94
DEPARTEMENT TECHNIQUE Formation bachelier en emballage et conditionnement 3 ème année. Campus ULg – Sart Tilman 6, Allée du 6 août, 4000 LIEGE Tél. : 04 / 366 52 49 Email : [email protected] Website : www.isipack.be Colorimétrie 2007-2008 Steve Gillet, D. Sc. [email protected] http://perso.latribu.com/shagar/steve

Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

DEPARTEMENT TECHNIQUE

Formation bachelier en emballage et conditionnement 3ème année. Campus ULg – Sart Tilman

6, Allée du 6 août, 4000 LIEGE

Tél. : 04 / 366 52 49

Email : [email protected] Website : www.isipack.be

Colorimétrie 2007-2008

Steve Gillet, D. Sc. [email protected]

http://perso.latribu.com/shagar/steve

Page 2: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie (table des matières).

Gillet Steve, D.Sc.

Table des matières

1. Qu’est-ce que la couleur ?

De quoi allons-nous parler dans ce cours ?

Le stimulus physique.

Sources de lumière.

Rayonnement électromagnétique.

Lumière blanche.

Les corps noirs.

Sources à spectres discontinus et combinés.

Sources de lumière standard.

Distinction source et illuminant.

Spectre et couleur.

Comment la matière affecte-t-elle la lumière ?

La transmission.

L’absorption.

La diffusion.

Autres aspects ou apparences.

Caractéristiques spectrales d’une matière.

Détection de la lumière et de la couleur.

Les bâtonnets.

Les cônes.

Déficience et disparité au niveau de la perception des couleurs.

Détecteurs « artificiels ».

Résumé.

Description de la couleur.

L’expérience de l’île déserte.

Coordonnées de couleur.

Page 3: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie (table des matières).

Gillet Steve, D.Sc.

L’apparence de la couleur.

Sources lumineuses, rendu de la couleur et adaptation

chromatique.

Le métamérisme.

Résumé.

2. Description de la couleur.

Systèmes basés sur des échantillons physiques.

Classement basé sur le comportement des colorants.

Classement basé sur les lois de mélange des couleurs.

Le système de Ostwald.

Classement basé sur des étapes d’égales perceptions

visuelles.

Le système RAL.

Le système Munsell.

Le NCS (Natural Color System)

Le système ISCC-NBS.

Le système CIE.

Les sources et illuminants standard de la CIE.

Les observateurs standard de la CIE.

Calcul des coordonnées X, Y et Z CIE.

Coordonnées de chromaticité et diagramme de chromaticité.

Système plus uniformes.

Page 4: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie (table des matières).

Gillet Steve, D.Sc.

Transformations linéaires du système CIE.

Echelle de luminosité.

Les espaces de couleur uniformes.

3. Mesure de la couleur et des différences de couleur.

Les principes de base de la mesure de la couleur.

L’examen.

L’estimation.

L’échantillon.

Les échantillons pour analyse.

Une forme adaptée à l’analyse.

Regardez !

Mesure visuelle de la couleur.

Un échantillon et un standard unique.

Un échantillon et des standards multiples.

Mesure instrumentale de la couleur.

Classification des méthodes

La lumière inaltérée.

Lumières de trois couleurs.

Lumière monochromatique.

Spectrophotométrie.

Source, monochromateur et détecteur.

Page 5: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie (table des matières).

Gillet Steve, D.Sc.

Calcul des coordonnées X, Y et Z CIE.

Standardisation et précision.

Estimation de la différence de couleur.

Estimation par méthodes visuelles.

Estimation par méthodes instrumentales.

Equations basées sur les données de Munsell.

Equations basées sur des données de différences tout juste

perceptibles.

Equations basées sur la déviation standard de correspondance de

couleur.

Recommandations de la CIE.

Perceptibilité vs acceptabilité.

Utilisation appropriée des calculs de différence de couleur.

Spécification de la couleur et tolérance.

4. Les colorants.

Teinture vs pigment.

La solubilité.

La nature chimique.

La transparence.

Présence d’un liant.

Résumé.

Colorants spéciaux : fluorescents et métallisés.

Sélection du colorant à utiliser.

Page 6: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie (table des matières).

Gillet Steve, D.Sc.

Sources d’information.

Personnel expérimenté.

Les fournisseurs de colorants.

Les livres et périodiques.

L’expérience de l’utilisateur.

Principes généraux dans le choix des colorants.

La couleur en tant que matériel d’ingénierie.

Propriétés d’ingénieries des colorants.

Gammes de couleurs.

La sélection des colorants.

5. La coloration en industrie.

Lois des mélanges de couleurs.

Mélange additif.

Mélange soustractif simple.

Mélange soustractif complexe.

Appariement de couleurs.

Types d’appariement.

Appariements invariables.

Appariements conditionnels.

Sélection des colorants.

Les objectifs de l’appariement de couleur.

Formulations originales.

Appariement de matériaux identiques.

Appariement de matériaux différents.

Page 7: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie (table des matières).

Gillet Steve, D.Sc.

Identification des colorants.

Couleurs coordonnées.

Force des colorants.

L’appariement initial.

L’appariement visuel.

Aides instrumentales.

Contrôle de la couleur en production.

Monitoring.

La valeur de l’instrument.

L’effet des variations de processus.

Ajustement.

Contrôle.

Les autres aspects de l’apparence.

Bibliographie et webographie.

Page 8: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Page 9: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -1-

1. Qu’est-ce que la couleur ?

De quoi allons-nous parler dans ce cours ?

Nous allons parler de la couleur, des colorants et de la coloration de matière. Le

terme « couleur » peut désigner une sorte de lumière, son effet sur l’œil humain ou, plus

important encore, son effet dans l’esprit d’un observateur. Nous allons aborder chacun de

ces aspects de la couleur et essayer de les relier entre eux.

Les colorants, d’un autre côté, sont des objets purement physiques. Ce sont les

teintures et les pigments utilisés lors du processus de coloration de la matière. La coloration,

enfin, est un processus physique, celui d’appliquer de la teinture sur des textiles ou

d’incorporer, par dispersion, des pigments dans de la peinture, des encres et des plastiques.

Nous essayerons d’aborder brièvement ces substances et processus physiques.

Mais la couleur est bien plus que quelque chose de physique, c’est ce que nous

voyons, le résultat de la modification physique de la lumière par les colorants observé par

l’œil humain (perception) et interprété par le cerveau (ce qui fait intervenir la psychologie).

