Volic_7574576_TD.pdf

Embed Size (px)

Citation preview

  • 7/23/2019 Volic_7574576_TD.pdf

    1/142

    fmdpQmw uwwmc@,w-wu3dTPssEsM qs 9g9Lx l99LQ

    z0 2na:so

    psJ z

    aaaoa..:.>I aaaaaaaaa

  • 7/23/2019 Volic_7574576_TD.pdf

    2/142

  • 7/23/2019 Volic_7574576_TD.pdf

    3/142

    Objectif du projet

    Le but de ce projet est linstrumentation, lautomatisation et la mise en servicedun racteur plasma employpour la production de nouveaux matriaux. Dansun premier temps, leffet du plasma est tudi sur des chantillons damidonplacs dans le racteur.

    Mthodes | Expriences | Rsultats

    Afin de superviser lensemble de l installation, une interface homme machine estimplmente dans LabVIEW, permettant davoir une vue globale de linstallation,dactionner les diffrents lments, de contrler les diffrentes grandeursphysiques, de visualiser et de stocker les donnes.

    Les diffrentes squences de dmarrage et d'arrt ainsi que les diffrentes

    mesures de scurit sont galement implmentes dans LabVIEW.

    Afin dliminer la puissance rflchie sur le gnrateur de haute frquence, ondoit rguler limpdance interne du racteur 50 ainsi que de contrler ledphasage entre le courant et la tension mesurs sur une matchbox lentre duracteur.

    Pour atteindre ce but, deux cartes lectroniques sont conues. La premire

    mesure les valeurs redresses et filtres des signaux HF de courant et de tension

    ainsi que leur dphasage. Ces valeurs sont ensuite envoyes vers LabVIEW pour

    affichage et traitement. La deuxime carte est utilise pour piloter depuis

    LabVIEW deux moteurs pas pas. Ces moteurs sont coupls avec deuxcondensateurs variables de la matchbox. En variant la capacit des

    condensateurs, on agit sur dimpdance du racteur. Lalgorithme ncessaire

    la rgulation de limpdance na pu tre implment, faute de temps.

    Automatisation dun Racteur Plasma

    Diplmant Davor Volic

    Travail de diplme

    | d i t i o n 2 0 1 2 |

    Filire

    Systmes industriels

    Domaine dapplicationPower & Control

    Professeur responsable

    Fariba Btzberger

    Christoph Ellert

    Fariba Moghaddam@hevs ch

  • 7/23/2019 Volic_7574576_TD.pdf

    4/142

    DavorVolic TravaildeDiplme 09.07.2012

    1. Introduction.....................................................................................................................................2

    2. CahierdesCharges..........................................................................................................................2

    3. LePlasma.........................................................................................................................................3

    4. DescriptifdelInstallation...............................................................................................................4

    5. Matchbox.........................................................................................................................................8

    5.1 Mesureducourant................................................................................................................10

    5.2 Mesuredetension.................................................................................................................10

    6. Cartelectronique.........................................................................................................................11

    6.1 PCBDeMesure......................................................................................................................11

    6.1.1 ConversionTensionetCourantenvaleurefficace........................................................12

    6.1.2 MesureDphasageentreUetI....................................................................................13

    6.2 Commandemoteur...............................................................................................................14

    6.2.1 Circuitdecommande....................................................................................................16

    7. Labview..........................................................................................................................................19

    7.1 Cartedacquisition.................................................................................................................19

    7.2 InterfaceHommeMachine...................................................................................................20

    7.3 Programmation.....................................................................................................................24

    7.3.1 Acquisition.....................................................................................................................24

    7.3.2 Phasededmarrageetdarrt......................................................................................26

    7.3.3Programmationcommandemoteurspaspas...................................................................27

    8. Tests..............................................................................................................................................30

    8.1 Testdtanchit...................................................................................................................30

    8.2 TestMesureMFC..................................................................................................................31

    8.3 Testdelinaritdescondensateurs.....................................................................................32

    8.4 Protocoledetestdelacartedemesure...............................................................................34

    8.5 Protocoledetestdelacartedecommande.........................................................................37

  • 7/23/2019 Volic_7574576_TD.pdf

    5/142

    DavorVolic TravaildeDiplme 09.07.2012

    1. Introduction

    LelaboratoiredephysiquedelaHESSOValaispossdeunracteurplasma.Lebutdeceprojetestlautomatisation,linstrumentationetlamiseenserviceduracteurplasma.Letravailestdivisendeuxpartiesdistinctes:

    Lapremireestleprojetdesemestre,effectupendantlesiximesemestre raisondeunjourparsemaine.lafindecettepremirepartie,unprogrammedebasesurLabviewateffectu,celuici

    permetlepilotagedesdiffrentslmentscomposantlinstallation.

    Ladeuximepartieestralisependantles8semainesdutravaildediplme.Lamliorationdelinterfaceutilisateur,lesralisationsdescarteslectroniquesdemesureetdecommandedesmoteurssontlesobjectifsprincipaux.

    2. CahierdesCharges

    Pourletravaildediplmelestchessuivantesdevaienttreeffectues:

    Ajoutdedeuxlectrovannesetdedeuxrgulateursdedbit,pourpouvoirgrerautotal4gazdiffrents.

    EquiperlesdeuxpompespardesrelaiscommandsdepuisLabview. Remplacerlesdeuxvannesmanuellesquisesituentlentredespompes,pardesvannes

    pneumatiquecommandesdepuisLabview. Proposerunventuelrarrangementdelarmoirelectrique. ImplmenterLabviewpourrpondreauxcritressuivants:

    Envoyerlaconsignededbitaurgulateur. Afficherlamesuredudbitreuparlergulateur. Afficherlesvaleursdepressionextrieureetintrieuredeschambres.

    Contrlerlouvertureetlafermeturedescinqlectrovannesetdesdeuxvannespneumatique.

    Contrlerlenclenchementetledclenchementdespompes. Programmerunephasedinitialisation. Programmerunephasededmarrageetdarrtdeprocd. Stocker les donnes et avoir une visualisation graphique des diffrentes grandeurs

  • 7/23/2019 Volic_7574576_TD.pdf

    6/142

    DavorVolic TravaildeDiplme 09.07.2012

    3. LePlasma

    Unplasmaestunmilieugazeuxpartiellementionis.Ilestconstitudemolcules,datomesdionset

    dlectrons.Toutgazpeutatteindreltatdeplasmapourvuquunenergiedexcitationsuffisante

    luisoittransmise.LegazsetransformeenPlasmadelamaniresuivante:

    Legazarriveentredeuxlectrodes.pressionrduiteetstableenviron2mbar,unetension

    suffisantepourcrerunedchargeestappliqueauxlectrodesunefrquencede13Mhz.

    partirdecemoment,lesmolculesdegazsefractionnentpourcrerdeslectronslibres,

    desions.

    Lafigure1montrelediagrammedePaschen.Cediagrammeindiquelatensionminimale,enfonction

    duproduitentrelapressionpdugazetdeladistancedentreleslectrodes,permettantaucourant

    lectriquedesedchargerdanslegaz.

  • 7/23/2019 Volic_7574576_TD.pdf

    7/142

  • 7/23/2019 Volic_7574576_TD.pdf

    8/142

    DavorVolic TravaildeDiplme 09.07.2012

    Lerledechacundeslmentsselonlafigure2estexpliqucidessous:

    Nr.1:Lesystmeduvide,estcomposdedeuxpompesetdedeuxvannespneumatique

    permettantdefairebaisserlapressiondanslachambreintrieureetextrieure.

    Figure3:Systmedevide

    Nr.2:Lachambreintrieureestlecompartimentousesitueleslectrodesetoulegaz

    passeltatdeplasma.Lachambreextrieureestutilisecommescurite,afinde

    minimiserlesfuitesentrelachambreintrieureetlasalle.

    Figure4:Chambreextrieure

    Pompepour

    videextrieure

    Vanne

    pneumatiqueVanne

    pneumatique

    Pompepour

    videintrieure

    Hublotpermettantde

    voirlachambre

    intrieure

    et

    le

    plasma

  • 7/23/2019 Volic_7574576_TD.pdf

    9/142

    DavorVolic TravaildeDiplme 09.07.2012

    Nr.4:Gnrateurdefrquencefournissantlapuissancencessaire afindefairepasserle

    gazltatdeplasma.

    Figure6:Gnrateurdefrquence

    Nr.5:Lamatchboxcontientlesmesuresdecourantetdetension.Permettantainside

    dfinirlesvaleursdimpdanceetdedphasagencessairelargulation.Lesconsignes

    dimpdanceetdedphasage sontatteintesgrcedeuxcondensateursvariablesfixsdans

    lamatchbox.

    Figure7:Matchbox

    Nr.6:ElectrovannecommandedepuisLabviewpourpermettreaugazdaccderdansla

    chambreintrieure.

  • 7/23/2019 Volic_7574576_TD.pdf

    10/142

    DavorVolic TravaildeDiplme 09.07.2012

    Nr.7:LeMassFlowControllerestunrgulateurdedbitdegazdontlaconsigneestfixe

    depuisLabview.

    Figure9:MassFlowController

    Surnotreinstallation,legazpasseltatdeplasmadelamaniresuivante:

    Premirementonallumelespompesintrieureetextrieure,unefoislesdeuxpompes

    enclenchesonouvrelesdeuxvannespneumatiquesafindefairebaisserlapressiondansles

    chambresextrieureetintrieure.

    Lorsquelapressiondanslesdeuxchambresestinfrieure2[mbar],llectrovanne

    principaleainsiquellectrovannecorrespondanteaugazsouhaitpeuventtreouvertes.

    On

    choisit

    la

    consigne

    de

    dbit

    de

    gaz

    souhaite

    puis

    le

    gaz

    est

    amen

    dans

    la

    chambre

    intrieure.

    Puislegnrateurdefrquenceestenclenchmanuellementafindappliquunetension

    lasurfacedeslectrodesetainsinousobtenonsnotreplasma.

    Schmalectrique

    LeschmalectriquedelinstallationsetrouveenAnnexe1.Remarque:UndesproblmesavecLabviewsesituelorsquelordinateurestallumetqueleprogrammeLabviewnestpasallum.Labviewmettraautomatiquementtouslessoritesdigitaux1etdonclespompes et les vannes seraient enclenches. Pour viter ce problme un relais avec des contacts

  • 7/23/2019 Volic_7574576_TD.pdf

    11/142

    DavorVolic TravaildeDiplme 09.07.2012

    5. Matchbox

    Lerledelamatchboxestdergulerlimpdancedusystmeetledphasageentrecourantet

    tension,grcedeuxmoteurspaspasquifontvarierlavaleurdescondensateurs.

    Surlesfigures 10et11leschmaquivalentdelamatchbox etlaphoto:

    Figure10:SchmaHFSystme

    L=164.2nH

    SondeRogowski

    C1

    Sondede

    tensionC2

  • 7/23/2019 Volic_7574576_TD.pdf

    12/142

    DavorVolic TravaildeDiplme 09.07.2012

    Lavaleurdelimpdancedanslachambrevarieenfonctiondelafrquence.Ledessindelafigure12quireprsentelintrieureduracteurexpliqueloriginedecetteimpdance.

    Figure12:CoupeduRacteurPlasma

    Levidequilexisteentrellectrodeetlaterresecomportecommeuncondensateur.Untesteat

    effectu,parmescollgueslorsduPGA,pourdterminerlavaleurdecetteimpdance.Letest at

    effectusansapportdegazetpressionambiante.Lersultatestvisiblesurlafigure13

  • 7/23/2019 Volic_7574576_TD.pdf

    13/142

    DavorV

    Lecoura

    LatensiensuiteHabituel

    dphasa

    Latensi

    Figure15

    olic

    5.1Mesuntcirculant

    ninduiteUamenejuslementlengede90d

    5.2Mesunestmesu

    :SondeRogo

    reducodanslamat

    estproporulaplaquoulementRlatensio

    redeteegrce

    ski

    Tra

    ranthboxestm

    ionnellaePCBdemogowskiestinduitequi

    sionndiviseurc

    vaildeDipl

    surgrce

    riveducsurequisoreliuncircestproport

    pacitif.

    Figure14

    me

    unenroul

    urantdansccupedutruitintgrateionnellad

    :PhotoSonde

    ment Rogo

    leconducteitementduurafindecriveduco

    Rogowski

    0

    wski.

    r.Cettetensignal.mpenserleurant.

