC, 5-6 nov. 2003. [10] Legrand, M. (CeVM), “La concession du viaduc de Millau”, RGRA n°819, juillet-août 2003. [11] Calcoen, J. (SeTeC TPI), “Le contrôle des travaux”, Journée AFGC, 5-6 nov. 2003. [12] Chotard, S., Servant, C., “Le viaduc de Millau, un chantier inscrit dans le développement

durable”, RGRA n°819, juillet-août 2003. [13] Givet, O. (ARCADIS), “Les études géotechniques”, Journée AFGC, 5-6 nov. 2003. Photos

eiffage TP, CAMARA, Le Moniteur, Sétra, Midi Libre.

ExamPLE 2: riSK manaGEmEnt ProcESS in itaLy: “tHE FréJuS tunnEL”

Brief tunnel description

The Fréjus motorway tunnel, opened on July 12th 1980, connects the city of Bardonecchia in Italy to the city of Modane in France through a bidirectional tunnel 12.985 m long.

The French and Italian gates are located at almost the same altitudes, i.e. 1,228 and 1,297 meters respectively. Thus the longitudinal profile has a single slope (+ 0.54% in the France-Italy direction), allowing vehicles to maintain regular speed, and limiting exhaust gas pollution. The tunnel layout features curves and straight sections: curves have a radius of 2,000 m, except at entrances where the radius measures 600 m.

Page 170: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

336 2010R01 3372010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

The Fréjus alpine tunnel currently records an average daily traffic of 7,832 vehicles. Since its opening in July 1980, traffic has constantly and proportionately increased according to trade flows crossing the Alps.

risk analysis context

Fréjus is an Italian/French international tunnel and it is part of the trans-European network. Considering the uniqueness and the bi-national peculiarity of this tunnel, the Italian and French government have decided to govern the construction and the exploitation of the tunnel through an Intergovernmental Commission (and a the relevant Technical Commission). Such a Commission include the direct representatives of the two owning Countries.

The Commission decided to assess technical and natural risks concerning the tunnel exploitation, in order to establish any corrective and compensation action to reduce such risks.

Consequently the tunnel operators performed a “Risk analysis on the Frejus tunnel and on the relevant plazas” to assess all the risks related to this motorway tunnel exploitation. This analysis is performed through the development and assessment of different tunnel and access yard accident scenarios.

The analysis has been jointly developed by the two exploiting companies, SITAF and SFRTRF, in cooperation with SINA and Ligeron.

methodology

The study started off from an evaluation of applicable provisions and from an analysis carried out on the tunnel and the plazas in terms of: location and geometry, civil engineering works, installations and equipment, analysis of the existing underground laboratory of nuclear physics.

Then, geological and hydro-geological factors have been analyzed, including seismic data of the area and other weather-related information available.

Traffic flow has also been taken into account, as well as the relevant changes in terms of light and heavy vehicles, coaches, vehicles carrying dangerous goods and exceptional convoys.

The operation of tunnel has then been analyzed in terms of human resources, organizational structure, safety installations and equipments, and their use.

We subsequently identified the dangers, the potential consequences and the estimated probability of the occurrence of special events, according to historic data and available statistical information.

The chart here below shows the methodology overview of the Risk Scenario Study, which takes the interaction of the various traffic anomalies into consideration, as well as the effects of a possible fire and human reactions to emergency situations.

Risk scenario study

Vehicles may stop (1) because of breakdowns (2), accidents (3), or as a consequence of users’ individual behavior (4).

Drivers’ behavior is conditioned by the perception of the tunnel environment (5) and by any mechanical problems suffered by the vehicle they are on (6).

External environment Tunnel environment

Mechanic breakdowns

"Downstream" users

"On the spot" users

"Upstream" users

Breakdowns

obstacles FireGas & smoke heat

Leaks of dangerous materials

Liquid gas, explosion

Other StoppedAccidents

Users' behaviour

1

10

11

5

4

7

6

2

89

3

Page 171: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

338 2010R01 3392010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

The tunnel environment (5) should help tunnel users as much as possible (lighting, signs, etc.), and it should allow smooth evacuation in case of fire (smoke extraction). The external environment (7) can also impact the one inside the tunnel (in case of unfavourable weather conditions preventing smoke extraction) or on users’ behaviour (lighting).

The stoppage of the vehicle can also be caused by an obstacle (8), such as the fall of a piece of equipment or of a structural element.

The occurrence of a fire (9) is featured by the release of gasses, smoke and heat. The assessment of this impact (10) is carried out according to specific models through CFD (Computational Fluid Dynamics) methods.

For identified risk situations, the preliminary risk analysis allowed the identification of:

• possible cases;• users’ and environment consequences (tunnel and yard);• consequences at users’ safety level.

Then we proceeded with the analysis of risks and of relevant characteristics inside the tunnel, whose consequences have been classified according to the following table:

conSEQuEncES cLaSSiFicationG Class CorrespondenceI Minor No additional damages with respect to the same external situation. II Significant Light injuries, or severe injuries for the most vulnerable tunnel

users, generated in the tunnel environment. III Critical Severe injuries (irreversible), or death for the most vulnerable

tunnel users, generated in the tunnel environment. IV Catastrophic Death of people regardless of their physical ability, generated in the

tunnel environment. V Severe catastrophy Death of a high number of people (>50), regardless of their

physical ability, generated in the tunnel environment. The assessment of the events took place through a detailed analysis of the pictured scenarios, in order to portray all possible circumstances.The attachment A shows a list of all considered scenarios, as well as the list of relevant sensitivity analysis developed in the study.

Once that consequences and occurrence requencies have been calculated, we created a frequency/severity matrix according to the scheme shown here below.

Furthermore, a risk sensitivity analysis has been performed, by assessing the variation of some parameters of the considered scenarios.

conclusions and recommendations

In this way, we have been able to perform a general assessment on the tunnel risks, and we have been able to draw some conclusions and recommendations on this work.

The Technical Commission of the Intergovernmental Committee of the Frejus Tunnel has approved the document and adopted the relevant recommendations for the tunnel.

occ

urre

nce

prob

abili

ty

Af < 1 yearVery frequent

B1 < f < 10 yearsFrequent

C10 < f < 100 yearsOccasional

D100 < f < 1,000 yearsRare

E1,000 < f < 10,000 yearsVery rare

Ff > 10,000 yearsExtremely rare

IMinor

IIModerate

IIIMajor

IVCritical

< 50 deaths

VCatastrophic> 50 deaths

consequences severity

risk matrix

Page 172: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

340 2010R01 3412010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

ExamPLE 3. mt ruaPEHu LaHar riSK manaGEmEnt ProcESSES

1. Mt Ruapehu, height 2800m, is an active volcano situated in the centre of the North Island of Nz, immediately south of Lake Taupo. It is one of three active or dormant volcanoes in a central volcanic region than stretches some 300 km to the north to White Island, an active volcano in the Bay of Plenty. That zone includes Mt Tarawera which last erupted in 1886 causing widespread damage. Lake Taupo, the country’s largest lake, was also created by massive volcanoes eruptions, the last occurring about 1825 years ago.

2. On Christmas Eve 1953 the Crater Lake on Mt Ruapehu breached, creating a lahar of water, mud, rock and debris to flow down the mountain side. The lahar struck the railway bridge over the Whangaehu River at the time the overnight express train was crossing. In the bridge collapse, 151 people died as the majority of the carriages were swept down stream in the lahar.

3. In 1995/96 the mountain erupted again with ash showers spread over a wide sector of the North Island. Resulting from the eruption, a tephra lip some 7.5m above the volcanoes rim rock was created. The Crater Lake’s refilling from rain and snow melt created a situation where water could be retained by a relatively unstable dam creating the probability of another lahar.