C’est une cascade d’évènements d’une complexité énorme et pour décrire la couleur et la

coloration, il est important de comprendre au moins un peu chacun de ces évènements.

C’est ce que nous allons tenter de faire.

Avec la compréhension de la couleur, dans le sens large du terme, il est possible

d’approcher certains problèmes commerciaux liés à celle-ci : « Cet échantillon est-il de la

même couleur que celui-ci ? », « Quels colorants et en quelles quantités vais-je devoir

utiliser pour produire une couleur identique à celle-là ? », « Quel colorant conviendra le

mieux à ce type d’application ? », etc…

Le stimulus physique.

Pour décrire la couleur, nous devons parler à la fois d’actions physiques, telle que la

production d’un stimulus sous forme de lumière, et de résultats subjectifs comme la

réception et l’interprétation de ce stimulus au niveau de l’œil et du cerveau. Dans un premier

temps, nous n’étudierons que l’aspect physique de la couleur, qui est le plus simple.

D’un point de vue purement physique, la production de couleur requiert tout au plus 4

choses : une source de lumière, un objet illuminé, un œil pour détecter le signal et le cerveau

pour l’analyser. Bien évidemment, l’œil et le cerveau peuvent être remplacés par un

détecteur photosensible, relié à un ordinateur pour le traitement de signal. Bien qu’une

source de lumière puisse être observée directement pour en percevoir la couleur, nous nous

réfèrerons toujours à un objet illuminé par une source de lumière, à moins qu’il n’en soit

Page 10: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -2-

spécifié autrement (puisque c’est l’interaction de la lumière avec la matière qui nous

intéresse préférentiellement).

Sources de lumière.

Rayonnement électromagnétique.

Le rayonnement électromagnétique, dont la lumière est un exemple, est une forme

d’énergie constituée d’ondes, c'est-à-dire de phénomènes vibratoires caractérisés par :

une vitesse de propagation (en l’occurrence c = 3.108 m.s-1, constante pour toutes les

ondes électromagnétiques dans le vide), une fréquence ν (nombre de vibrations par

seconde) et une longueur d’onde λ (distance parcourue pendant une vibration). Ces 3

longueurs sont liées par la relation λ = c / ν. Bien qu’il y ait une continuité totale dans les

valeurs possibles de longueur d’onde (ou de fréquence), on distingue (arbitrairement) sur

cette base des domaines particuliers du rayonnement électromagnétique, comme

indiqué sur la figure 1.1.

La relative insensibilité de l’œil limite la partie visible du spectre à une très étroite

portion du spectre de 400 à 700 nm (380 à 780nm, suivant les auteurs). La nuance que nous

reconnaissons comme étant du bleu se situe environ en dessous de 480 nm, le vert grosso

modo entre 480 et 560, le jaune entre 560 et 590, l’orange entre 590 et 630 et le rouge au-

delà de cette valeur. Le pourpre, qui est obtenu par mélange de lumière rouge et bleue (soit

les extrêmes du spectre visible) est une nuance commune que l’on ne retrouve pas dans le

spectre.

Figure 1.1. : Domaines particuliers du rayonnement

électromagnétique : A noter que l’échelle des longueur d’onde

utilisée sur ce schéma est logarithmique, chaque intervalle

correspondant à un facteur de 10, et non à une variation de 10

unités. Il est également intéressant de voir que le domaine du

visible, le seul auquel notre œil est sensible, est extrêmement étroit

et est limité entre (380) 400 et 700 (780) nm.

Page 11: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -3-

Lumière blanche.

La plupart des sources lumineuses auxquelles nous pouvons penser émettent une

lumière blanche ou proche du blanc (soleil, filament d’une ampoule, tube fluorescent, etc.).

Isaac Newton a montré, en utilisant un prisme pour disperser la lumière en son spectre, que

la lumière blanche est normalement constituée de toutes les longueurs d’onde visibles. La

lumière de n’importe quelle source peut être décrite en terme de puissance relative (ou

d’intensité) émise à chaque longueur d’onde. Le tracé de cette puissance (intensité) en

fonction de la longueur d’onde donne la courbe de distribution de puissance spectrale d’une

source de lumière (son spectre, en simplifié). Quelques exemples typiques sont illustrés

dans la figure 1.2.

Les corps noirs.

Une catégorie importante de sources lumineuses, est appelée « corps noirs », qui,

contrairement à ce que leur nom semble indiquer, ne sont pas noirs, sauf lorsqu’ils sont

froids. Les corps noirs sont des objets idéaux qui absorberaient toute l’énergie

électromagnétique qu’ils reçoivent, sans en réfléchir ou en transmettre. En étant chauffés, ils

luisent comme les métaux, d’abord d’un rouge morne comme une résistance électrique, puis

de plus en plus brillant et blanc, comme le filament d’une ampoule à incandescence.

L’objet qui se rapproche le plus de ce modèle est l’intérieur d’un four. Afin de pouvoir

étudier le rayonnement dans cette cavité, elle est percée sur l’une de ses faces d’un petit

trou laissant s’échapper une minuscule fraction du rayonnement interne, laquelle représente

une bonne approximation du rayonnement d’un corps noir, la radiation continue, émise en

fonction de la température, étant alors indépendante de la nature du matériau constituant la

cavité. La température d’un corps noir est appelée température de couleur. Les filaments de

Figure 1.2. : Illuminants

normalisées : A : version

normalisée de l’éclairage à

incandescence. B : lumière directe

du soleil. C : lumière moyenne du

jour, sans UV. D65 : lumière

moyenne du jour, avec UV. Notons

que sur ce spectre, c’est l’énergie et

non la puissance qui est représentée

en ordonnée (ce qui ne change rien,

puisque l’énergie est simplement la

puissance multipliée par le temps).

Page 12: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -4-

tungstène des ampoules à incandescence sont de bonnes approximations d’un corps noir,

mais leur température de couleur n’est pas exactement égale à leur température réelle.

Les spectres de deux corps noirs, représentant l’intervalle de températures de

couleur d’intérêt dans les problèmes de couleur, sont illustrés dans la figure 1.3. Le spectre à

2854 K est typique d’une lampe à filament de tungstène de 100 W, alors que celui à 6500 K

est comparable à celui de la lumière du jour. Notons toutefois que la lumière du jour réelle,

comme on peut le voir dans la figure 1.2., ne présente pas le spectre d’un corps noir, comme

de nombreuses autres sources de lumière répandues telles que les lampes fluorescentes et

les lampes à arc.

Sources à spectres discontinus et combinés.