    .07.2012

    sionest

  • 7/23/2019 Volic_7574576_TD.pdf

    14/142

    DavorVolic TravaildeDiplme 09.07.2012

    Aveccommeparamtrelesvaleurssuivantes:

    30 10 0.00075

    19

    8.86 10

    CequinousdonnecommevaleurdecapacitC=0.35pF

    CettetensionmesurvaensuitesurlaplaquePCBdemesurequiconvertinotretensionsinusodale

    entensionefficace.

    6. CarteElectronique

    6.1PCBDeMesure

    Commeexpliqudansleschapitres5.1et5.2,unemesuredetensionetdecourantsinusodal

    hautefrquenceesteffectuegrcelasondeRogowskietlasondedetension.Leproblmeest

    quecesfrquencesbeaucouptropleves(10Mhz100Mhz)nepermettentpasderentrerdirectementsurlescartesdacquisition.

    Pourremdierceproblmeunelectroniquedemesureatconue.Lerledecettecarteest

    dobtenirlesvaleursefficacescourantettension,ainsiqueledphasageentrelesdeuxsignaux.La

    schmatiquedellectroniquesetrouveenAnnexe3etleprotocoledetestsetrouvedansle

    chapitre8.4.

    Cidessousleschmablocpermettantunemeilleure comprhensiondelasolutionchoisieetla

    photodelacartePCB.

  • 7/23/2019 Volic_7574576_TD.pdf

    15/142

    DavorVolic TravaildeDiplme 09.07.2012

    Figure19:Cartelectroniquedemesure

    6.1.1 ConversionTensionetCourantenvaleurefficace

    Afindenepasavoirdeperturbationduauxhautesfrquencesappliques(10Mhz100Mhz),la

    liaisonentrelamatchboxetllectroniquedemesuresefaitlaidedecblescoaxiaux.Deplustous

    lescomposantsutilisssurlacartesontdesSMDpouvanttravaillerauxfrquencesdsires.

    LaConversiondecourantetdetensionsinusodaleenvaleurRMSsefaitdelamaniresuivante:

    lentreduPCBundiviseurrsistifpourlecourantetundiviseurcapacitifpourlatension

    onttmisenplaceafindenepasfairesaturerlasortiedumultiplieur.

    Rapportdesdiviseurs:

    EntreBNC

    pourleCourant

    EntreBNC

    pourlaTension

    Sortiedes

    valeursefficaces

    tension,courant

    etdphasage

    Figure20 :DiviseurcapacitifFigure21:Diviseurrsistif

  • 7/23/2019 Volic_7574576_TD.pdf

    16/142

    DavorVolic TravaildeDiplme 09.07.2012

    Choix

    des

    composants

    pour

    le

    filtre

    passe

    bas.

    Figure22:FiltrePasseBas

    Lechoixdelafrquencedecoupureestdimensionnparrapportlaplusbassedefrquences

    fourniparlegnrateur(10MHz).Aprsplusieursessaisavecdesvaleursdersistanceetde

    condensateursdiffrentes,lescomposantssuivantonttchoisi:

    R=12K

    C=100pF

    Donousobtenonslafrquencedecoupuresuivante:

    1

    2

    1

    2 12 10 100 10 132

    6.1.2

    Mesure

    Dphasage

    entre

    U

    et

    I

    LedphasageentrelecourantetlatensionsobtientgrceaumultiplieurAD835.Leschmade

    principeestsensiblementlemmequepourobtenirlavaleurRMS

  • 7/23/2019 Volic_7574576_TD.pdf

    17/142

    DavorVolic TravaildeDiplme 09.07.2012

    La

    sortie

    du

    multiplieur

    Um(t)

    varie

    en

    fonction

    du

    temps

    et

    est

    dfinie

    par

    lquation

    suivante

    :

    sin sin

    sin sin2

    Pourobtenirledphasage,seullacomposantecontinuenousintresse,lasecondecomposantesera

    supprimeparlefiltre.Lavaleurlusurlacartedacquisitionpourledphasageest:

    2sin

    Ainsinousobtenonslavaleurdedphasageentrelecourantetlatension:

    sin

    2

    Lapartienoncontinuedelquationestsupprimsaveclefiltrepassebasdontlafrquencede

    coupureestgaledeuxfoislaplushautedesfrquencesdugnrateur.Dansnotrecas,le

    gnrateurAppexaunefrquencefixede13.6Mhz,etdonclafrquencedecoupuredufiltredoit

    tregale27.2Mhz.Aprsplusieurstestslescomposantssuivantsonttchoisis:

    R=12K etC=50pF

    6.2Commandemoteur

    Afindepouvoirrglerlimpdanceetledphasage,deuxcondensateursvariablessontfixdansla

    matchbox.Cesdeuxcondensateurssontajustsgrcedeuxmoteursquisonpilotsdepuis

    Labview.

    Les moteurs utiliss sont des moteurs pas pas dont le datasheet se trouve en Annexe 5.

    ComposanteContinue Composanteenfonction

    delafr uence

  • 7/23/2019 Volic_7574576_TD.pdf

    18/142

    DavorVolic TravaildeDiplme 09.07.2012

    Modedecommande

    Il

    existe

    deux

    modes

    de

    commande

    diffrentes

    pour

    les

    moteurs

    pas

    pas.

    Le

    mode

    de

    commande

    demipasetpasentier.Lemodedecommandedemipasatchoisi.Sonprincipalavantageestquil

    augmentelenombredepasdansuntour dunfacteurdeuxetdonclaprcisiondelavaleurdu

    condensateur(datasheetAnnexe6).Pourchaquedemipaseffectulacapacitducondensateur

    variede0.0625pF.

    Cmin Cmax CminCmax pF/tour

    Condensateur

    25

    pF

    250pF

    10.8

    Tours

    20.83pF/tour

    Tableau2:Donnesducondensateur

    LeschmalectroniquedecommandesetrouveenAnnexe7etleprotocoledetestsetrouveau

    chapitre8.5,leschmablocsuivantfacilitelacomprhensiondusystme.Lefonctionnementde

    chacundeslmentsestexpliqudanslechapitre6.2.1.

    Figure25:Schmablocdecommandedesmoteurs

    L297

  • 7/23/2019 Volic_7574576_TD.pdf

    19/142

    DavorVolic TravaildeDiplme 09.07.2012

    6.2.1 CircuitdecommandeVoltageControlledOscillator

    UnVCO(VoltageControlledOscillator)estunoscillateurpilotparunetensioncontinu.DeuxVCO

    sontncessairepourpiloterlavitessedesdeuxmoteurssparment.LeVCOestindispensablecar

    lesTTLfourniparlescartesdacquisition,nesontpascapabledallerunefrquenceaudessusde

    50Hz.LedatasheetdesVCOutilisssetrouveenannexe8

    Figure27:VCOXR2209

    LeVCOestcommandlaidededeuxsignaux,unsignalanalogiqueetunsignaldigital.Lafrquence

    souhaiteestfixlaidedeVCO1_ANAetcommeleVCOfournitentouttempsunsignaldesortiecarr,ilestncessairedelecouper.PourcefaireunmosfetBS170atplac.Un5Vsurlagatedu

    mosfetpermetdestopperlesignaldesortieduVCO.

    0

    200

    400

    600

    8001000

    1200

    Frquence

    [H

    z]

    Frquence

  • 7/23/2019 Volic_7574576_TD.pdf

    20/142

    DavorVolic TravaildeDiplme 09.07.2012

    L297

    Le

    chip

    L297

    (datasheet

    Annexe

    9)

    contient

    toutes

    les

    commandes

    ncessaires

    au

    pilotage

    dun

    moteurpaspas.Utilis avecun doublepontH,dansnotrecasleL298,lensembleconstitueun

    pilotageidaldunmoteurpaspasdepuisLabview.

    Figure29:CircuitdecommandeL297aveclepontHL298N

    Lel297estcapabledegnrerlesTTLdesdeuxphasesdumoteurenfonctionduntraindimpulsion

    quilreoitsursonentreclock.

    VoiciladescriptiondesprincipauxsignauxdentressurleL297:

    Clock:signaldhorlogeprovenantduVCO,fixantlavitessedumoteur.Chaqueflanc

    montantincrmentelemoteurdundemipas.

    cw/CCW:slectiondusensderotation.

    Enable:Leniveaulogique0,lemoteurestinactifcequipermetsonaxedetourner

    librement.Lorsqueleniveaupasse1lemoteurestprttreactiv. Vref:tensionderfrencepermettantdefixerlalimitationdecourant

    Half/Full:indiquedansquelmodedecommandevouspilotez,modepasentieroudemi

    pas.

  • 7/23/2019 Volic_7574576_TD.pdf

    21/142

    DavorVolic TravaildeDiplme 09.07.2012

    Figure30:Signauxdesdumodedemipas

    LalimitesuprieureducourantfixersurVrefestchoisieaucourantnominaldumoteursoit1.2A

    plusunemargede0.2Adonc1.4A.Cettevaleurdoittrefixeentension.tantdonnqueles

    rsistancesshuntsRs1etRs2valent1,onobtient1.4Vquiestquivalent1.4A.

    Cettevaleurestdfinieaveclediviseurdetensionsuivant:

    Figure31:Diviseurdetension

    2

    2 1 1.42 4.7etdoncR1 12K

  • 7/23/2019 Volic_7574576_TD.pdf

    22/142

    DavorVolic TravaildeDiplme 09.07.2012

    Figure32:L298N

    UneattentionparticulireatporteaufaitquelecircuitL298Nnepossdepasdediodesde

    roueslibres.Ilestdoncncessairedelesajouteraumontage.CesdiodessontdesBYV10qui

    supportentuncourantde1.5A.Ellessontutilisesuniquementlorsquelemoteureststopp,ainsile

    moteurquiestcomposdinductancespeutsedchargerautraversdesdiodes.

    7. Labview

    7.1CartedacquisitionLesmoduleschoisispourlagestiondelenvoi etdelarceptiondessignauxdepuisLabview

    jusquauxcarteslectroniqueetsurlacartedesrelaissefaislaidede:

    UnecartedacquisitionNIUSB6008dontledatasheetsetrouveenAnnexe11

    DeuxcartesdacquisitionsNIPCIMOI16XE50dontledatasheetsetrouveenAnnexe12

    LalistedesentressortiesdescartesdacquisitionsetrouveenAnnexe13.

  • 7/23/2019 Volic_7574576_TD.pdf

    23/142

    DavorVolic TravaildeDiplme 09.07.2012

    7.2InterfaceHommeMachine

    Afindavoiruneinterfaceutilisateurdesplusconvivialespossible,jemesuisbassurleschmade

    principedelafigure1pourcrermoninterface.Ainsichaqueutilisateurpourraretrouvertousles

    lmentsdelinstallationsurlcrandelordinateur,etdecettemaniresyretrouverbeaucoupplus

    facilement.Linterfacepermetdecommanderetdevisualiser chaquecomposantdelinstallation.

    Linterfacehommemachine estcomposdetroispanneauxdiffrents.Onpassefacilementdun

    affichage

    lautre

    grce

    aux

    labels

    qui

    se

    situent

    en

    gauche

    de

    linterface(voir

    Figure

    33).

    Les

    3

    affichagespossiblessontlessuivants:

    Process:Interfacehommemachinepermettantdecommanderetdevisualiser chaque

    composantdelinstallation.

    RealtimeTrend:Permetdaffichersurungraphiquelesvaleursdsiresentempsrel.En

    annexe14unexempledevisualisationdesgraphiques.

    HistorialTrend:Permetdaffichersurungraphiquelesvaleursdsirsenchoisissantsur

    queldureonveutafficherlesdonnes.Touteslesvaleursluesdes365derniersjourssont

    enregistresdansunfichier,etainsinouspouvonslesaffichernimportequelmoment.En

    annexe15unexempledevisualisationdesgraphiques.

    Linstallationpeuttrecommandededeuxmaniresdiffrentes:

    Modemanuel

    Danscemode,lutilisateuraaccstousleslmentsdelinstallation.Ilpeutchoisirlordre

    denclenchementdespompesetdesvannespneumatiques.Cemodepermetaussilutilisateurde

    fairevarierlescapacitsdescondensateursenavanantouenreculantlesmoteurs.

  • 7/23/2019 Volic_7574576_TD.pdf

    24/142

    DavorVolic TravaildeDiplme 09.07.2012

    on

  • 7/23/2019 Volic_7574576_TD.pdf

    25/142

    DavorVolic TravaildeDiplme 09.07.2012

    Figure34:CommandeMoteurpaspasdanslemodemanuel

    Surlafigure34,setrouvelacommandeutilisepourpiloterlesdeuxmoteurspaspas.Cette

    commandenestaccessiblequenmodemanuel.Laprogrammationncessairepourlepilotagedes

    deuxmoteursesttraiteauchapitre7.3.3.