4. The option to reduce the impact of a lahar event by removing the tephra dam was rejected by the local Tuwharetoa Maori Iwi on cultural reasons. That group had “rangitiratanga” or guardianship over the whole of the Tongariro National Park area, encompassing its three volcanoes. That position was accepted by Government and other mitigation measures were put in place.

5. Government agencies lead by the Department of conservation and the Ministry for Civil Defense and Emergency management went through a series of studies and risk assessments of the options of reducing the consequences of a lahar when that event occurred. It was determined that the time of greatest probability of the Crater Lake over topping would be 2006/07. That estimate now appears to be completely realistic.

6. Transit ‘s interest in the potential lahar relates to the security and safety of the state highway network. Immediately to the east of the mountains is SH1, the principle north/south route between Auckland and Wellington. To the immediate south of Mt Ruapehu is SH49, a link in the way of highway routes around the National Park. There is a risk that the lahar could break between catchments and flow toward SH1. However the major risk is along the principal Whangaehu River catchments putting the SH49 road bridge and the nearby rail bridge at risk.

7. There are risk management procedures taking place, varying from an overall national strategies assessment through to tactical and operational assessments by individual stakeholders. At the strategic level, mitigation centres around intensive monitoring of the lake and new early warning systems.

8. The nature of the catchments means there could be up to 90 minutes between a crater breach and the resulting surge reaching the critical bridge sites. Water level monitor stations have been set up along the river and near the crater. These will automatically activate a series of actions to warn authorities and the public of the impending event.

9. Transit has carried out risk assessments on various scenarios, mostly based on the extensive modelling of the river and the potential lahar size. As part of the early warning system automatic barrier gates and associated electronic signs have been erected on the highway approaching the at risk bridge.

10. In 2001 Transit did its own risk assessment. At that time the option of building a channel to stop the build up of the lake above the crater rim was assessed. In the attachment from scenarios are tested against a number of criteria. The consequence (C) and likelihood (L) were determined to “quantify” the resultant risk. In any such assessment a risk determined to be ‘ very high or extreme must be mitigated.

11. Scenario (a), Do Nothing, is not an acceptable risk and hence mitigation is required. The level of mitigation provided under Scenario (b), monitoring and sensor system, again results in three unacceptable risks. When preparedness by way of Contingency planning is considered as a further mitigation, scenario (c), the remaining risks fall into the moderate to negligible category. These are generally considered acceptable against other likely events such as severe storms. As a final check, the assessment of scenario (d), removing the risk if the crater channel were constructed, is negligible, that is the status quo exists.

12. Notwithstanding the outcome of Scenario (c) with costs ranging up to $0.75M offering a moderate level of risk, for political and social reasons the decision was made to reduce the risk even further. The superstructure of the bridge, built in 1965 to replace the structure damaged in 1953, was removed and the bridge raised by about 2m to provide waterway clearance for the largest predicted lahar flow. The cost of raising the bridge, the stream works and approach upgrading is over $4.5M, triple the cost estimated to provide mitigation to an acceptable level.

Acknowledgement : This paper uses extracts from the work done by Errol Christiansen, Regional Manager and the Wanganui Office team of Transit Nz.

Page 173: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

342 2010R01 3432010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

risk analysis of measures to manage the Lahar Hazards from ruapehu crater Lake

(a): do nothing

Assumption is that Transit takes no action whatsoever.

- Immediate Cost to Transit $ NIL.

riSK anaLySiS oF mEaSurES to manaGE tHE LaHar HaZardS From ruaPEHu cratEr LaKE - do notHinGrisk area description consequence (c) Likelihood (L) (c*L) riskcost/Loss Costs for initial

response and restoration of structure.

$0.5 to $5 M 50 Probable 4 200 Very High

major delays Loss of key routes Months 50 Probable 4 200 Very

Highimage or Stakeholder interest

Perceived inaction by Transit

International Media cover or Commission of Enquiry

100 Probable 4 400 Extreme

Health and Safety

Loss of lives Several fatalities 70 Probable 4 280 Very

High

(Total score = 1080)

(b): monitoring & Sensor System

Assumption is the development of an effective sensing, monitoring, communication and response system. Operated in an integrated manner and complementary with other agency systems sufficient, to provide advance warning in any circumstances.

- Immediate Cost to Transit $50,000 - $250,000.

riSK anaLySiS oF mEaSurES to manaGE tHE LaHar HaZardS From ruaPEHu cratEr LaKE – monitorinG & SEnSor SyStEmrisk area description consequence (c) Likelihood (L) (c*L) riskcost/Loss Costs for initial

response and restoration of structure.

$0.5 to $5 M 50 Probable 4 200 Very High

major delays

Loss of key routes Months 50 Probable 4 200 Very High

image or Stakeholder interest

Some perceived inaction by Transit in terms of secure routes

Regional media cover or short term national cover

50 Probable 4 200 Very High

Health and Safety

Mitigated - - - Negligible

(Total Score = 600) (c) contingency Plans plus Sensor System

Assumption is the determination of sacrificial elements (e.g. bridge approaches) of affected assets and establishment of robust contingency plans including stockpiling of equipment and resources to restore infrastructure. Includes Option (b) Monitoring and Response System.

• Immediate Cost to Transit:• Monitoring and response $50,000 - $250,000;• Planning & stockpiling bridge pier protection river management say $300,000

- $500,000.

riSK anaLySiS oF mEaSurES to manaGE tHE LaHar HaZardS From ruaPEHu cratEr LaKE – continGEncy PLanS PLuS SEnSor SyStEmrisk area description consequence (c) Likelihood (L) (c*L) riskcost/Loss Costs for initial

response and restoration of approaches.

$0.1 to $0.8 M 20 Probable 4 80 Moderate

major delays

Loss of key routes Weeks 10 Probable 4 40 Moderate

image or Stakeholder interest

Some perceived inaction by Transit in terms of secure routes

Regional media cover or short term national cover

25 Probable 4 100 Moderate

Health and Safety

Mitigated - - - Negligible

(Total score = 220)

Page 174: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

344 2010R01 3452010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

(d): construct crater rim channel

Assumption is the construction of a drainage channel 6.5 metres deep through the tephra barrier to the pre-existing 1995-96 lava sill at the crater rim to effectively obviate ALL risks of a lahar.

- Immediate Cost is $ 300,000. It is reported there are however significant social and possibly environmental issues to be encountered in proceeding with this option.

riSK anaLySiS oF mEaSurES to manaGE tHE LaHar HaZardS From ruaPEHu cratEr LaKE – conStruct cratEr rim cHannELrisk area description consequence (c) Likelihood (L) (c*L) riskcost/Loss Mitigated - - - Negligiblemajor delays

Mitigated - - - Negligible

image or Stakeholder interest

Mitigated- - - Negligible

Health and Safety

Mitigated - - Negligible

(Total score = zero)

Tangiwai – Christmas Day 1953 – Rail bridge upper centre with road bridge bottom right

The locomotive remains, carriages and part of the road bridge

Location of Mt Ruapehu

Page 175: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

346 2010R01 3472010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

The 1996 eruption with ash plume

The Crater Lake - September 2000

Temporary Bailey bridge to right

ExamPLE 4: riSK manaGEmEnt For ProJEctS : tHE SoutH LinK

Swedish road administration

Sweden is a country in the north of Europe with a population of 9 million. The climate consists of four seasons. Every season has its special condition for managing roads. The temperature varies from approx. 20-30 degrees Celsius during the summer to approx. -5 to -25 degrees Celsius during the winter. The natural hazards are for example snowstorms, windstorms, landslides, floods and fog.