La plupart des lampes à arc, comme les lampes à mercure, néon et sodium,

n’émettent pas de lumière à toutes les longueurs d’onde, mais seulement à quelques

longueurs d’ondes spécifiques caractéristiques de l’élément émetteur. Leur spectre n’est

donc pas continu, comme ceux décrits jusqu’à présent, mais discret (discontinu) que l’on

appelle parfois spectre de raies (figure 1.4. A). Les lampes fluorescentes, quant à elles, ont

un spectre continu sur lequel se surimposent quelques raies, on parle alors de spectre

combiné (figure 1.4. B.).

Figure 1.3. : Spectre de deuxcorps noirs : avec des

températures de couleur de 2854

K (source A) et 6500 K. Les

courbes sont normalisées pour

une puissance relative de 100 à

560 nm.

Page 13: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -5-

Sources de lumière standard.

Plusieurs sources de lumière standard ont été définies par le Commission

Internationale de l’Eclairage (CIE) pour être utilisées dans la description de la couleur. L’une

d’entre elles, la source A, est une lampe à filament de tungstène opérant à une température

de couleur de 2854 K (son spectre a déjà été représenté dans les figures 1.2. et 1.3.). Les

sources CIE B et C sont dérivées de la source A en faisant passer cette lumière au travers

de filtres liquides. La source B, avec une température de couleur d’environ 4800 K est une

bonne approximation de la lumière solaire directe, alors que la source C, à environ 6500 K

correspond à une bonne approximation de la lumière moyenne du jour, sans UV (spectres

de la figure 1.2.).

A B

Figure 1.4. : A : Spectre discontinu : Emission d’une lampe à vapeurs de mercure dans l’UV. B : Spectre

combiné : Emission d’un tube fluorescent de type « Warm white ».

Figure 1.5. : Spectres de 3 sourcesstandard : Spectre de la source C

(CIE), de la lampe à arc au xénon et de

la Macbeth 7500 K Daylight.

Page 14: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -6-

D’autres sources largement utilisées sont l’arc au xénon et la Macbeth 7500 K

Daylight, cette dernière étant obtenue en modifiant la lumière d’une lampe à filament de

tungstène avec des filtres de verre. Les spectres de ces sources sont illustrés dans la figure

1.5.

Distinction source et illuminant.

Il convient, à ce moment, de bien faire la distinction, dans la terminologie CIE, entre

une source et un illuminant.

Une source est une lumière réellement physique, qui peut être allumée ou éteinte et

qui est utilisée dans des expériences réelles de comparaison de couleurs. A, B et C sont des

sources, bien que B et C soient rarement utilisées dans ce cadre. Le spectre d’une source

est déterminé expérimentalement.

Un illuminant, par contre, est défini par un spectre et il peut ou ne peut pas être

possible de créer une source le représentant. La lumière du jour D65 CIE, dont le spectre est

défini, par exemple (figure 1.2.), est un illuminant auquel il ne correspond aucune source. A

noter que par définition, les sources (comme A, B et C, par exemple), sont également des

illuminants, puisque leurs spectres sont connus. Ainsi, toute source est un illuminant, mais la

réciproque n’est pas nécessairement vraie.

Spectre et couleur.

Si nous considérons la lumière réfléchie ou transmise par un objet matériel, plusieurs

spectres différents peuvent aboutir au même effet visuel que nous appelons couleur. Il s’en

suit que la connaissance d’une couleur d’un objet ne permet pas d’en déduire le spectre,

mais qu’il est par contre possible de connaître la couleur d’un objet à partir de son spectre.

Comment la matière affecte-t-elle la lumière ?

Lorsque la lumière frappe un objet, plusieurs évènements affectant la couleur

peuvent avoir lieu :

La transmission.

La lumière peut simplement traverser l’échantillon sans modification majeure, on dit

alors qu’elle est transmise à travers la matière, laquelle est alors dite « transparente ». Si la

matière est incolore, toute la lumière est transmise à l’exception d’une faible quantité qui est

réfléchie aux deux surfaces de l’objet.

Cette réflexion et la diffusion de la lumière, dont nous parlerons ultérieurement, se

produisent chaque fois qu’il y a une modification de l’indice de réfraction (paramètre qui

Page 15: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -7-

détermine le facteur de ralentissement de la lumière dans une substance, par rapport à sa

vitesse dans l’air : un indice de 1.5, par exemple, indique une vitesse de 300 000 km s-1 / 1.5

= 200 000 km s-1). A chaque interface entre deux substances d’indices de réfraction

différents, la lumière change de vitesse, il en résulte qu’une faible partie est réfléchie et (à

moins que la lumière incidente ne soit normale à la surface) la direction du rayon lumineux

est modifiée (figure 1.6.). L’angle de réfraction est fonction de l’angle incident et du rapport

entre les indices de réfraction suivant la relation ir nn

θθ sinsin2

1= . L’indice de réfraction étant

fonction de la longueur d’onde, ce principe permet d’expliquer qu’un prisme soit capable de

disperser la lumière en son spectre (figure 1.7.).

L’absorption.

En plus d’être transmise, la lumière peut être absorbée. Si une substance absorbe

une partie de la lumière, elle apparaît colorée, mais reste transparente. Si toute la lumière

est absorbée, la substance est noire et dite « opaque ».

Figure 1.6. : Réflexion et réfraction :

L’angle de réfraction est fonction de

l’angle d’incidence et du rapport entre

les indices de réfraction des deux

milieux, ici l’air et l’eau. L’indice de

réfraction d’un milieu étant fonction de

la longueur d’onde, l’angle de réfraction

sera différent pour deux ondes de

longueurs d’ondes différentes.

Figure 1.7. : Prisme : La double

réfraction à l’entrée et à la sortie d’un

prisme permet de disperser la lumière

en ses différentes composantes, c’est à

dire en son spectre.

Page 16: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -8-

Une loi fondamentale de l’absorption de la lumière (la loi de Lambert) établit que la

fraction de lumière absorbée est proportionnelle à l’épaisseur du matériau (figure 1.8.). Cette

loi est toujours vraie, en absence de diffusion.

Une seconde loi fondamentale de l’absorption de la lumière (loi de Beer) établit que la

fraction de lumière absorbée est proportionnelle à la quantité de matériel absorbant (à la

concentration d’une solution, par exemple). Cette loi n’est pas applicable à tous les

matériaux.

