15
02-08-2012 1 Science of water that deals with the occurrence, circulation and distribution of water of the earth and earth’s atmosphere 2

CE-341 Lectures 1&2

Embed Size (px)

Citation preview

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 115

02-08-2012

1

983112983129983108983122983119983116983119983111983129

Science of water that deals with the occurrence circulation anddistribution of water of the earth and earthrsquos atmosphere

2

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 215

02-08-2012

2

3

Hydrological data

4

5 Engineering Hydrology by K Subramanya6 Hydrology by H M Raghunath

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 315

02-08-2012

3

983116983141983139983156983157983154983141983155983135 983089 983078983090

Definitions

Hydrological Cycles and Water Distribution

Water Budget

Space-time Scales

Catchment Area

History of Hydrology

Applications

5

10 Hydrologic Cycle

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 415

02-08-2012

4

8

A global schematic of the hydrologic cycle

ET=evapotranspiration SF = surface runoff TF=tidal flow SR = sea riseGW int = ground water intrusion

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 515

02-08-2012

5

9

A schematic of the hydrologic cycle in the earth system

10

A schematic of the hydrologiccycle in land system

More complete cycle

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 615

02-08-2012

6

Water Distribution

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 715

02-08-2012

7

Land and Water Resources of India

Source-CWC India

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 815

02-08-2012

8

Source-CWC India

Water Resources Potential (km3) in Major River Basins of India

2 Hydrologic Budget

The water budget represents the inventory of water for a specific waterbody (or hydrologic region) during a certain time interval

It can be estimated using the mass conservation equation whichexpresses the balance between the inflows outflows and change ofstorage in any water body hydrologic region over a period of time For a

drainage basin

P - R - G - E - T = ∆S (1)

16

P=precipitation R= runoff G= ground water flow E=evaporationT= Transpiration S = storage

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 915

02-08-2012

9

For a drainage basin

17

Subscripts s=surface storage m = soil moisture storage g = ground water storagei = interception storage

Ir = rainfall intensity Isn = rate of snowfall Osr= surface runoff Osb= subsurfacerunoff Og = ground water runoff e = rate of evaporation et = rate of transpirationf = infiltration rate

( ) f eeOOO I I S S S S dt

d

O I dt dS

t gsbsr snr igms minusminusminusminusminusminus+=+++

minus=

3 Space-Time scales

Depending on the hydrologic problem under consideration thehydrologic cycle or its component can be treated at different scales oftime and space

The global scale is the largest spatial scale and the drainage basin thesmallest spatial scale

The time scales used in hydrologic studies range from a fraction of anhour to a year or perhaps many years The time scale used in ahydrologic study depends on the purpose of the study and the probleminvolved

18

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1015

02-08-2012

10

4 Catchment Area (drainage area drainage basin Watershed in USA)

983122983145983140983143983141 983148983145983150983141 983145983155 983137983148983155983151 983139983137983148983148983141983140 983108983145983158983145983140983141 983145983150 983125983123983105 983137983150983140 983127983137983156983141983154983155983144983141983140 983145983150 983125983115

19

983124983144983141 983148983145983150983141 983151983142 983156983144983141 983143983154983151983157983150983140 983159983137983156983141983154 983156983137983138983148983141 983142983154983151983149 983159983144983145983139983144 983156983144983141 983159983137983156983141983154 983156983137983138983148983141 983155983148983151983152983141983155 983140983151983159983150983159983137983154983140 983137983159983137983161

983142983154983151983149 983156983144983141 983148983145983150983141 983151983150 983138983151983156983144 983155983145983140983141983155 983145983155 983139983137983148983148983141983140 983156983144983141 983143983154983151983157983150983140 983159983137983156983141983154 983140983145983158983145983140983141

20

Catchmentboundary of

the Kosi riverAlmora

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1115

02-08-2012

11

21

StreamDrainagePattern

983107983144983137983154983137983139983156983141983154983145983155983156983145983139983155 983151983142 983156983144983141 983140983154983137983145983150983137983143983141

1 The number of streams

2 The length of streams

3

4 Drainage density

Stream density9830842-

km areaCatchment

streamsof Nunmber

A

N D s

s =

A

L D sd

nt)intermitteand(perennialchannelsstreamsallof lengthTotal=

22

Drainage density varies inversely as the length of overland flow andindicates the drainage efficiency of the basin

A high value indicates a well-developed network and torrential runoff causingintense floods while a low value indicates moderate runoff and highpermeability of the terrain

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1215

02-08-2012

12

983124983144983141 983155983144983137983152983141 983151983142 983137 983140983154983137983145983150983137983143983141 983138983137983155983145983150 983139983137983150 983143983141983150983141983154983137983148983148983161 983138983141 983141983160983152983154983141983155983155983141983140 983138983161

983110983151983154983149 983142983137983139983156983151983154 1 2

lt==

bb

b

f L

A

L

W F

983127 983138983101983137983160983145983137983148 983159983145983140983156983144 983151983142 983138983137983155983145983150

983116983138983101983137983160983145983137983148 983148983141983150983143983156983144 983151983142 983138983137983155983145983150 983145983141 983156983144983141 983140983145983155983156983137983150983139983141 983142983154983151983149 983156983144983141 983149983141983137983155983157983154983145983150983143 983152983151983145983150983156 983156983151 983156983144983141 983149983151983155983156

983154983141983149983151983156983141 983152983151983145983150983156 983151983150 983156983144983141 983138983137983155983145983150

983107983151983149983152983137983139983156983150983141983155983155 983139983151983141983142983142983145983139983145983141983150983156 1 2

ge=

A

PC b

983120983138983101983152983141983154983145983149983141983156983141983154 983151983142 983156983144983141 983138983137983155983145983150

Aπ 2 983101983139983145983154983139983157983149983142983141983154983141983150983139983141 983151983142 983139983145983154983139983157983148983137983154 983137983154983141983137 983144983137983158983145983150983143 983137983154983141983137 983141983153983157983137983148 983156983151 983156983144983141 983137983154983141983137 983151983142 983156983144983141 983138983137983155983145983150

983123983144983137983152983141 983142983137983139983156983151983154 1 2

gt= A

L B b

s

983109983148983151983150983143983137983156983145983151983150 983154983137983156983145983151 1 lengthWatershed

areawatershedof circleof Diameterle=

983107983145983154983139983157983148983137983154983145983156983161 9831549831379831569831459831511 perimeterwatershedof circleof Area

areaWatershedle=

24

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1315

02-08-2012

13

983106983137983155983145983150 983155983148983151983152983141 983101 983140983145983142983142983141983154983141983150983139983141 983145983150 983141983148983141983158983137983156983145983151983150 983138983141983156983159983141983141983150 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983137983150983140 983151983157983156983148983141983156

983140983145983155983156983137983150983139983141 983142983154983151983149 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983156983151 983151983157983156983148983141983156

983123983156983154983141983137983149 983155983148983151983152983141

1 983105983158983141983154983137983143983141 983155983156983154983141983137983149 983155983148983151983152983141983101983156983151983156983137983148 983142983137983148983148 983151983142 983156983144983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141983148983141983150983143983156983144 983151983142 983156983144983141

983141983150983156983145983154983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141

2

1

1

2 1

sum

sum=

=

=

N

ii

N

iii

m

L

S LS

2 The channel is divided into N number of reaches each having Slope Siand length Li (Johnstone and Cross 1949)

The equivalent stream slope

History of Hydrology

It is not easy to answer the question ldquoHow and where the science ofhydrology beganrdquo

In ancient times various hydrologic principles were successfullyapplied in practice

Early Chinese irrigation and flood control works and Greek andRoman aqueducts are worth mentioning

The Roman engineer Marcus Vitruvius (1st century BC) developedan early theory of the hydrologic cycle in his treatise On Architecture

During the Middle Ages Vitruviuss work was the standard referencebook on Hydrology

26

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1415

02-08-2012

14

15th century Leonardo da Vinci and Bernard Palissy gave independently ofeach other an accurate explanation of the hydrologic cycle

17th

century the modern science of hydrology was established by PerraultMariotte and Halley Perrault measured the rainfall and runoff in the SeineRiver and proved that rainfall contributes significantly to river flow He alsomeasured evaporation and capillarity Mariotte recorded the velocity of flow inthe Seine River and made measurements of the cross section estimating thedischarge Halley measured evaporation of the Mediterranean Sea

18th century The Bernoulli piezometer and theorem the Pitot tube andChezys formula are representative achievements

19th century experimental hydrology made considerable progress Darcyslaw of flow in porous media and Dupuit-Thiems well formula were

elaborated

Early 20th century governmental agencies developed their own programs ofhydrologic research Shermans unit hydrograph Hortons infiltration theoryand Theiss non-equilibrium approach to well hydraulics were based on theiranalyses and were the results of research programs

27

983107983144983151983159 983139983148983137983155983155983145983142983145983141983155 983156983144983141 983144983145983155983156983151983154983161 983151983142 983144983161983140983154983151983148983151983143983161 983145983150983156983151 983141983145983143983144983156 983152983141983154983145983151983140983155 983137983155

bull Period of Speculation ndash prior to AD 1400

bull Period of Observation ndash 1400 ndash 1600

bull Period of Measurement ndash 1600 ndash 1700

bull Period of Experimentation ndash 1700- 1800

bull Period of Modernization ndash 1800 ndash 1900

bull Period of Empiricism ndash 1900 ndash 1930

bull Period of Rationalization ndash 1930 ndash 1950

bull Period of Theorization ndash 1950 ndash to date

28

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1515

02-08-2012

983105983152983152983148983145983139983137983156983145983151983150983155 983113983150 983109983150983143983145983150983141983141983154983145983150983143

983112983161983140983154983151983148983151983143983161 983142983145983150983140983155 983145983156983155 983143983154983141983137983156983141983155983156 983137983152983152983148983145983139983137983156983145983151983150 983145983150 983156983144983141 983140983141983155983145983143983150 983137983150983140 983151983152983141983154983137983156983145983151983150 983151983142

983159983137983156983141983154 983154983141983155983151983157983154983139983141983155 983141983150983143983145983150983141983141983154983145983150983143 983155983157983139983144 983137983155 983156983144983151983155983141 983142983151983154

(983145) 983113983154983154983145983143983137983156983145983151983150

(983145983145) 983127983137983156983141983154 983155983157983152983152983148983161

(983145983145983145) 983110983148983151983151983140 983139983151983150983156983154983151983148

(983145983158) 983112983161983140983154983151983152983151983159983141983154 983137983150983140

(983158) 983118983137983158983145983143983137983156983145983151983150

29

1 Scientific Hydrology-a study concerned with academic aspects2 Engineering or applied Hydrology- a study concerned with

engineering applications

983112983161983140983154983151983148983151983143983145983139983137983148 983108983137983156983137

The basic hydrological data required are

1 Precipitation and climatological data - IMD

2 Topographic maps - SOI

3 Stream-flow records - CWC

4 Ground water data ndash Central Ground Water Board5 Evaporation and transpiration data -IMD

6 Cropping pattern crops and their consumptive use ndash Irrigation Dept

7 Soil map

8 Water quality data of surface streams and groundwater

9 Geological maps - GSI

30

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 215

02-08-2012

2

3

Hydrological data

4

5 Engineering Hydrology by K Subramanya6 Hydrology by H M Raghunath

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 315

02-08-2012

3

983116983141983139983156983157983154983141983155983135 983089 983078983090

Definitions

Hydrological Cycles and Water Distribution

Water Budget

Space-time Scales

Catchment Area

History of Hydrology

Applications

5

10 Hydrologic Cycle

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 415

02-08-2012

4

8

A global schematic of the hydrologic cycle

ET=evapotranspiration SF = surface runoff TF=tidal flow SR = sea riseGW int = ground water intrusion

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 515

02-08-2012

5

9

A schematic of the hydrologic cycle in the earth system

10

A schematic of the hydrologiccycle in land system

More complete cycle

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 615

02-08-2012

6

Water Distribution

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 715

02-08-2012

7

Land and Water Resources of India

Source-CWC India

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 815

02-08-2012

8

Source-CWC India

Water Resources Potential (km3) in Major River Basins of India

2 Hydrologic Budget

The water budget represents the inventory of water for a specific waterbody (or hydrologic region) during a certain time interval

It can be estimated using the mass conservation equation whichexpresses the balance between the inflows outflows and change ofstorage in any water body hydrologic region over a period of time For a

drainage basin

P - R - G - E - T = ∆S (1)

16

P=precipitation R= runoff G= ground water flow E=evaporationT= Transpiration S = storage

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 915

02-08-2012

9

For a drainage basin

17

Subscripts s=surface storage m = soil moisture storage g = ground water storagei = interception storage

Ir = rainfall intensity Isn = rate of snowfall Osr= surface runoff Osb= subsurfacerunoff Og = ground water runoff e = rate of evaporation et = rate of transpirationf = infiltration rate

( ) f eeOOO I I S S S S dt

d

O I dt dS

t gsbsr snr igms minusminusminusminusminusminus+=+++

minus=

3 Space-Time scales

Depending on the hydrologic problem under consideration thehydrologic cycle or its component can be treated at different scales oftime and space

The global scale is the largest spatial scale and the drainage basin thesmallest spatial scale

The time scales used in hydrologic studies range from a fraction of anhour to a year or perhaps many years The time scale used in ahydrologic study depends on the purpose of the study and the probleminvolved

18

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1015

02-08-2012

10

4 Catchment Area (drainage area drainage basin Watershed in USA)

983122983145983140983143983141 983148983145983150983141 983145983155 983137983148983155983151 983139983137983148983148983141983140 983108983145983158983145983140983141 983145983150 983125983123983105 983137983150983140 983127983137983156983141983154983155983144983141983140 983145983150 983125983115

19

983124983144983141 983148983145983150983141 983151983142 983156983144983141 983143983154983151983157983150983140 983159983137983156983141983154 983156983137983138983148983141 983142983154983151983149 983159983144983145983139983144 983156983144983141 983159983137983156983141983154 983156983137983138983148983141 983155983148983151983152983141983155 983140983151983159983150983159983137983154983140 983137983159983137983161

983142983154983151983149 983156983144983141 983148983145983150983141 983151983150 983138983151983156983144 983155983145983140983141983155 983145983155 983139983137983148983148983141983140 983156983144983141 983143983154983151983157983150983140 983159983137983156983141983154 983140983145983158983145983140983141

20

Catchmentboundary of

the Kosi riverAlmora

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1115

02-08-2012

11

21

StreamDrainagePattern

983107983144983137983154983137983139983156983141983154983145983155983156983145983139983155 983151983142 983156983144983141 983140983154983137983145983150983137983143983141

1 The number of streams

2 The length of streams

3

4 Drainage density

Stream density9830842-

km areaCatchment

streamsof Nunmber

A

N D s

s =

A

L D sd

nt)intermitteand(perennialchannelsstreamsallof lengthTotal=

22

Drainage density varies inversely as the length of overland flow andindicates the drainage efficiency of the basin

A high value indicates a well-developed network and torrential runoff causingintense floods while a low value indicates moderate runoff and highpermeability of the terrain

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1215

02-08-2012

12

983124983144983141 983155983144983137983152983141 983151983142 983137 983140983154983137983145983150983137983143983141 983138983137983155983145983150 983139983137983150 983143983141983150983141983154983137983148983148983161 983138983141 983141983160983152983154983141983155983155983141983140 983138983161

983110983151983154983149 983142983137983139983156983151983154 1 2

lt==

bb

b

f L

A

L

W F

983127 983138983101983137983160983145983137983148 983159983145983140983156983144 983151983142 983138983137983155983145983150