The Swedish Road Administration’s (SRA) overall goal is “...to ensure a socio-economically efficient transport system that is sustainable in the long term for individuals and the business community throughout the country.”

The SRA’s vision and organizational concept, that describes how we see our responsibilities to achieve this objective, is “We make the good journey possible.”

Page 176: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

348 2010R01 3492010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

The Swedish road network compromises:

• 138,000 km road network compromises;• 75,000 km of private roads receiving state subsidies;• a very large number of private roads without state subsidies, most of which are

forest roads;• 32,000 km of footpaths and pedestrian/cycle paths in the municipalities;• 14,500 bridges and 36 ferry routes on the state road network.

Risk Management, and its toolbox, is important and useful to help the organization to achieve its goals as well as to help preventing hazards that could damage properties, environment or human life. The SRA in Sweden has successfully integrated the Risk Management techniques in the organization’s decision making process relating to network management, projects, road administration, and crisis management.

This presentation will give an introduction to Risk Management for Projects.

risk management for Projects

A project must under a limited effort of time and resources result in a finished product. The goal of the project is normally analyzed out of the sensibility not to reach Time, Cost and Function.

Infrastructural construction project involves risks on all parties being involved in the project. Additionally parties indirectly involved in the mega project are often affected by mega project risks. The very nature of mega projects entails considerable risks for the owner of such a project. Often the project scope or ambition level will change during project development and implementation. Changes may be due to uncertainty at the early project stages on the level of ambition, the exact corridor, the technical standards, project interfaces, geotechnical- and environmental conditions, etc. Due to these uncertainties, there might be significant cost overrun and delay risks. Also, there is a potential for large scale accidents during the mega project work. Furthermore, for mega projects in inhabited areas there is a risk of damage to a range of third party persons and property. Finally, there is a risk that the problems which the mega project causes to the public will cause public protests and political reactions affecting the course of the project.

Traditionally, risks have been managed indirectly through the engineering decisions made during the project development. Unintentional risks often have been divided between the mega project parties. Each party then focused on risk of their primary interest which often resulted in a indefinable ownership of the

joint risk. However, the complexity should not be a surprise to the experienced risk management coordinator as the occurrence of a certain number of unplanned events is the norm rather than the exception in mega projects.

To be successful, the organization should be committed to address the management of risk proactively and consistently throughout the project. This action involves identifying and describing risk, defining risk ownership and assigned responsibilities, response strategies and specific actions, symptoms-warning, fallback plans and contingency reserves of time and cost to provide for risk owners risk tolerance.

The use of risk management from the planning stages of a project, where major decisions such as choice of alignment and selection of construction methods can be influenced is essential. Deliveries between different stages of a project and also between different risk owners are also essential.

Use of risk management involves risk monitoring, risk assessment, controlling and choosing alternative strategies, executing a contingency or fallback plan, taking corrective action and modifying the project management plan.

KeywordsProject, risk monitoring, risk assessment, project management plan, risk management.

ExamPLE 5 : BridGE ovEr tHE SEa

By : Anders Plovgaard, Head of Design, Road Directorate, Thomas Helsteds Vej 11, 8660 Skanderborg, Denmark

Risk management on mega-projects; an example of an operational risk analysisMega project construction works involves risks on all parties being involved in the project. Additionally parties indirectly involved in the mega project are often affected by mega project risks. The very nature of mega projects entails considerable risks for the owner of such a project. Often the project scope or ambition level will change during project development and implementation. Changes may be due to uncertainty at the early project stages on the level of ambition, the exact corridor, the technical standards, project interfaces, geotechnical- and environmental conditions, etc. Due to these uncertainties, there might be significant cost overrun and delay risks. Also, there is a potential for large scale accidents during the mega project work. Furthermore, for mega projects in inhabited areas there is a risk of damage to a range of third party persons and property. Finally there is a risk that the problems which the mega project causes to the public will cause public protests and political reactions affecting the course of the project.

Page 177: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

350 2010R01 3512010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Traditionally, risks have been managed indirectly through the engineering decisions made during the project development. Unintentionally risks often have been divided between the mega project parties. Each party then focused on risk of his primary interest, often resulting in an indefinable ownership of the joined risk. However, the complexity should not be a surprise to the experienced planner as the occurrence of a certain number of unplanned events is the norm rather than the exception in mega projects.

Several new Danish mega projects have applied systematic risk management in various forms to qualify decisions and to significantly improve engineer’s decisions. The use of these techniques has shown that potential problems can be clearly identified such that appropriate risk reduction initiatives can be implemented in time.

The most recent Danish (Swedish/Danish) mega project using risk management throughout the organization is the Øresund Link tunnel and bridge project connecting Sweden and Denmark.

To be successful, the organization decided to address the management of risk proactively and consistently throughout the project. This action involved defining risk ownership and assigned responsibilities, identifying and describing risk, response strategies and specific actions, symptoms-warning, fallback plans and contingency reserves of time and cost to provide for risk owners risk tolerance.

The Øresund Link (bridge and tunnel) opened on 1 July 2000; it includes 8 km of bridge and 4 km of immersed tunnel, joined by a 4 km long artificial island.

As an integrated part of the Øresund Link Risk Management System the Operational Risk Analysis (ORA) was compiled. The purpose of the ORA is to summarize the risk facilities and major disruptions in the operational phase of the Øresund Link, to compare the risk with the acceptance criteria outline and if possible and/or required to take reducing measures.

The Øresund Link has kindly allowed quoting from the ORA-98, March 1999 rapport from which the Introduction, Summary and Conclusion might be of interest to a broader circle of readers:

1. introduction

Hazard identificationThe documentation for the ORA is given in a number of risk assessment reports treating the different types of hazards that are illustrated on figure, right page. The

results from these reports are collected in the ØLC (Øresund Link Consultants) risk database, counting the total risk. Printouts from the ØLC risk database are given in the “Risk Account ORA-98”, ref. /28/.

Possible hazards on the Øresund Link

The frequency of a hazard is in the following chapters specified as an annual frequency of occurrence. Also a frequency of collapse of a given part of the Link, caused by hazards, will be given, where relevant.

Next table provides an overview of the risk assessment reports where the detailed analyses of the different hazards have been carried out. The results of these risk assessments form the basis of the present ORA.

LiSt oF riSK aSSESSmEnt rEPortSLocation Hazard Risk Assessment Reports PreparedTunnel Fire, explosions, toxic

releases, impactTunnel Accident Scenario, ref. /3/ 30/1

30/12/94

Tunnel Sinking ships Tunnel and Artificial Island, Ship Collision Risk, ref. /9/

03/03/99

Page 178: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

352 2010R01 3532010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Tunnel and Artificial Island

Grounding ships Tunnel and Artificial Island, Ship Collision Risk, ref. /9/

03/03/99

Tunnel Dropped and Dragged Anchors

Risk Beyond Design Basis, ref. /24/

14/02/97

Island Fire, explosions, toxic releases, impact

Risk Analysis, Island Complex, ref. /10/

25/11/94

Bridge Fire, explosions, toxic releases, impact

Accident scenarios, Two-level Bridge, ref. /4/

28/12/94

Bridge Aircraft impact Aircraft collision Risk Analysis, ref. /5/ 07/1

07/12/94

Bridge Derailment due to ship collision

Bridge - Ship Collision Risk, ref. /26/ 01

01/03/99

Bridge Ship collision, Pier Bridge - Ship Collision Risk, ref. /26/ 01

01/03/99

Bridge Ship collision, Girder Bridge - Ship Collision Risk, ref. /26/ 01

01/03/99

General Car accidents, derailments and train collisions

Risk Assessment of Ordinary Road and Railway Accidents, ref. /13/

08/07/96

General Risk of structural collapse for loads, which have been designed for (e.g. earthquake, wind etc.)