    Modeautomatique

    Danscemode,lesvannespneumatiquesetlespompessenclenche,dsquelutilisateurappuiesur

    leboutonModeAutomatique.Aveccemodelutilisateurnapasaccsaupilotagedesmoteurs

    paspas,maisildevradonnerdesconsignesdimpdanceetdedphasage,etcestunrgulateur

    implmentdansLabviewquicontrleralesmoteursafindarriverauxconsignessouhaites.

    Figure35:Commandemoteurpaspasinaccessibleenmodeautomatique

  • 7/23/2019 Volic_7574576_TD.pdf

    26/142

    DavorVolic TravaildeDiplme 09.07.2012

  • 7/23/2019 Volic_7574576_TD.pdf

    27/142

    DavorVolic TravaildeDiplme 09.07.2012

    7.3Programmation

    7.3.1AcquisitionSortiesdigitales

    Lafigure38reprsentelaprogrammationncessairepourchangerunbitlasortie.

    Figure38:Programmationsortiedigital

    Cettepartieduprogrammegrelasortiedigitaledellectrovanneprincipale.Voicilexplicationdelutilitdechaqueblocquisetrouvesurlafigure38:

    1:Dfinitdansquellecartedacquisitionsetsurquellesortienotreprogrammevaallercrire.DansnotrecasDevice3reprsenteleNIUSB6008,etiracriresurlasortieport0

    ligne0quiestdsignparDO.0 2:LislavariableGmainpoursavoirsiilyaeuunchangementdtat 3:Indiquelafinduprogramme.

    SortiesAnalogiques

    Lafigure39reprsentelaprogrammationncessairepourgrerunesortieanalogique.

    1 2 3

    321

    D V li T il d Di l 09 07 2012

  • 7/23/2019 Volic_7574576_TD.pdf

    28/142

    DavorVolic TravaildeDiplme 09.07.2012

    Entresanalogiques

    Lafigure40reprsentelaprogrammationncessairepourlirelesentresanalogiques.

    Figure40:Programmationentresanalogiques

    Cettepartieduprogrammeestutilispourallerlirelentreanalogique,cesontlesvaleursdespressionsdeschambresintrieuresetextrieuresquisontluesdanscetexemple.Voicilexplicationdelutilitdechaquebloc: 1:Dfinitdansquellecartedacquisitionsetsurquellesortienotreprogrammevaallerlire.

    DansnotrecasDevice3reprsenteleNIUSB6008,etiraliresurlasortieAI.0etAI.1.Dansceblocnousfixonsaussilalimitationlentre.

    2:Dansletableaulesvaleurssonten[V],pourtransformercesdonnesenvaleursphysique[mbar]jemesuisservidesdatasheet(Annexe16et17)descapteursdepressionpourfairelaconversion.Unefoislaconversionralisecesvaleurssontenregistresdanslesvariablescorrespondantesetserontautomatiquementaffichssurlinterfaceutilisateur.

    3 : Indique la fin du programme

    3

    2

    1

    Figure41:ConversionpourPressionextrieureFigure42:ConversionpourpressionIntrieure

    Davor Volic Travail de Diplme 09 07 2012

  • 7/23/2019 Volic_7574576_TD.pdf

    29/142

    DavorVolic TravaildeDiplme 09.07.2012

    Figure

    43:

    Affichage

    courant

    et

    tension

    Pourobtenirlabonnevaleurdudphasageentrecourantettension,laformulemontreauchapitre

    6.1.2estutilis.

    Figure44:Affichagedudphasage

    7.3.2 PhasededmarrageetdarrtPourassurerunescuritoptimaledelinstallationetdumatriel,unepremireboucledoitobligerlutilisateurallumeretteindreleracteurdansuncertainordre.

    Pourlaphasededmarragelordreestlesuivant:

    Choixdumode(automatiqueoumanuel) allumerlesdeuxpompes ouvrirlesdeuxvannespneumatiques

    Davor Volic Travail de Diplme 09 07 2012

  • 7/23/2019 Volic_7574576_TD.pdf

    30/142

    DavorVolic TravaildeDiplme 09.07.2012

    Figure45:

    Programmation

    pour

    l'utilisation

    des

    pompes

    Lespompessontgrisesetinaccessiblesilinstallationnestpasenclenchousiunedesdeuxvannespneumatiquesestouverte.Lespompessontaccessiblesilinstallationestenclenchetsilesdesdeuxvannespneumatiques

    sontouvertes.

    Figure46:programmationpourl'utilisationdesvannes

    Lesvannessontgrisesestinaccessiblestantquelesdeuxpompesnesontpasenclenches.

    7.3.3Programmationcommandemoteurspaspas

    Danslemodemanuel,chaquemoteurpeuttrecommandsparment,commemontrdanslechapitre7.2.

    Davor Volic Travail de Diplme 09 07 2012

  • 7/23/2019 Volic_7574576_TD.pdf

    31/142

    DavorVolic TravaildeDiplme 09.07.2012

    Figure48:

    Sortie

    pour

    pilotage

    du

    moteur

    pas

    pas

    Cettepartieducodeestutilispourpiloterlemoteurduhaut.Onrentredanslestructurecasesiun

    desboutonsavanceroureculermoteuratactionn.Voicilexplicationdesblocsutiliss:

    Bloc1:Lorsquundesboutonsestenclench,lasortiedigitaleestactive.Cettesortie

    estensuiteconnectelentreduPCBdecommandedesmoteurs(entreenable_M1)

    .Ainsiledriverdumoteurhautestactiv.

    Bloc2:CeblocestutilispourdfinirlatensiondentreduVCO.En variantlavaleurde

    sortieaupoint3faitvarierlafrquencedesortiedesTTL.Iciuneconsignede1.1vest

    imposesurleVCOpouravoirensortiedesTTLunefrquencede600Hzsequi

    reprsenteunevitessepourlemoteurde1.5tours/s.

    Pour

    dfinir

    le

    sens

    de

    rotation

    le

    code

    suivant

    est

    utilis

    :

    1

    23

    Davor Volic Travail de Diplme 09.07.2012

  • 7/23/2019 Volic_7574576_TD.pdf

    32/142

    DavorVolic TravaildeDiplme 09.07.2012

    Commeexpliqudans lechapitre6.2.2,pourcouperlesignalTTLvenantduVCO,unsignal5Vdoit

    tremissurlegatedumosfet.Ildoityavoir5Vsurlemosfetsiaucundesboutonsavancerou

    reculernestactiv.Lecodesuivantralisecettefonction:

    Figure50:Signal

    de

    sortie

    pour

    couper

    le

    TTL

    Initialisationdelaposi tion zrodecondensateurs

    chaquenouveaulancementduprogrammeLabviewunefentreapparat,demandant

    lutilisateurdelancerlaphasederepositionnementdescondensateurs.Lorsquelutilisateurclique

    surlancerinitialisationlesmoteurssontactivsetretournentleurspositionszro.Cetteposition

    zrocorrespondunevaleurdecondensateursgale250pF.

    Figure51:Repositionnementdesmoteurs

    Lapositionzroetlaplagededplacementestdfiniedelamaniresuivante:

    Lesdeuxcondensateursonttmisleursvaleursmaximum(250pF)manuellementune

    premirefois.

    Cettepositioncorrespondunevaleurzro dansuncompteur.

    Parrapportaudatasheetdescondensateurs(annexe6),ilfaut10.8tourspourpasserdela

    capacitmaximumminimum(250pF25pF).

    S h t l f d ti d VCO t d 600 H t l t t il t

    DavorVolic TravaildeDiplme 09.07.2012

  • 7/23/2019 Volic_7574576_TD.pdf

    33/142

    p

    noterquecettemthodeestimprcise,carlemoteurpeutsauterdespas,notammentlorsde

    larrtcausedesoninertie.

    Voicilesdiffrentsblocsutilisspourcontrlerlacoursedesmoteurs:

    Figure52:Implmentationducompteur

    Figure53:Implmentationdesfinsdecourse

    8. Tests

    8.1TestdtanchitUntestdtanchitateffectusurtoutelinstallation.Leprincipeestlesuivant:

    L d t l h t l d ti t t

    DavorVolic TravaildeDiplme 09.07.2012

  • 7/23/2019 Volic_7574576_TD.pdf

    34/142

    Tableau3:Testdtanchit

    Remarque:Lapressionde 0.01[mbar]sexpliqueparlefaite,quelapressionesttellementbasse,quelesvaleursnesontpasdanslesplagesdemesuredelappareil.

    8.2TestMesureMFCPourvrifierlebonfonctionnementdesrgulateursdedbit,laussiuntestatmisenplace,dontleprincipeetlesuivant:

    Lorsquelinstallationestenclenche,nousaugmentonslaconsignededbitdugaz,paspasetregardonscommentragislapressionintrieuretextrieurdenoschambres.

    Ensuitenousralisonsungraphiqueoulonaffichelapressionintrieureetextrieureenfonctiondelaconsigne.Sinotreinstallationestcorrecte,nousdevonsobtenirunedroitedelapressionintrieurelinaireetsansoffset.

    MFC3

    DavorVolic TravaildeDiplme 09.07.2012

  • 7/23/2019 Volic_7574576_TD.pdf

    35/142

    MFC4

    Figure55:TestMFC4P=f(consigne)

    Remarque:

    Onconstatequesurlesfigures54et55ladroitePintestbienlinaireetilnyapasdoffset. Onremarquequesurlesfigures54et55 qupartirduneconsignede0.5[V]surledbit,la

    pressiondelachambreextrieureaugmente.Celaestsurementduparlefaitequeltanchitentrelesdeuxchambresnestpasoptimal.

    8.3TestdelinaritdescondensateursLestestsdelinaritsurlesdeuxcondensateursontteffectusdelamaniresuivante:

    Lesdeuxcondensateurssontmisleurpositionzroetontcommecapacit250pF.Puis des

    pasdeuntouretdemisonteffectusetlanouvellevaleurdecapacitestlue.

    Surlesfigures52et53lestestsdelinaritdescondensateurs.

    Condensateur1

    DavorVolic TravaildeDiplme 09.07.2012

  • 7/23/2019 Volic_7574576_TD.pdf

    36/142

    Figure57.Valeursducondensateur2enfonctiondunombredetoureffectus

    Lesdeuxcondensateursontuncomportementlinaire.

    050

    100

    150

    200

    250

    300

    0 2 4 6 8 10 12

    Capacit

    pF

    Nombredetourseffectus

    Condensateur2

    DavorVolic TravaildeDiplme 09.07.2012

  • 7/23/2019 Volic_7574576_TD.pdf

    37/142

    8.4Protocoledetestdelacartedemesure

    AfindevrifierlebonfonctionnementdelacartedemesureunProtocoldetestateffectu.

    MesuresCondition

    Point deMesure

    Rsulats attendusRsultatsobtenus

    Ok

    Alimentation

    Alimentation 9[V] l'entre dela plaque

    J 1 9[V] 9[V] ok

    Alimentation 9[V] l'entre dutraco Power TMR 0521

    U1 (1:2) 9[V] 9[V] ok

    Tension +5 [V] la sortie duTMR 0521

    U1 (6:7) 5[V] 5[V] ok

    Tension -5 [V] la sortie duTMR 0521

    U1 (8:7) -5[V] -5[V] ok

    Alimentation 5[V] sur les 3

    multiplieurs AD835

    U2 (6) 5[V] 5[V] ok

    U3 (6) 5[V] 5[V] ok

    U4 (6) 5[V] 5[V] ok

    Alimentation -5[V] sur les 3multiplieurs AD835

    U2 (3) -5[V] -5[V] ok

    U3 (3) -5[V] -5[V] ok

    U4 (3) -5[V] -5[V] ok

    Diviseur rsistifEnvoi sinus f=13.6Mhz

    U=1VppAprs diviseur

    rsistif

    Sinus: F=13.6MhzU=0.09*1Vpp=

    0.09VppVoir figure 59 ok

    AD835Verifier si sinus redrss audouble de la frquence la

    sortie de l'AD835

    U2 (5)Sinus redress

    avec F=27.2 MhzVoir figure 60 Ok

    Tension Continu lecture de la tension Continu J 4 (1) - Voir figure 61 ok

    Figure58:Protocoldetestcartedemesure

    DavorVolic TravaildeDipl me 0

    .07.2012

  • 7/23/2019 Volic_7574576_TD.pdf

    38/142

    Figure59: inusaprsdiviseurrsistif

    DavorVolic TravaildeDiplme 09.07.2012

  • 7/23/2019 Volic_7574576_TD.pdf

    39/142

    Figure61:Tensioncontinuensortiedelacartedemesure

    Latensionensortiedelacarteestgale90mV.Sionmultipliecettevaleurparlefacteurdudiviseurrsistif,nousobtenonssqrt(90mV*)=1Vrms.Durantmontest,unsinusavecune

    amplitude1Vppatenvoy,celaveutdirequelavaleurefficacedoittregale353mV.