983116983138983101983137983160983145983137983148 983148983141983150983143983156983144 983151983142 983138983137983155983145983150 983145983141 983156983144983141 983140983145983155983156983137983150983139983141 983142983154983151983149 983156983144983141 983149983141983137983155983157983154983145983150983143 983152983151983145983150983156 983156983151 983156983144983141 983149983151983155983156

983154983141983149983151983156983141 983152983151983145983150983156 983151983150 983156983144983141 983138983137983155983145983150

983107983151983149983152983137983139983156983150983141983155983155 983139983151983141983142983142983145983139983145983141983150983156 1 2

ge=

A

PC b

983120983138983101983152983141983154983145983149983141983156983141983154 983151983142 983156983144983141 983138983137983155983145983150

Aπ 2 983101983139983145983154983139983157983149983142983141983154983141983150983139983141 983151983142 983139983145983154983139983157983148983137983154 983137983154983141983137 983144983137983158983145983150983143 983137983154983141983137 983141983153983157983137983148 983156983151 983156983144983141 983137983154983141983137 983151983142 983156983144983141 983138983137983155983145983150

983123983144983137983152983141 983142983137983139983156983151983154 1 2

gt= A

L B b

s

983109983148983151983150983143983137983156983145983151983150 983154983137983156983145983151 1 lengthWatershed

areawatershedof circleof Diameterle=

983107983145983154983139983157983148983137983154983145983156983161 9831549831379831569831459831511 perimeterwatershedof circleof Area

areaWatershedle=

24

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1315

02-08-2012

13

983106983137983155983145983150 983155983148983151983152983141 983101 983140983145983142983142983141983154983141983150983139983141 983145983150 983141983148983141983158983137983156983145983151983150 983138983141983156983159983141983141983150 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983137983150983140 983151983157983156983148983141983156

983140983145983155983156983137983150983139983141 983142983154983151983149 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983156983151 983151983157983156983148983141983156

983123983156983154983141983137983149 983155983148983151983152983141

1 983105983158983141983154983137983143983141 983155983156983154983141983137983149 983155983148983151983152983141983101983156983151983156983137983148 983142983137983148983148 983151983142 983156983144983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141983148983141983150983143983156983144 983151983142 983156983144983141

983141983150983156983145983154983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141

2

1

1

2 1

sum

sum=

=

=

N

ii

N

iii

m

L

S LS

2 The channel is divided into N number of reaches each having Slope Siand length Li (Johnstone and Cross 1949)

The equivalent stream slope

History of Hydrology

It is not easy to answer the question ldquoHow and where the science ofhydrology beganrdquo

In ancient times various hydrologic principles were successfullyapplied in practice

Early Chinese irrigation and flood control works and Greek andRoman aqueducts are worth mentioning

The Roman engineer Marcus Vitruvius (1st century BC) developedan early theory of the hydrologic cycle in his treatise On Architecture

During the Middle Ages Vitruviuss work was the standard referencebook on Hydrology

26

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1415

02-08-2012

14

15th century Leonardo da Vinci and Bernard Palissy gave independently ofeach other an accurate explanation of the hydrologic cycle

17th

century the modern science of hydrology was established by PerraultMariotte and Halley Perrault measured the rainfall and runoff in the SeineRiver and proved that rainfall contributes significantly to river flow He alsomeasured evaporation and capillarity Mariotte recorded the velocity of flow inthe Seine River and made measurements of the cross section estimating thedischarge Halley measured evaporation of the Mediterranean Sea

18th century The Bernoulli piezometer and theorem the Pitot tube andChezys formula are representative achievements

19th century experimental hydrology made considerable progress Darcyslaw of flow in porous media and Dupuit-Thiems well formula were

elaborated

Early 20th century governmental agencies developed their own programs ofhydrologic research Shermans unit hydrograph Hortons infiltration theoryand Theiss non-equilibrium approach to well hydraulics were based on theiranalyses and were the results of research programs

27

983107983144983151983159 983139983148983137983155983155983145983142983145983141983155 983156983144983141 983144983145983155983156983151983154983161 983151983142 983144983161983140983154983151983148983151983143983161 983145983150983156983151 983141983145983143983144983156 983152983141983154983145983151983140983155 983137983155

bull Period of Speculation ndash prior to AD 1400

bull Period of Observation ndash 1400 ndash 1600

bull Period of Measurement ndash 1600 ndash 1700

bull Period of Experimentation ndash 1700- 1800

bull Period of Modernization ndash 1800 ndash 1900

bull Period of Empiricism ndash 1900 ndash 1930

bull Period of Rationalization ndash 1930 ndash 1950

bull Period of Theorization ndash 1950 ndash to date

28

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1515

02-08-2012

983105983152983152983148983145983139983137983156983145983151983150983155 983113983150 983109983150983143983145983150983141983141983154983145983150983143

983112983161983140983154983151983148983151983143983161 983142983145983150983140983155 983145983156983155 983143983154983141983137983156983141983155983156 983137983152983152983148983145983139983137983156983145983151983150 983145983150 983156983144983141 983140983141983155983145983143983150 983137983150983140 983151983152983141983154983137983156983145983151983150 983151983142

983159983137983156983141983154 983154983141983155983151983157983154983139983141983155 983141983150983143983145983150983141983141983154983145983150983143 983155983157983139983144 983137983155 983156983144983151983155983141 983142983151983154

(983145) 983113983154983154983145983143983137983156983145983151983150

(983145983145) 983127983137983156983141983154 983155983157983152983152983148983161

(983145983145983145) 983110983148983151983151983140 983139983151983150983156983154983151983148

(983145983158) 983112983161983140983154983151983152983151983159983141983154 983137983150983140

(983158) 983118983137983158983145983143983137983156983145983151983150

29

1 Scientific Hydrology-a study concerned with academic aspects2 Engineering or applied Hydrology- a study concerned with

engineering applications

983112983161983140983154983151983148983151983143983145983139983137983148 983108983137983156983137

The basic hydrological data required are

1 Precipitation and climatological data - IMD

2 Topographic maps - SOI

3 Stream-flow records - CWC

4 Ground water data ndash Central Ground Water Board5 Evaporation and transpiration data -IMD

6 Cropping pattern crops and their consumptive use ndash Irrigation Dept

7 Soil map

8 Water quality data of surface streams and groundwater

9 Geological maps - GSI

30

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 315

02-08-2012

3

983116983141983139983156983157983154983141983155983135 983089 983078983090

Definitions

Hydrological Cycles and Water Distribution

Water Budget

Space-time Scales

Catchment Area

History of Hydrology

Applications

5

10 Hydrologic Cycle

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 415

02-08-2012

4

8

A global schematic of the hydrologic cycle

ET=evapotranspiration SF = surface runoff TF=tidal flow SR = sea riseGW int = ground water intrusion

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 515

02-08-2012

5

9

A schematic of the hydrologic cycle in the earth system

10

A schematic of the hydrologiccycle in land system

More complete cycle

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 615

02-08-2012

6

Water Distribution

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 715

02-08-2012

7

Land and Water Resources of India

Source-CWC India

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 815

02-08-2012

8

Source-CWC India

Water Resources Potential (km3) in Major River Basins of India

2 Hydrologic Budget

The water budget represents the inventory of water for a specific waterbody (or hydrologic region) during a certain time interval

It can be estimated using the mass conservation equation whichexpresses the balance between the inflows outflows and change ofstorage in any water body hydrologic region over a period of time For a

drainage basin

P - R - G - E - T = ∆S (1)

16

P=precipitation R= runoff G= ground water flow E=evaporationT= Transpiration S = storage

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 915

02-08-2012

9

For a drainage basin

17

Subscripts s=surface storage m = soil moisture storage g = ground water storagei = interception storage

Ir = rainfall intensity Isn = rate of snowfall Osr= surface runoff Osb= subsurfacerunoff Og = ground water runoff e = rate of evaporation et = rate of transpirationf = infiltration rate

( ) f eeOOO I I S S S S dt

d

O I dt dS

t gsbsr snr igms minusminusminusminusminusminus+=+++

minus=

3 Space-Time scales

Depending on the hydrologic problem under consideration thehydrologic cycle or its component can be treated at different scales oftime and space

The global scale is the largest spatial scale and the drainage basin thesmallest spatial scale

The time scales used in hydrologic studies range from a fraction of anhour to a year or perhaps many years The time scale used in ahydrologic study depends on the purpose of the study and the probleminvolved

18

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1015

02-08-2012

10

4 Catchment Area (drainage area drainage basin Watershed in USA)

983122983145983140983143983141 983148983145983150983141 983145983155 983137983148983155983151 983139983137983148983148983141983140 983108983145983158983145983140983141 983145983150 983125983123983105 983137983150983140 983127983137983156983141983154983155983144983141983140 983145983150 983125983115

19

983124983144983141 983148983145983150983141 983151983142 983156983144983141 983143983154983151983157983150983140 983159983137983156983141983154 983156983137983138983148983141 983142983154983151983149 983159983144983145983139983144 983156983144983141 983159983137983156983141983154 983156983137983138983148983141 983155983148983151983152983141983155 983140983151983159983150983159983137983154983140 983137983159983137983161

983142983154983151983149 983156983144983141 983148983145983150983141 983151983150 983138983151983156983144 983155983145983140983141983155 983145983155 983139983137983148983148983141983140 983156983144983141 983143983154983151983157983150983140 983159983137983156983141983154 983140983145983158983145983140983141

20

Catchmentboundary of

the Kosi riverAlmora

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1115

02-08-2012

11

21

StreamDrainagePattern

983107983144983137983154983137983139983156983141983154983145983155983156983145983139983155 983151983142 983156983144983141 983140983154983137983145983150983137983143983141

1 The number of streams

2 The length of streams

3

4 Drainage density

Stream density9830842-

km areaCatchment

streamsof Nunmber

A

N D s

s =

A

L D sd

nt)intermitteand(perennialchannelsstreamsallof lengthTotal=

22

Drainage density varies inversely as the length of overland flow andindicates the drainage efficiency of the basin

A high value indicates a well-developed network and torrential runoff causingintense floods while a low value indicates moderate runoff and highpermeability of the terrain

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1215

02-08-2012

12

983124983144983141 983155983144983137983152983141 983151983142 983137 983140983154983137983145983150983137983143983141 983138983137983155983145983150 983139983137983150 983143983141983150983141983154983137983148983148983161 983138983141 983141983160983152983154983141983155983155983141983140 983138983161

983110983151983154983149 983142983137983139983156983151983154 1 2

lt==

bb

b

f L

A

L

W F

983127 983138983101983137983160983145983137983148 983159983145983140983156983144 983151983142 983138983137983155983145983150

983116983138983101983137983160983145983137983148 983148983141983150983143983156983144 983151983142 983138983137983155983145983150 983145983141 983156983144983141 983140983145983155983156983137983150983139983141 983142983154983151983149 983156983144983141 983149983141983137983155983157983154983145983150983143 983152983151983145983150983156 983156983151 983156983144983141 983149983151983155983156

983154983141983149983151983156983141 983152983151983145983150983156 983151983150 983156983144983141 983138983137983155983145983150

983107983151983149983152983137983139983156983150983141983155983155 983139983151983141983142983142983145983139983145983141983150983156 1 2

ge=

A

PC b

983120983138983101983152983141983154983145983149983141983156983141983154 983151983142 983156983144983141 983138983137983155983145983150

Aπ 2 983101983139983145983154983139983157983149983142983141983154983141983150983139983141 983151983142 983139983145983154983139983157983148983137983154 983137983154983141983137 983144983137983158983145983150983143 983137983154983141983137 983141983153983157983137983148 983156983151 983156983144983141 983137983154983141983137 983151983142 983156983144983141 983138983137983155983145983150

983123983144983137983152983141 983142983137983139983156983151983154 1 2

gt= A

L B b

s

983109983148983151983150983143983137983156983145983151983150 983154983137983156983145983151 1 lengthWatershed

areawatershedof circleof Diameterle=

983107983145983154983139983157983148983137983154983145983156983161 9831549831379831569831459831511 perimeterwatershedof circleof Area

areaWatershedle=

24

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1315

02-08-2012

13

983106983137983155983145983150 983155983148983151983152983141 983101 983140983145983142983142983141983154983141983150983139983141 983145983150 983141983148983141983158983137983156983145983151983150 983138983141983156983159983141983141983150 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983137983150983140 983151983157983156983148983141983156

983140983145983155983156983137983150983139983141 983142983154983151983149 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983156983151 983151983157983156983148983141983156

983123983156983154983141983137983149 983155983148983151983152983141

1 983105983158983141983154983137983143983141 983155983156983154983141983137983149 983155983148983151983152983141983101983156983151983156983137983148 983142983137983148983148 983151983142 983156983144983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141983148983141983150983143983156983144 983151983142 983156983144983141

983141983150983156983145983154983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141

2

1

1

2 1

sum

sum=

=

=

N

ii

N

iii

m

L

S LS

2 The channel is divided into N number of reaches each having Slope Siand length Li (Johnstone and Cross 1949)

The equivalent stream slope

History of Hydrology

It is not easy to answer the question ldquoHow and where the science ofhydrology beganrdquo

In ancient times various hydrologic principles were successfullyapplied in practice

Early Chinese irrigation and flood control works and Greek andRoman aqueducts are worth mentioning

The Roman engineer Marcus Vitruvius (1st century BC) developedan early theory of the hydrologic cycle in his treatise On Architecture

During the Middle Ages Vitruviuss work was the standard referencebook on Hydrology

26

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1415

02-08-2012

14

15th century Leonardo da Vinci and Bernard Palissy gave independently ofeach other an accurate explanation of the hydrologic cycle

17th

century the modern science of hydrology was established by PerraultMariotte and Halley Perrault measured the rainfall and runoff in the SeineRiver and proved that rainfall contributes significantly to river flow He alsomeasured evaporation and capillarity Mariotte recorded the velocity of flow inthe Seine River and made measurements of the cross section estimating thedischarge Halley measured evaporation of the Mediterranean Sea

18th century The Bernoulli piezometer and theorem the Pitot tube andChezys formula are representative achievements

19th century experimental hydrology made considerable progress Darcyslaw of flow in porous media and Dupuit-Thiems well formula were

elaborated

Early 20th century governmental agencies developed their own programs ofhydrologic research Shermans unit hydrograph Hortons infiltration theoryand Theiss non-equilibrium approach to well hydraulics were based on theiranalyses and were the results of research programs

27

983107983144983151983159 983139983148983137983155983155983145983142983145983141983155 983156983144983141 983144983145983155983156983151983154983161 983151983142 983144983161983140983154983151983148983151983143983161 983145983150983156983151 983141983145983143983144983156 983152983141983154983145983151983140983155 983137983155

bull Period of Speculation ndash prior to AD 1400

bull Period of Observation ndash 1400 ndash 1600

bull Period of Measurement ndash 1600 ndash 1700

bull Period of Experimentation ndash 1700- 1800

bull Period of Modernization ndash 1800 ndash 1900

bull Period of Empiricism ndash 1900 ndash 1930

bull Period of Rationalization ndash 1930 ndash 1950

bull Period of Theorization ndash 1950 ndash to date

28

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1515

02-08-2012

983105983152983152983148983145983139983137983156983145983151983150983155 983113983150 983109983150983143983145983150983141983141983154983145983150983143

983112983161983140983154983151983148983151983143983161 983142983145983150983140983155 983145983156983155 983143983154983141983137983156983141983155983156 983137983152983152983148983145983139983137983156983145983151983150 983145983150 983156983144983141 983140983141983155983145983143983150 983137983150983140 983151983152983141983154983137983156983145983151983150 983151983142