Risk beyond Design Basis, ref. /24/ 1

14/02/97

2. Summary and conclusion

content of the oraIn Chapter 3, a system description of the Øresund Link is given. Chapter 4 gives a description of the basic traffic data used in the ORA.

The Chapters 5 through 11 give a short description of the hazards identified and evaluated for the Øresund Link (see Figure 26, page 145), and in Chapter 12 a comparison of risk with the risk comparison criteria is carried out. A detailed overview of consequences and frequencies is given in the Risk Account ORA-98, ref. /28/.

In Chapter 13 a description of risk reducing measures and basic assumptions for the Øresund Link is made.

risk acceptance Philosophy and acceptance criteriarisk acceptance PhilosophyAccording to the Risk Policy in ref. /1/ the risk shall be reasonable and comparable to other similar traffic installations. Concerning the user risk, this policy statement has been quantified as follows :

The total individual risk for road or railway users shall be comparable to the average individual risk on a Danish/Swedish motorway or railway, having similar length and traffic intensity.

The main risk acceptance criteria for the Øresund Link is related to the individual risk. In addition to this a risk acceptance criteria has been developed for the societal risk. Furthermore, a working risk criteria (for a definition see ref. /14/) has been determined for disruption of the Link.

risk acceptance criteriaThe risk acceptance criteria has been developed by Øresundskonsortiet and approved by the technical director.

Based on statistical information for accidents on motorway and railway in Denmark and Sweden, risk acceptance criteria for the individual risk have been determined in ref. /14/. The individual risk is defined as the fatality risk per 1 billion passages of the Øresund Link. The analyses carried out in ref. /14/ result in the following risk acceptance criteria:

• Road: 33 fatalities per 1 billion passages of the Link;• Rail: 4 fatalities per 1 billion passages of the Link.

In addition to the individual risk acceptance criteria, a societal acceptance criterion has been determined. The societal risk criteria is defined as a continuos frequency consequence diagram (F/N) curve showing the probability for N or more fatalities. The criteria concerns the risk to all users of the Link, and the criteria (location of the F/N curve) will be dependent on the traffic volume.

The present location of the F/N-curve is based on the traffic volume presented in Chapter 4.

The societal criteria has been based partly on some reasoning on the slope of the curve, on the level of the curve and on the ALARP domain (As Low As Reasonably Practical), and partly on comparison with similar curves proposed by others or used on other projects.2.3.

Page 179: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

354 2010R01 3552010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

user riskThe fatality risk for the users of the Øresund Link in the operational phase is summarized in the following.

individual riskThe total individual risk for road and railway users is presented in next Table. The individual risk is defined as the fatality rate of one road or railway user passing the Øresund Link. In the ORA the fatality rate is expressed as the number of fatalities per billion passages of the Link.

individual risk for road and railway users(i.e. the number of fatalities per billion passages of the Link)Road/Rail Yearly average

number of fatalitiesIndividual risk Acceptance criteria

Road 0.1871 21.3 33Rail 0.0451 4.6 4

It is seen that the individual risk for road users is lower than the acceptance criteria, whereas the individual risk for railway users slightly exceeds the level of the acceptance criteria. The contributions to the risks from the different accident types are shown in next Figure.

Contributions to the individual risk for road and railway users

The risk contributions “Residual Frequency” in next Figure cover a summation of small risk contributors (each counting for less than 1 %) from fire (also fire from dangerous goods accidents), aircraft collision and explosion. Thus, the residual frequency contributors do neither include accidents with release of dangerous goods, which do not result in neither a fire nor a explosion, nor in ordinary accidents.

As seen from Figure, the largest contributions to the risk are related to ordinary road and railway accidents (train derailments, train collisions and car collisions) and ship collisions with the Bridge.

In next Figure, a comparison of the individual risk related to ORA-94, ORA-95, ORA-96, ORA-97 and ORA-98 and the acceptance criteria for road and rail, respectively, is made.

Comparison between total individual risk for ORA-94, ORA-95, ORA-96, ORA-97, ORA-98 and acceptance criteria for road users

(Number of fatalities per billion passage of the Link)

In next Figure it is demonstrated that the total individual risk for road users is acceptable and that the development in time during the last three years is insignificant. The main reason for the latter is that the individual risk for road users is dominated by the risk from ordinary accidents (according to previous Figure) and the fact that the changes in the layout of the Link with influence on the ordinary accidents have been minor during this period.

Page 180: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

356 2010R01 3572010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

(Number of fatalities per billion passages of the Link)Comparison between total individual risk for ORA-94, ORA-95, ORA-96,

ORA-97, ORA-98 and the acceptance criteria for railway users

It is shown in previous Figure that the risk for railway users exceeds the acceptance criteria. Furthermore, it is seen from previous Figure that the individual risk is practically unchanged from ORA-97 to ORA-98. This is the case in spite the fact, that new ship collision risk studies for the Øresund Link have been carried out. These studies are based on an increased ship traffic volume compared to former studies, why an increase in risk contributions would be expected. However, the expected increase in risk is counterbalanced by the introduction of operational procedures in connection with drifting ships and more recent frequency assessment approaches. Therefore, the risk contributions in ORA-98 is approximately at the same level as determined in ORA-97.

Societal riskThe total risk in road and railway user fatalities is shown on Figure, right page together with the acceptance criteria for the societal risk.

It can be concluded from previous Figure that the risk profile for users of the Link is generally in the ALARP domain but in the non-acceptable domain for accidents resulting in a large number of fatalities (100 and 300 fatalities). According to the list of improvement (LOI-99) and in connection with the finalization of the operational procedures for the Link further considerations of the risk on the Link will be performed in 1999 and the years to come. These further considerations will most likely reduce a number of risk contributions.

The distribution of the accident types that makes contributions to the risk on the different fatality classes is shown in previous Figure. The risk contributions

“Residual Frequency” in previous Figure cover a summation of small risk contributors (each counting for less than 1 %) from ship collision, all types of fire, aircraft collision, explosion, toxic release, sinking ship and ordinary accidents.

Distribution of the risk on the different fatality classes

Risk profile of road and railway user fatalities

Page 181: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

358 2010R01 3592010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

distribution of the risk on the different fatality classesAs it is seen from previous Figure, the accidents constituting the greatest part of the risk contribution with 100 and 300 fatalities are ship collision with the bridge girders and to some extent also accidents involving toxic releases, ship groundings on the Tunnel and aircraft collisions with the Bridge. The main reason for the large consequences is that passenger trains are involved in the accidents.

Proposal of new operational procedures (early warning system) concerning the scheduled traffic routes Malmö - Travemünde and Malmö - Swinoujscie has reduced the consequences if a collapse of the Bridge occurs. However, due to the increased ship traffic stated in ref. /17 /, and due to the introduction of a fast ferry route between Malmö and Swinoujscie, the collapse frequencies have increased compared to former analyses. The resulting risk contributions are therefore at the same level as ORA-97.

Consequently, a reduction in the risk of fatalities from girder collision and ship groundings is required in order to reduce the societal risk to be within the ALARP domain.