De ces deux lois, est tirée la relation de Beer-Lambert : A = ε l C où A est

l’absorbance, ε le coefficient d’extinction (une « constante »), l la longueur parcourue à

l’intérieur de l’échantillon et C la concentration en substance absorbante à l’intérieur de

l’échantillon.

La diffusion.

Finalement, la lumière peut être diffusée lorsqu’elle interagit avec la matière. Une

partie de la lumière est absorbée et réémise à la même longueur d’onde, mais la réémission

s’effectue dans toutes les directions. Les effets de la diffusion sont à la fois communs et

importants.

Figure 1. 8. : Loi de Lambert : Des

épaisseurs égales de matière

provoquent des quantités d’absorption

égales.

Figure 1. 9. : Loi de Beer : Des

quantités égales de matière absorbante

provoquent des quantités d’absorption

égales.

Page 17: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -9-

Lorsque la diffusion est suffisante, on dit que la lumière est réfléchie de façon diffuse

par une substance. Si seule une partie de la lumière traversant un échantillon est diffusée et

que l’autre partie est transmise, le matériau est dit « translucide ». Si la diffusion est si

intense qu’aucune lumière n’est transmise (il doit y avoir aussi un peu d’absorption, dans ce

cas) l’objet est dit « opaque ». La couleur de l’objet dépend de la quantité et du type de

diffusion et d’absorption en présence. Si il n’y a pas d’absorption et que la proportion de

lumière diffusée est la même pour toutes les longueurs d’ondes, le matériau apparaît blanc,

sinon, il est coloré.

Il est important de noter, ici, que la diffusion est due à l’interaction entre la lumière et

des petites particules dont l’indice de réfraction est différent de celui de l’environnement. La

quantité de lumière diffusée dépend fortement de la différence d’indices de réfraction entre

les deux matières (figure 1.10.), mais également de la taille des particules diffusantes

(figure1.11.). De très petites particules diffusent très peu, alors que la quantité de lumière

diffusée augmente avec la taille de la particule jusqu’à ce que cette dernière devienne

environ de la même taille que la longueur d’onde de la lumière, après quoi, elle diminue

lorsque la taille augmente encore (figure 1.12.).

Figure 1. 10. : Indice de réfraction : Variation de

la diffusion en fonction de la différence d’indices

de réfraction. Plus la différence est importante,

plus il y a diffusion. Lorsque les indices sont

identiques, il n’y a pas de diffusion.

Figure 1. 12. : Taille de

particule : Variation de la

diffusion en fonction de la taille

de la particule. La diffusion

augmente d’abord avec la taille,

passe par un maximum lorsque

la particule a une taille environ

égale à celle de la longueur

d’onde de la lumière diffusée,

puis diminue quand la taille

augmente encore.

Page 18: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -10-

Pour ces différentes raisons, les pigments seront des diffuseurs d’autant plus

efficaces que leur indice de réfraction sera différent de celui de la matrice dans lesquels ils

seront inclus et que leur diamètre de particule sera environ égale à celui de la longueur

d’onde. Il est donc possible d’obtenir un emballage transparent avec de très petites

particules d’oxyde de fer, malgré l’importante différence d’indice de réfraction entre le

pigment et la résine, de même, il est possible d’obtenir une bonne diffusion avec des

pigments organiques colorés de taille suffisante, malgré la faible différence d’indice de

réfraction.

Autres aspects ou apparences.

Bien que nous n’en parlions pas dans ce cours, il faut noter qu’il existe d’autres

phénomènes que la couleur, qui participent à l’aspect d’un produit : la brillance, la réflexion

métallique, la turbidité ou encore la fluorescence.

Caractéristiques spectrales d’une matière.

D’un point de vue de la couleur, l’effet d’un objet sur la lumière peut être décrit par

son spectre de transmission ou par sa courbe de facteur de réflexion (pour des matériaux

transparent ou opaques, respectivement, les deux étant nécessaires pour la caractérisation

des matériaux translucides). Ces courbes montrent la fraction de lumière réfléchie à chaque

longueur d’onde (comparée à celle réfléchie par un standard blanc) ou transmise à travers

l’échantillon (comparé à celle transmise par un standard, souvent l’air). Ces courbes

décrivent un objet tout comme le spectre décrit une source de lumière. Les courbes de

facteur de réflexion de certaines substances colorées sont illustrées dans la figure 1.13.

Figure 1. 11. : Taille de particules : La quantité de lumière

diffusée dépend de la taille des particules. En outre, les

particules plus petites auront tendance à diffuser surtout les

faibles longueurs d’onde (le bleu), alors que des particules plus

grandes diffusent globalement toutes les longueurs d’ondes.

C’est ce phénomène qui explique que le ciel est bleu (atomes

dans l’air très petites particules), alors que la fumée est

blanche (grosses particules).

Page 19: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -11-

Sachant que les matériaux colorés réfléchissent toujours la lumière de leur propre nuance et

absorbent celle de leur nuance complémentaire, on peut développer l’habilité de reconnaître

les couleurs à partir de leurs courbes de facteur de réflexion ou de transmission.

Figure 1. 13. : Courbes de facteur de réflexion (reflectance) : Pour différentes couleurs de substances.

Page 20: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -12-

Détection de la lumière et de la couleur.

Le système de loin le plus important pour la détection de la couleur est le système

comprenant l’œil, le système nerveux et le cerveau. Sans rentrer dans les détails, qui sont

inutiles dans le cadre de ce cours, il est tout de même important de connaître les grandes

lignes du fonctionnement de l’œil. Il fonctionne comme un appareil photo, dont la lentille

(cristallin) forme une image de la scène sur une pellicule photosensible (la rétine). Là, il

existe plusieurs sortes de cellules photosensibles appelées bâtonnets et cônes à cause de

leur forme (figure 1.14 gauche).

Les bâtonnets.

Les bâtonnets sont responsables de la vision nocturne (vision scotopique) et

possèdent un maximum de sensibilité vers 510 nm. Leur sensibilité est liée à un colorant, la

rhodopsine, qui blanchit à la lumière du jour, expliquant par là leur insensibilité la journée.

Les bâtonnets ne fournissent qu’une réponse photométrique et ne permettent donc pas de

déterminer les couleurs ; nous ne nous y attarderons donc pas plus.

Les cônes.

Il est généralement admis qu’il existe 3 types de cônes dans la rétine et que leur

réponse à la lumière est différente en fonction de la longueur d’onde. Ils fournissent donc

une réponse photométrique et chromatique grâce à des pigments dont les maximums

d’absorption se situent dans le bleu, le vert et le rouge (figure 1.14. droite). C’est là la base

de la vision des couleurs et son aspect trichromatique.