983159983137983156983141983154 983154983141983155983151983157983154983139983141983155 983141983150983143983145983150983141983141983154983145983150983143 983155983157983139983144 983137983155 983156983144983151983155983141 983142983151983154

(983145) 983113983154983154983145983143983137983156983145983151983150

(983145983145) 983127983137983156983141983154 983155983157983152983152983148983161

(983145983145983145) 983110983148983151983151983140 983139983151983150983156983154983151983148

(983145983158) 983112983161983140983154983151983152983151983159983141983154 983137983150983140

(983158) 983118983137983158983145983143983137983156983145983151983150

29

1 Scientific Hydrology-a study concerned with academic aspects2 Engineering or applied Hydrology- a study concerned with

engineering applications

983112983161983140983154983151983148983151983143983145983139983137983148 983108983137983156983137

The basic hydrological data required are

1 Precipitation and climatological data - IMD

2 Topographic maps - SOI

3 Stream-flow records - CWC

4 Ground water data ndash Central Ground Water Board5 Evaporation and transpiration data -IMD

6 Cropping pattern crops and their consumptive use ndash Irrigation Dept

7 Soil map

8 Water quality data of surface streams and groundwater

9 Geological maps - GSI

30

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 415

02-08-2012

4

8

A global schematic of the hydrologic cycle

ET=evapotranspiration SF = surface runoff TF=tidal flow SR = sea riseGW int = ground water intrusion

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 515

02-08-2012

5

9

A schematic of the hydrologic cycle in the earth system

10

A schematic of the hydrologiccycle in land system

More complete cycle

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 615

02-08-2012

6

Water Distribution

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 715

02-08-2012

7

Land and Water Resources of India

Source-CWC India

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 815

02-08-2012

8

Source-CWC India

Water Resources Potential (km3) in Major River Basins of India

2 Hydrologic Budget

The water budget represents the inventory of water for a specific waterbody (or hydrologic region) during a certain time interval

It can be estimated using the mass conservation equation whichexpresses the balance between the inflows outflows and change ofstorage in any water body hydrologic region over a period of time For a

drainage basin

P - R - G - E - T = ∆S (1)

16

P=precipitation R= runoff G= ground water flow E=evaporationT= Transpiration S = storage

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 915

02-08-2012

9

For a drainage basin

17

Subscripts s=surface storage m = soil moisture storage g = ground water storagei = interception storage

Ir = rainfall intensity Isn = rate of snowfall Osr= surface runoff Osb= subsurfacerunoff Og = ground water runoff e = rate of evaporation et = rate of transpirationf = infiltration rate

( ) f eeOOO I I S S S S dt

d

O I dt dS

t gsbsr snr igms minusminusminusminusminusminus+=+++

minus=

3 Space-Time scales

Depending on the hydrologic problem under consideration thehydrologic cycle or its component can be treated at different scales oftime and space

The global scale is the largest spatial scale and the drainage basin thesmallest spatial scale

The time scales used in hydrologic studies range from a fraction of anhour to a year or perhaps many years The time scale used in ahydrologic study depends on the purpose of the study and the probleminvolved

18

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1015

02-08-2012

10

4 Catchment Area (drainage area drainage basin Watershed in USA)

983122983145983140983143983141 983148983145983150983141 983145983155 983137983148983155983151 983139983137983148983148983141983140 983108983145983158983145983140983141 983145983150 983125983123983105 983137983150983140 983127983137983156983141983154983155983144983141983140 983145983150 983125983115

19

983124983144983141 983148983145983150983141 983151983142 983156983144983141 983143983154983151983157983150983140 983159983137983156983141983154 983156983137983138983148983141 983142983154983151983149 983159983144983145983139983144 983156983144983141 983159983137983156983141983154 983156983137983138983148983141 983155983148983151983152983141983155 983140983151983159983150983159983137983154983140 983137983159983137983161

983142983154983151983149 983156983144983141 983148983145983150983141 983151983150 983138983151983156983144 983155983145983140983141983155 983145983155 983139983137983148983148983141983140 983156983144983141 983143983154983151983157983150983140 983159983137983156983141983154 983140983145983158983145983140983141

20

Catchmentboundary of

the Kosi riverAlmora

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1115

02-08-2012

11

21

StreamDrainagePattern

983107983144983137983154983137983139983156983141983154983145983155983156983145983139983155 983151983142 983156983144983141 983140983154983137983145983150983137983143983141

1 The number of streams

2 The length of streams

3

4 Drainage density

Stream density9830842-

km areaCatchment

streamsof Nunmber

A

N D s

s =

A

L D sd

nt)intermitteand(perennialchannelsstreamsallof lengthTotal=

22

Drainage density varies inversely as the length of overland flow andindicates the drainage efficiency of the basin

A high value indicates a well-developed network and torrential runoff causingintense floods while a low value indicates moderate runoff and highpermeability of the terrain

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1215

02-08-2012

12

983124983144983141 983155983144983137983152983141 983151983142 983137 983140983154983137983145983150983137983143983141 983138983137983155983145983150 983139983137983150 983143983141983150983141983154983137983148983148983161 983138983141 983141983160983152983154983141983155983155983141983140 983138983161

983110983151983154983149 983142983137983139983156983151983154 1 2

lt==

bb

b

f L

A

L

W F

983127 983138983101983137983160983145983137983148 983159983145983140983156983144 983151983142 983138983137983155983145983150

983116983138983101983137983160983145983137983148 983148983141983150983143983156983144 983151983142 983138983137983155983145983150 983145983141 983156983144983141 983140983145983155983156983137983150983139983141 983142983154983151983149 983156983144983141 983149983141983137983155983157983154983145983150983143 983152983151983145983150983156 983156983151 983156983144983141 983149983151983155983156

983154983141983149983151983156983141 983152983151983145983150983156 983151983150 983156983144983141 983138983137983155983145983150

983107983151983149983152983137983139983156983150983141983155983155 983139983151983141983142983142983145983139983145983141983150983156 1 2

ge=

A

PC b

983120983138983101983152983141983154983145983149983141983156983141983154 983151983142 983156983144983141 983138983137983155983145983150

Aπ 2 983101983139983145983154983139983157983149983142983141983154983141983150983139983141 983151983142 983139983145983154983139983157983148983137983154 983137983154983141983137 983144983137983158983145983150983143 983137983154983141983137 983141983153983157983137983148 983156983151 983156983144983141 983137983154983141983137 983151983142 983156983144983141 983138983137983155983145983150

983123983144983137983152983141 983142983137983139983156983151983154 1 2

gt= A

L B b

s

983109983148983151983150983143983137983156983145983151983150 983154983137983156983145983151 1 lengthWatershed

areawatershedof circleof Diameterle=

983107983145983154983139983157983148983137983154983145983156983161 9831549831379831569831459831511 perimeterwatershedof circleof Area

areaWatershedle=

24

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1315

02-08-2012

13

983106983137983155983145983150 983155983148983151983152983141 983101 983140983145983142983142983141983154983141983150983139983141 983145983150 983141983148983141983158983137983156983145983151983150 983138983141983156983159983141983141983150 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983137983150983140 983151983157983156983148983141983156

983140983145983155983156983137983150983139983141 983142983154983151983149 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983156983151 983151983157983156983148983141983156

983123983156983154983141983137983149 983155983148983151983152983141

1 983105983158983141983154983137983143983141 983155983156983154983141983137983149 983155983148983151983152983141983101983156983151983156983137983148 983142983137983148983148 983151983142 983156983144983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141983148983141983150983143983156983144 983151983142 983156983144983141

983141983150983156983145983154983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141

2

1

1

2 1

sum

sum=

=

=

N

ii

N

iii

m

L

S LS

2 The channel is divided into N number of reaches each having Slope Siand length Li (Johnstone and Cross 1949)

The equivalent stream slope

History of Hydrology

It is not easy to answer the question ldquoHow and where the science ofhydrology beganrdquo

In ancient times various hydrologic principles were successfullyapplied in practice

Early Chinese irrigation and flood control works and Greek andRoman aqueducts are worth mentioning

The Roman engineer Marcus Vitruvius (1st century BC) developedan early theory of the hydrologic cycle in his treatise On Architecture

During the Middle Ages Vitruviuss work was the standard referencebook on Hydrology

26

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1415

02-08-2012

14

15th century Leonardo da Vinci and Bernard Palissy gave independently ofeach other an accurate explanation of the hydrologic cycle

17th

century the modern science of hydrology was established by PerraultMariotte and Halley Perrault measured the rainfall and runoff in the SeineRiver and proved that rainfall contributes significantly to river flow He alsomeasured evaporation and capillarity Mariotte recorded the velocity of flow inthe Seine River and made measurements of the cross section estimating thedischarge Halley measured evaporation of the Mediterranean Sea

18th century The Bernoulli piezometer and theorem the Pitot tube andChezys formula are representative achievements

19th century experimental hydrology made considerable progress Darcyslaw of flow in porous media and Dupuit-Thiems well formula were

elaborated

Early 20th century governmental agencies developed their own programs ofhydrologic research Shermans unit hydrograph Hortons infiltration theoryand Theiss non-equilibrium approach to well hydraulics were based on theiranalyses and were the results of research programs

27

983107983144983151983159 983139983148983137983155983155983145983142983145983141983155 983156983144983141 983144983145983155983156983151983154983161 983151983142 983144983161983140983154983151983148983151983143983161 983145983150983156983151 983141983145983143983144983156 983152983141983154983145983151983140983155 983137983155

bull Period of Speculation ndash prior to AD 1400

bull Period of Observation ndash 1400 ndash 1600

bull Period of Measurement ndash 1600 ndash 1700

bull Period of Experimentation ndash 1700- 1800

bull Period of Modernization ndash 1800 ndash 1900

bull Period of Empiricism ndash 1900 ndash 1930

bull Period of Rationalization ndash 1930 ndash 1950

bull Period of Theorization ndash 1950 ndash to date

28

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1515

02-08-2012

983105983152983152983148983145983139983137983156983145983151983150983155 983113983150 983109983150983143983145983150983141983141983154983145983150983143

983112983161983140983154983151983148983151983143983161 983142983145983150983140983155 983145983156983155 983143983154983141983137983156983141983155983156 983137983152983152983148983145983139983137983156983145983151983150 983145983150 983156983144983141 983140983141983155983145983143983150 983137983150983140 983151983152983141983154983137983156983145983151983150 983151983142

983159983137983156983141983154 983154983141983155983151983157983154983139983141983155 983141983150983143983145983150983141983141983154983145983150983143 983155983157983139983144 983137983155 983156983144983151983155983141 983142983151983154

(983145) 983113983154983154983145983143983137983156983145983151983150

(983145983145) 983127983137983156983141983154 983155983157983152983152983148983161

(983145983145983145) 983110983148983151983151983140 983139983151983150983156983154983151983148

(983145983158) 983112983161983140983154983151983152983151983159983141983154 983137983150983140

(983158) 983118983137983158983145983143983137983156983145983151983150

29

1 Scientific Hydrology-a study concerned with academic aspects2 Engineering or applied Hydrology- a study concerned with

engineering applications

983112983161983140983154983151983148983151983143983145983139983137983148 983108983137983156983137

The basic hydrological data required are

1 Precipitation and climatological data - IMD

2 Topographic maps - SOI

3 Stream-flow records - CWC

4 Ground water data ndash Central Ground Water Board5 Evaporation and transpiration data -IMD

6 Cropping pattern crops and their consumptive use ndash Irrigation Dept

7 Soil map

8 Water quality data of surface streams and groundwater

9 Geological maps - GSI

30

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 515

02-08-2012

5

9

A schematic of the hydrologic cycle in the earth system

10

A schematic of the hydrologiccycle in land system

More complete cycle

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 615

02-08-2012

6

Water Distribution

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 715

02-08-2012

7

Land and Water Resources of India

Source-CWC India

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 815

02-08-2012

8

Source-CWC India

Water Resources Potential (km3) in Major River Basins of India

2 Hydrologic Budget

The water budget represents the inventory of water for a specific waterbody (or hydrologic region) during a certain time interval

It can be estimated using the mass conservation equation whichexpresses the balance between the inflows outflows and change ofstorage in any water body hydrologic region over a period of time For a

drainage basin

P - R - G - E - T = ∆S (1)

16

P=precipitation R= runoff G= ground water flow E=evaporationT= Transpiration S = storage

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 915

02-08-2012

9

For a drainage basin

17

Subscripts s=surface storage m = soil moisture storage g = ground water storagei = interception storage

Ir = rainfall intensity Isn = rate of snowfall Osr= surface runoff Osb= subsurfacerunoff Og = ground water runoff e = rate of evaporation et = rate of transpirationf = infiltration rate

( ) f eeOOO I I S S S S dt

d

O I dt dS

t gsbsr snr igms minusminusminusminusminusminus+=+++

minus=

3 Space-Time scales

Depending on the hydrologic problem under consideration thehydrologic cycle or its component can be treated at different scales oftime and space

The global scale is the largest spatial scale and the drainage basin thesmallest spatial scale

The time scales used in hydrologic studies range from a fraction of anhour to a year or perhaps many years The time scale used in ahydrologic study depends on the purpose of the study and the probleminvolved

18

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1015

02-08-2012

10

4 Catchment Area (drainage area drainage basin Watershed in USA)

983122983145983140983143983141 983148983145983150983141 983145983155 983137983148983155983151 983139983137983148983148983141983140 983108983145983158983145983140983141 983145983150 983125983123983105 983137983150983140 983127983137983156983141983154983155983144983141983140 983145983150 983125983115

19

983124983144983141 983148983145983150983141 983151983142 983156983144983141 983143983154983151983157983150983140 983159983137983156983141983154 983156983137983138983148983141 983142983154983151983149 983159983144983145983139983144 983156983144983141 983159983137983156983141983154 983156983137983138983148983141 983155983148983151983152983141983155 983140983151983159983150983159983137983154983140 983137983159983137983161

983142983154983151983149 983156983144983141 983148983145983150983141 983151983150 983138983151983156983144 983155983145983140983141983155 983145983155 983139983137983148983148983141983140 983156983144983141 983143983154983151983157983150983140 983159983137983156983141983154 983140983145983158983145983140983141

20

Catchmentboundary of

the Kosi riverAlmora

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1115

02-08-2012

11

21

StreamDrainagePattern

983107983144983137983154983137983139983156983141983154983145983155983156983145983139983155 983151983142 983156983144983141 983140983154983137983145983150983137983143983141

1 The number of streams

2 The length of streams

3

4 Drainage density

Stream density9830842-

km areaCatchment

streamsof Nunmber

A

N D s

s =

A

L D sd

nt)intermitteand(perennialchannelsstreamsallof lengthTotal=

22

Drainage density varies inversely as the length of overland flow andindicates the drainage efficiency of the basin

A high value indicates a well-developed network and torrential runoff causingintense floods while a low value indicates moderate runoff and highpermeability of the terrain

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1215

02-08-2012

12

983124983144983141 983155983144983137983152983141 983151983142 983137 983140983154983137983145983150983137983143983141 983138983137983155983145983150 983139983137983150 983143983141983150983141983154983137983148983148983161 983138983141 983141983160983152983154983141983155983155983141983140 983138983161

983110983151983154983149 983142983137983139983156983151983154 1 2

lt==

bb

b

f L

A

L

W F

983127 983138983101983137983160983145983137983148 983159983145983140983156983144 983151983142 983138983137983155983145983150