It shall be mentioned that at present, a rather large dispersion on the ship airdraft has been taken into account in the girder collision analysis. Furthermore, a conservative assumption stating that drifting ships drift equally probable at all directions may be refined. If more detailed information is obtained to improve the estimation of the airdraft, and more refined analysis of the distribution of directions of a drifting ship is introduced, an improved analysis of the girder collision risk can be performed.

disruption and third Party risk

disruptionAlso the risk of a simultaneous disruption of road and railway during the operational phase of the Øresund Link have been studied. The risk profile for the simultaneous disruption is presented in next Figure.

It is seen from previous Figure that the risk profile for a simultaneous disruption of the Øresund Link is in the ALARP domain.

The major contribution to the risk of simultaneous disruption originates from ship collision with the girders and the piers and from ships grounding on the Tunnel.

third Party riskThe fatality risk for third parties has been considered in connection with aircraft and ship collision with the Bridge. The risk profile is given in Figure, next page.

Risk profile for a simultaneous disruption of road and railway of the Øresund Lind

Risk profile for third parties of the Øresund Link

Page 182: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

360 2010R01 3612010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

The figure above shows that the third party risk is near the limit between the ALARP domain and the non-acceptable domain.

overview of risk ProfilesAn overview is given in Table 25 on the position of the different risk profiles, with reference to the unconditionally-acceptable, the ALARP or the non-acceptable domains defined in the report “Background for the ORA and risk acceptance criteria”, ref. /14/.

For the risk profiles that are not shown above a reference is made to Chapter 12.

ovErviEW oF diSruPtion and tHird Party riSK ProFiLESConsequences Unconditionally Acceptable ALARP Non-AcceptableThird Party XDisruption : XTotal Railway XCarriageway X

From previous Table, it is seen that the profiles are primarily within the ALARP domain, but occasionally enters the non-acceptable domain. Thus, possible risk reducing measures may be considered. Other risks during the operational phase exist, i.e. the risk of major environmental damage especially related to ship accidents. However, these scenarios are not treated in this report.

risk reducing measuresThe main conclusions from the ORA with respect to the overall layout of the Link are as follows:

The Tunnel shall be protected against ship groundings and direct collisions with the Tunnel walls (see section 5.1.1). A protective reef is located north of tunnel element 6 in order to prevent ships with large drafts to collide with the Tunnel.

Protective works shall be introduced on the Øresund Link to reduce the risk for derailment due to ship collisions. At present 8 protective islands are included in the project.

The cost effectiveness of various risk reducing measures shall be evaluated. An early warning system shall be established for the traffic in Flinterenden.

The protective works on the Bridge are introduced for several reasons. It should be mentioned that in addition to reduce the risk for derailment due to ship collisions, these works protect the ships themselves in case of a collision.

Chapter 13 gives an overview of risk reducing measures which have already been introduced or shall be evaluated based on a cost-benefit analysis, due to the fact that the risk profiles are in the ALARP domain or occasionally enters the non-acceptable domain.

The risk analyses have interacted strongly with the Design Basis for the Øresund Link, resulting in the determination of the design loads from different accidental situations like e.g. ship collision with piers, ship collision with girders, fire, dropped objects and sinking ships on the Tunnel etc.

assumptionsIn the ORA a number of assumptions have been made, the most important assumptions are :

Vehicles and trains should be stopped (within one minute for trains) in case of a collapse of the Tunnel or the Bridge (this assumption has been transferred to LOI-99).

Ventilation in the road tunnel tubes is working in case of an accident with dangerous goods or toxic materials.

Restrictions are introduced for vehicles and trains in case of high wind speeds. Fire-fighting will limit the duration of a fire to 2 hours.

There will be no restrictions on dangerous goods. Except that a freight train with dangerous goods is not allowed to be in the same Tunnel tube as a passenger train at the same time.

In case of a fire in a train where the fire is the initial event, it has been assumed that all trains will be able to drive out of the Tunnel and off the Bridge.

Personal on the Link, train personal, rescue people etc., will react in a rational manner in case of an accident. This will be ensured by proper education and training of the personal in question. Education and training is part of the rescue planning for the Link.

It is assumed that the operational procedures regarding early warning systems for drifting ships are established.

Restrictions on the ship traffic in Trindelrenden (max. ship length of 130 m) have been assumed.

Page 183: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

362 2010R01 3632010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

In the ORA-98, the separation of trains with dangerous goods and passenger trains (a risk reducing measure proposed by the Dangerous Goods Group) has been taken into account. This is due to the assumption that no scenario with release of dangerous goods following a freight train derailment or a freight-freight train collision will influence passengers in a passenger train driving into the Tunnel after the accident.

Other assumptions of the ORA have been given in the description of the traffic data and in the description of the different hazards.

recommendationsTo reduce the risk for controlled grounding on the Tunnel, the following action is recommended:

• Installation of navigational markings in the coastal parts of the Tunnel to reduce the risk from controlled groundings on top of the Tunnel as a result of propulsion machinery breakdown, because the navigator is able to locate the Tunnel and choose another location for the controlled grounding.

Follow-up :Recently Øresundsbro Konsortiet has presented Procedures and Basis for updating the ORA. The instruction defines procedures for updating the ORA. It scrutinizes the specific premises for infrastructure and maintenance for the link. The instruction estimates whether these premises are still effective. Furthermore the general social premises on which the operational acceptances are decided are reconsidered. Afterwards an analysis handling events on the link and external events relating to the ORA is carried through and it is estimated whether new methods on analysing or new data sources will improve the ORA. At last it is reconsidered whether a new or an updated premise makes it necessary to complete fundamental new ORA.

On basis of the mentioned Procedures and Basis Øresundsbro Konsortiet is now close to a decision on whether the ORA is still up-to-date or it shall be renewed.

referencesThe ORA 98 Summary and Conclusion is brought in its full length but without references. Readers interested in knowing more about the references are advised to contact the Danish/Swedish Øresundsbro Konsortiet.

The ORA has been prepared for Øresundsbro Konsortiet by Rambøll as leading partner in the ØLC consortium. Rambøll also assist in the continuous follow-up and updating of the ORA. http://www.ramboll.dk.

Supplying informationMore information on the Øresund Link can be found here: http:// www.oeresundsbron.com or by contacting The Danish/Swedish Øresundsbro Konsortiet, Vester Søgade 10 - 1601 Copenhagen V. The Danish/Swedish Øresundsbro Konsortiet owns and operates the Øresund bridge’s road link and acts as infrastructure administrator and track owner of the rail link.

ExamPLE 6 — LandSLidE in JaPan

rESEarcH on tHE QuantitativE riSK EStimation mEtHod oF road SLoPE diSaStErH. Kohashi, N. Tsuneoka, M. Tanaka, H. Takahara & T. HamadaSoil Mechanics Research Team, Material and Geotechnical Engineering Research Group Public Works Research Institutes Address -: 6-1 Minamihara,Tsukuba,Ibaraki,Japan ,E-mail: [email protected]

abstractThis paper presents the framework of calculating the risk curve for road slope failures due to rainfall. First, the fragility curve is calculated based on the data such as past records of failures, precipitation records and results of slope stability inspection. Then the risk, defined as the socio-economical damages and losses, is estimated in the form of a risk curve based on the data such as the estimated scale of failures and the amount of traffic. This quantitative risk estimation method could help road administrators to undertake the effective and efficient risk management.

Key wordsRisk curve/slope failures/rainfall/fragility curve

1. introductionBecause of topographical conditions, many roads in Japan are built in the proximity of slopes that are unstable and susceptible to collapses and failures. Although the progress in protection measures has significantly reduced the frequency of road slope disasters, an enormous number of road slopes still remain dangerous. Furthermore, disasters such as slope failures induced by torrential rains and large-scale rock mass collapses, which are difficult to protect, have been conspicuous in recent years. Under these circumstances, road administrators are required to implement effective risk management against slope failure disasters under limited financial resources and to explain to the public the actual slope disaster risk and the cost-effectiveness of mitigation measures.