Déficience et disparité au niveau de la perception des couleurs.

Une petite portion de la population souffre d’une déficience au niveau de la vision des

couleurs, plus communément, ils ne savent pas distinguer le rouge du vert, c’est le

daltonisme. Mais plus important que cela (d’un point de vue général), est le fait que chaque

Figure 1. 14 : Sensibilité : A

gauche, schéma des cellules

photosensibles de la rétine

(bâtonnets + cônes). A droite,

courbe de sensibilité des cônes en

fonction de la longueur d’onde.

Page 21: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -13-

individu possède une vision de la couleur un peu différente des autres et pour un même

individu, cette perception va évoluer avec le temps (le cristallin ayant tendance, avec l’âge, à

prendre une coloration légèrement jaunâtre, c'est-à-dire à absorber dans le bleu, la vision du

bleu diminue en vieillissant). Il peut donc arriver que, de bonne foi, deux personnes aient un

avis différent sur deux échantillons, l’un affirmant qu’ils sont de la même couleur, alors que

l’autre, les voit de couleurs différentes.

Détecteurs « artificiels ».

Les photomultiplicateurs et les photodiodes sont les pendants artificiels de l’œil. Leur

réponse est différente pour différentes longueurs d’ondes. Les courbes de réponse

spectrales pour ces détecteurs sont différentes de celle de l’œil (figure 1.15.), ce qui est

d’importance considérable pour la mesure des couleurs (certains appareils possèdent un

système de correction pour permettre d’effectuer une détection comparable à celle d’un œil).

Résumé.

Nous avons vu dans cette section que la production physique de couleur nécessitait 3

choses : une source de lumière, un objet à illuminer et un détecteur, habituellement l’œil et le

cerveau. Nous avons vu comment chacun des trois est décrit par une courbe tracée en

fonction de la longueur d’onde : la source de lumière, par son spectre ; l’objet, par sa courbe

de facteur de réflexion et/ou de transmission ; et, finalement, le détecteur, par sa courbe de

réponse spectrale.

La combinaison de ces trois paramètres fournit le stimulus, ou signal, que le cerveau

convertit en notre perception de la couleur. Nous devons maintenant considérer quelques

concepts psychophysiques et perceptuels plutôt que physiques et qui sont essentiels à la

compréhension et à la description de l’apparence de la couleur.

Figure 1. 15 : Détecteurs artificiels vs oeil: Ce schéma représente la courbe de

réponse spectrale de l’œil comparée aux

courbes de réponse spectrales de deux

détecteurs artificiels. La différence est

notable.

Page 22: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -14-

Description de la couleur.

Dans un premier temps, nous allons faire abstraction de tout ce que nous venons de

voir, ne retenant que ce concept très important : pour avoir une couleur, il faut une source,

un objet et un observateur.

Notre premier objectif est de décrire la couleur telle que nous la voyons. Dans cette

section, nous simplifierons le problème en considérant seulement la description d’une

couleur par une personne de vision normale, sous éclairage de jour. Dans la section

suivante, nous verrons quels impactes pourront avoir la variation de l’observateur et/ou de la

source de lumière.

Nous n’aurons toutefois pas encore trouvé une description complète de la couleur

perçue, puisque pour cela, il faudrait considérer les myriades de stimuli qui entourent la

scène complexe que nous observons en cet instant (influence de l’environnement, etc…).

Par simplification, nous ne considérerons donc qu’un stimulus de couleur isolé.

L’expérience de l’île déserte.

Une des nombreuses approches possibles pour la description de la couleur est

« l’expérience de l’île déserte ». Supposons qu’une personne n’ayant aucune expérience

dans le traitement de la couleur essaye de passer son temps sur une île déserte entourée de

galets de toutes sortes de couleurs (figure 1.16.).

Supposons maintenant qu’elle veuille classer ces galets en fonction de leur couleur.

On peut penser à plusieurs façons de résoudre ce problème, nous n’en présenterons

toutefois qu’une. Considérons que notre expérimentateur, pensant aux couleurs en terme de

noms communs tels que rouge, vert, bleu, etc. comme la plupart d’entre nous le font,

choisisse d’abord de séparer les galets chromatiques des achromatiques (figure 1.17.).

Figure 1.16. : Galets à disposition de notre naufragé.

Page 23: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -15-

En examinant les pierres achromatiques, notre observateur pourrait trouver logique

de les classer en ordre, du blanc en passant par le gris clair, puis par le gris foncé pour

arriver au noir. Ce classement, en terme d’un seul paramètre variable, la luminosité, permet

de trouver une place pour chaque galet achromatique (figure 1.18.).

Les galets chromatiques présentent une situation plus complexe parce qu’ils diffèrent

l’un de l’autre de plusieurs façons, pas seulement par des différences de luminosité. Notre

expérimentateur pourrait les séparer d’abord par teinte, c'est-à-dire dans différentes piles

qu’il appelle rouge, jaune, vert, bleu, etc. (figure 1.19.).

Chaque groupe de galets d’une même teinte peut alors être divisé suivant les

luminosités, juste comme pour les pierres achromatiques. Les galets « rouges », par

exemple, peuvent être séparés en roses, puis rouges, jusque rouges foncés. Chaque galet

rouge peut être reconnu comme étant équivalent en terme de luminosité à un galet gris de la

série achromatique (figure 1.20.).

Figure 1.17. : Premier tri : Séparation des

galets chromatiques et achromatiques.

Figure 1.18. : Luminosité : Séparation

des galets achromatiques en fonction de

leur luminosité.

Figure 1.19. : Teinte : Séparation suivant

la teinte rouge, jaune, bleu (nous nous

sommes limités à ces trois teintes pour

éviter de surcharger le schéma).

Page 24: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -16-

Mais notre naufragé devra reconnaître que certains de ses galets rouges (et ceux

d’autres teintes également) diffèrent entre eux tout en ayant la même teinte et la même

luminosité. Il peut, par exemple, comparer une pierre rouge brique avec un galet présentant

un rouge tomate vif. Il devra admettre qu’ils ont la même teinte, aucune n’est plus jaunâtre

ou bleuâtre que l’autre. De même, il sera évident qu’ils ont la même luminosité, étant

équivalent de ce point de vue, au même galet gris moyen pris de la série achromatique.

Cependant ils sont distinctement différents. L’expérimentateur pourra, après réflexion,

reconnaître que ce troisième type de distinction réside dans la quantité de gris que contient

la couleur, l’un des galets présente une couleur vive (saturée), alors que l’autre présente une

couleur plus fade, grisâtre (désaturée ou lavée) (figure 1.21.).