    Cettediffrenceentrelesdeuxvaleurssexpliqueparloffsetlorsdelamultiplication(Figure60).

    Sicettecarteserautilisdansuntravailfuture,ilserancessairedecalibrerlesmesuresdans

    Labview, afindavoirlesbonnesvaleursefficacespourcompenserloffsetdanslamesure.

    DavorVolic TravaildeDiplme 09.07.2012

  • 7/23/2019 Volic_7574576_TD.pdf

    40/142

    8.5ProtocoledetestdelacartedecommandeLebonfonctionnementdelacartedecommandedesmoteursateffectugrceunProtocolde

    test.

    Mesures Condition Point de Mesure Rsulats attendusRsultatsobtenus

    Ok

    Alimentation

    Alimentation 7[V] l'entre dela plaque

    J 1 7[V] 7[V] ok

    Alimentation 7[V] l'entre dutraco Power TMR 2-0511

    U1 (1:2) 7[V] 7[V] ok

    Tension +5 [V] la sortie duTMR 2-0511

    U1 (3:5) 5[V] 5[V] ok

    Alimentation 5[V] sur les 2VCO XR-2209

    U2 (1) 5[V] 5[V] ok

    U3 (1) 5[V] 5[V] ok

    Alimentation 5[V] sur les 2

    drivers L297

    U4 (12) 5[V] 5[V] ok

    U6 (12) 5[V] 5[V] ok

    Alimentation 5[V] sur les 2ponts H L298

    U5 (9) 5[V] 5[V] ok

    U7 (9) 5[V] 5[V] ok

    VCO test de linarti des VCO U2 (7)

    Frquence qui varie

    en fonction de latension applique

    Voir figure 60 ok

    L297Vrifier que le signal de sortiedes VCO arrive sur l'entre du

    L297U6(18) et U4(16) - - ok

    L298Vrifier on retrouve le signal

    pour les deux phases

    U5 (2, 3 , 13 , 14 )

    U7 (2, 3, 13, 14)

    - Voirfigure 61 ok

    Figure62:Protocoldetestdelacartedecommandedesmoteurs

    DavorVolic TravaildeDiplme 09.07.2012

  • 7/23/2019 Volic_7574576_TD.pdf

    41/142

    Figure63:testdelinaritdesVCO

    LeVCOestlinaire,etlaplagedefrquencevarieentre1130Hzet200Hzpourunetensionallantde

    0V2V.Enmodedemipas,1130Hzreprsenteunvitessepourlemoteurde2.9tours/setpour

    200Hz0.5tours/s.

    Figure 64: Signaux des deux phases en mode demi pas

    0

    200

    400

    600

    800

    1000

    1200

    0 0.5 1 1.5 2 2.5

    Frquence

    [Hz]

    Tension[V]

    Frquence

    DavorVolic TravaildeDiplme 09.07.2012

  • 7/23/2019 Volic_7574576_TD.pdf

    42/142

    9. Remarquesetamlioration

    Courtcircuitdugnrateur

    Durantlajournedu26juinlegnrateurfututilisafindefairedestestssurdeschantillons

    damidon.Deplusuneanalysedespectreatfaiteetpourgarantirunemesureoptimaleunrideau

    noirfutposetlaportefutfermeduranttoutelajourne.

    Leproblmeestquelatempratureextrieuretaitdjtrsleve,etlatempraturedanslasalle

    grimpaitcausedesdeuxpompesquifonctionnaient.Auboutduncertaintempsladiffrencede

    tempratureentrelasalleetlecircuitderefroidissementdugnrateurcradelacondensation

    danslegnrateurdefrquence,dolecourtcircuit.

    Depuisnousnavonsplusdegnrateur,ettouslestestssurlinstallationontdtrestopps.Sile

    gnrateurnousrevientavantlaprsentationorale,jepourraisfaireunesriedemesurepour

    caractriserlinstallation.Malheureusementaucunemesurenestfaitepourlinstant.

    Amliorationapporter

    Suiteauproblmerencontraveclegnrateur,ilseraitncessairedinstallerune

    climatisationafindassurerunetempratureambianteacceptablepourlegnrateur.

    tantdonnlatailledelinstallation,dplacerlensembledansunesalleplusgrande,afin

    davoiruncertainconfortdetravail.

    Les4MFCdispositionsonttouscalibrs pourcontrlerledbitdegazdelazote.tantdonnquelontravailavecdiffrentsgaz,ilestncessairedefaireunecalibrationpour

    chaquegaz.

    FixerunsupportsurlaMatchboxpourassurerunebonnestabilit

    Durantceprojetlesmesuresdecourantettensionsonteffectueslaidedunesonde

    Rogowskietdunetensioncapacitive.Cependantlamatchboxpossdelabaseunepartie

    dlectronique quimesurelecourantetlatension.Ilsagiraitdereprendresurcette

    lectroniquelesvaleursdetensionetdecourant.

    DavorVolic TravaildeDiplme 09.07.2012

  • 7/23/2019 Volic_7574576_TD.pdf

    43/142

    10.ConclusionLedveloppementdestroispartiesprincipales soitlapartiemiseenroutedelinstallation,

    informatiqueetlectroniqueonttraliscorrectement.Cependantlecahierdeschargesat

    modifidurantletravaildediplme,etcestpourcetteraisonquelargulationdelimpdanceest

    reporte.

    Lapartie informatiquepermetlutilisateurdavoirunevuedensembledelinstallationetpermet

    devisualiserentempsrellediffrentesdonnes.Lacartelectroniquedecommandedesmoteurs,

    permetdepiloterlesmoteurspaspasetainsidefairevarierlavaleurdescondensateurs.

    Lacartedemesureauniquementtaittestesurungnrateurdefonctionestnapasputre

    testssurlinstallation.

    Lamultidisciplinaritduprojetetacomplexitontrenducetravailparticulirementintressant.NotammentlapprentissagedulogicielLabviewainsiquelaconceptiondescartesPCB.

    Letempspasssurceprojetmapermisdacqurirunegrandeexpriencedansledveloppement

    dunprojetetmoffreainsiuneparfaiteprparationlinsertiondanslemondeprofessionnel.

    11.RemerciementJetiensremercier:

    MadameFaribaMoghaddametMonsieurChristophEllert,quimontsuivitoutaulongduprojetet

    quiparleursnombreuxconseilsmontpermisdavanceraumieuxduranttoutelaphaseduprojet.

    AldoVaccari,poursadisponibilitlorsdemaprogrammationsurLabview.

    SteveGallay,poursonaidelorsdelaconceptiondescarteslectroniques.

    DavorVolic TravaildeDiplme 09.07.2012

  • 7/23/2019 Volic_7574576_TD.pdf

    44/142

    13.Annexe

    Annexe1 :Schmalectrique

    Annexe2 :Picepourfixationconnecteur

    Annexe3 :Schmalectroniquedelacartedemesure

    Annexe4 :DatasheetmultiplieurAD835

    Annexe5 :DatasheetMoteurpaspas

    Annexe6 :DatasheetCondensateur

    Annexe7 :Schmalectroniquedelacartedecommandedesmoteurspaspas

    Annexe8 :DatasheetdesVCO

    Annexe9 :DatasheetL297

    Annexe10 :DatasheetL298

    Annexe11 :DatasheetNiUSB

    Annexe12 :DatasheetNIPCI

    Annexe13 :ListeEntres/Sorties

    Annexe14 :ExempleRealTimeTrendLabview

    Annexe15 :ExempleHistoricalTrendLabview

    Annexe16 :Datasheetcapteurpressionintrieure

    Annexe17 :Datasheetcapteurpressionextrieure

  • 7/23/2019 Volic_7574576_TD.pdf

    45/142

    L N PE

    230/24VDC

    Relais Platine

    24

    0 1 2 3 4 5 6 7 8 910

    GND

    1 2 3 4 5 6 7 8 9 10

    P P

    PaKammer

    Aussendruck

    PiKammer

    Innendruck

    24 0

    AI1 (0-10V)

    DO0(GMain)

    DO1(

    GV1)

    DO2(

    GV2)

    DO3

    DO4

    DO5

    GMain GV1 GV2

    TracopowerPrim 230Sec:15/-15/5VDC

    240240240

    GND

    AI0 (0-10V)

    GND

    FC1 FC2

    AI2 (0-10V)GND

    AO0 (0-5V)GND

    15-15 15-150 0

    230230

    230 N PE 230 N PE

    F1

    Schma lctrique 09.07.2012Volic Davor

    X1

    X2

    X3

    X4

    X5 X6 X7

    GV3

    240

    GV4

    240

    Vanne PompeIntrieure

    240

    Vanne Pompeextrieure

    240

    RelaisPompeintrieure

    Relaispompe

    extrieure

    RelaisLancer

    installation

    240 240240 240

    DO6

    DO7

    DO8

    DO9

    A la sortie desRelais: 24V qui vontalimenter les vanne,

    pompes, etlinstallation

    GND

    AI2 (0-10V)GND

    AO0 (0-5V)GND

    FC3

    15-15 0

    AI2 (0-10V)GND

    AO0 (0-5V)GND

    FC4

    15-15 0

    AI2 (0-10V)GND

    AO0 (0-5V)GND

    22,00

    60,00

    6xM3

  • 7/23/2019 Volic_7574576_TD.pdf

    46/142

    A A

    74,00

    94,005

    ,00

    30

    ,00

    35

    ,00

    45

    ,00

    68

    14,00

    34

    5,

    00

  • 7/23/2019 Volic_7574576_TD.pdf

    47/142

    21,00

    60,00

    M5

    0,

    00

    2,

    00

  • 7/23/2019 Volic_7574576_TD.pdf

    48/142

    A A

    30,00

    35,00

    38,00

    10

    ,00 1

    9,

    00

    24

    ,00

    29

    ,00

    1

    12

  • 7/23/2019 Volic_7574576_TD.pdf

    49/142

  • 7/23/2019 Volic_7574576_TD.pdf

    50/142

  • 7/23/2019 Volic_7574576_TD.pdf

    51/142

  • 7/23/2019 Volic_7574576_TD.pdf

    52/142

  • 7/23/2019 Volic_7574576_TD.pdf

    53/142

    250 MHz, Voltage Output,

    4 Quadrant Multiplier

  • 7/23/2019 Volic_7574576_TD.pdf

    54/142

    4-Quadrant Multiplier

    AD835

    FEATURES

    Simple: basic function is W = XY + Z

    Complete: minimal external components requiredVery fast: Settles to 0.1% of full scale (FS) in 20 nsDC-coupled voltage output simplifies use

    High differential input impedance X, Y, and Z inputsLow multiplier noise: 50 nV/Hz

    APPLICATIONS

    Very fast multiplication, division, squaring

    Wideband modulation and demodulationPhase detection and measurement

    Sinusoidal frequency doublingVideo gain control and keyingVoltage-controlled amplifiers and filters

    GENERAL DESCRIPTION

    The AD835 is a complete four-quadrant, voltage output analogmultiplier, fabricated on an advanced dielectrically isolatedcomplementary bipolar process. It generates the linear productof its X and Y voltage inputs with a 3 dB output bandwidth of250 MHz (a small signal rise time of 1 ns). Full-scale (1 V to+1 V) rise to fall times are 2.5 ns (with a standard RL of 150 ),

    and the settling time to 0.1% under the same conditions istypically 20 ns.

    Its differential multiplication inputs (X, Y) and its summinginput (Z) are at high impedance. The low impedance output

    voltage (W) can provide up to 2.5 V and drive loads as low as25 . Normal operation is from 5 V supplies.

    Though providing state-of-the-art speed, the AD835 is simpleto use and versatile. For example, as well as permitting theaddition of a signal at the output, the Z input provides themeans to operate the AD835 with voltage gains up to about 10.In this capacity, the very low product noise of this multiplier(50 nV/Hz) makes it much more useful than earlier products.