Page 184: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

364 2010R01 3652010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

The objective of this study is to develop a risk evaluation method to estimate the potential damage and loss due to road slope failures. The proposed method applies a concept of risk curve developed in the field of disaster insurance to quantifying the level of risk in road slope disasters. This method helps road administrators make a more rational decision for measures against slope disasters. The development of the risk curve consists mainly of the following two parts:

1. Hazard analysis: estimating the probabilities of slope failures and their magnitude based on information such as past records of failures, precipitation records, and data from slope stability inspection.

2. Risk analysis: calculating the total loss caused by slope failures, taking into account: a) property losses incurred by road administrators and users, b) human losses (death and injury) caused on road users, and c) economic losses (e.g. extra travel time for making a detour) incurred by road users and regional communities.

The proposed method was applied to an assessment of risk of a section of a national road to establish the procedure.

2. risk curve

A loss exceedance probability curve, which is called a risk curve in this paper, depicts the probability that a certain level of loss will be exceeded on an annual basis. The probabilistic risk analysis enables one to combine the set of events that could induce a given monetary loss and determine the resulting probability of this loss occurring. Figure right page presents an example of a risk curve.

In this study, rainfall is considered as an event that causes slope failures. The y-axis represents the annual exceedance probability of the rainfall intensity, and the x-axis represents the expected loss. In Figure right page, point A means that a loss of 4 million yen or more occurs once in a 5-year period (probability of 0.2). An intercept on x-axis shows that the expected maximum loss is 5.3 million yen. The shaded area under the risk curve represents an approximation of the average annualized loss.

Furthermore, the shape of the risk curve also shows the magnitude and characteristics of slope failure risk of an entire road section or of its individual slope. For example, Figure right page depicts the hypothetical risk curves of three different sections. In this case, section A has the largest risk at any occurrence probability level, and therefore requires the highest priority of implementing mitigation measures against disasters. While section B has a relatively high

probability to have a moderate loss, it has very low probability to have a large loss. Therefore, daily road administration rather than costly protection construction works will be more desirable to minimize a potential loss by slope failures. Finally, disaster protection works for unstable slopes will be chosen as a desirable measure for section C that has some risk to have a large loss. As shown in Figure, the risk curve enables us to understand the current conditions of road slope disaster risk and to take the most appropriate measures to mitigate the risk.

Example of Risk Curve Risk Characteristics depicted by Risk Curve

3. Procedure of risk curve development

The procedure for creating the risk curve for an individual slope along a roadway section is shown in Figure, next page. The risk curve for a road section is developed by summing up the risk curves for all slopes within this section. This procedure is explained below using a case study.

3.1 Selection for the case study The case study was conducted for a 32.5 km road section from Nichinan City to Miyazaki City of National Route 220 in Miyazaki Prefecture, Japan (previous Figure). Slopes along this section are extremely susceptible to failures since the slopes are dipped with weathered sandstone and mudstone, called “Miyazaki Group”. This section is designated as a special section subject to advance traffic regulation because of frequent sediment disasters caused by heavy rainfall. The number of natural and artificial slopes along this section and the number of slope failures in the past 20 years are shown in Figure and Table, page XX.

Page 185: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

366 2010R01 3672010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Histogram of Effective Rainfall IntensitySection for Case Study

3.2 development of the annual exceedance probability of rainfall intensity The effective rainfall was used as a rainfall intensity index in formula (1). The index is called equivalent continuous rainfall: the sum of the levels of rainfall

Procedure for developing a Risk Curve for an Individual Slope

Page 186: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

368 2010R01 3692010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

in individual one-hour periods multiplied by reduction coefficients that are determined for individual time periods by the number of hours between each period and the time of observation. The effective rainfall reflects the influence of antecedent rainfalls that remain in the ground. The half-life period T in equation (1) is determined by the ground drain-ability. In this case study, 48-hour was found out to show the strongest correlation between slope failure probability and the effective rainfall for the studied section in the past.

rw = Σ ai x ri (1) ai = 0.5i/t

Where Rw: effective rainfall, Ri: hourly rainfall i hours before observation, ai: reduction coefficient for rain 1 hours before observation and T: half-life period (hours).

Previous Figure (Bar Chart) presents the histogram of the number of times, when the effective rainfall level exceeded 50 mm in the past 20 years. The rainfall data were obtained form AMeDAS (Automated Meteorological Data Acquisition System owned by Japanese Meteorological.

Annual Exceedance Probability of Rainfall Intensity Annual Exceedance Probability of Rainfall Intensity

Agency). The annual exceedance probability is plotted against effective rainfall intensity using Iwai method (1), which is commonly used in the hydrology (Figure, page 387).

3.3 development of fragility curve A fragility curve represents the expected rate of failure (the number of slope failures divided by the total number of slopes) against rainfall intensity. The curve was developed through the process shown in Figure, right page.

Page 187: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

370 2010R01 3712010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

classification of Slopes by Failure Likelihood based on Slope characteristics First, individual slopes along the section are classified by failure likelihood level based on the slope characteristics, which are obtained from road slope inspections for anti-disaster by the regional office of MLIT. The inspection data include for both artificial and natural slopes :

1. presence of talus, landslide, overhangs, slide prone soils and rocks, dip slope, impermeable bedrock, soft overburden/ loose rock fragments/ debris, spring water, covering, condition of adjacent slopes.

2. classification by angle and height of slopes. The discriminant function was developed by “Quantification Theory II”, a multivariate analysis method, using these slope characteristics as explanatory variables to judge the presence of failure in the last 20 years on each slope (3). Table 2 shows the score range of each slope characteristic obtained by the analysis.

The discriminant function value of each slope is the total scores corresponding to the slope characteristics (item) of each slope. The score ranges in Table present the difference between the maximum scores and the minimum scores obtained from the variation in the slope characteristics. The slope characteristics resulting in the larger score range differentiate the value of discriminant function more significantly. In other words, such slope characteristics have a larger effect on the presence of slope failures in the past.

The discriminant function values of all slopes in the section were calculated based on Table 2. Then the slopes along the section were divided into three categories based on the magnitude of values.

cLaSSiFication oF SLoPES By FaiLurE LiKELiHood BaSEd on SLoPEdiscrimant Function for artificial Slope by QuantificationOrder Item (slope characteristics) Score range size1 Slope angle 0.892 Impermeable bed rock condition 0.853 Slope height 0.754 Failure prone geographical fealure 0.565 Landslide scar, knick line 0.456 Overhang etc. 0.287 Failure prone rock property 0.20

discriminant Fuction for natural Slope by Quantification theoryOrder Item (slope characteristics) Score range size1 Surface loose rocks, etc. 0,842 Impermeable bed rock condition 0,783 Slope information 0,694 Dip slope 0,625 Slope height and angle 0,416 Spring water 0,32Slope Failure Likelihood by discriminant FunctionFailure likelihood Concept of Classification Discriminant Function Value

Artificial Slope Natural SlopeLarge Including equal number of

failures in the past 20 years in each class

More than 0.7 More than 0.4Moderate -0.6 ~ 0.7 -0.7 ~ 0.4

Small Slopes with no failure in the past 20 years

Less than -0.6 Less than -0.7

classification of Slopes by Failure Likelihood based on Slope characteristics The slope failure rate for the level of rainfall intensity was computed for slope classes with large and moderate failure likelihood. The fragility curves were developed by maximum likelihood method assuming the effective rainfall intensity follows the lognormal distribution (Figure, next page).