Coordonnées de couleur.

Une fois que notre naufragé aura séparé toutes ses pierres par teinte, luminosité et

saturation (espace TLS), il trouvera que son classement fournit une place pour tous les

galets de la plage. Aucun qu’il puisse imaginer exister ne serait inclassable. Il conclurait

Figure 1.20. : Luminosité : Séparation,

pour chaque teinte (rouge, jaune, bleu), en

fonction de la luminosité.

Figure 1.21. : Saturation : Pour une

même teinte et une même luminosité, il est

possible de distinguer deux couleurs en

fonction de leur saturation, c'est-à-dire de la

quantité de gris qu’elles contiennent.

Page 25: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -17-

donc, avec raison, que trois, et seulement trois, paramètres (que nous appellerons

coordonnées colorimétriques) doivent être spécifiés pour définir une couleur.

Notons que seuls trois paramètres sont nécessaires pour déterminer une couleur,

mais ils ne suffisent pas, par contre, à définir l’apparence d’un objet. D’autres facteurs

doivent être pris en compte, comme la taille, la brillance, la texture, l’environnement, etc…

pour avoir une idée de l’apparence d’un objet.

Le schéma que nous avons décrit, avec la teinte, la luminosité et la saturation comme

coordonnées colorimétriques, est largement utilisé pour décrire la couleur d’une façon

systématique, comme dans le modèle de couleur de Munsell dont nous parlerons

ultérieurement. Il convient, toutefois, de noter que d’autres coordonnées pourraient être

utilisées (comme la brillance, un mélange de saturation et de luminosité).

Maintenant que nous avons une description de la couleur telle qu’elle apparaît à

l’observateur, pouvons-nous relier ces concepts psychologiques à la description physique

que nous avons développé dans la section précédente ? La réponse est « oui » ou tout du

moins « presque ». Comme nous le verrons dans le chapitre 2, il est possible de calculer, à

partir de la courbe de facteur de réflexion et/ou de la transmission, des sets de 3 nombres

qui décrivent la couleur. Si nous poussons les calculs suffisamment, ces nombres

commencent à s’accorder avec ce que nous percevons comme la teinte, la luminosité et la

saturation. Il est cependant probable que nous n’arrivions jamais à améliorer les calculs de

façon à ce que ces nombres représentent exactement ce que l’œil humain perçoit, ni même

que nous n’arrivions à comprendre pourquoi cela nous est impossible. Cependant, d’un point

de vue pratique, ce n’est pas très important.

Il est par contre important de noter que les données physiques (courbes de facteur de

réflexion et transmission) contiennent plus d’informations que n’en contiennent les

coordonnées que sont la teinte, la luminosité et la saturation ou n’importe quel autre set. En

d’autres termes, il est possible de trouver les coordonnées TLS à partir des données

physiques, mais l’inverse ne l’est pas. Les répercussions de ce fait sont à la base d’une

grande partie de la discussion de la prochaine section, et sont fondamentales à toute

technologie de la couleur.

L’apparence de la couleur.

Maintenant que nous avons développé un canevas pour la description de la façon

dont une couleur apparaît à un observateur, nous pouvons considérer comment cette

apparence change, lorsque l’un ou plusieurs des trois grands paramètres influençant la

couleur (source de lumière, objet et observateur) est(sont) modifié(s).

Page 26: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -18-

Sources lumineuses, rendu de la couleur et adaptation chromatique.

Considérons tout d’abord une situation commune dans laquelle l’objet et l’observateur

restent constants, mais dans laquelle la source de lumière varie. Comme exemple familier,

imaginons que vous achetiez une veste brune chez un tailleur, dont la boutique est éclairée

par des ampoules à filament de tungstène à la couleur chaude et qu’en sortant, à la lumière

du jour, vous vous rendiez compte que votre veste présente un aspect verdâtre déplaisant.

Que s’est-il passé ?

Dans le résumé de la section précédente (page 13), nous avons signalé que le

stimulus, que le cerveau convertissait en notre concept de couleur, est le fruit de la

combinaison du spectre de la source, de la courbe de facteur de réflexion de l’objet et de la

courbe de réponse spectrale du détecteur (ici, l’œil). Si l’illumination change, le stimulus qui

parvient au cerveau change également et nous pouvons supposer que la couleur perçue

sera modifiée également. Nous pouvons conclure que les coordonnées de couleur d’un objet

(comme la perception de sa couleur) changent en fonction de la source lumineuse (le veston

paraît plus vert = teinte, plus sombre = luminosité et plus délavé = saturation). La propriété

de la lumière d’affecter la couleur des objets est appelée « rendu des couleurs ».

Nous pouvons supposer que des effets similaires vont avoir lieu si la source et l’objet

restent identiques, mais que l’observateur change. L’œil et le cerveau sont des dispositifs

merveilleux et ils essayent en général de compenser les modifications qu’on leur présente.

En fait, le pouvoir d’adaptation de l’œil est tel que tout changement ne devrait pas être perçu.

Mais il y a de nombreux exemples où ce n’est pas le cas et ils sont très importants dans le

cadre de la fabrication et de la vente d’objets colorés.

L’adaptation chromatique est en fait un des plus grands mystères non résolu de la

science des couleurs jusqu’à ce jour. Nous savons que la perception des couleurs dépend

de l’état d’adaptation de l’œil et que cette adaptation dépend de tous les stimuli dans le

champ visuel. Un bel exemple en est illustré dans la figure 1.22.

Figure 1.22. : Contraste : Les cases A et B ont

la même couleur, comme en atteste l’encart . C’est

un exemple frappant du contraste simultané : nous

évaluons la couleur d’une zone relativement aux

couleurs environnantes. La case A étant entourée

de cases plus claires, nous la jugeons foncée. A

l’opposé, la case B étant entourée de cases

sombres, nous la jugeons claire. Dans cet

exemple, ce qui ajoute à l’illusion, c’est le dégradé

de l’ombre portée, qui permet une transition « en

douceur » de l’espace éclairé à l’espace dans

l’ombre.

Page 27: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -19-

Le métamérisme.