983116983138983101983137983160983145983137983148 983148983141983150983143983156983144 983151983142 983138983137983155983145983150 983145983141 983156983144983141 983140983145983155983156983137983150983139983141 983142983154983151983149 983156983144983141 983149983141983137983155983157983154983145983150983143 983152983151983145983150983156 983156983151 983156983144983141 983149983151983155983156

983154983141983149983151983156983141 983152983151983145983150983156 983151983150 983156983144983141 983138983137983155983145983150

983107983151983149983152983137983139983156983150983141983155983155 983139983151983141983142983142983145983139983145983141983150983156 1 2

ge=

A

PC b

983120983138983101983152983141983154983145983149983141983156983141983154 983151983142 983156983144983141 983138983137983155983145983150

Aπ 2 983101983139983145983154983139983157983149983142983141983154983141983150983139983141 983151983142 983139983145983154983139983157983148983137983154 983137983154983141983137 983144983137983158983145983150983143 983137983154983141983137 983141983153983157983137983148 983156983151 983156983144983141 983137983154983141983137 983151983142 983156983144983141 983138983137983155983145983150

983123983144983137983152983141 983142983137983139983156983151983154 1 2

gt= A

L B b

s

983109983148983151983150983143983137983156983145983151983150 983154983137983156983145983151 1 lengthWatershed

areawatershedof circleof Diameterle=

983107983145983154983139983157983148983137983154983145983156983161 9831549831379831569831459831511 perimeterwatershedof circleof Area

areaWatershedle=

24

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1315

02-08-2012

13

983106983137983155983145983150 983155983148983151983152983141 983101 983140983145983142983142983141983154983141983150983139983141 983145983150 983141983148983141983158983137983156983145983151983150 983138983141983156983159983141983141983150 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983137983150983140 983151983157983156983148983141983156

983140983145983155983156983137983150983139983141 983142983154983151983149 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983156983151 983151983157983156983148983141983156

983123983156983154983141983137983149 983155983148983151983152983141

1 983105983158983141983154983137983143983141 983155983156983154983141983137983149 983155983148983151983152983141983101983156983151983156983137983148 983142983137983148983148 983151983142 983156983144983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141983148983141983150983143983156983144 983151983142 983156983144983141

983141983150983156983145983154983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141

2

1

1

2 1

sum

sum=

=

=

N

ii

N

iii

m

L

S LS

2 The channel is divided into N number of reaches each having Slope Siand length Li (Johnstone and Cross 1949)

The equivalent stream slope

History of Hydrology

It is not easy to answer the question ldquoHow and where the science ofhydrology beganrdquo

In ancient times various hydrologic principles were successfullyapplied in practice

Early Chinese irrigation and flood control works and Greek andRoman aqueducts are worth mentioning

The Roman engineer Marcus Vitruvius (1st century BC) developedan early theory of the hydrologic cycle in his treatise On Architecture

During the Middle Ages Vitruviuss work was the standard referencebook on Hydrology

26

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1415

02-08-2012

14

15th century Leonardo da Vinci and Bernard Palissy gave independently ofeach other an accurate explanation of the hydrologic cycle

17th

century the modern science of hydrology was established by PerraultMariotte and Halley Perrault measured the rainfall and runoff in the SeineRiver and proved that rainfall contributes significantly to river flow He alsomeasured evaporation and capillarity Mariotte recorded the velocity of flow inthe Seine River and made measurements of the cross section estimating thedischarge Halley measured evaporation of the Mediterranean Sea

18th century The Bernoulli piezometer and theorem the Pitot tube andChezys formula are representative achievements

19th century experimental hydrology made considerable progress Darcyslaw of flow in porous media and Dupuit-Thiems well formula were

elaborated

Early 20th century governmental agencies developed their own programs ofhydrologic research Shermans unit hydrograph Hortons infiltration theoryand Theiss non-equilibrium approach to well hydraulics were based on theiranalyses and were the results of research programs

27

983107983144983151983159 983139983148983137983155983155983145983142983145983141983155 983156983144983141 983144983145983155983156983151983154983161 983151983142 983144983161983140983154983151983148983151983143983161 983145983150983156983151 983141983145983143983144983156 983152983141983154983145983151983140983155 983137983155

bull Period of Speculation ndash prior to AD 1400

bull Period of Observation ndash 1400 ndash 1600

bull Period of Measurement ndash 1600 ndash 1700

bull Period of Experimentation ndash 1700- 1800

bull Period of Modernization ndash 1800 ndash 1900

bull Period of Empiricism ndash 1900 ndash 1930

bull Period of Rationalization ndash 1930 ndash 1950

bull Period of Theorization ndash 1950 ndash to date

28

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1515

02-08-2012

983105983152983152983148983145983139983137983156983145983151983150983155 983113983150 983109983150983143983145983150983141983141983154983145983150983143

983112983161983140983154983151983148983151983143983161 983142983145983150983140983155 983145983156983155 983143983154983141983137983156983141983155983156 983137983152983152983148983145983139983137983156983145983151983150 983145983150 983156983144983141 983140983141983155983145983143983150 983137983150983140 983151983152983141983154983137983156983145983151983150 983151983142

983159983137983156983141983154 983154983141983155983151983157983154983139983141983155 983141983150983143983145983150983141983141983154983145983150983143 983155983157983139983144 983137983155 983156983144983151983155983141 983142983151983154

(983145) 983113983154983154983145983143983137983156983145983151983150

(983145983145) 983127983137983156983141983154 983155983157983152983152983148983161

(983145983145983145) 983110983148983151983151983140 983139983151983150983156983154983151983148

(983145983158) 983112983161983140983154983151983152983151983159983141983154 983137983150983140

(983158) 983118983137983158983145983143983137983156983145983151983150

29

1 Scientific Hydrology-a study concerned with academic aspects2 Engineering or applied Hydrology- a study concerned with

engineering applications

983112983161983140983154983151983148983151983143983145983139983137983148 983108983137983156983137

The basic hydrological data required are

1 Precipitation and climatological data - IMD

2 Topographic maps - SOI

3 Stream-flow records - CWC

4 Ground water data ndash Central Ground Water Board5 Evaporation and transpiration data -IMD

6 Cropping pattern crops and their consumptive use ndash Irrigation Dept

7 Soil map

8 Water quality data of surface streams and groundwater

9 Geological maps - GSI

30

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 615

02-08-2012

6

Water Distribution

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 715

02-08-2012

7

Land and Water Resources of India

Source-CWC India

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 815

02-08-2012

8

Source-CWC India

Water Resources Potential (km3) in Major River Basins of India

2 Hydrologic Budget

The water budget represents the inventory of water for a specific waterbody (or hydrologic region) during a certain time interval

It can be estimated using the mass conservation equation whichexpresses the balance between the inflows outflows and change ofstorage in any water body hydrologic region over a period of time For a

drainage basin

P - R - G - E - T = ∆S (1)

16

P=precipitation R= runoff G= ground water flow E=evaporationT= Transpiration S = storage

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 915

02-08-2012

9

For a drainage basin

17

Subscripts s=surface storage m = soil moisture storage g = ground water storagei = interception storage

Ir = rainfall intensity Isn = rate of snowfall Osr= surface runoff Osb= subsurfacerunoff Og = ground water runoff e = rate of evaporation et = rate of transpirationf = infiltration rate

( ) f eeOOO I I S S S S dt

d

O I dt dS

t gsbsr snr igms minusminusminusminusminusminus+=+++

minus=

3 Space-Time scales

Depending on the hydrologic problem under consideration thehydrologic cycle or its component can be treated at different scales oftime and space

The global scale is the largest spatial scale and the drainage basin thesmallest spatial scale

The time scales used in hydrologic studies range from a fraction of anhour to a year or perhaps many years The time scale used in ahydrologic study depends on the purpose of the study and the probleminvolved

18

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1015

02-08-2012

10

4 Catchment Area (drainage area drainage basin Watershed in USA)

983122983145983140983143983141 983148983145983150983141 983145983155 983137983148983155983151 983139983137983148983148983141983140 983108983145983158983145983140983141 983145983150 983125983123983105 983137983150983140 983127983137983156983141983154983155983144983141983140 983145983150 983125983115

19

983124983144983141 983148983145983150983141 983151983142 983156983144983141 983143983154983151983157983150983140 983159983137983156983141983154 983156983137983138983148983141 983142983154983151983149 983159983144983145983139983144 983156983144983141 983159983137983156983141983154 983156983137983138983148983141 983155983148983151983152983141983155 983140983151983159983150983159983137983154983140 983137983159983137983161

983142983154983151983149 983156983144983141 983148983145983150983141 983151983150 983138983151983156983144 983155983145983140983141983155 983145983155 983139983137983148983148983141983140 983156983144983141 983143983154983151983157983150983140 983159983137983156983141983154 983140983145983158983145983140983141

20

Catchmentboundary of

the Kosi riverAlmora

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1115

02-08-2012

11

21

StreamDrainagePattern

983107983144983137983154983137983139983156983141983154983145983155983156983145983139983155 983151983142 983156983144983141 983140983154983137983145983150983137983143983141

1 The number of streams

2 The length of streams

3

4 Drainage density

Stream density9830842-

km areaCatchment

streamsof Nunmber

A

N D s

s =

A

L D sd

nt)intermitteand(perennialchannelsstreamsallof lengthTotal=

22

Drainage density varies inversely as the length of overland flow andindicates the drainage efficiency of the basin

A high value indicates a well-developed network and torrential runoff causingintense floods while a low value indicates moderate runoff and highpermeability of the terrain

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1215

02-08-2012

12

983124983144983141 983155983144983137983152983141 983151983142 983137 983140983154983137983145983150983137983143983141 983138983137983155983145983150 983139983137983150 983143983141983150983141983154983137983148983148983161 983138983141 983141983160983152983154983141983155983155983141983140 983138983161

983110983151983154983149 983142983137983139983156983151983154 1 2

lt==

bb

b

f L

A

L

W F

983127 983138983101983137983160983145983137983148 983159983145983140983156983144 983151983142 983138983137983155983145983150

983116983138983101983137983160983145983137983148 983148983141983150983143983156983144 983151983142 983138983137983155983145983150 983145983141 983156983144983141 983140983145983155983156983137983150983139983141 983142983154983151983149 983156983144983141 983149983141983137983155983157983154983145983150983143 983152983151983145983150983156 983156983151 983156983144983141 983149983151983155983156

983154983141983149983151983156983141 983152983151983145983150983156 983151983150 983156983144983141 983138983137983155983145983150

983107983151983149983152983137983139983156983150983141983155983155 983139983151983141983142983142983145983139983145983141983150983156 1 2

ge=

A

PC b

983120983138983101983152983141983154983145983149983141983156983141983154 983151983142 983156983144983141 983138983137983155983145983150

Aπ 2 983101983139983145983154983139983157983149983142983141983154983141983150983139983141 983151983142 983139983145983154983139983157983148983137983154 983137983154983141983137 983144983137983158983145983150983143 983137983154983141983137 983141983153983157983137983148 983156983151 983156983144983141 983137983154983141983137 983151983142 983156983144983141 983138983137983155983145983150

983123983144983137983152983141 983142983137983139983156983151983154 1 2

gt= A

L B b

s

983109983148983151983150983143983137983156983145983151983150 983154983137983156983145983151 1 lengthWatershed

areawatershedof circleof Diameterle=

983107983145983154983139983157983148983137983154983145983156983161 9831549831379831569831459831511 perimeterwatershedof circleof Area

areaWatershedle=

24

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1315

02-08-2012

13

983106983137983155983145983150 983155983148983151983152983141 983101 983140983145983142983142983141983154983141983150983139983141 983145983150 983141983148983141983158983137983156983145983151983150 983138983141983156983159983141983141983150 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983137983150983140 983151983157983156983148983141983156

983140983145983155983156983137983150983139983141 983142983154983151983149 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983156983151 983151983157983156983148983141983156

983123983156983154983141983137983149 983155983148983151983152983141

1 983105983158983141983154983137983143983141 983155983156983154983141983137983149 983155983148983151983152983141983101983156983151983156983137983148 983142983137983148983148 983151983142 983156983144983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141983148983141983150983143983156983144 983151983142 983156983144983141

983141983150983156983145983154983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141

2

1

1

2 1

sum

sum=

=

=

N

ii

N

iii

m

L

S LS

2 The channel is divided into N number of reaches each having Slope Siand length Li (Johnstone and Cross 1949)

The equivalent stream slope

History of Hydrology

It is not easy to answer the question ldquoHow and where the science ofhydrology beganrdquo

In ancient times various hydrologic principles were successfullyapplied in practice

Early Chinese irrigation and flood control works and Greek andRoman aqueducts are worth mentioning

The Roman engineer Marcus Vitruvius (1st century BC) developedan early theory of the hydrologic cycle in his treatise On Architecture

During the Middle Ages Vitruviuss work was the standard referencebook on Hydrology

26

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1415

02-08-2012

14

15th century Leonardo da Vinci and Bernard Palissy gave independently ofeach other an accurate explanation of the hydrologic cycle

17th

century the modern science of hydrology was established by PerraultMariotte and Halley Perrault measured the rainfall and runoff in the SeineRiver and proved that rainfall contributes significantly to river flow He alsomeasured evaporation and capillarity Mariotte recorded the velocity of flow inthe Seine River and made measurements of the cross section estimating thedischarge Halley measured evaporation of the Mediterranean Sea

18th century The Bernoulli piezometer and theorem the Pitot tube andChezys formula are representative achievements

19th century experimental hydrology made considerable progress Darcyslaw of flow in porous media and Dupuit-Thiems well formula were

elaborated

Early 20th century governmental agencies developed their own programs ofhydrologic research Shermans unit hydrograph Hortons infiltration theoryand Theiss non-equilibrium approach to well hydraulics were based on theiranalyses and were the results of research programs

27

983107983144983151983159 983139983148983137983155983155983145983142983145983141983155 983156983144983141 983144983145983155983156983151983154983161 983151983142 983144983161983140983154983151983148983151983143983161 983145983150983156983151 983141983145983143983144983156 983152983141983154983145983151983140983155 983137983155

bull Period of Speculation ndash prior to AD 1400

bull Period of Observation ndash 1400 ndash 1600

bull Period of Measurement ndash 1600 ndash 1700

bull Period of Experimentation ndash 1700- 1800

bull Period of Modernization ndash 1800 ndash 1900

bull Period of Empiricism ndash 1900 ndash 1930

bull Period of Rationalization ndash 1930 ndash 1950

bull Period of Theorization ndash 1950 ndash to date

28

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1515

02-08-2012

983105983152983152983148983145983139983137983156983145983151983150983155 983113983150 983109983150983143983145983150983141983141983154983145983150983143

983112983161983140983154983151983148983151983143983161 983142983145983150983140983155 983145983156983155 983143983154983141983137983156983141983155983156 983137983152983152983148983145983139983137983156983145983151983150 983145983150 983156983144983141 983140983141983155983145983143983150 983137983150983140 983151983152983141983154983137983156983145983151983150 983151983142

983159983137983156983141983154 983154983141983155983151983157983154983139983141983155 983141983150983143983145983150983141983141983154983145983150983143 983155983157983139983144 983137983155 983156983144983151983155983141 983142983151983154

(983145) 983113983154983154983145983143983137983156983145983151983150

(983145983145) 983127983137983156983141983154 983155983157983152983152983148983161

(983145983145983145) 983110983148983151983151983140 983139983151983150983156983154983151983148

(983145983158) 983112983161983140983154983151983152983151983159983141983154 983137983150983140

(983158) 983118983137983158983145983143983137983156983145983151983150

29

1 Scientific Hydrology-a study concerned with academic aspects2 Engineering or applied Hydrology- a study concerned with

engineering applications

983112983161983140983154983151983148983151983143983145983139983137983148 983108983137983156983137