    The AD835 is available in an 8-lead PDIP package (N) and an8-lead SOIC package (R) and is specified to operate over the

    FUNCTIONAL BLOCK DIAGRAM

    00883-0

    01

    X1

    X2

    X = X1 X2

    Z INPUT

    Y =Y1 Y2

    AD835

    W OUTPUT

    Y1

    Y2

    XY XY + ZX1

    ++

    Figure 1.

    PRODUCT HIGHLIGHTS

    1. The AD835 is the first monolithic 250 MHz, four-quadrantvoltage output multiplier.

    2. Minimal external components are required to apply theAD835 to a variety of signal processing applications.

    3. High input impedances (100 k||2 pF) make signal sourceloading negligible.

    4.

    High output current capability allows low impedance loadsto be driven.5. State-of-the-art noise levels achieved through careful

    device optimization and the use of a special low noise,band gap voltage reference.

    6. Designed to be easy to use and cost effective in applicationsthat require the use of hybrid or board-level solutions.

    AD835

  • 7/23/2019 Volic_7574576_TD.pdf

    55/142

    TABLE OF CONTENTSFeatures .............................................................................................. 1Applications....................................................................................... 1General Description......................................................................... 1Functional Block Diagram .............................................................. 1Product Highlights........................................................................... 1Revision History ............................................................................... 2Specifications..................................................................................... 3Absolute Maximum Ratings............................................................ 5

    Thermal Resistance ...................................................................... 5ESD Caution.................................................................................. 5

    Pin Configuration and Function Descriptions............................. 6

    Typical Performance Characteristics..............................................7Theory of Operation...................................................................... 10

    Basic Theory ............................................................................... 10Scaling Adjustment .................................................................... 10

    Applications Information.............................................................. 11Multiplier Connections ............................................................. 11Wideband Voltage-Controlled Amplifier ............................... 11Amplitude Modulator................................................................ 11Squaring and Frequency Doubling.......................................... 12

    Outline Dimensions ....................................................................... 13Ordering Guide .......................................................................... 14

    REVISION HISTORY

    12/10Rev. C to Rev. D

    Changes to Figure 1.......................................................................... 1

    Changes to Absolute Maximum Ratings and Table 2 .................. 5Added Figure 19, Renumbered Subsequent Tables.................... 10Added Figure 23..............................................................................11

    10/09Rev. B to Rev. C

    Updated Format..................................................................UniversalChanges to Figure 22...................................................................... 11Updated Outline Dimensions.......................................................13Changes to Ordering Guide.......................................................... 14

    6/03Rev. A to Rev. B

    Updated Format..................................................................UniversalUpdated Outline Dimensions....................................................... 10

    AD835

    SPECIFICATIONS

  • 7/23/2019 Volic_7574576_TD.pdf

    56/142

    SPECIFICATIONSTA = 25C, VS = 5 V, RL = 150 , CL 5 pF, unless otherwise noted.

    Table 1.

    Parameter Conditions Min Typ Max Unit

    TRANSFER FUNCTION ( )( )Z

    U

    YYXXW +

    =

    2121

    INPUT CHARACTERISTICS (X, Y)

    Differential Voltage Range VCM = 0 V 1 V

    Differential Clipping Level 1.21 1.4 V

    Low Frequency Nonlinearity X = 1 V, Y = 1 V 0.3 0.51 % FS

    Y = 1 V, X = 1 V 0.1 0.31 % FSvs. Temperature TMIN to TMAX2

    X = 1 V, Y = 1 V 0.7 % FS

    Y = 1 V, X = 1 V 0.5 % FSCommon-Mode Voltage Range 2.5 +3 V

    Offset Voltage 3 201 mV

    vs. Temperature TMIN to TMAX2 25 mV

    CMRR f 100 kHz; 1 V p-p 701 dBBias Current 10 201 A

    vs. Temperature TMIN to TMAX2 27 AOffset Bias Current 2 A

    Differential Resistance 100 kSingle-Sided Capacitance 2 pF

    Feedthrough, X X = 1 V, Y = 0 V 461 dB

    Feedthrough, Y Y = 1 V, X = 0 V 601 dB

    DYNAMIC CHARACTERISTICS

    3 dB Small Signal Bandwidth 150 250 MHz

    0.1 dB Gain Flatness Frequency 15 MHz

    Slew Rate W = 2.5 V to +2.5 V 1000 V/sDifferential Gain Error, X f = 3.58 MHz 0.3 %

    Differential Phase Error, X f = 3.58 MHz 0.2 Degrees

    Differential Gain Error, Y f = 3.58 MHz 0.1 %

    Differential Phase Error, Y f = 3.58 MHz 0.1 DegreesHarmonic Distortion X or Y = 10 dBm, second and third harmonic

    Fund = 10 MHz 70 dB

    Fund = 50 MHz 40 dB

    Settling Time, X or Y To 0.1%, W = 2 V p-p 20 nsSUMMING INPUT (Z)

    Gain From Z to W, f 10 MHz 0.990 0.9953 dB Small Signal Bandwidth 250 MHz

    Differential Input Resistance 60 k

    Single-Sided Capacitance 2 pF

    AD835

    Parameter Conditions Min Typ Max Unit

  • 7/23/2019 Volic_7574576_TD.pdf

    57/142

    Parameter Conditions Min Typ Max Unit

    OUTPUT CHARACTERISTICSVoltage Swing 2.2 2.5 V

    vs. Temperature TMIN to TMAX2 2.0 VVoltage Noise Spectral Density X = Y = 0 V, f < 10 MHz 50 nV/Hz

    Offset Voltage 25 751 mVvs. Temperature3 TMIN to TMAX2 10 mV

    Short-Circuit Current 75 mA

    Scale Factor Error 5 81 % FS

    vs. Temperature TMIN to TMAX2 9 % FS

    Linearity (Relative Error)4 0.5 1.01 % FSvs. Temperature TMIN to TMAX2 1.25 % FS

    POWER SUPPLIESSupply Voltage

    For Specified Performance 4.5 5 5.5 V

    Quiescent Supply Current 16 251 mA

    vs. Temperature TMIN to TMAX2 26 mAPSRR at Output vs. VP +4.5 V to +5.5 V 0.51 %/V

    PSRR at Output vs. VN 4.5 V to 5.5 V 0.5 %/V

    1 All minimum and maximum specifications are guaranteed. These specifications are tested on all production units at final electrical test.2

    TMIN = 40C, TMAX = 85C.3 Normalized to zero at 25C.4 Linearity is defined as residual error after compensating for input offset, output voltage offset, and scale factor errors.

    AD835

    ABSOLUTE MAXIMUM RATINGS

  • 7/23/2019 Volic_7574576_TD.pdf

    58/142

    ABSOLUTE MAXIMUM RATINGS

    Table 2.

    Parameter RatingSupply Voltage 6 V

    Internal Power Dissipation 300 mW

    Operating Temperature Range 40C to +85CStorage Temperature Range 65C to +150C

    Lead Temperature, Soldering 60 sec 300C

    ESD Rating

    HBM 1500 V

    CDM 250 V

    Stresses above those listed under Absolute Maximum Ratingsmay cause permanent damage to the device. This is a stressrating only; functional operation of the device at these or anyother conditions above those indicated in the operationalsection of this specification is not implied. Exposure to absolutemaximum rating conditions for extended periods may affectdevice reliability.

    For more information, see the Analog Devices, Inc., TutorialMT-092, Electrostatic Discharge.

    THERMAL RESISTANCE

    Table 3.

    Package Type JA JC Unit

    8-Lead PDIP (N) 90 35 C/W

    8-Lead SOIC (R) 115 45 C/W

    ESD CAUTION

    AD835

    PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

    http://www.analog.com/mt-092http://www.analog.com/mt-092http://www.analog.com/mt-092http://www.analog.com/mt-092http://www.analog.com/mt-092
  • 7/23/2019 Volic_7574576_TD.pdf

    59/142

    PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

    Y1 1

    Y2 2

    VN 3

    Z 4

    X18

    X27

    VP6

    W5

    AD835TOP VIEW

    (Not to Scale)

    00883-002

    Figure 2. Pin Configuration

    Table 4. Pin Function Descriptions

    Pin No. Mnemonic Description1 Y1 Noninverting Y Multiplicand Input

    2 Y2 Inverting Y Multiplicand Input

    3 VN Negative Supply Voltage

    4 Z Summing Input

    5 W Product6 VP Positive Supply Voltage

    7 X2 Inverting X Multiplicand Input

    8 X1 Noninverting X Multiplicand Input

    AD835

    TYPICAL PERFORMANCE CHARACTERISTICS

  • 7/23/2019 Volic_7574576_TD.pdf

    60/142

    TYPICAL PERFORMANCE CHARACTERISTICS

    00883-003

    DIFFERENTIAL

    GAIN(%)

    DIFFERENTIAL

    PHASE(D

    egrees)

    0.40

    DG DP (NTSC) FIEL D = 1 L INE = 18 Wf m FCC COMPOSITE

    MIN = 0MAX = 0.2p-p/MAX = 0.2

    1ST 2ND 3RD 4TH 5TH 6TH

    0.06 0.11 0.16 0.19 0.20

    0

    1ST 2ND 3RD 4TH 5TH 6TH

    0.02 0.02 0.03 0.03 0.06

    0.2

    0

    0.2

    0.4

    0.3

    0.2

    0.1

    0

    0.1

    0.2

    0.3

    MIN = 0MAX = 0.06p-p = 0.06

    Figure 3. Typical Composite Output D ifferential Gain and Phase,NTSC for X Channel; f = 3.58 MHz, R L = 150

    00883-004

    DG DP (NTSC) FIEL D = 1 L INE = 18 Wf m FCC COMPOSITE

    DIFFERENTIA

    L

    GAIN(%)

    0.200

    MIN = 0

    MAX = 0.16p-p = 0.16

    1ST 2ND 3RD 4TH 5TH 6TH

    0.03 0.04 0.07 0.10 0.16

    0.10

    0

    0.10

    0.20

    DIFFERENTIAL

    PHASE

    (DEGREES)

    0

    1ST 2ND 3RD 4TH 5TH 6TH

    0.01 0 0 0.01 0.20

    0.3

    0.2

    0.1

    0

    0.1

    0.2

    0.3

    MIN = 0.02

    MAX = 0.01p-p/MAX = 0.03

    Figure 4. Typical Composite Output D ifferential Gain and Phase,NTSC for Y Channel; f = 3.58 MHz, R L = 150

    GAIN

    PHASE

    MAGNITUDE(dB)

    PHASE(Degrees)

    2 180

    90

    0

    90

    180

    0

    2

    4

    6

    X, Y, Z CH = 0dBmRL = 150CL 5pF

    00883-006

    FREQUENCY (Hz)

    MAGNITUDE(dB)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    300k 10M1M 100M 1G

    X, Y CH = 0dBm

    RL = 150CL 5pF

    Figure 6. Gain Flatness to 0.1 dB

    00

    883-007

    FREQUENCY (Hz)

    MAGNITUDE(dB)

    10

    20

    30

    40

    50

    60

    1M 10M 100M 1G

    X FEEDTHROUGH

    X FEEDTHROUGH

    Y FEEDTHROUGH

    Y FEEDTHROUGH

    X, Y CH = 5dBmRL = 150C

    L< 5pF

    Figure 7. X and Y Feedthrough vs. Frequency

    +0.2V

    0.2V

    GND

    AD835

  • 7/23/2019 Volic_7574576_TD.pdf

    61/142

    00883-009

    +1V

    1V

    GND

    500mV 10ns

    Figure 9. Large Signal Pulse Response at W Output, RL = 150 , CL 5 pF,X Channel = 1.0 V, Y Channel = 1.0 V

    00883-010

    0

    20

    40

    60

    80

    1M 10M 100M

    CMR

    R(dB)

    1G

    FREQUENCY (Hz)

    Figure 10. CMRR vs. Frequency for X or Y Channel, RL = 150 , CL 5 pF

    00883-011

    PSSR(dB)

    10

    20

    30

    40

    50

    60

    300k 1M 10M 100M 1G

    PSSR ON V

    PSSR ON V+

    0dBm ON SUPPLYX, Y = 1V

    FREQUENCY (Hz)

    00883-012

    10dB/DIV

    10MHz

    20MHz

    30MHz

    Figure 12. Harmonic Distortion at 10 MHz; 10 dBm Input to X or Y Channels,RL = 150 , CL = 5 pF

    00883-013

    10dB/DIV100MHz

    50MHz

    150MHz

    Figure 13. Harmonic Distortion at 50 MHz, 10 dBm Input to X or Y Channel,RL = 150 , CL 5 pF