Maintenant que nous cherchons les différences dans la perception d’un objet lorsque

la source ou l’observateur change (mais pas les deux à la fois), nous devons penser en

terme de paires d’objets. Voici la situation classique : deux objets semblent avoir la même

couleur, ils correspondent, sous une source lumineuse donnée. Ils ne correspondent

cependant pas sous une autre source (figure1.23.). Cela signifie que les deux objets, qui ont

des coordonnées de couleur identiques sous une source donnée, présentent des courbes de

facteur de réflexion différentes et donc des coordonnées de couleurs différentes sous une

autre source de lumière. Ce qui reflète une fois de plus que la courbe de facteur de réflexion

contient plus d’informations que les coordonnées de couleur.

On définit une paire d’objets possédant des courbes de facteur de réflexion

différentes, mais des coordonnées de couleur identiques sous une source lumineuse

donnée, comme étant des « objets métamériques » ou une « paire métamérique ». Des

objets qui possèdent les mêmes courbes de facteur de réflexion, et qui ont donc les mêmes

coordonnées de couleur quelle que soit la source, sont dits « non métamériques » et forment

une « paire invariable ».

Ce concept peut être étendu au cas où deux objets apparaissent avoir la même

couleur pour un observateur donné, alors qu’ils n’ont pas la même couleur pour d’autres

observateurs. Cela résulte de petites différences dans la courbe de réponse spectrale des

observateurs. Cette différence est plus grande, par exemple, entre un observateur humain et

une photodiode.

Une bonne compréhension du métamérisme est importante pour établir la

correspondance de couleurs. Ainsi, si deux objets doivent correspondre, sous n’importe quel

type de source, ils devront alors avoir la même courbe de facteur de réflexion, ce qui n’est

Figure 1.23. : Métamérisme : Deux objets, qui

ont la même couleur sous une source lumineuse

donnée (par exemple, une ampoule), peuvent

avoir des couleurs différentes lorsqu’ils sont

exposés à une autre source de lumière (par

exemple la lumière du jour). Ce phénomène porte

le nom de métamérisme.

Page 28: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -20-

pratiquement possible qu’en utilisant le même colorant pour les deux échantillons. Dans le

cas de matériaux différents, il est très difficile d’y arriver et tout le talent du coloriste est

nécessaire pour éviter les correspondances conditionnelles ou métamériques.

Résumé.

Si vous ne deviez retenir que quelques éléments de ce que nous venons de voir, ce

seraient les suivants : Dans le cas le plus simple d’un stimulus de couleur isolé, trois facteurs

sont essentiels à la production, la perception et la mesure d’une couleur : la source de

lumière, l’objet et l’observateur (qu’il soit humain ou non).

Malheureusement (d’un point de vue pratique), dans la vie réelle, les couleurs sont

influencées par l’environnement et les stimuli isolés ne sont pas légion. Il convient donc

toujours d’avoir à l’esprit que la sensation de couleur est modifiée par l’environnement et la

capacité d’adaptation de l’œil, et que cela, aucun appareil n’est capable de le mesurer.

Toutefois, l’utilisation industrielle de la technologie de la couleur peut être restreinte,

sans perte majeure, à des cas simples, pour lesquels les concepts que nous venons de

développer restent vrais.

2. Description de la couleur. En moyenne, l’œil humain est capable de discerner plus de 350 000 couleurs

différentes. Pour pouvoir étudier ou utiliser ces différentes couleurs, il est plus qu’utile d’en

effectuer un classement afin de pouvoir les caractériser de manière simple et efficace.

Des nombreuses façons de classer les nuanciers (espaces colorimétriques), nous

distinguerons ceux qui consistent en une collection d’échantillons physiques et ceux qui ne

sont pas basés sur des échantillons réels. Le premier groupe sera subdivisé suivant la

présence ou l’absence d’une ligne de conduite à suivre pour construire le classement. Dans

chaque classe et division, nous décrirons un ou plusieurs exemples typiques, mais il en

existe d’autres.

Systèmes basés sur des échantillons physiques.

Classement basé sur le comportement des colorants.

Dans de nombreuses industries telles que celles de la peinture et des encres, il est

commun de produire une large variété d’échantillons colorés par le mélange systématique de

seulement quelques colorants hautement chromatiques l’un avec l’autre et avec du blanc, du

noir et du gris. Non seulement les échantillons sont produits de cette manière, mais le

produit vendu est fabriqué de la même façon. Un exemple de nuancier de ce type est le

Page 29: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -21-

système américain Pantone, largement utilisé dans l’imprimerie, l’industrie textile et

plastique, ainsi que dans les arts graphiques. De nombreux produits Pantone sont

disponibles sur le marché, parmi lesquels le fameux « PMS » (Pantone Matching System),

un nuancier qui se présente sous forme de feuillets regroupés en éventail (figure 2.1.).

Chaque feuillet définit une demi-douzaine de couleurs en en présentant l’échantillon et le

nom Pantone.

Chaque couleur est identifiée de manière unique par un nom de type « P » + numéro

(lesquels ne répondent pas à une logique particulière). Les couleurs de ce nuancier sont en

fait créées à partir de 11 couleurs

fondamentales. Ainsi, P493, une sorte de

vieux rose, est composé de 20.3 % de

« Warm red », de 4.7 % de « Process blue »

et de 75 % de « Transparent white ».

Classement basé sur les lois de mélange des couleurs.

Il est bien connu que lorsque des colorants ou des lumières colorées sont

mélangées, dans des mêmes quantités, des résultats comparables sont toujours observés. Il

doit donc y avoir des lois ou des règles permettant la prédiction de ces résultats, elles seront

discutées ultérieurement. Les lois décrivant le mélange de lumières colorées par la méthode

du disque colorimétrique ont été utilisées pour fournir bon nombre de systèmes de

classements, anciens et nouveaux.

Le système de Ostwald.

C’est probablement le système le plus connu qui soit basé sur les résultats du disque

colorimétrique. Idéalement, les couleurs, dans le système d’Ostwald, sont produites par la

lumière réfléchie sur un disque rotatif possédant des secteurs blanc, noir et d’échantillons

hautement chromatiques dites couleurs « pleines ». Ces teintes de base sont au nombre de

24 et s’appuient sur 4 teintes de base (jaune, rouge, bleu outremer et vert marin). Quatre

Figure 2.1. : Pantone : Nuancier Pantone. Chaque feuillet définit

une demi-douzaine de couleurs en présentant l’échantillon et le nom

Pantone.

Page 30: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -22-

couleurs intermédiaires sont ajoutées (rouge-orange, violet, bleu glacier et vert feuille). Enfin,

ces 8 couleurs donnent chacune 3 variantes pour un total de 24 teintes qui peuvent former

un cercle (figure 2.2.). Une échelle de 8 niveaux de gris neutres est ajoutée à ces 24 teintes.