The basic hydrological data required are

1 Precipitation and climatological data - IMD

2 Topographic maps - SOI

3 Stream-flow records - CWC

4 Ground water data ndash Central Ground Water Board5 Evaporation and transpiration data -IMD

6 Cropping pattern crops and their consumptive use ndash Irrigation Dept

7 Soil map

8 Water quality data of surface streams and groundwater

9 Geological maps - GSI

30

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 715

02-08-2012

7

Land and Water Resources of India

Source-CWC India

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 815

02-08-2012

8

Source-CWC India

Water Resources Potential (km3) in Major River Basins of India

2 Hydrologic Budget

The water budget represents the inventory of water for a specific waterbody (or hydrologic region) during a certain time interval

It can be estimated using the mass conservation equation whichexpresses the balance between the inflows outflows and change ofstorage in any water body hydrologic region over a period of time For a

drainage basin

P - R - G - E - T = ∆S (1)

16

P=precipitation R= runoff G= ground water flow E=evaporationT= Transpiration S = storage

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 915

02-08-2012

9

For a drainage basin

17

Subscripts s=surface storage m = soil moisture storage g = ground water storagei = interception storage

Ir = rainfall intensity Isn = rate of snowfall Osr= surface runoff Osb= subsurfacerunoff Og = ground water runoff e = rate of evaporation et = rate of transpirationf = infiltration rate

( ) f eeOOO I I S S S S dt

d

O I dt dS

t gsbsr snr igms minusminusminusminusminusminus+=+++

minus=

3 Space-Time scales

Depending on the hydrologic problem under consideration thehydrologic cycle or its component can be treated at different scales oftime and space

The global scale is the largest spatial scale and the drainage basin thesmallest spatial scale

The time scales used in hydrologic studies range from a fraction of anhour to a year or perhaps many years The time scale used in ahydrologic study depends on the purpose of the study and the probleminvolved

18

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1015

02-08-2012

10

4 Catchment Area (drainage area drainage basin Watershed in USA)

983122983145983140983143983141 983148983145983150983141 983145983155 983137983148983155983151 983139983137983148983148983141983140 983108983145983158983145983140983141 983145983150 983125983123983105 983137983150983140 983127983137983156983141983154983155983144983141983140 983145983150 983125983115

19

983124983144983141 983148983145983150983141 983151983142 983156983144983141 983143983154983151983157983150983140 983159983137983156983141983154 983156983137983138983148983141 983142983154983151983149 983159983144983145983139983144 983156983144983141 983159983137983156983141983154 983156983137983138983148983141 983155983148983151983152983141983155 983140983151983159983150983159983137983154983140 983137983159983137983161

983142983154983151983149 983156983144983141 983148983145983150983141 983151983150 983138983151983156983144 983155983145983140983141983155 983145983155 983139983137983148983148983141983140 983156983144983141 983143983154983151983157983150983140 983159983137983156983141983154 983140983145983158983145983140983141

20

Catchmentboundary of

the Kosi riverAlmora

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1115

02-08-2012

11

21

StreamDrainagePattern

983107983144983137983154983137983139983156983141983154983145983155983156983145983139983155 983151983142 983156983144983141 983140983154983137983145983150983137983143983141

1 The number of streams

2 The length of streams

3

4 Drainage density

Stream density9830842-

km areaCatchment

streamsof Nunmber

A

N D s

s =

A

L D sd

nt)intermitteand(perennialchannelsstreamsallof lengthTotal=

22

Drainage density varies inversely as the length of overland flow andindicates the drainage efficiency of the basin

A high value indicates a well-developed network and torrential runoff causingintense floods while a low value indicates moderate runoff and highpermeability of the terrain

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1215

02-08-2012

12

983124983144983141 983155983144983137983152983141 983151983142 983137 983140983154983137983145983150983137983143983141 983138983137983155983145983150 983139983137983150 983143983141983150983141983154983137983148983148983161 983138983141 983141983160983152983154983141983155983155983141983140 983138983161

983110983151983154983149 983142983137983139983156983151983154 1 2

lt==

bb

b

f L

A

L

W F

983127 983138983101983137983160983145983137983148 983159983145983140983156983144 983151983142 983138983137983155983145983150

983116983138983101983137983160983145983137983148 983148983141983150983143983156983144 983151983142 983138983137983155983145983150 983145983141 983156983144983141 983140983145983155983156983137983150983139983141 983142983154983151983149 983156983144983141 983149983141983137983155983157983154983145983150983143 983152983151983145983150983156 983156983151 983156983144983141 983149983151983155983156

983154983141983149983151983156983141 983152983151983145983150983156 983151983150 983156983144983141 983138983137983155983145983150

983107983151983149983152983137983139983156983150983141983155983155 983139983151983141983142983142983145983139983145983141983150983156 1 2

ge=

A

PC b

983120983138983101983152983141983154983145983149983141983156983141983154 983151983142 983156983144983141 983138983137983155983145983150

Aπ 2 983101983139983145983154983139983157983149983142983141983154983141983150983139983141 983151983142 983139983145983154983139983157983148983137983154 983137983154983141983137 983144983137983158983145983150983143 983137983154983141983137 983141983153983157983137983148 983156983151 983156983144983141 983137983154983141983137 983151983142 983156983144983141 983138983137983155983145983150

983123983144983137983152983141 983142983137983139983156983151983154 1 2

gt= A

L B b

s

983109983148983151983150983143983137983156983145983151983150 983154983137983156983145983151 1 lengthWatershed

areawatershedof circleof Diameterle=

983107983145983154983139983157983148983137983154983145983156983161 9831549831379831569831459831511 perimeterwatershedof circleof Area

areaWatershedle=

24

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1315

02-08-2012

13

983106983137983155983145983150 983155983148983151983152983141 983101 983140983145983142983142983141983154983141983150983139983141 983145983150 983141983148983141983158983137983156983145983151983150 983138983141983156983159983141983141983150 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983137983150983140 983151983157983156983148983141983156

983140983145983155983156983137983150983139983141 983142983154983151983149 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983156983151 983151983157983156983148983141983156

983123983156983154983141983137983149 983155983148983151983152983141

1 983105983158983141983154983137983143983141 983155983156983154983141983137983149 983155983148983151983152983141983101983156983151983156983137983148 983142983137983148983148 983151983142 983156983144983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141983148983141983150983143983156983144 983151983142 983156983144983141

983141983150983156983145983154983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141

2

1

1

2 1

sum

sum=

=

=

N

ii

N

iii

m

L

S LS

2 The channel is divided into N number of reaches each having Slope Siand length Li (Johnstone and Cross 1949)

The equivalent stream slope

History of Hydrology

It is not easy to answer the question ldquoHow and where the science ofhydrology beganrdquo

In ancient times various hydrologic principles were successfullyapplied in practice

Early Chinese irrigation and flood control works and Greek andRoman aqueducts are worth mentioning

The Roman engineer Marcus Vitruvius (1st century BC) developedan early theory of the hydrologic cycle in his treatise On Architecture

During the Middle Ages Vitruviuss work was the standard referencebook on Hydrology

26

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1415

02-08-2012

14

15th century Leonardo da Vinci and Bernard Palissy gave independently ofeach other an accurate explanation of the hydrologic cycle

17th

century the modern science of hydrology was established by PerraultMariotte and Halley Perrault measured the rainfall and runoff in the SeineRiver and proved that rainfall contributes significantly to river flow He alsomeasured evaporation and capillarity Mariotte recorded the velocity of flow inthe Seine River and made measurements of the cross section estimating thedischarge Halley measured evaporation of the Mediterranean Sea

18th century The Bernoulli piezometer and theorem the Pitot tube andChezys formula are representative achievements

19th century experimental hydrology made considerable progress Darcyslaw of flow in porous media and Dupuit-Thiems well formula were

elaborated

Early 20th century governmental agencies developed their own programs ofhydrologic research Shermans unit hydrograph Hortons infiltration theoryand Theiss non-equilibrium approach to well hydraulics were based on theiranalyses and were the results of research programs

27

983107983144983151983159 983139983148983137983155983155983145983142983145983141983155 983156983144983141 983144983145983155983156983151983154983161 983151983142 983144983161983140983154983151983148983151983143983161 983145983150983156983151 983141983145983143983144983156 983152983141983154983145983151983140983155 983137983155

bull Period of Speculation ndash prior to AD 1400

bull Period of Observation ndash 1400 ndash 1600

bull Period of Measurement ndash 1600 ndash 1700

bull Period of Experimentation ndash 1700- 1800

bull Period of Modernization ndash 1800 ndash 1900

bull Period of Empiricism ndash 1900 ndash 1930

bull Period of Rationalization ndash 1930 ndash 1950

bull Period of Theorization ndash 1950 ndash to date

28

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1515

02-08-2012

983105983152983152983148983145983139983137983156983145983151983150983155 983113983150 983109983150983143983145983150983141983141983154983145983150983143

983112983161983140983154983151983148983151983143983161 983142983145983150983140983155 983145983156983155 983143983154983141983137983156983141983155983156 983137983152983152983148983145983139983137983156983145983151983150 983145983150 983156983144983141 983140983141983155983145983143983150 983137983150983140 983151983152983141983154983137983156983145983151983150 983151983142

983159983137983156983141983154 983154983141983155983151983157983154983139983141983155 983141983150983143983145983150983141983141983154983145983150983143 983155983157983139983144 983137983155 983156983144983151983155983141 983142983151983154

(983145) 983113983154983154983145983143983137983156983145983151983150

(983145983145) 983127983137983156983141983154 983155983157983152983152983148983161

(983145983145983145) 983110983148983151983151983140 983139983151983150983156983154983151983148

(983145983158) 983112983161983140983154983151983152983151983159983141983154 983137983150983140

(983158) 983118983137983158983145983143983137983156983145983151983150

29

1 Scientific Hydrology-a study concerned with academic aspects2 Engineering or applied Hydrology- a study concerned with

engineering applications

983112983161983140983154983151983148983151983143983145983139983137983148 983108983137983156983137

The basic hydrological data required are

1 Precipitation and climatological data - IMD

2 Topographic maps - SOI

3 Stream-flow records - CWC

4 Ground water data ndash Central Ground Water Board5 Evaporation and transpiration data -IMD

6 Cropping pattern crops and their consumptive use ndash Irrigation Dept

7 Soil map

8 Water quality data of surface streams and groundwater

9 Geological maps - GSI

30

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 815

02-08-2012

8

Source-CWC India

Water Resources Potential (km3) in Major River Basins of India

2 Hydrologic Budget

The water budget represents the inventory of water for a specific waterbody (or hydrologic region) during a certain time interval

It can be estimated using the mass conservation equation whichexpresses the balance between the inflows outflows and change ofstorage in any water body hydrologic region over a period of time For a

drainage basin

P - R - G - E - T = ∆S (1)

16

P=precipitation R= runoff G= ground water flow E=evaporationT= Transpiration S = storage

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 915

02-08-2012

9

For a drainage basin

17

Subscripts s=surface storage m = soil moisture storage g = ground water storagei = interception storage

Ir = rainfall intensity Isn = rate of snowfall Osr= surface runoff Osb= subsurfacerunoff Og = ground water runoff e = rate of evaporation et = rate of transpirationf = infiltration rate

( ) f eeOOO I I S S S S dt

d

O I dt dS

t gsbsr snr igms minusminusminusminusminusminus+=+++

minus=

3 Space-Time scales

Depending on the hydrologic problem under consideration thehydrologic cycle or its component can be treated at different scales oftime and space

The global scale is the largest spatial scale and the drainage basin thesmallest spatial scale

The time scales used in hydrologic studies range from a fraction of anhour to a year or perhaps many years The time scale used in ahydrologic study depends on the purpose of the study and the probleminvolved

18

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1015

02-08-2012

10

4 Catchment Area (drainage area drainage basin Watershed in USA)

983122983145983140983143983141 983148983145983150983141 983145983155 983137983148983155983151 983139983137983148983148983141983140 983108983145983158983145983140983141 983145983150 983125983123983105 983137983150983140 983127983137983156983141983154983155983144983141983140 983145983150 983125983115

19

983124983144983141 983148983145983150983141 983151983142 983156983144983141 983143983154983151983157983150983140 983159983137983156983141983154 983156983137983138983148983141 983142983154983151983149 983159983144983145983139983144 983156983144983141 983159983137983156983141983154 983156983137983138983148983141 983155983148983151983152983141983155 983140983151983159983150983159983137983154983140 983137983159983137983161

983142983154983151983149 983156983144983141 983148983145983150983141 983151983150 983138983151983156983144 983155983145983140983141983155 983145983155 983139983137983148983148983141983140 983156983144983141 983143983154983151983157983150983140 983159983137983156983141983154 983140983145983158983145983140983141

20

Catchmentboundary of

the Kosi riverAlmora

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1115

02-08-2012

11

21

StreamDrainagePattern

983107983144983137983154983137983139983156983141983154983145983155983156983145983139983155 983151983142 983156983144983141 983140983154983137983145983150983137983143983141

1 The number of streams

2 The length of streams

3

4 Drainage density

Stream density9830842-

km areaCatchment

streamsof Nunmber

A

N D s

s =

A

L D sd

nt)intermitteand(perennialchannelsstreamsallof lengthTotal=

22

Drainage density varies inversely as the length of overland flow andindicates the drainage efficiency of the basin

A high value indicates a well-developed network and torrential runoff causingintense floods while a low value indicates moderate runoff and highpermeability of the terrain

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1215

02-08-2012

12

983124983144983141 983155983144983137983152983141 983151983142 983137 983140983154983137983145983150983137983143983141 983138983137983155983145983150 983139983137983150 983143983141983150983141983154983137983148983148983161 983138983141 983141983160983152983154983141983155983155983141983140 983138983161

983110983151983154983149 983142983137983139983156983151983154 1 2

lt==

bb

b

f L

A

L

W F

983127 983138983101983137983160983145983137983148 983159983145983140983156983144 983151983142 983138983137983155983145983150

983116983138983101983137983160983145983137983148 983148983141983150983143983156983144 983151983142 983138983137983155983145983150 983145983141 983156983144983141 983140983145983155983156983137983150983139983141 983142983154983151983149 983156983144983141 983149983141983137983155983157983154983145983150983143 983152983151983145983150983156 983156983151 983156983144983141 983149983151983155983156

983154983141983149983151983156983141 983152983151983145983150983156 983151983150 983156983144983141 983138983137983155983145983150

983107983151983149983152983137983139983156983150983141983155983155 983139983151983141983142983142983145983139983145983141983150983156 1 2

ge=

A

PC b

983120983138983101983152983141983154983145983149983141983156983141983154 983151983142 983156983144983141 983138983137983155983145983150

Aπ 2 983101983139983145983154983139983157983149983142983141983154983141983150983139983141 983151983142 983139983145983154983139983157983148983137983154 983137983154983141983137 983144983137983158983145983150983143 983137983154983141983137 983141983153983157983137983148 983156983151 983156983144983141 983137983154983141983137 983151983142 983156983144983141 983138983137983155983145983150

983123983144983137983152983141 983142983137983139983156983151983154 1 2

gt= A

L B b

s

983109983148983151983150983143983137983156983145983151983150 983154983137983156983145983151 1 lengthWatershed

areawatershedof circleof Diameterle=

983107983145983154983139983157983148983137983154983145983156983161 9831549831379831569831459831511 perimeterwatershedof circleof Area

areaWatershedle=

24

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1315

02-08-2012

13

983106983137983155983145983150 983155983148983151983152983141 983101 983140983145983142983142983141983154983141983150983139983141 983145983150 983141983148983141983158983137983156983145983151983150 983138983141983156983159983141983141983150 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983137983150983140 983151983157983156983148983141983156