3.4 calculation of the failed earth volume of each slopeIn order to calculate the failed earth volumes, a regression equation corresponding to the slope characteristics was developed based on the slope failure data in the past. In this case study, because the slope height was found to be correlated most strongly with the failed earth volume, a regression curve for the volume was developed as an exponential function of slope height which is shown in Figure, next page.

3.5 calculation of the failed earth volume of each slope The expected direct and economic loss by slope failures is calculated by summing the following three loss items, which are all determined based on the failure earth volume and traffic volume on the road.

1) Cost of injuries and deaths (D1) The loss of human beings was calculated by taking into account Automobiles hit by failed soil and rocks and Automobiles collided into failed soil and rocks. The value of human life was assumed to be 32,970,000 yen per person based on Manual for Road Investment Assessment Method (4).

Page 188: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

372 2010R01 3732010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

2) Road restoration expenses (D2) Using the past failure records, the road restoration expenses were computed by the regression analysis with earth volume, which was developed based on the past failure data.

d2 (yen) = 9, 625 × failed earth volume (m3) + 1, 361,600 (yen).

Fragility Curve for Artificial Slope Regression Curve for Failed Earth Volume (Artificial Slope)

Example of Risk Curve for Slope Failure due to Rainfall

3) Detour traffic loss (D3) The required restoration period is computed by dividing the failed earth volume by the expected removable earth volume per day. Assuming that the road traffic makes a detour during the restoration period, the total loss caused by detours was

calculated by summing the time loss and the depreciation of automobiles due to extra driving time. The unit prices of these expenses are given in reference (4).

3.6 development of risk curveA risk curve for an individual slope can be calculated based on the procedure by using the results of the analysis described in the previous sections :

1. the annual exceedance probability for each rainfall intensity;2. the slope failure rate for each rainfall intensity;3. the failed earth volume;4. the monetary loss corresponding to failed earth volume.

Then, the risk curve of the section is developed by summing all risk curves of individual slopes along the road section. An average annualized loss is determined by the area under the risk curve, resulting in about 150,000,000 yen in this case.

4. conclusionThis paper presented a method for developing a risk curve to examine the probabilistic loss by slope failures corresponding to rainfall intensity, using past records of slope failures, precipitation records, and data from slope stability inspection.

A risk curve enables road administrators to perform efficient disaster protection measures. Road administrators can use the proposed risk curve to decide slopes or sections where protection measures must be undertaken with the highest priority, and select adequate risk management measures based on cost-benefit analysis.

In a future study, we will examine the uncertainty in the process to quantify the risks explained in this study and its effects on decision-making. In addition, we plan to conduct a rational risk management for road slope disasters by using the risk curve method for a modeled section.

références

[1] Japan River Association and River Bureau of the Ministry of Construction. “Manual for River Work (Part: Investigation)”, 2nd edition (Japanese), Sankaido Book Publishing Co., Ltd. Tokyo, Japan, 1986. [2] Nakano, J., Hamada, T. et al., “Statistical evaluation Technique for Fragility of Slope Failure”, Proceedings of the 36th Japan National Conference on Geotechnical engineering of the Japanese Geotechnical Society, Vol.2, page 2433-2434, 2001 (Japanese). [3] Kobayashi, R., “Introduction of Quantification Theory”, Union of Japanese Scientists and engineers, Tokyo, Japan, 1981, (Japanese). [4] Ministry of Construction Committee for Reviewing the Manual for Road Investment Assessment Method. “Manual for Road Investment Assessment Method” (draft), Japan Research Institute, 1998 (Japanese).

Page 189: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

374 2010R01 3752010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

ExamPLE 7 — SiSmoa

The Sismoa method which was developed under Setra supervision (France) aims to estimate the vulnerability of existing bridges under seismic actions. From geometrical and typological criteria, the software gives a qualitative evaluation of the vulnerability of the different parts of the structure (deck, abutments, piers and foundations). The combination of those specific vulnerability indices leads to the assessment of the global seismic vulnerability of the bridge. Using a geographical information system, the exploitation of the results provides a synthetic representation of the seismic vulnerability of the road facilities at a large area scale, what constitutes a very precious tool within the seismic risk prevention procedure.

• Directorate of Roads in the French Ministry of Public Works • French Roads and Motorways Engineering Department (Setra -Engineering

Structure Techniques Center) • French Scientific and Technical Network (RST) • Public Works Regional Engineering Centers: Cete Méditerranée, Cete de Lyon,

Cete Normandie Centre, Cete de l’Est • Why Sismoa? • A Qualitative Approach • The Software Interface• First Applications • Developments Prospective

Why Sismoa?

• Because France is a seismic country…• Because most of the existing bridges were built before modern seismic codes :

- Existing bridges construction average period;- They are therefore potentially vulnerable to earthquakes.

• Because it is impossible for economical reasons to retrofit all bridges.

A prioritization scheme must therefore be established, based on the site seismicity, the bridge importance in terms of economical and emergency issues and the estimated structure vulnerability to seismic aggression.

The prioritization schemea Qualitative approach:

• based on the understanding of seismic action on bridge structures • based on lessons given from past earthquakes…

Past earthquakes on the French territory 1909 Lambesc Earthquake

Page 190: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

376 2010R01 3772010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Span unseating examples

Abutments damage

Column shear failures

Soil liquefaction

The software interface consists of a spreadsheet where the user fills in several general, typological and geometrical parameters such as the age of the bridge, the soil conditions, the structural form and materials, the type of piers and abutments, the type of foundations, the unseating risk…

Clear and detailed figures and explanations are provided to help the user with understanding the physical significance of each parameter.

Earthquake action

Page 191: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

378 2010R01 3792010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

the unseating risk analysis

The Software interface

Masonry Type Bridges

Different Abutment Types

The resulting database is compatible with a geographical information system, what allows a synthetic representation of the seismic vulnerability of the road facilities at a large area scale.

Synthetic representation of the seismic vulnerability of the road facilities at a large area scale

Page 192: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

380 2010R01 3812010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

The Sismoa method was experimented on three different French regions particularly exposed to the seismic risk and chosen to be representative of different social and economical surroundings:

• the National Road RN202 in the Southeast of France; • the city of Grenoble in the Alps Mountains; • the Martinique Island in the Caribbean zone.

Sophisticate analytical models were used on particular bridges in order to calibrate and to validate the method.

Sophisticate analytical models

Even if already functional, the Sismoa method is still in an optimization and upgrading phase. The following elements are to be added in the procedure:

• more precise analyses of local seismic induced hazards;• analysis of other structures like tunnels and retaining walls;• importance factor calculation (risk evaluation);• some classic retrofit techniques with associated costs corresponding to the

identified more vulnerable components (risk optimization).

The Directorate of Roads long-term objective is to apply the method to the entire road facilities network located in the French seismic zones and to integrate the results in the Global Seismic Risk Planning Procedure.

French Seismic zones

ExamPLE 8: caSE oF a BridGE StructurE ParticuLarLy ExPoSEd to riSKS: tHE rion-antirion BridGE

D. Davi

…based on technical elements from several dedicated papers from scientific journals dealing with civil and structural engineering (see references).

1. General presentation of the mega-project

The highway bridge of Rion-Antirion was built to connect continental Greece to Peloponnese, close to Patras city. It is a cable-stayed bridge of a total length

Page 193: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

382 2010R01 3832010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

of 2883 meters and a deck width of 27 meters. The pylons are 227 meters high, including 63 meters below sea level.