    00883-014

    10dB/DIV

    200MHz

    100MHz

    300MHz

    AD835

    35

  • 7/23/2019 Volic_7574576_TD.pdf

    62/142

    00883-015

    10dB/DIV

    +2.5V

    2.5V

    10ns1V

    Figure 15. Maximum Output Voltage Swing, R L = 50 , CL 5 pF

    00883-016

    TEMPERATURE (C)

    VOS

    OUTPUTDRIF

    T(mV)

    10

    15

    5

    0

    5

    10

    1555 35 15 5 25 45 65 85 105 125

    OUTPUT OFFSET DRIFT WILLTYPICALLY BE WITHIN SHADED AREA

    OUTPUT VOS DRIFT, NORMALIZED TO 0 AT 25C

    Figure 16. VOS Output Drift vs. Temperature

    00883-017

    RF FREQUENCY INPUT TO X CHANNEL (MHz)

    THIRD

    ORDER

    INTERCEPT(d

    Bm

    )30

    25

    20

    15

    10

    5

    0 0 20 40 60 80 100 120 140 160 180 200

    X CH = 6dBmY CH = 10dBmRL = 100

    Figure 17. Fixed LO on Y Channel vs. RF Frequency Input to X Channel

    00883-018

    LO FREQUENCY ON Y CHANNEL (MHz)

    THIRD

    ORDER

    INTERC

    EPT(dBm

    )30

    35

    25

    20

    15

    10

    5

    00 20 40 60 80 100 120 140 160 180 200

    X CH = 6dBmY CH = 10dBmRL = 100

    Figure 18. Fixed IF vs. LO Frequency on Y Channel

    AD835

    THEORY OF OPERATION

  • 7/23/2019 Volic_7574576_TD.pdf

    63/142

    THEORY OF OPERATIONThe AD835 is a four-quadrant, voltage output analog multiplier,fabricated on an advanced dielectrically isolated complementarybipolar process. In its basic mode, it provides the linear productof its X and Y voltage inputs. In this mode, the 3 dB output

    voltage bandwidth is 250 MHz (with small signal rise time of 1 ns).Full-scale (1 V to +1 V) rise to fall times are 2.5 ns (with astandard RL of 150 ), and the settling time to 0.1% under thesame conditions is typically 20 ns.

    As in earlier multipliers from Analog Devices a uniquesumming feature is provided at the Z input. As well as providing

    independent ground references for the input and the output andenhanced versatility, this feature allows the AD835 to operatewith voltage gain. Its X-, Y-, and Z-input voltages are allnominally 1 V FS, with an overrange of at least 20%. Theinputs are fully differential at high impedance (100 k||2 pF)and provide a 70 dB CMRR (f 1 MHz).

    The low impedance output is capable of driving loads as smallas 25 . The peak output can be as large as 2.2 V minimumfor RL = 150 , or 2.0 V minimum into RL = 50 . The AD835has much lower noise than the AD534 or AD734, making itattractive in low level, signal processing applications, forexample, as a wideband gain control element or modulator.

    BASIC THEORY

    The multiplier is based on a classic form, having a translinear core,supported by three (X, Y, and Z) linearized voltage-to-currentconverters, and the load driving output amplifier. The scaling

    voltage (the denominator U in the equations) is provided by a

    band gap reference of novel design, optimized for ultralow noise.Figure 19 shows the functional block diagram.

    In general terms, the AD835 provides the function

    ( )( )Z

    U

    YYXXW +

    =

    2121(1)

    where the variables W, U,X, Y, and Zare all voltages. Connected asa simple multiplier, withX= X1 X2, Y= Y1 Y2, and Z= 0and with a scale factor adjustment (see Figure 19) that sets U= 1 V,the output can be expressed as

    W = XY (2)

    1

    2

    X = X1 X2 AD835

    avoid the needless use of less intuitive subscripted variables(such as, VX1). All variables as being normalized to 1 V.

    For example, the input X can either be stated as being in the 1 Vto +1 V range or simply 1 to +1. The latter representation is foundto facilitate the development of new functions using the AD835.The explicit inclusion of the denominator, U, is also less helpful, asin the case of the AD835, if it is not an electrical input variable.

    SCALING ADJUSTMENT

    The basic value of U in Equation 1 is nominally 1.05 V. Figure 20,

    which shows the basic multiplier connections, also shows howthe effective value of U can be adjusted to have any lowervoltage (usually 1 V) through the use of a resistive dividerbetween W (Pin 5) and Z (Pin 4). Using the general resistor

    values shown, Equation 1can be rewritten as

    ( ) '1kW ZkU

    XYW ++= (3)

    where Z' is distinguished from the signal Z at Pin 4. It follows that

    ( )'

    1Z

    UkXYW +

    = (4)

    In this way, the effective value ofUcan be modified to

    U= (1 k)U (5)

    without altering the scaling of the Z' input, which is expected becausethe only ground reference for the output is through the Z' input.

    Therefore, to set U' to 1 V, remembering that the basic value ofU is 1.05 V, R1 must have a nominal value of 20 R2. The valuesshown allow U to be adjusted through the nominal range of0.95 V to 1.05 V. That is, R2 provides a 5% gain adjustment.

    In many applications, the exact gain of the multiplier may notbe very important; in which case, this network may be omittedentirely, or R2 fixed at 100 .

    +

    FB

    +5V

    0.01F CERAMIC

    4.7F TANTALUM

    8

    X W

    X2 VP WX1

    7 6 5

    AD835

    APPLICATIONS INFORMATION

    http://www.analog.com/AD534http://www.analog.com/AD734http://www.analog.com/AD734http://www.analog.com/AD534
  • 7/23/2019 Volic_7574576_TD.pdf

    64/142

    The AD835 is easy to use and versatile. The capability for addinganother signal to the output at the Z input is frequently valuable.Three applications of this feature are presented here: a wideband

    voltage-controlled amplifier, an amplitude modulator, and afrequency doubler. Of course, the AD835 may also be used as asquare law detector (with its X inputs and Y inputs connected inparallel). In this mode, it is useful at input frequencies to wellover 250 MHz because that is the bandwidth limitation of theoutput amplifier only.

    MULTIPLIER CONNECTIONS

    Figure 20 shows the basic connections for multiplication. Theinputs are often single sided, in which case the X2 and Y2 inputsare normally grounded. Note that by assigning Pin 7 (X2) andPin 2 (Y2), respectively, to these (inverting) inputs, an extrameasure of isolation between inputs and output is provided.The X and Y inputs may be reversed to achieve some desiredoverall sign with inputs of a particular polarity, or they may bedriven fully differentially.

    Power supply decoupling and careful board layout are alwaysimportant in applying wideband circuits. The decouplingrecommendations shown in Figure 20 should be followedclosely. In Figure 21, Figure 23, and Figure 24, these powersupply decoupling components are omitted for clarity but shouldbe used wherever optimal performance with high speed inputsis required. However, if the full, high frequency capabilities of theAD835 are not being exploited, these components can beomitted.

    WIDEBAND VOLTAGE-CONTROLLED AMPLIFIERFigure 21 shows the AD835 configured to provide a gain ofnominally 0 dB to 12 dB. (In fact, the control range extends fromwell under 12 dB to about +14 dB.) R1 and R2 set the gain tobe nominally 4. The attendant bandwidth reduction that comeswith this increased gain can be partially offset by the addition ofthe peaking capacitor C1. Although this circuit shows the use ofdual supplies, the AD835 can operate from a single 9 V supply

    with a slight revision.

    R197.6

    AD835

    8

    VOLTAGEOUTPUT

    VG(GAIN CONTROL)

    X2 VP WX1

    +5V

    7 6 5

    The ac response of this amplifier for gains of 0 dB (VG = 0.25 V),6 dB (VG = 0.5 V), and 12 dB (VG = 1 V) is shown in Figure 22.In this application, the resistor values have been slightly adjusted toreflect the nominal value of U = 1.05 V. The overall sign of thegain may be controlled by the sign of VG.

    00883-022

    10k 100k 1M

    FREQUENCY (Hz)

    9

    6

    3

    0

    3

    6

    9

    12

    15

    18

    21

    GAIN(d

    B)

    10M 100M

    12dB(VG = 1V)

    6dB(VG = 0.5V)

    0dB(VG = 0.25V)

    Figure 22. AC Response of VCA

    AMPLITUDE MODULATOR

    Figure 23 shows a simple modulator. The carrier is applied to theY input and the Z input, while the modulating signal is applied tothe X input. For zero modulation, there is no product term so thecarrier input is simply replicated at unity gain by the voltagefollower action from the Z input. At X = 1 V, the RF output isdoubled, while for X = 1 V, it is fully suppressed. That is, anX input of approximately 1 V (actually U or about 1.05 V)corresponds to a modulation index of 100%. Carrier andmodulation frequencies can be up to 300 MHz, somewhatbeyond the nominal 3 dB bandwidth.

    Of course, a suppressed carrier modulator can be implementedby omitting the feedforward to the Z input, grounding thatpin instead.

    +5V

    AD835

    1 2 3 4

    8

    X2

    MODULATIONSOURCE MODULATED

    CARRIEROUTPUT

    VP W

    Y1

    X1

    Y2 VN Z

    7 6 5

    AD835

    SQUARING AND FREQUENCY DOUBLING

    l d d f l h d

    +5V

    C1

    VG

  • 7/23/2019 Volic_7574576_TD.pdf

    65/142

    Amplitude domain squaring of an input signal, E, is achievedsimply by connecting the X and Y inputs in parallel to produce

    an output of E2/U. The input can have either polarity, but theoutput in this case is always positive. The output polarity can bereversed by interchanging either the X or Y inputs.

    When the input is a sine wave E sin t, a signal squarer behavesas a frequency doubler because

    ( )( t)

    U

    E

    U

    tE2cos1

    2sin 22

    = (6)

    While useful, Equation 6 shows a dc term at the output, whichvaries strongly with the amplitude of the input, E.

    Figure 24 shows a frequency doubler that overcomes thislimitation and provides a relatively constant output over amoderately wide frequency range, determined by the timeconstant R1C1. The voltage applied to the X and Y inputs isexactly in quadrature at a frequency f = C1R1, and theiramplitudes are equal. At higher frequencies, the X input becomessmaller while the Y input increases in amplitude; the opposite

    happens at lower frequencies. The result is a double frequencyoutput centered on ground whose amplitude of 1 V for a 1 Vinput varies by only 0.5% over a frequency range of 10%.Because there is no squared dc component at the output, suddenchanges in the input amplitude do not cause a bounce in the dc level.

    00883-024

    AD835

    1 2 3 4

    8

    VOLTAGEOUTPUT

    R297.6

    R1 R3301

    X2 VP W

    Y1

    X1

    Y2

    5V

    VN Z

    7 6 5

    Figure 24. Broadband Zero-Bounce Frequency Doubler

    This circuit is based on the identity

    = 2sin21sincos (7)

    At O = 1/C1R1, the X input leads the input signal by 45 (and isattenuated by 2, while the Y input lags the input signal by 45and is also attenuated by 2. Because the X and Y inputs are 90out of phase, the response of the circuit is

    ( ) ( ) ( tU

    Et

    Et

    E

    UW =+= 2sin

    245sin

    245sin

    21 2

    ) (8)

    which has no dc component, R2 and R3 are included to restorethe output to 1 V for an input amplitude of 1 V (the same gainadjustment as previously mentioned). Because the voltage acrossthe capacitor (C1) decreases with frequency, while that acrossthe resistor (R1) increases, the amplitude of the output variesonly slightly with frequency. In fact, it is only 0.5% below its full

    value (at its center frequency O = 1/C1R1) at 90% and 110% ofthis frequency.