983140983145983155983156983137983150983139983141 983142983154983151983149 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983156983151 983151983157983156983148983141983156

983123983156983154983141983137983149 983155983148983151983152983141

1 983105983158983141983154983137983143983141 983155983156983154983141983137983149 983155983148983151983152983141983101983156983151983156983137983148 983142983137983148983148 983151983142 983156983144983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141983148983141983150983143983156983144 983151983142 983156983144983141

983141983150983156983145983154983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141

2

1

1

2 1

sum

sum=

=

=

N

ii

N

iii

m

L

S LS

2 The channel is divided into N number of reaches each having Slope Siand length Li (Johnstone and Cross 1949)

The equivalent stream slope

History of Hydrology

It is not easy to answer the question ldquoHow and where the science ofhydrology beganrdquo

In ancient times various hydrologic principles were successfullyapplied in practice

Early Chinese irrigation and flood control works and Greek andRoman aqueducts are worth mentioning

The Roman engineer Marcus Vitruvius (1st century BC) developedan early theory of the hydrologic cycle in his treatise On Architecture

During the Middle Ages Vitruviuss work was the standard referencebook on Hydrology

26

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1415

02-08-2012

14

15th century Leonardo da Vinci and Bernard Palissy gave independently ofeach other an accurate explanation of the hydrologic cycle

17th

century the modern science of hydrology was established by PerraultMariotte and Halley Perrault measured the rainfall and runoff in the SeineRiver and proved that rainfall contributes significantly to river flow He alsomeasured evaporation and capillarity Mariotte recorded the velocity of flow inthe Seine River and made measurements of the cross section estimating thedischarge Halley measured evaporation of the Mediterranean Sea

18th century The Bernoulli piezometer and theorem the Pitot tube andChezys formula are representative achievements

19th century experimental hydrology made considerable progress Darcyslaw of flow in porous media and Dupuit-Thiems well formula were

elaborated

Early 20th century governmental agencies developed their own programs ofhydrologic research Shermans unit hydrograph Hortons infiltration theoryand Theiss non-equilibrium approach to well hydraulics were based on theiranalyses and were the results of research programs

27

983107983144983151983159 983139983148983137983155983155983145983142983145983141983155 983156983144983141 983144983145983155983156983151983154983161 983151983142 983144983161983140983154983151983148983151983143983161 983145983150983156983151 983141983145983143983144983156 983152983141983154983145983151983140983155 983137983155

bull Period of Speculation ndash prior to AD 1400

bull Period of Observation ndash 1400 ndash 1600

bull Period of Measurement ndash 1600 ndash 1700

bull Period of Experimentation ndash 1700- 1800

bull Period of Modernization ndash 1800 ndash 1900

bull Period of Empiricism ndash 1900 ndash 1930

bull Period of Rationalization ndash 1930 ndash 1950

bull Period of Theorization ndash 1950 ndash to date

28

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1515

02-08-2012

983105983152983152983148983145983139983137983156983145983151983150983155 983113983150 983109983150983143983145983150983141983141983154983145983150983143

983112983161983140983154983151983148983151983143983161 983142983145983150983140983155 983145983156983155 983143983154983141983137983156983141983155983156 983137983152983152983148983145983139983137983156983145983151983150 983145983150 983156983144983141 983140983141983155983145983143983150 983137983150983140 983151983152983141983154983137983156983145983151983150 983151983142

983159983137983156983141983154 983154983141983155983151983157983154983139983141983155 983141983150983143983145983150983141983141983154983145983150983143 983155983157983139983144 983137983155 983156983144983151983155983141 983142983151983154

(983145) 983113983154983154983145983143983137983156983145983151983150

(983145983145) 983127983137983156983141983154 983155983157983152983152983148983161

(983145983145983145) 983110983148983151983151983140 983139983151983150983156983154983151983148

(983145983158) 983112983161983140983154983151983152983151983159983141983154 983137983150983140

(983158) 983118983137983158983145983143983137983156983145983151983150

29

1 Scientific Hydrology-a study concerned with academic aspects2 Engineering or applied Hydrology- a study concerned with

engineering applications

983112983161983140983154983151983148983151983143983145983139983137983148 983108983137983156983137

The basic hydrological data required are

1 Precipitation and climatological data - IMD

2 Topographic maps - SOI

3 Stream-flow records - CWC

4 Ground water data ndash Central Ground Water Board5 Evaporation and transpiration data -IMD

6 Cropping pattern crops and their consumptive use ndash Irrigation Dept

7 Soil map

8 Water quality data of surface streams and groundwater

9 Geological maps - GSI

30

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 915

02-08-2012

9

For a drainage basin

17

Subscripts s=surface storage m = soil moisture storage g = ground water storagei = interception storage

Ir = rainfall intensity Isn = rate of snowfall Osr= surface runoff Osb= subsurfacerunoff Og = ground water runoff e = rate of evaporation et = rate of transpirationf = infiltration rate

( ) f eeOOO I I S S S S dt

d

O I dt dS

t gsbsr snr igms minusminusminusminusminusminus+=+++

minus=

3 Space-Time scales

Depending on the hydrologic problem under consideration thehydrologic cycle or its component can be treated at different scales oftime and space

The global scale is the largest spatial scale and the drainage basin thesmallest spatial scale

The time scales used in hydrologic studies range from a fraction of anhour to a year or perhaps many years The time scale used in ahydrologic study depends on the purpose of the study and the probleminvolved

18

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1015

02-08-2012

10

4 Catchment Area (drainage area drainage basin Watershed in USA)

983122983145983140983143983141 983148983145983150983141 983145983155 983137983148983155983151 983139983137983148983148983141983140 983108983145983158983145983140983141 983145983150 983125983123983105 983137983150983140 983127983137983156983141983154983155983144983141983140 983145983150 983125983115

19

983124983144983141 983148983145983150983141 983151983142 983156983144983141 983143983154983151983157983150983140 983159983137983156983141983154 983156983137983138983148983141 983142983154983151983149 983159983144983145983139983144 983156983144983141 983159983137983156983141983154 983156983137983138983148983141 983155983148983151983152983141983155 983140983151983159983150983159983137983154983140 983137983159983137983161

983142983154983151983149 983156983144983141 983148983145983150983141 983151983150 983138983151983156983144 983155983145983140983141983155 983145983155 983139983137983148983148983141983140 983156983144983141 983143983154983151983157983150983140 983159983137983156983141983154 983140983145983158983145983140983141

20

Catchmentboundary of

the Kosi riverAlmora

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1115

02-08-2012

11

21

StreamDrainagePattern

983107983144983137983154983137983139983156983141983154983145983155983156983145983139983155 983151983142 983156983144983141 983140983154983137983145983150983137983143983141

1 The number of streams

2 The length of streams

3

4 Drainage density

Stream density9830842-

km areaCatchment

streamsof Nunmber

A

N D s

s =

A

L D sd

nt)intermitteand(perennialchannelsstreamsallof lengthTotal=

22

Drainage density varies inversely as the length of overland flow andindicates the drainage efficiency of the basin

A high value indicates a well-developed network and torrential runoff causingintense floods while a low value indicates moderate runoff and highpermeability of the terrain

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1215

02-08-2012

12

983124983144983141 983155983144983137983152983141 983151983142 983137 983140983154983137983145983150983137983143983141 983138983137983155983145983150 983139983137983150 983143983141983150983141983154983137983148983148983161 983138983141 983141983160983152983154983141983155983155983141983140 983138983161

983110983151983154983149 983142983137983139983156983151983154 1 2

lt==

bb

b

f L

A

L

W F

983127 983138983101983137983160983145983137983148 983159983145983140983156983144 983151983142 983138983137983155983145983150

983116983138983101983137983160983145983137983148 983148983141983150983143983156983144 983151983142 983138983137983155983145983150 983145983141 983156983144983141 983140983145983155983156983137983150983139983141 983142983154983151983149 983156983144983141 983149983141983137983155983157983154983145983150983143 983152983151983145983150983156 983156983151 983156983144983141 983149983151983155983156

983154983141983149983151983156983141 983152983151983145983150983156 983151983150 983156983144983141 983138983137983155983145983150

983107983151983149983152983137983139983156983150983141983155983155 983139983151983141983142983142983145983139983145983141983150983156 1 2

ge=

A

PC b

983120983138983101983152983141983154983145983149983141983156983141983154 983151983142 983156983144983141 983138983137983155983145983150

Aπ 2 983101983139983145983154983139983157983149983142983141983154983141983150983139983141 983151983142 983139983145983154983139983157983148983137983154 983137983154983141983137 983144983137983158983145983150983143 983137983154983141983137 983141983153983157983137983148 983156983151 983156983144983141 983137983154983141983137 983151983142 983156983144983141 983138983137983155983145983150

983123983144983137983152983141 983142983137983139983156983151983154 1 2

gt= A

L B b

s

983109983148983151983150983143983137983156983145983151983150 983154983137983156983145983151 1 lengthWatershed

areawatershedof circleof Diameterle=

983107983145983154983139983157983148983137983154983145983156983161 9831549831379831569831459831511 perimeterwatershedof circleof Area

areaWatershedle=

24

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1315

02-08-2012

13

983106983137983155983145983150 983155983148983151983152983141 983101 983140983145983142983142983141983154983141983150983139983141 983145983150 983141983148983141983158983137983156983145983151983150 983138983141983156983159983141983141983150 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983137983150983140 983151983157983156983148983141983156

983140983145983155983156983137983150983139983141 983142983154983151983149 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983156983151 983151983157983156983148983141983156

983123983156983154983141983137983149 983155983148983151983152983141

1 983105983158983141983154983137983143983141 983155983156983154983141983137983149 983155983148983151983152983141983101983156983151983156983137983148 983142983137983148983148 983151983142 983156983144983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141983148983141983150983143983156983144 983151983142 983156983144983141

983141983150983156983145983154983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141

2

1

1

2 1

sum

sum=

=

=

N

ii

N

iii

m

L

S LS

2 The channel is divided into N number of reaches each having Slope Siand length Li (Johnstone and Cross 1949)

The equivalent stream slope

History of Hydrology

It is not easy to answer the question ldquoHow and where the science ofhydrology beganrdquo

In ancient times various hydrologic principles were successfullyapplied in practice

Early Chinese irrigation and flood control works and Greek andRoman aqueducts are worth mentioning

The Roman engineer Marcus Vitruvius (1st century BC) developedan early theory of the hydrologic cycle in his treatise On Architecture

During the Middle Ages Vitruviuss work was the standard referencebook on Hydrology

26

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1415

02-08-2012

14

15th century Leonardo da Vinci and Bernard Palissy gave independently ofeach other an accurate explanation of the hydrologic cycle

17th

century the modern science of hydrology was established by PerraultMariotte and Halley Perrault measured the rainfall and runoff in the SeineRiver and proved that rainfall contributes significantly to river flow He alsomeasured evaporation and capillarity Mariotte recorded the velocity of flow inthe Seine River and made measurements of the cross section estimating thedischarge Halley measured evaporation of the Mediterranean Sea

18th century The Bernoulli piezometer and theorem the Pitot tube andChezys formula are representative achievements

19th century experimental hydrology made considerable progress Darcyslaw of flow in porous media and Dupuit-Thiems well formula were

elaborated

Early 20th century governmental agencies developed their own programs ofhydrologic research Shermans unit hydrograph Hortons infiltration theoryand Theiss non-equilibrium approach to well hydraulics were based on theiranalyses and were the results of research programs

27

983107983144983151983159 983139983148983137983155983155983145983142983145983141983155 983156983144983141 983144983145983155983156983151983154983161 983151983142 983144983161983140983154983151983148983151983143983161 983145983150983156983151 983141983145983143983144983156 983152983141983154983145983151983140983155 983137983155

bull Period of Speculation ndash prior to AD 1400

bull Period of Observation ndash 1400 ndash 1600

bull Period of Measurement ndash 1600 ndash 1700

bull Period of Experimentation ndash 1700- 1800

bull Period of Modernization ndash 1800 ndash 1900

bull Period of Empiricism ndash 1900 ndash 1930

bull Period of Rationalization ndash 1930 ndash 1950

bull Period of Theorization ndash 1950 ndash to date

28

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1515

02-08-2012

983105983152983152983148983145983139983137983156983145983151983150983155 983113983150 983109983150983143983145983150983141983141983154983145983150983143

983112983161983140983154983151983148983151983143983161 983142983145983150983140983155 983145983156983155 983143983154983141983137983156983141983155983156 983137983152983152983148983145983139983137983156983145983151983150 983145983150 983156983144983141 983140983141983155983145983143983150 983137983150983140 983151983152983141983154983137983156983145983151983150 983151983142

983159983137983156983141983154 983154983141983155983151983157983154983139983141983155 983141983150983143983145983150983141983141983154983145983150983143 983155983157983139983144 983137983155 983156983144983151983155983141 983142983151983154

(983145) 983113983154983154983145983143983137983156983145983151983150

(983145983145) 983127983137983156983141983154 983155983157983152983152983148983161

(983145983145983145) 983110983148983151983151983140 983139983151983150983156983154983151983148

(983145983158) 983112983161983140983154983151983152983151983159983141983154 983137983150983140

(983158) 983118983137983158983145983143983137983156983145983151983150

29

1 Scientific Hydrology-a study concerned with academic aspects2 Engineering or applied Hydrology- a study concerned with

engineering applications

983112983161983140983154983151983148983151983143983145983139983137983148 983108983137983156983137

The basic hydrological data required are

1 Precipitation and climatological data - IMD

2 Topographic maps - SOI

3 Stream-flow records - CWC

4 Ground water data ndash Central Ground Water Board5 Evaporation and transpiration data -IMD

6 Cropping pattern crops and their consumptive use ndash Irrigation Dept

7 Soil map

8 Water quality data of surface streams and groundwater

9 Geological maps - GSI

30

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1015

02-08-2012

10

4 Catchment Area (drainage area drainage basin Watershed in USA)

983122983145983140983143983141 983148983145983150983141 983145983155 983137983148983155983151 983139983137983148983148983141983140 983108983145983158983145983140983141 983145983150 983125983123983105 983137983150983140 983127983137983156983141983154983155983144983141983140 983145983150 983125983115

19

983124983144983141 983148983145983150983141 983151983142 983156983144983141 983143983154983151983157983150983140 983159983137983156983141983154 983156983137983138983148983141 983142983154983151983149 983159983144983145983139983144 983156983144983141 983159983137983156983141983154 983156983137983138983148983141 983155983148983151983152983141983155 983140983151983159983150983159983137983154983140 983137983159983137983161

983142983154983151983149 983156983144983141 983148983145983150983141 983151983150 983138983151983156983144 983155983145983140983141983155 983145983155 983139983137983148983148983141983140 983156983144983141 983143983154983151983157983150983140 983159983137983156983141983154 983140983145983158983145983140983141

20

Catchmentboundary of

the Kosi riverAlmora

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1115

02-08-2012

11

21

StreamDrainagePattern

983107983144983137983154983137983139983156983141983154983145983155983156983145983139983155 983151983142 983156983144983141 983140983154983137983145983150983137983143983141

1 The number of streams

2 The length of streams

3

4 Drainage density

Stream density9830842-

km areaCatchment

streamsof Nunmber

A

N D s

s =

A

L D sd

nt)intermitteand(perennialchannelsstreamsallof lengthTotal=

22

Drainage density varies inversely as the length of overland flow andindicates the drainage efficiency of the basin