Situation map Aerial view of the Rion- -antirion bridge

The construction of the mega-project lasted for 5 years. It was acvhieved through a 42 years concession contract attributed to Geyfira group (Vinci French and Greek consortium) for a total cost of 800 Millions Euros (45% financed by Europe, 45% financed by Greek State) and an expected traffic of 11000 vehicles/day. It was inaugurated in 2004 during the opening ceremony of the Athens Olympic Games. The project design responsibility was endorsed by the contracting companies (Geyfira).

The bridge under construction

2. risks management during the planning phase

2.1. identification and estimation of local hazards Seismic vibration:Since 1965, the area as suffered nine major earthquakes of magnitude higher than 6 on Richter scale.

tectonic fault opening:The distance between the two banks is increasing of height mm per year (80 cm per century). This displacement can suddenly reach 25 cm in case of strong seismic event.

Liquefaction hazard: The alluvial soil at the location of the channel is very sensitive to liquefaction hazard in case of earthquake. Unfortunately, drilling campaigns could not find any stiff rocky soil less than 500 meters depth, thus making any deep foundation impossible.

Strong winds:Strong winds on the site of the bridge can blow at speeds up to 150 km/h.

Ship collisions:The channel is used for heavy maritime traffic of petrol tanker vessels.

Petrol tanker vessels traffic in the channel

2.2. definition of objectives of performance

Seismic risks: The bridge was designed to resist a magnitude seven earthquake, with a nominal acceleration of 0,48g, corresponding to a 2000 years return period. Following prescriptions from Eurocode 8-2 relative to “Design of Bridges for Seismic Resistance“, the objective is not the bridge to remain 100% undamaged but the damages to be limited and reparable.

In fact, EC8-2 defines three classes of importance for bridges. The Rion-Antirion Bridge was considered to belong to the higher class, said “class of greater than average importance”, what means that it will be of critical importance for maintaining communications, especially after a disaster, and it requires a design life greater than normal.

Page 194: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

384 2010R01 3852010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

Risk matrix illustrating EC8-2 principles

Concerning tectonic fault opening, the bridge was designed to accept displacements of two meters in any direction between adjacent pylons.

-Strong winds and ship collisions:

The bridge was designed to resist 250 km/h wind speeds and 180 000 tons petrol tanker vessel crashes.

3. risks management during the design phase

3.1. definition of the best location for the bridge and supports (reduction of the risk occurrence on the structure) For economical reasons, the bridge location was chosen to correspond to the narrowest part of the channel. In order to reduce the ship collision risk, it was decided to build four pylons instead of three, thereby providing a larger clearance in the middle of the channel.

Spans Distribution

3.2 design of the structure according to most recent codes and engineer considerations (reduction of the risk consequences on the structure) The bridge design philosophy resulted in two opposite behavior strategies depending on the level of solicitations:

• under low seismic event, wind forces and ship collisions, the structure must remain very strong, stiff and rigid;

• in case of strong seismic event with eventual tectonic fault activity, the structure must show flexible behavior in order to act like a filter and adapt imposed deformations. This very specific design strategy was achieved through the use of different fuse systems. Protection against low seismic events, wind forces and ship collisions is performed through very strong massive piers, while steel fuses provide a rigid connection between the deck and the pylons, limiting the vibrations of the deck. Stay-covers shape and deck equipments were also designed to limit turbulent wind effects…

Strong massive piers Rigid steel fuses

In case of a major earthquake, associated with strong vibrations, liquefcation and fault rupture hazards, the protection of the structure is assured via a foundation concept based on a gravel layer that enables the ninety meters diameter footing to slide on a steel pipes reinforced soil. The friction between the footing and the gravel layer provides helps to dissipate a large amount of energy.

Page 195: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

386 2010R01 3872010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

The Rion-Antirion Bridge Foundations Concept

The steel fuses mentioned earlier were calibrated to break under a certain level of earthquake, thus enabling the long steel fully suspended deck to move, deform and adapt the imposed displacements. Seismic dampers were placed between the deck and the pylons in order to limit movements and dissipate energy. In addition, stays were equipped with additional Internal Hydraulic Dampers acting as vibrations absorbers and the bridge was also equipped with five meters opening expansion joints at both hands of the deck.

Seismic dampers placed to limit the vibrations of the deck

4. risks management during the construction phase

4.1 construction related risks In addition to regular construction risks (workers security, falling objects, bridge damage...), a special care was placed on seismic risk occurring during the construction of the structure. Based a probabilistic approach, this consideration resulted in strengthening some very vulnerable states of the structure using

retrofitting techniques such as prestressing external cables and temporarily rigid steel beams.

4.2 communication on risk management procedures and objectives of performance Communication on risk management procedures was related through many interviews and scientific papers in international media, specialized journals and congresses. An on-site exposition room was built in order to explain the construction and the overall project specificities to local inhabitants, future infrastructure users and visitors.

Scientific papers On-site exposition

• Testing of the structure reliability through computer simulations, reduced scale models, real testing

Extensive computer simulations were performed in order to assess as precisely as possible the seismic bridge response and the foundations behavior.

Computer simulation for the dynamic properties of the structure and the foundations behavior

In addition, the seismic dampers were tested in real scale at the University of California, San Diego whereas 1/100 reduced scale testing was performed to

Page 196: VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES

388 2010R01 3892010R01

VERS LE DÉVELOPPEMENT D’UNE APPROCHE DE GESTION DES RISQUES TOWARDS DEVELOPMENT OF A RISK MANAGEMENT APPROACH

simulated the behavior of the steel inclusions reinforced soil at the LCPC of Nantes (France) using clay samples from Rion-Antirion site.

Real scale testing of the seismic dampers at the University of California, San Diego

5. risks management during the operation phase

5.1 regular inspections and recording of the structure response The bridge is equipped with a permanent monitoring system that enables to record and analyze its response to any small or major earthquake. In addition, critical components and seismic devices are subjected to a very severe inspection and maintenance program.

5.2 crisis management and post-crisis feed-back The bridge suffered 2 moderate earthquakes within its construction stage. No damage was observed.

In 2005, 2 stay-covers were burned by a lightning and had to be replaced. This event showed that providing lightning conductors only on the top of the pylons was insufficient for very long span cable-stayed bridges… The information was immediately sent to the international bridge designers and contractors community.

6. conclusion

The analysis of risk management procedures on the Rion-Antirion bridge in Greece shows that, thanks to national and European design codes, state of the art, good practices, engineers good sense, experiences feed back, project organizational and quality procedures, a very satisfying overall risk management was performed on this extremely exposed and sensible mega-project. In particular different levels

of performance objectives were associated with the different identified risks : earthquakes, fault activity, geotechnical risks, strong winds or ship collisions. Finally, geometry, design, construction methods as well public relation and communication appeared to be strongly influenced by RM considerations.

references

[1] Vavel, A., “Pont Harilaos-Trikoupis : La force et la grâce unies contre les éléments”, Construc-tion moderne, Annuel Ouvrages d’Art 2004, Grèce.

[2] Pecker, A., A Seismic Foundation Design Process: Lessons Learned From Two Major Projects, the Vasco de Gama and the Rion-Antirion Bridges, 2003 international Conference ACI œ La Jolla, CA.

[3] Teyssandier, J.P., “The Rion-Antirion Bridge, Design and Construction,” 2003 international Conference ACI, La Jolla, CA.

[4] Cennac, N., “Le pont au-dessus des séismes”, Science & Vie, n°1040, mai 2004.

[5] Chevalme, M.N., Fernier, F., Fragnet, M., Piquet, A., “Les équipements du viaduc sud de la liaison Rion-Antirion”, Bulletin Ouvrages d’art, n°47, nov. 2004 – Sétra.