    AD835

    OUTLINE DIMENSIONS

  • 7/23/2019 Volic_7574576_TD.pdf

    66/142

    COMPLIANT TO JEDEC STANDARDS MS-001

    CONTROLLING DIMENSIONS ARE IN INCHES; MILL IMETER DIMENSIONS(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FORREFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS. 0

    70606-A

    0.022 (0.56)

    0.018 (0.46)

    0.014 (0.36)

    SEATINGPLANE

    0.015(0.38)MIN

    0.210 (5.33)MAX

    0.150 (3.81)

    0.130 (3.30)

    0.115 (2.92)

    0.070 (1.78)

    0.060 (1.52)

    0.045 (1.14)

    8

    14

    5 0.280 (7.11)

    0.250 (6.35)

    0.240 (6.10)

    0.100 (2.54)BSC

    0.400 (10.16)0.365 (9.27)

    0.355 (9.02)

    0.060 (1.52)MAX

    0.430 (10.92)MAX

    0.014 (0.36)

    0.010 (0.25)

    0.008 (0.20)

    0.325 (8.26)

    0.310 (7.87)

    0.300 (7.62)

    0.195 (4.95)

    0.130 (3.30)

    0.115 (2.92)

    0.015 (0.38)GAUGEPLANE

    0.005 (0.13)MIN

    Figure 25. 8-Lead Plastic Dual In-Line Package [PDIP]Narrow Body

    (N-8)Dimensions shown in inches and ( millimeters)

    CONTROLLINGDIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS

    (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FORREFERENCE ONLY AND ARE NOTAPPROPRIATE FOR USEIN DESIGN.

    COMPLIANT TO JEDEC STANDARDS MS-012-AA

    012407-A

    0.25 (0.0098)

    0.17 (0.0067)

    1.27 (0.0500)

    0.40 (0.0157)

    0.50 (0.0196)

    0.25 (0.0099)45

    8

    0

    1.75 (0.0688)

    1.35 (0.0532)

    SEATINGPLANE

    0.25 (0.0098)

    0.10 (0.0040)

    41

    8 5

    5.00 (0.1968)

    4.80 (0.1890)

    4.00 (0.1574)

    3.80 (0.1497)

    1.27 (0.0500)BSC

    6.20 (0.2441)

    5.80 (0.2284)

    0.51 (0.0201)

    0.31 (0.0122)

    COPLANARITY

    0.10

    Figure 26. 8-Lead Standard Small Outline Package [SOIC_N]

    Narrow Body(R-8)

    AD835

    ORDERING GUIDEModel1 Temperature Range Package Description Package Option

  • 7/23/2019 Volic_7574576_TD.pdf

    67/142

    Model1 Temperature Range Package Description Package Option

    AD835AN 40C to +85C 8-Lead Plastic Dual In-Line Package [PDIP] N-8

    AD835ANZ 40C to +85C 8-Lead Plastic Dual In-Line Package [PDIP] N-8AD835AR 40C to +85C 8-Lead Standard Small Outline Package [SOIC_N] R-8

    AD835AR-REEL 40C to +85C 8-Lead Standard Small Outline Package [SOIC_N] R-8

    AD835AR-REEL7 40C to +85C 8-Lead Standard Small Outline Package [SOIC_N] R-8AD835ARZ 40C to +85C 8-Lead Standard Small Outline Package [SOIC_N] R-8

    AD835ARZ-REEL 40C to +85C 8-Lead Standard Small Outline Package [SOIC_N] R-8

    AD835ARZ-REEL7 40C to +85C 8-Lead Standard Small Outline Package [SOIC_N] R-8

    1

    Z = RoHS Compliant Part.

    AD835

    NOTES

  • 7/23/2019 Volic_7574576_TD.pdf

    68/142

    AD835

    NOTES

  • 7/23/2019 Volic_7574576_TD.pdf

    69/142

    28mm

    High-

    Efficiency

    42 mmStep Angle 1.8Standard Type

  • 7/23/2019 Volic_7574576_TD.pdf

    70/142

    High-

    Torque

    Standard

    IP54

    Cab

    leType

    IP65

    TerminalBox

    High-

    Resolution

    PLGeared

    THGea

    red

    SHGeared

    2-Phase

    5-Phase

    35mm

    42mm

    50mm

    56.4mm

    60mm

    85mm

    90mm

    Motor

    &DriverPackage

    Specifications

    Model

    Single Shaft

    Double Shaft

    Connection

    Type

    Holding

    Torque

    Nm

    Current

    per Phase

    A/phase

    Voltage

    V

    Resistance

    per Phase

    /phase

    Inductance

    mH/phase

    Rotor

    Inertia

    J: kgm2

    Lead

    Wires

    Wirings and

    Connections

    (See Page 76)

    Corresponding Motor &

    Driver Package

    Model Page

    PK243DA

    PK243DBBipolar 0.2 1.5 2.4 1.6 1.75 3510-7 4 1

    PK243-01A

    PK243-01B

    Bipolar (Series) 0.2 0.67 5.6 8.4 10

    3510-7 6

    3

    Unipolar 0.16 0.95 4 4.2 2.5 2CMK243AP

    CMK243BPP.82

    PK243-02APK243-02B

    Bipolar (Series) 0.2 0.28 13 48 60 3510-7 6 3 Unipolar 0.16 0.4 9.6 24 15 2

    PK243-03A

    PK243-03B

    Bipolar (Series) 0.2 0.22 17 77 843510-7 6

    3

    Unipolar 0.16 0.31 12 38.5 21 2

    PK244DA

    PK244DBBipolar 0.33 1.5 3.45 2.3 3.9 5410-7 4 1

    PK244-01A

    PK244-01B

    Bipolar (Series) 0.33 0.85 5.6 6.6 12.8

    5410-7 6

    3

    Unipolar 0.26 1.2 4 3.3 3.2 2CMK244AP

    CMK244BPP.82

    PK244-02A

    PK244-02B

    Bipolar (Series) 0.33 0.57 8.6 15 26.85410-7 6

    3

    Unipolar 0.26 0.8 6 7.5 6.7 2

    PK244-03A

    PK244-03B

    Bipolar (Series) 0.33 0.28 17 60 1205410-7 6

    3

    Unipolar 0.26 0.4 12 30 30 2

    PK245DA

    PK245DBBipolar 0.43 1.5 3.15 2.1 3.1 6810-7 4 1

    PK245-01A

    PK245-01B

    Bipolar (Series) 0.43 0.85 5.6 6.6 11.2

    6810-7 6

    3

    Unipolar 0.32 1.2 4 3.3 2.8 2CMK245AP

    CMK245BPP.82

    PK245-02A

    PK245-02B

    Bipolar (Series) 0.43 0.57 8.6 15 28.46810-7 6

    3

    Unipolar 0.32 0.8 6 7.5 7.1 2

    PK245-03A

    PK245-03B

    Bipolar (Series) 0.43 0.28 17 60 1006810-7 6

    3

    Unipolar 0.32 0.4 12 30 25 2How to read specifications table Page 78

    Degree of Protection: IP30

    Dimensions (Unit = mm)

    b

    Model L1 L2Mass

    kg

    PK243DA

    PK243-0A33

    0.21

    PK243DBPK243-0B

    48

    PK244DA

    PK244-0A39

    0.27PK244DB

    PK244-0B54

    PK245DAUL Style 3265, AWG244 or 6 Motor Leads 300 mm Length

    2

    42L1L2

    42

    310.2

    31

    0.

    2

    4M34.5 Deep

    201

    150.25

    4.

    50.

    15

    4.

    50.

    15

    50.0

    12

    (h7)

    0

    50.

    012

    (h7)

    0

    220.0

    33

    (h7)

    0

    151

    Vacuum Capacit ors

  • 7/23/2019 Volic_7574576_TD.pdf

    71/142

    Uni-Con SeriesVariable Vacuum Capacitor

    Optimized bellows design for highpower operation Identical moun-ting for all types allows easy switchingof capacitors for slightly differentapplications Series with highestcurrent capability relative to size

    Drive system optimized for high speedtuning and over 3 millions cycles.

    Features:

    Current (rms max) 95 A

    Voltage (peak test) 15 kV

    Body size (dia x length) 54 x 91 mm

    Overall length < 134 mmLow torque 0.20 Nm

    High t uning speed

    100 pF / 15 kV

    250 pF / 15 kV

    500 pF / 8 kV

    1000 pF / 5 kV

    1500 pF / 4 kV

    High Power

    Small Size

    Long Life

    Uni-Con Series

    Type Electrical Parameters Dimensions Drive System Mount ing

    Cmin Cmax Vmax Imax at

    pF pF kVpt13.56 Mhz

    Arms

    D L1 L2 Fig. Tuning Head/Rod Max C-range Slope*

    mm (inch) mm (inch) mm (inch) Method Shape Dim. Torque or Cmin-Cmax pF/ turn Fixed Side Variable Side

    mm(inch) Pull Force Turns/Stroke pF/mm

  • 7/23/2019 Volic_7574576_TD.pdf

    72/142

    Further Series Members:

    The information above is not to be used

    for design purposes. For detailed infor-

    mation refer to the individual data sheet,

    available on our website www.comet.ch orfrom your local representative.

    Edition 2003 2k

    mm(inch) Pull Force Turns/Stroke pF/mm

    CV03C-1500 UC/4 150 1500 4 85 54.00 (2.13) 133.50(5.26) 90.60(3.57) 1 Screw Drive R 6.35 (0.25) 0.20 Nm 10.9 turns 123.85 CT M6x8mm MF 4xM4 on 50.8mm dia

    CV03C-1500UCG/4 150 1500 4 85 54.00 (2.13) 134.60(5.30) 90.60(3.57) 1 Screw Drive RFFS 6.35 (0.25) 0.20 Nm 13.9 turns 97.12 CT M6x8mm MF 4xM4 on 50.8mm dia

    CV05C-500UC/8 50 500 8 90 54.00 (2.13) 133.50(5.26) 90.60(3.57) 1 Screw Drive R 6.35 (0.25) 0.20 Nm 11.0 turns 40.91 CT M6x8mm MF 4xM4 on 50.8mm dia

    CV05C-500UCD/8 50 500 8 90 54.00 (2.13) 134.10(5.28) 90.60(3.57) 1 Screw Drive RFFS 6.35 (0.25) 0.20 Nm 11.0 turns 40.91 CT M6x8mm MF 4xM4 on 50.8mm dia

    CV05C-1000UC/5 100 1000 5 87 54.00 (2.13) 133.50 (5.26) 90.60(3.57) 1 Screw Drive R 6.35 (0.25) 0.20 Nm 11.1 turns 81.08 CT M6x8mm MF 4xM4 on 50.8mm dia

    CV1C-100UC/15 10 100 15 54 54.00 (2.13) 133.50 (5.26) 90.60(3.57) 1 Screw Drive R 6.35 (0.25) 0.20 Nm 7.9 turns 9.75 CT M5 x 8 mm MF 4xM4 on 50.8mm dia

    CV1C-250UC/15 25 250 15 94 54.00 (2.13) 133.50 (5.26) 90.60(3.57) 1 Screw Drive R 6.35 (0.25) 0.20 Nm 10.8 turns 20.83 CT M6x8mm MF 4xM4 on 50.8mm dia

    CV1C-250UCP/15 25 250 15 94 54.00 (2.13) 133.50 (5.26) 90.60(3.57) 2 Linear Drive T M6 170 N 20.1 mm 11.94 CT M6x8mm MF4xM4 on 50.8mm dia

    CV1C-500UC/12 50 500 12 95 63.00 (2.48) 133.50 (5.26) 90.60(3.57) 1 Screw Drive R 6.35 (0.25) 0.20 Nm 10.7 turns 42.06 CT M6x8mm MF 4xM4 on 50.8mm dia

    R = Round *linear CT = Central Thread MF = Mounting FlangeF = Flat rangeS = SlotT = Thread

    CV03C-1500UCP/4

    CV05C-500UCG/8

    CV05C-500UCP/8

    CV05C-1000UCD/8

    Figure 1 Figure 2

    L1 L2

    D

    variable side

    fixed side

    L1 L2

    D

    variable side

    fixed side

  • 7/23/2019 Volic_7574576_TD.pdf

    73/142

  • 7/23/2019 Volic_7574576_TD.pdf

    74/142

  • 7/23/2019 Volic_7574576_TD.pdf

    75/142

  • 7/23/2019 Volic_7574576_TD.pdf

    76/142

  • 7/23/2019 Volic_7574576_TD.pdf

    77/142

  • 7/23/2019 Volic_7574576_TD.pdf

    78/142

  • 7/23/2019 Volic_7574576_TD.pdf

    79/142

    XR-2209

    ...the analog plus companyTMVoltage-Controlled

    Oscillator

    June 19973

  • 7/23/2019 Volic_7574576_TD.pdf

    80/142

    FEATURES

    D Excellent Temperature Stability (20ppm/C)

    D Linear Frequency Sweep

    D Wide Sweep Range (1000:1 Minimum)

    D Wide Supply Voltage Range (+4V to +13V)

    D Low Supply Sensitivity (0.1% /V)

    DWide Frequency Range (0.01Hz to 1MHz)

    D Simultaneous Triangle and Squarewave Outputs

    APPLICATIONS

    D Voltage and Current-to-Frequency Conversion

    D Stable Phase-Locked Loop

    D Waveform Generation

    Triangle, Sawtooth, Pulse, Squarewave

    D FM and Sweep Generation

    GENERAL DESCRIPTION

    The XR-2209 is a monolithic voltage-controlled oscillator

    (VCO) integrated circuit featuring excellent frequency

    stability and a wide tuning range. The circuit provides

    simultaneous triangle and squarewave outputs over afrequency range of 0.01Hz to 1MHz. It is ideally suited for

    FM, FSK, and sweep or tone generation, as well as for

    phase-locked loop applications.