A high value indicates a well-developed network and torrential runoff causingintense floods while a low value indicates moderate runoff and highpermeability of the terrain

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1215

02-08-2012

12

983124983144983141 983155983144983137983152983141 983151983142 983137 983140983154983137983145983150983137983143983141 983138983137983155983145983150 983139983137983150 983143983141983150983141983154983137983148983148983161 983138983141 983141983160983152983154983141983155983155983141983140 983138983161

983110983151983154983149 983142983137983139983156983151983154 1 2

lt==

bb

b

f L

A

L

W F

983127 983138983101983137983160983145983137983148 983159983145983140983156983144 983151983142 983138983137983155983145983150

983116983138983101983137983160983145983137983148 983148983141983150983143983156983144 983151983142 983138983137983155983145983150 983145983141 983156983144983141 983140983145983155983156983137983150983139983141 983142983154983151983149 983156983144983141 983149983141983137983155983157983154983145983150983143 983152983151983145983150983156 983156983151 983156983144983141 983149983151983155983156

983154983141983149983151983156983141 983152983151983145983150983156 983151983150 983156983144983141 983138983137983155983145983150

983107983151983149983152983137983139983156983150983141983155983155 983139983151983141983142983142983145983139983145983141983150983156 1 2

ge=

A

PC b

983120983138983101983152983141983154983145983149983141983156983141983154 983151983142 983156983144983141 983138983137983155983145983150

Aπ 2 983101983139983145983154983139983157983149983142983141983154983141983150983139983141 983151983142 983139983145983154983139983157983148983137983154 983137983154983141983137 983144983137983158983145983150983143 983137983154983141983137 983141983153983157983137983148 983156983151 983156983144983141 983137983154983141983137 983151983142 983156983144983141 983138983137983155983145983150

983123983144983137983152983141 983142983137983139983156983151983154 1 2

gt= A

L B b

s

983109983148983151983150983143983137983156983145983151983150 983154983137983156983145983151 1 lengthWatershed

areawatershedof circleof Diameterle=

983107983145983154983139983157983148983137983154983145983156983161 9831549831379831569831459831511 perimeterwatershedof circleof Area

areaWatershedle=

24

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1315

02-08-2012

13

983106983137983155983145983150 983155983148983151983152983141 983101 983140983145983142983142983141983154983141983150983139983141 983145983150 983141983148983141983158983137983156983145983151983150 983138983141983156983159983141983141983150 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983137983150983140 983151983157983156983148983141983156

983140983145983155983156983137983150983139983141 983142983154983151983149 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983156983151 983151983157983156983148983141983156

983123983156983154983141983137983149 983155983148983151983152983141

1 983105983158983141983154983137983143983141 983155983156983154983141983137983149 983155983148983151983152983141983101983156983151983156983137983148 983142983137983148983148 983151983142 983156983144983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141983148983141983150983143983156983144 983151983142 983156983144983141

983141983150983156983145983154983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141

2

1

1

2 1

sum

sum=

=

=

N

ii

N

iii

m

L

S LS

2 The channel is divided into N number of reaches each having Slope Siand length Li (Johnstone and Cross 1949)

The equivalent stream slope

History of Hydrology

It is not easy to answer the question ldquoHow and where the science ofhydrology beganrdquo

In ancient times various hydrologic principles were successfullyapplied in practice

Early Chinese irrigation and flood control works and Greek andRoman aqueducts are worth mentioning

The Roman engineer Marcus Vitruvius (1st century BC) developedan early theory of the hydrologic cycle in his treatise On Architecture

During the Middle Ages Vitruviuss work was the standard referencebook on Hydrology

26

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1415

02-08-2012

14

15th century Leonardo da Vinci and Bernard Palissy gave independently ofeach other an accurate explanation of the hydrologic cycle

17th

century the modern science of hydrology was established by PerraultMariotte and Halley Perrault measured the rainfall and runoff in the SeineRiver and proved that rainfall contributes significantly to river flow He alsomeasured evaporation and capillarity Mariotte recorded the velocity of flow inthe Seine River and made measurements of the cross section estimating thedischarge Halley measured evaporation of the Mediterranean Sea

18th century The Bernoulli piezometer and theorem the Pitot tube andChezys formula are representative achievements

19th century experimental hydrology made considerable progress Darcyslaw of flow in porous media and Dupuit-Thiems well formula were

elaborated

Early 20th century governmental agencies developed their own programs ofhydrologic research Shermans unit hydrograph Hortons infiltration theoryand Theiss non-equilibrium approach to well hydraulics were based on theiranalyses and were the results of research programs

27

983107983144983151983159 983139983148983137983155983155983145983142983145983141983155 983156983144983141 983144983145983155983156983151983154983161 983151983142 983144983161983140983154983151983148983151983143983161 983145983150983156983151 983141983145983143983144983156 983152983141983154983145983151983140983155 983137983155

bull Period of Speculation ndash prior to AD 1400

bull Period of Observation ndash 1400 ndash 1600

bull Period of Measurement ndash 1600 ndash 1700

bull Period of Experimentation ndash 1700- 1800

bull Period of Modernization ndash 1800 ndash 1900

bull Period of Empiricism ndash 1900 ndash 1930

bull Period of Rationalization ndash 1930 ndash 1950

bull Period of Theorization ndash 1950 ndash to date

28

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1515

02-08-2012

983105983152983152983148983145983139983137983156983145983151983150983155 983113983150 983109983150983143983145983150983141983141983154983145983150983143

983112983161983140983154983151983148983151983143983161 983142983145983150983140983155 983145983156983155 983143983154983141983137983156983141983155983156 983137983152983152983148983145983139983137983156983145983151983150 983145983150 983156983144983141 983140983141983155983145983143983150 983137983150983140 983151983152983141983154983137983156983145983151983150 983151983142

983159983137983156983141983154 983154983141983155983151983157983154983139983141983155 983141983150983143983145983150983141983141983154983145983150983143 983155983157983139983144 983137983155 983156983144983151983155983141 983142983151983154

(983145) 983113983154983154983145983143983137983156983145983151983150

(983145983145) 983127983137983156983141983154 983155983157983152983152983148983161

(983145983145983145) 983110983148983151983151983140 983139983151983150983156983154983151983148

(983145983158) 983112983161983140983154983151983152983151983159983141983154 983137983150983140

(983158) 983118983137983158983145983143983137983156983145983151983150

29

1 Scientific Hydrology-a study concerned with academic aspects2 Engineering or applied Hydrology- a study concerned with

engineering applications

983112983161983140983154983151983148983151983143983145983139983137983148 983108983137983156983137

The basic hydrological data required are

1 Precipitation and climatological data - IMD

2 Topographic maps - SOI

3 Stream-flow records - CWC

4 Ground water data ndash Central Ground Water Board5 Evaporation and transpiration data -IMD

6 Cropping pattern crops and their consumptive use ndash Irrigation Dept

7 Soil map

8 Water quality data of surface streams and groundwater

9 Geological maps - GSI

30

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1115

02-08-2012

11

21

StreamDrainagePattern

983107983144983137983154983137983139983156983141983154983145983155983156983145983139983155 983151983142 983156983144983141 983140983154983137983145983150983137983143983141

1 The number of streams

2 The length of streams

3

4 Drainage density

Stream density9830842-

km areaCatchment

streamsof Nunmber

A

N D s

s =

A

L D sd

nt)intermitteand(perennialchannelsstreamsallof lengthTotal=

22

Drainage density varies inversely as the length of overland flow andindicates the drainage efficiency of the basin

A high value indicates a well-developed network and torrential runoff causingintense floods while a low value indicates moderate runoff and highpermeability of the terrain

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1215

02-08-2012

12

983124983144983141 983155983144983137983152983141 983151983142 983137 983140983154983137983145983150983137983143983141 983138983137983155983145983150 983139983137983150 983143983141983150983141983154983137983148983148983161 983138983141 983141983160983152983154983141983155983155983141983140 983138983161

983110983151983154983149 983142983137983139983156983151983154 1 2

lt==

bb

b

f L

A

L

W F

983127 983138983101983137983160983145983137983148 983159983145983140983156983144 983151983142 983138983137983155983145983150

983116983138983101983137983160983145983137983148 983148983141983150983143983156983144 983151983142 983138983137983155983145983150 983145983141 983156983144983141 983140983145983155983156983137983150983139983141 983142983154983151983149 983156983144983141 983149983141983137983155983157983154983145983150983143 983152983151983145983150983156 983156983151 983156983144983141 983149983151983155983156

983154983141983149983151983156983141 983152983151983145983150983156 983151983150 983156983144983141 983138983137983155983145983150

983107983151983149983152983137983139983156983150983141983155983155 983139983151983141983142983142983145983139983145983141983150983156 1 2

ge=

A

PC b

983120983138983101983152983141983154983145983149983141983156983141983154 983151983142 983156983144983141 983138983137983155983145983150

Aπ 2 983101983139983145983154983139983157983149983142983141983154983141983150983139983141 983151983142 983139983145983154983139983157983148983137983154 983137983154983141983137 983144983137983158983145983150983143 983137983154983141983137 983141983153983157983137983148 983156983151 983156983144983141 983137983154983141983137 983151983142 983156983144983141 983138983137983155983145983150

983123983144983137983152983141 983142983137983139983156983151983154 1 2

gt= A

L B b

s

983109983148983151983150983143983137983156983145983151983150 983154983137983156983145983151 1 lengthWatershed

areawatershedof circleof Diameterle=

983107983145983154983139983157983148983137983154983145983156983161 9831549831379831569831459831511 perimeterwatershedof circleof Area

areaWatershedle=

24

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1315

02-08-2012

13

983106983137983155983145983150 983155983148983151983152983141 983101 983140983145983142983142983141983154983141983150983139983141 983145983150 983141983148983141983158983137983156983145983151983150 983138983141983156983159983141983141983150 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983137983150983140 983151983157983156983148983141983156

983140983145983155983156983137983150983139983141 983142983154983151983149 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983156983151 983151983157983156983148983141983156

983123983156983154983141983137983149 983155983148983151983152983141

1 983105983158983141983154983137983143983141 983155983156983154983141983137983149 983155983148983151983152983141983101983156983151983156983137983148 983142983137983148983148 983151983142 983156983144983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141983148983141983150983143983156983144 983151983142 983156983144983141

983141983150983156983145983154983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141

2

1

1

2 1

sum

sum=

=

=

N

ii

N

iii

m

L

S LS

2 The channel is divided into N number of reaches each having Slope Siand length Li (Johnstone and Cross 1949)

The equivalent stream slope

History of Hydrology

It is not easy to answer the question ldquoHow and where the science ofhydrology beganrdquo

In ancient times various hydrologic principles were successfullyapplied in practice

Early Chinese irrigation and flood control works and Greek andRoman aqueducts are worth mentioning

The Roman engineer Marcus Vitruvius (1st century BC) developedan early theory of the hydrologic cycle in his treatise On Architecture

During the Middle Ages Vitruviuss work was the standard referencebook on Hydrology

26

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1415

02-08-2012

14

15th century Leonardo da Vinci and Bernard Palissy gave independently ofeach other an accurate explanation of the hydrologic cycle

17th

century the modern science of hydrology was established by PerraultMariotte and Halley Perrault measured the rainfall and runoff in the SeineRiver and proved that rainfall contributes significantly to river flow He alsomeasured evaporation and capillarity Mariotte recorded the velocity of flow inthe Seine River and made measurements of the cross section estimating thedischarge Halley measured evaporation of the Mediterranean Sea

18th century The Bernoulli piezometer and theorem the Pitot tube andChezys formula are representative achievements

19th century experimental hydrology made considerable progress Darcyslaw of flow in porous media and Dupuit-Thiems well formula were

elaborated

Early 20th century governmental agencies developed their own programs ofhydrologic research Shermans unit hydrograph Hortons infiltration theoryand Theiss non-equilibrium approach to well hydraulics were based on theiranalyses and were the results of research programs

27

983107983144983151983159 983139983148983137983155983155983145983142983145983141983155 983156983144983141 983144983145983155983156983151983154983161 983151983142 983144983161983140983154983151983148983151983143983161 983145983150983156983151 983141983145983143983144983156 983152983141983154983145983151983140983155 983137983155

bull Period of Speculation ndash prior to AD 1400

bull Period of Observation ndash 1400 ndash 1600

bull Period of Measurement ndash 1600 ndash 1700

bull Period of Experimentation ndash 1700- 1800

bull Period of Modernization ndash 1800 ndash 1900

bull Period of Empiricism ndash 1900 ndash 1930

bull Period of Rationalization ndash 1930 ndash 1950

bull Period of Theorization ndash 1950 ndash to date

28

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1515

02-08-2012

983105983152983152983148983145983139983137983156983145983151983150983155 983113983150 983109983150983143983145983150983141983141983154983145983150983143

983112983161983140983154983151983148983151983143983161 983142983145983150983140983155 983145983156983155 983143983154983141983137983156983141983155983156 983137983152983152983148983145983139983137983156983145983151983150 983145983150 983156983144983141 983140983141983155983145983143983150 983137983150983140 983151983152983141983154983137983156983145983151983150 983151983142

983159983137983156983141983154 983154983141983155983151983157983154983139983141983155 983141983150983143983145983150983141983141983154983145983150983143 983155983157983139983144 983137983155 983156983144983151983155983141 983142983151983154

(983145) 983113983154983154983145983143983137983156983145983151983150

(983145983145) 983127983137983156983141983154 983155983157983152983152983148983161

(983145983145983145) 983110983148983151983151983140 983139983151983150983156983154983151983148

(983145983158) 983112983161983140983154983151983152983151983159983141983154 983137983150983140

(983158) 983118983137983158983145983143983137983156983145983151983150

29

1 Scientific Hydrology-a study concerned with academic aspects2 Engineering or applied Hydrology- a study concerned with

engineering applications

983112983161983140983154983151983148983151983143983145983139983137983148 983108983137983156983137

The basic hydrological data required are

1 Precipitation and climatological data - IMD

2 Topographic maps - SOI

3 Stream-flow records - CWC

4 Ground water data ndash Central Ground Water Board5 Evaporation and transpiration data -IMD

6 Cropping pattern crops and their consumptive use ndash Irrigation Dept

7 Soil map

8 Water quality data of surface streams and groundwater

9 Geological maps - GSI

30

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1215

02-08-2012

12

983124983144983141 983155983144983137983152983141 983151983142 983137 983140983154983137983145983150983137983143983141 983138983137983155983145983150 983139983137983150 983143983141983150983141983154983137983148983148983161 983138983141 983141983160983152983154983141983155983155983141983140 983138983161

983110983151983154983149 983142983137983139983156983151983154 1 2

lt==

bb

b

f L

A

L

W F

983127 983138983101983137983160983145983137983148 983159983145983140983156983144 983151983142 983138983137983155983145983150

983116983138983101983137983160983145983137983148 983148983141983150983143983156983144 983151983142 983138983137983155983145983150 983145983141 983156983144983141 983140983145983155983156983137983150983139983141 983142983154983151983149 983156983144983141 983149983141983137983155983157983154983145983150983143 983152983151983145983150983156 983156983151 983156983144983141 983149983151983155983156

983154983141983149983151983156983141 983152983151983145983150983156 983151983150 983156983144983141 983138983137983155983145983150

983107983151983149983152983137983139983156983150983141983155983155 983139983151983141983142983142983145983139983145983141983150983156 1 2

ge=

A

PC b

983120983138983101983152983141983154983145983149983141983156983141983154 983151983142 983156983144983141 983138983137983155983145983150