    The oscillator of the XR-2209 has a typical drift

    specification of 20ppm/C. The oscillator frequency can

    be linearly swept over a 1000:1 range with an externalcontrol voltage.

    ORDERING INFORMATION

    Part No. PackageOperating

    Temperature Range

    XR-2209CN 8 Lead 300 Mil CDIP 0 to +70C

    XR-2209M 8 Lead 300 Mil CDIP -55C to +125C

    XR-2209CP 8 Lead 300 Mil PDIP 0C to +70C

    BLOCK DIAGRAM

    Square Wave Out

    Triangle Wave OutTWO

    SWO

    A1

    A2

    BIAS

    5

    7

    8

    VCO

    2

    3

    1

    VCC

    TimingCapacitor

    C1

    C2

    XR-2209

    PIN CONFIGURATION

  • 7/23/2019 Volic_7574576_TD.pdf

    81/142

    TWO

    SWO

    VEE

    BIAS

    8 Lead PDIP, CDIP (0.300)

    1

    2

    3

    4

    8

    7

    6

    5

    VCC

    C1

    C2

    TR

    PIN DESCRIPTION

    Pin # Symbol Type Description

    1 VCC Positive Power Supply.2 C1 I Timing Capacitor Input.

    3 C2 I Timing Capacitor Input.

    4 TR I Timing Resistor.

    5 BIAS I Bias Input for Single Supply Operation.

    6 VEE Negative Power Supply.

    7 SWO O Square Wave Output Signal.

    8 TWO O Triangle Wave Output Signal.

    XR-2209

    DC ELECTRICAL CHARACTERISTICSTest Conditions: Test Circuit of Figure 3and Figure 4, VCC= 12V, TA = +25C, C = 5000pF, R = 20kW, RL =4.7kW, S1 and S2 Closed Unless Otherwise Specified

  • 7/23/2019 Volic_7574576_TD.pdf

    82/142

    XR-2209M XR-2209C

    Parameters Min. Typ. Max. Min. Typ. Max. Units Conditions

    General Characteristics

    Supply VoltageSingle SupplySplit Supplies

    8"4

    26"13

    8"4

    26"13

    VV

    See Figure 3Figure 4

    Supply CurrentSingle Supply 5 7 5 8 mA

    Figure 3Measured at Pin 1, S1, S2Open

    Split SuppliesPositiveNegative

    54

    76

    54

    87

    mAmA

    Figure 4Measured at Pin 1, S1, S2OpenMeasured at Pin 4, S1, S2Open

    Oscillator Section - Frequency Characteristics

    Upper Frequency Limit 0.5 1.0 0.5 1.0 MHz C = 500pF, R = 2KW

    Lowest Practical Frequency 0.01 0.01 Hz C = 50mF, R = 2MWFrequency Accuracy "1 "3 "1 "5 % of fo

    Frequency StabilityTemperaturePower Supply

    200.15

    50 300.15

    ppm/C

    %/V

    0C < TA< 70C

    Sweep Range 1000:1

    3000:1 1000:1

    fH/fL R = 1.5 KW for fHR = 2MW for fL

    Sweep Linearity

    10:1 Sweep1000:1 Sweep

    15

    2 1.55

    %%

    fH= 10kHz, fL= 1kHzfH= 100kHz, fL= 100Hz

    FM Distortion 0.1 0.1 % +10% FM Deviation

    Recommended Range ofTiming Resistor

    1.5 2000 1.5 2000 kW See Characteristic Curves

    Impedance at Timing Pins 75 75 W Measured at Pin 4

    Output Characteristics

    Triangle Output

    AmplitudeImpedanceDC LevelLinearity

    4 610

    +1000.1

    4 610

    +1000.1

    VppW

    mV%

    Measured at Pin 8

    Referenced to Pin 6From 10% to 90% of Swing

    Squarewave OutputA lit d 11 12 11 12 V

    Measured at Pin 7, S2Closed

    XR-2209

    ABSOLUTE MAXIMUM RATINGS

    Power Supply 26V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Plastic package 600mW. . . . . . . . . . . . . . . . . . . . . . . . .

    Derate above +25C 8mW/C

  • 7/23/2019 Volic_7574576_TD.pdf

    83/142

    Power Dissipation (package limitation)Ceramic package 750mW. . . . . . . . . . . . . . . . . . . . . . .

    Derate above +25C 10mW/ C. . . . . . . . . . . . . . . . . .

    Derate above +25 C 8mW/ C. . . . . . . . . . . . . . . . . . .

    SOIC package 300mW. . . . . . . . . . . . . . . . . . . . . . . . . .

    Derate above +25C 4mW/ C. . . . . . . . . . . . . . . . . . .

    Storage Temperature Range -65C to +150C. . . . . . .

    2R

    1

    VCC

    Q13

    Q14 Q15

    R

    Q1 Q2 Q3 Q4

    Q5

    R2

    Q6 Q7

    R

    R1

    Q8

    2

    Q12

    3

    Q9

    Q19Timing

    Capacitor

    R

    Q10 Q11

    R3

    R4

    R

    2R

    Triangle Wave

    8Output

    Q27

    Square Wave

    7

    Output

    4R

    Q20

    R6R5 R7

    Q21

    4

    5Q22 Q24

    Q23

    Q25 Q26

    6

    VEE

    Timing Resistor

    XR-2209

    PRECAUTIONS SYSTEM DESCRIPTION

  • 7/23/2019 Volic_7574576_TD.pdf

    84/142

    The following precautions should be observed whenoperating the XR-2209 family of integrated circuits:

    1. Pulling excessive current from the timing terminals

    will adversely affect the temperature stability of the

    circuit. To minimize this disturbance, it is

    recommended that the total current drawn from pin 4

    be limited to6mA. In addition, permanent damage

    to the device may occur if the total timing current

    exceeds 10mA.

    2. Terminals 2, 3, and 4 have very low internal

    impedance and should, therefore, be protected from

    accidental shorting to ground or the supply voltage.

    The XR-2209 functional blocks are shown in the blockdiagram given in Figure 1. They are a voltage controlled

    oscillator (VCO), and two buffer amplifiers for triangle and

    squarewave outputs. Figure 2 is a simplified XR-2209

    schematic diagram that shows the circuit in greater detail.

    The VCO is a modified emitter-coupled current controlled

    multivibrator. Its oscillation is inversely proportional to the

    value of the timing capacitor connected to pins 2 and 3,

    and directly proportional to the total timing current IT. Thiscurrent is determined by the resistor that is connected

    from the timing terminals (pin 4) to ground.

    The triangle output buffer has a low impedance output

    (10W typ.) while the squarewave is an open-collector

    type. An external bias input allows the XR-2209 to be

    used in either single or split supply applications.

    RL

    Square Wave

    Output

    VCC

    Triangle Wave

    S2

    C

    VCC

    1mF

    I +

    TR

    4

    VEE

    6

    BIAS 5

    TWO8

    SWO7C 2

    3

    C1

    21

    XR-2209

    R

    Output

    1mF

    I-

    5.1K

    5.1K

    VCC

    VCC

    XR-2209

    S2VCC

    VCC

  • 7/23/2019 Volic_7574576_TD.pdf

    85/142

    RL

    Square WaveOutput

    Triangle Wave

    C

    1mF

    I+

    R

    6

    BIAS 5

    TWO8

    SWO7C 2

    3

    C 1

    21

    XR-2209

    S1

    TR

    Output

    1mF

    I-

    10K

    D1

    1mF

    Figure 4. Test Circuit for Split Supply Operation

    VCC

    VEE

    VEE

    VEE

    4

    OPERATING CONSIDERATIONS

    Supply Voltage (Pins 1 and 6)

    The XR-2209 is designed to operate over a power supply

    range of $4V to $13V for split supplies, or 8V to 26V for

    single supplies. Figure 5shows the permissible supply

    voltage for operation with unequal split supply voltages.

    Figure 6and Figure 7show supply current versus supply

    voltage. Performance is optimum for$6V split supply, or

    12V single supply operation. At higher supply voltages,

    the frequency sweep range is reduced

    Bias for Single Supply (Pin 5)

    For single supply operation, pin 5 should be externally

    biased to a potential between VCC/3 and VCC/2V (see

    Figure 3.) The bias current at pin 5 is nominally 5% of the

    total oscillation timing current, IT.

    Bypass Capacitors

    The recommended value for bypass capacitors is 1mF

    although larger values are required for very low frequency

    operation.

    Timing Resistor (Pin 4)

    XR-2209

    Timing Capacitor (Pins 2 and 3)

    The oscillator frequency is inversely proportional to the

    timing capacitor, C. The minimum capacitance value is

    physical size and leakage current considerations.

    Recommended values range from 100pF to 100mF. The

  • 7/23/2019 Volic_7574576_TD.pdf

    86/142

    limited by stray capacitances and the maximum value by capacitor should be non-polarized.

    TypicalOperating

    Range

    -10 -15 -20-5

    Negative Supply (V)

    Figure 5. Operating Range for Unequal Split Supply Voltages

    35

    30

    25

    20

    15

    10

    5

    0+4 +6 +8 +10 +12 +14

    RT=Parallel Combination

    8 10 12 14 16 18 20 22 24 26 28

    Single Supply Voltage (V)

    TA=25C

    of Activated TimingResistors

    25

    20

    15

    10

    5

    0

    Figure 6. Positive Supply Current, I+ (Measured at Pin 1) vs. Supply Voltage

    RT=2k RT=3k RT=5k

    RT=20k

    RT=200k

    RT=2M

    PositiveSupply

    PositiveSupplyCurrent(mA)

    XR-2209

    15

    TA 25C TA 25

    C

  • 7/23/2019 Volic_7574576_TD.pdf

    87/142

    10

    5

    0

    0 6 8 10 12 14

    Split Supply Voltage (V)

    1M

    10k

    1k

    0 +4V

    0 8

    +8V +12V

    16 24

    Split Supply Voltage (V)

    Single Supply Voltage (V)

    6

    5

    43

    2

    1

    0

    -1

    -2

    -3

    -4

    -5

    -6

    -71K 10K 100K 1M 10M

    Timing Resistance ()

    VS = 6V

    C = 5000pF

    Figure 7. Negative Supply Current,I- (Measured at Pin 6)

    vs. Supply Voltage

    Figure 8. Recommended Timing ResistorValue vs. Power Supply Voltage

    TA= 25C

    100k

    7

    +16V

    32

    TimingResistorRange

    FrequencyError(%)

    To

    talTimingResistorRT

    NegativeSupplyCurrent(mA)

    TA= 25 C

    XR-2209

    1.04

    1.02

    RT = 2MRT = 20k

    Drift

  • 7/23/2019 Volic_7574576_TD.pdf

    88/142

    1.00

    .98

    .96

    .94

    .922 4 6 8 10 12 14

    4 8 12 16 20 24 28

    RT = 200k

    RT = 2k

    TA = 25C

    RT = Total

    C = 5000pF

    Single Supply Voltage (V)

    Timing

    Resistance

    Split Supply Voltage (V)

    VS = 6V

    C = 5000pF

    2k4k

    20k

    200k

    200k 2M

    20k 4k

    R = 2k

    2M

    -50 -25 0 +25 +50 +75 +100 +125

    +2

    +1

    0

    -1

    -2

    -3

    Temperature (C)

    Figure 10. Frequency Drift vs. Supply Voltage

    Figure 11. Normalized Frequency Drift with Temperature

    NormalizedFrequency

    NormalizedFrequ

    encyDrift(%)

    XR-2209

    MODES OF OPERATION

    Split Supply Operation

    Fi 12 i th d d fi ti f lit ti i d t i d b th ti i it C d

  • 7/23/2019 Volic_7574576_TD.pdf

    89/142

    Figure 12 is the recommended configuration for split

    supply operation. Diode D1in the figure assures that the

    triangle output swing at pin 8 is symmetrical about

    ground. The circuit operates with supply voltages ranging

    from $4V to