Aπ 2 983101983139983145983154983139983157983149983142983141983154983141983150983139983141 983151983142 983139983145983154983139983157983148983137983154 983137983154983141983137 983144983137983158983145983150983143 983137983154983141983137 983141983153983157983137983148 983156983151 983156983144983141 983137983154983141983137 983151983142 983156983144983141 983138983137983155983145983150

983123983144983137983152983141 983142983137983139983156983151983154 1 2

gt= A

L B b

s

983109983148983151983150983143983137983156983145983151983150 983154983137983156983145983151 1 lengthWatershed

areawatershedof circleof Diameterle=

983107983145983154983139983157983148983137983154983145983156983161 9831549831379831569831459831511 perimeterwatershedof circleof Area

areaWatershedle=

24

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1315

02-08-2012

13

983106983137983155983145983150 983155983148983151983152983141 983101 983140983145983142983142983141983154983141983150983139983141 983145983150 983141983148983141983158983137983156983145983151983150 983138983141983156983159983141983141983150 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983137983150983140 983151983157983156983148983141983156

983140983145983155983156983137983150983139983141 983142983154983151983149 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983156983151 983151983157983156983148983141983156

983123983156983154983141983137983149 983155983148983151983152983141

1 983105983158983141983154983137983143983141 983155983156983154983141983137983149 983155983148983151983152983141983101983156983151983156983137983148 983142983137983148983148 983151983142 983156983144983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141983148983141983150983143983156983144 983151983142 983156983144983141

983141983150983156983145983154983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141

2

1

1

2 1

sum

sum=

=

=

N

ii

N

iii

m

L

S LS

2 The channel is divided into N number of reaches each having Slope Siand length Li (Johnstone and Cross 1949)

The equivalent stream slope

History of Hydrology

It is not easy to answer the question ldquoHow and where the science ofhydrology beganrdquo

In ancient times various hydrologic principles were successfullyapplied in practice

Early Chinese irrigation and flood control works and Greek andRoman aqueducts are worth mentioning

The Roman engineer Marcus Vitruvius (1st century BC) developedan early theory of the hydrologic cycle in his treatise On Architecture

During the Middle Ages Vitruviuss work was the standard referencebook on Hydrology

26

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1415

02-08-2012

14

15th century Leonardo da Vinci and Bernard Palissy gave independently ofeach other an accurate explanation of the hydrologic cycle

17th

century the modern science of hydrology was established by PerraultMariotte and Halley Perrault measured the rainfall and runoff in the SeineRiver and proved that rainfall contributes significantly to river flow He alsomeasured evaporation and capillarity Mariotte recorded the velocity of flow inthe Seine River and made measurements of the cross section estimating thedischarge Halley measured evaporation of the Mediterranean Sea

18th century The Bernoulli piezometer and theorem the Pitot tube andChezys formula are representative achievements

19th century experimental hydrology made considerable progress Darcyslaw of flow in porous media and Dupuit-Thiems well formula were

elaborated

Early 20th century governmental agencies developed their own programs ofhydrologic research Shermans unit hydrograph Hortons infiltration theoryand Theiss non-equilibrium approach to well hydraulics were based on theiranalyses and were the results of research programs

27

983107983144983151983159 983139983148983137983155983155983145983142983145983141983155 983156983144983141 983144983145983155983156983151983154983161 983151983142 983144983161983140983154983151983148983151983143983161 983145983150983156983151 983141983145983143983144983156 983152983141983154983145983151983140983155 983137983155

bull Period of Speculation ndash prior to AD 1400

bull Period of Observation ndash 1400 ndash 1600

bull Period of Measurement ndash 1600 ndash 1700

bull Period of Experimentation ndash 1700- 1800

bull Period of Modernization ndash 1800 ndash 1900

bull Period of Empiricism ndash 1900 ndash 1930

bull Period of Rationalization ndash 1930 ndash 1950

bull Period of Theorization ndash 1950 ndash to date

28

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1515

02-08-2012

983105983152983152983148983145983139983137983156983145983151983150983155 983113983150 983109983150983143983145983150983141983141983154983145983150983143

983112983161983140983154983151983148983151983143983161 983142983145983150983140983155 983145983156983155 983143983154983141983137983156983141983155983156 983137983152983152983148983145983139983137983156983145983151983150 983145983150 983156983144983141 983140983141983155983145983143983150 983137983150983140 983151983152983141983154983137983156983145983151983150 983151983142

983159983137983156983141983154 983154983141983155983151983157983154983139983141983155 983141983150983143983145983150983141983141983154983145983150983143 983155983157983139983144 983137983155 983156983144983151983155983141 983142983151983154

(983145) 983113983154983154983145983143983137983156983145983151983150

(983145983145) 983127983137983156983141983154 983155983157983152983152983148983161

(983145983145983145) 983110983148983151983151983140 983139983151983150983156983154983151983148

(983145983158) 983112983161983140983154983151983152983151983159983141983154 983137983150983140

(983158) 983118983137983158983145983143983137983156983145983151983150

29

1 Scientific Hydrology-a study concerned with academic aspects2 Engineering or applied Hydrology- a study concerned with

engineering applications

983112983161983140983154983151983148983151983143983145983139983137983148 983108983137983156983137

The basic hydrological data required are

1 Precipitation and climatological data - IMD

2 Topographic maps - SOI

3 Stream-flow records - CWC

4 Ground water data ndash Central Ground Water Board5 Evaporation and transpiration data -IMD

6 Cropping pattern crops and their consumptive use ndash Irrigation Dept

7 Soil map

8 Water quality data of surface streams and groundwater

9 Geological maps - GSI

30

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1315

02-08-2012

13

983106983137983155983145983150 983155983148983151983152983141 983101 983140983145983142983142983141983154983141983150983139983141 983145983150 983141983148983141983158983137983156983145983151983150 983138983141983156983159983141983141983150 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983137983150983140 983151983157983156983148983141983156

983140983145983155983156983137983150983139983141 983142983154983151983149 983142983137983154983156983144983141983155983156 983152983151983145983150983156 983156983151 983151983157983156983148983141983156

983123983156983154983141983137983149 983155983148983151983152983141

1 983105983158983141983154983137983143983141 983155983156983154983141983137983149 983155983148983151983152983141983101983156983151983156983137983148 983142983137983148983148 983151983142 983156983144983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141983148983141983150983143983156983144 983151983142 983156983144983141

983141983150983156983145983154983141 983148983151983150983143983141983155983156 983159983137983156983141983154 983139983151983157983154983155983141

2

1

1

2 1

sum

sum=

=

=

N

ii

N

iii

m

L

S LS

2 The channel is divided into N number of reaches each having Slope Siand length Li (Johnstone and Cross 1949)

The equivalent stream slope

History of Hydrology

It is not easy to answer the question ldquoHow and where the science ofhydrology beganrdquo

In ancient times various hydrologic principles were successfullyapplied in practice

Early Chinese irrigation and flood control works and Greek andRoman aqueducts are worth mentioning

The Roman engineer Marcus Vitruvius (1st century BC) developedan early theory of the hydrologic cycle in his treatise On Architecture

During the Middle Ages Vitruviuss work was the standard referencebook on Hydrology

26

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1415

02-08-2012

14

15th century Leonardo da Vinci and Bernard Palissy gave independently ofeach other an accurate explanation of the hydrologic cycle

17th

century the modern science of hydrology was established by PerraultMariotte and Halley Perrault measured the rainfall and runoff in the SeineRiver and proved that rainfall contributes significantly to river flow He alsomeasured evaporation and capillarity Mariotte recorded the velocity of flow inthe Seine River and made measurements of the cross section estimating thedischarge Halley measured evaporation of the Mediterranean Sea

18th century The Bernoulli piezometer and theorem the Pitot tube andChezys formula are representative achievements

19th century experimental hydrology made considerable progress Darcyslaw of flow in porous media and Dupuit-Thiems well formula were

elaborated

Early 20th century governmental agencies developed their own programs ofhydrologic research Shermans unit hydrograph Hortons infiltration theoryand Theiss non-equilibrium approach to well hydraulics were based on theiranalyses and were the results of research programs

27

983107983144983151983159 983139983148983137983155983155983145983142983145983141983155 983156983144983141 983144983145983155983156983151983154983161 983151983142 983144983161983140983154983151983148983151983143983161 983145983150983156983151 983141983145983143983144983156 983152983141983154983145983151983140983155 983137983155

bull Period of Speculation ndash prior to AD 1400

bull Period of Observation ndash 1400 ndash 1600

bull Period of Measurement ndash 1600 ndash 1700

bull Period of Experimentation ndash 1700- 1800

bull Period of Modernization ndash 1800 ndash 1900

bull Period of Empiricism ndash 1900 ndash 1930

bull Period of Rationalization ndash 1930 ndash 1950

bull Period of Theorization ndash 1950 ndash to date

28

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1515

02-08-2012

983105983152983152983148983145983139983137983156983145983151983150983155 983113983150 983109983150983143983145983150983141983141983154983145983150983143

983112983161983140983154983151983148983151983143983161 983142983145983150983140983155 983145983156983155 983143983154983141983137983156983141983155983156 983137983152983152983148983145983139983137983156983145983151983150 983145983150 983156983144983141 983140983141983155983145983143983150 983137983150983140 983151983152983141983154983137983156983145983151983150 983151983142

983159983137983156983141983154 983154983141983155983151983157983154983139983141983155 983141983150983143983145983150983141983141983154983145983150983143 983155983157983139983144 983137983155 983156983144983151983155983141 983142983151983154

(983145) 983113983154983154983145983143983137983156983145983151983150

(983145983145) 983127983137983156983141983154 983155983157983152983152983148983161

(983145983145983145) 983110983148983151983151983140 983139983151983150983156983154983151983148

(983145983158) 983112983161983140983154983151983152983151983159983141983154 983137983150983140

(983158) 983118983137983158983145983143983137983156983145983151983150

29

1 Scientific Hydrology-a study concerned with academic aspects2 Engineering or applied Hydrology- a study concerned with

engineering applications

983112983161983140983154983151983148983151983143983145983139983137983148 983108983137983156983137

The basic hydrological data required are

1 Precipitation and climatological data - IMD

2 Topographic maps - SOI

3 Stream-flow records - CWC

4 Ground water data ndash Central Ground Water Board5 Evaporation and transpiration data -IMD

6 Cropping pattern crops and their consumptive use ndash Irrigation Dept

7 Soil map

8 Water quality data of surface streams and groundwater

9 Geological maps - GSI

30

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1415

02-08-2012

14

15th century Leonardo da Vinci and Bernard Palissy gave independently ofeach other an accurate explanation of the hydrologic cycle

17th

century the modern science of hydrology was established by PerraultMariotte and Halley Perrault measured the rainfall and runoff in the SeineRiver and proved that rainfall contributes significantly to river flow He alsomeasured evaporation and capillarity Mariotte recorded the velocity of flow inthe Seine River and made measurements of the cross section estimating thedischarge Halley measured evaporation of the Mediterranean Sea

18th century The Bernoulli piezometer and theorem the Pitot tube andChezys formula are representative achievements

19th century experimental hydrology made considerable progress Darcyslaw of flow in porous media and Dupuit-Thiems well formula were

elaborated

Early 20th century governmental agencies developed their own programs ofhydrologic research Shermans unit hydrograph Hortons infiltration theoryand Theiss non-equilibrium approach to well hydraulics were based on theiranalyses and were the results of research programs

27

983107983144983151983159 983139983148983137983155983155983145983142983145983141983155 983156983144983141 983144983145983155983156983151983154983161 983151983142 983144983161983140983154983151983148983151983143983161 983145983150983156983151 983141983145983143983144983156 983152983141983154983145983151983140983155 983137983155

bull Period of Speculation ndash prior to AD 1400

bull Period of Observation ndash 1400 ndash 1600

bull Period of Measurement ndash 1600 ndash 1700

bull Period of Experimentation ndash 1700- 1800

bull Period of Modernization ndash 1800 ndash 1900

bull Period of Empiricism ndash 1900 ndash 1930

bull Period of Rationalization ndash 1930 ndash 1950

bull Period of Theorization ndash 1950 ndash to date

28

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1515

02-08-2012

983105983152983152983148983145983139983137983156983145983151983150983155 983113983150 983109983150983143983145983150983141983141983154983145983150983143

983112983161983140983154983151983148983151983143983161 983142983145983150983140983155 983145983156983155 983143983154983141983137983156983141983155983156 983137983152983152983148983145983139983137983156983145983151983150 983145983150 983156983144983141 983140983141983155983145983143983150 983137983150983140 983151983152983141983154983137983156983145983151983150 983151983142

983159983137983156983141983154 983154983141983155983151983157983154983139983141983155 983141983150983143983145983150983141983141983154983145983150983143 983155983157983139983144 983137983155 983156983144983151983155983141 983142983151983154

(983145) 983113983154983154983145983143983137983156983145983151983150

(983145983145) 983127983137983156983141983154 983155983157983152983152983148983161

(983145983145983145) 983110983148983151983151983140 983139983151983150983156983154983151983148

(983145983158) 983112983161983140983154983151983152983151983159983141983154 983137983150983140

(983158) 983118983137983158983145983143983137983156983145983151983150

29

1 Scientific Hydrology-a study concerned with academic aspects2 Engineering or applied Hydrology- a study concerned with

engineering applications

983112983161983140983154983151983148983151983143983145983139983137983148 983108983137983156983137

The basic hydrological data required are

1 Precipitation and climatological data - IMD

2 Topographic maps - SOI

3 Stream-flow records - CWC

4 Ground water data ndash Central Ground Water Board5 Evaporation and transpiration data -IMD

6 Cropping pattern crops and their consumptive use ndash Irrigation Dept

7 Soil map

8 Water quality data of surface streams and groundwater

9 Geological maps - GSI

30

7242019 CE-341 Lectures 1amp2

httpslidepdfcomreaderfullce-341-lectures-12 1515

02-08-2012

983105983152983152983148983145983139983137983156983145983151983150983155 983113983150 983109983150983143983145983150983141983141983154983145983150983143

983112983161983140983154983151983148983151983143983161 983142983145983150983140983155 983145983156983155 983143983154983141983137983156983141983155983156 983137983152983152983148983145983139983137983156983145983151983150 983145983150 983156983144983141 983140983141983155983145983143983150 983137983150983140 983151983152983141983154983137983156983145983151983150 983151983142

983159983137983156983141983154 983154983141983155983151983157983154983139983141983155 983141983150983143983145983150983141983141983154983145983150983143 983155983157983139983144 983137983155 983156983144983151983155983141 983142983151983154

(983145) 983113983154983154983145983143983137983156983145983151983150

(983145983145) 983127983137983156983141983154 983155983157983152983152983148983161

(983145983145983145) 983110983148983151983151983140 983139983151983150983156983154983151983148

(983145983158) 983112983161983140983154983151983152983151983159983141983154 983137983150983140

(983158) 983118983137983158983145983143983137983156983145983151983150

29

1 Scientific Hydrology-a study concerned with academic aspects2 Engineering or applied Hydrology- a study concerned with

engineering applications

983112983161983140983154983151983148983151983143983145983139983137983148 983108983137983156983137

The basic hydrological data required are

1 Precipitation and climatological data - IMD

2 Topographic maps - SOI

3 Stream-flow records - CWC

4 Ground water data ndash Central Ground Water Board5 Evaporation and transpiration data -IMD

6 Cropping pattern crops and their consumptive use ndash Irrigation Dept

7 Soil map

8 Water quality data of surface streams and groundwater

9 Geological maps - GSI

30