La quantité de blanc et de noir, qui est une « dilution » de la couleur, est notée sous

forme d’une paire de lettres, la première représentant le pourcentage de blanc et la seconde

le pourcentage de noir. Sont définies à la base 8 valeurs possibles notées a, c, e, g, i, l, n et

p. La table suivante indique les valeurs pour chacune des 8 lettres, selon qu’elles sont

utilisées pour désigner le taux de blanc ou de noir :

Lettre %blanc %noir Lettre %blanc %noir

a 89.13 10.87 i 14.13 85.87

c 56.23 43.77 l 8.91 91.09

e 35.48 64.52 n 5.62 94.38

g 22.39 77.61 p 3.55 96.45

Ainsi la notation 3pg définit un brun (teinte orange = 3) mêlé à 3.55% de blanc (p) et 77.61 %

de noir (g).

Figure 2.2. : Cercle des teintes de base : Représente

les 24 teintes de base sur lesquelles est construit le

classement de Ostwald.

Figure 2.3. : Classement de Ostwald : Pour chaque teinte de base du cercle de la figure 2.2., il est

possible de définir une page (droite) suivant des critères de dilution par du blanc et du noir et de construire

ainsi une sorte d’espace colorimétrique (gauche)

Page 31: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -23-

Classement basé sur des étapes d’égales perceptions visuelles.

Le système RAL.

Créé en Allemagne en 1927, il est utilisé en Europe dans le secteur industriel. Il se

présente sous forme d’un ensemble de cartes, une par couleur, avec l’échantillon de la

couleur et le code RAL associé (RAL classic). Un système plus récent reprend la

présentation de Pantone, sous forme d’éventail : le système RAL design.

Le RAL classic est composé d’environ 200 couleurs et un code unique sur 4 chiffres

est attribué à chaque couleur. Le premier chiffre désigne la teinte, le deuxième chiffre est

toujours 0 et les deux derniers forment un numéro arbitraire. Ce RAL n’est donc classé que

par la teinte principale donnée par le premier chiffre comme suit :

Plage Catégorie

RAL 1001 à 1099 Jaunes

RAL 2001 à 2099 Oranges

RAL 3001 à 3099 Rouges

RAL 4001 à 4099 Roses / violets

RAL 5001 à 5099 Bleus

RAL 6001 à 6099 Verts

RAL 7001 à 7099 Gris

RAL 8001 à 8099 Bruns

RAL 9001 à 9099 Blancs & noirs

Le RAL design a été mis en place notamment pour organiser les couleurs par teintes

plus précises. Il définit plus de 1600 couleurs, en leur attribuant un code sur 7 chiffres. Les 3

premiers désignent la teinte (001 à 360), les deux suivants la luminosité, et les deux derniers

la saturation. L’utilisation d’un tel système simplifie la recherche de nuances, dans la mesure

où l’on peut, en lisant le code, se faire une idée de la couleur (telle teinte, plutôt saturée ou

non, plutôt sombre ou lumineuse).

Figure 2.4. : RAL classic : Nuancier RAL classic sous

forme de bloc à spirales.

Figure 2.5. : RAL design : Nuancier RAL design sous

forme d’éventail comparable au Pantone.

Page 32: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -24-

Le système Munsell.

Ce système, surtout utilisé aux USA, a été inventé par Munsell (qui l’eût cru ?) en

1909. Les couleurs y sont classées selon leur teinte, leur luminosité et leur saturation, dans

un solide de type « toupie » (figure 1.28.). Le « Munsell Book of Color » définit plus de 1500

couleurs au travers de 40 pages (teintes).

Une couleur est codée ainsi :

- La teinte est un code désignant la position sur le cercle des teintes autour d’une

teinte de base, de 1 à 10, 5 correspondant à la teinte de base. Munsell définit 5

teintes de base et 5 teintes secondaires : R (rouge), Y (jaune), G (vert), B (bleu-

cyan), P (violet) et YR (orange), GY (vert-jaune), BG (cyan foncé), PB (bleu violacé),

RP (magenta foncé, pourpre). Chaque secteur est alors découpé en 10 intervalles

pour donner une roue chromatique de 100 teintes (figure 2.7.). Il est intéressant de

noter que des teintes opposées dans la roue chromatique sont des couleurs

complémentaires (leur mélange additif donne un gris de même luminosité).

- La luminosité est un nombre entre 0 (noir) et 10 (blanc).

Figure 2..6. : Munsell : Nuancier de Munsell sous forme de

volume (dont il manque une partie pour permettre de voir

l’intérieur). « L’angle » correspond à une teinte, le rayon à

une saturation et l’axe à une lumiosité.

Figure 2.7. : Cercle chromatique : Ne sont

représentées effectivement que les teintes de

base et les teintes secondaires.

Page 33: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -25-

- La saturation commence à 0 (gris) et n’a pas de limite. Les couleurs « normales » ont

une saturation pouvant atteindre 20, mais le système Munsell peut attribuer une

saturation de 30 pour des couleurs fluos.

Ainsi, une couleur se voit attribuer un code du type « T L/S » (à noter qu’en anglais,

teinte = hue, luminosité = value et saturation = chroma, ce qui donne un code de type H

V/C). Par exemple, un rouge corail aura comme notation Munsell « 10R 6/14 », « 10R »

désignant la teinte rouge-orangée, « 6 » la luminosité (lumineuse à 60 %) et « 14 » la

saturation (vivacité).

Notons finalement qu’une « version améliorée » de l’espace de Munsell, le modèle TLS

est utilisé par de nombreux programmes de traitement électronique de l’image (figure 2.8.).

Le NCS (Natural Color System)

Le système NCS a été créé en Suède en 1920 par le centre suédois de la recherche

sur la couleur. C’est un standard national en Suède, Norvège, Espagne et Afrique du Sud, et

il possède des antennes nationales implantées dans 21 pays.

On utilise ce standard dans de nombreuses branches de l’industrie : textile, cuir,

peinture, plastique, arts graphiques, cosmétiques, agro-alimentaire, céramique, verre, etc.

Ce système s’appuie sur le fait que l’homme discernerait 6 couleurs fondamentales :

le rouge, le jaune, le vert et le bleu + le blanc et le noir. Toutes les autres couleurs résultent

du mélange de 2, 3 ou 4 des couleurs fondamentales. Un nuancier nommé « NCS Atlas »

référence 1950 couleurs, placées dans une « toupie ». Le rouge, le jaune, le vert et le bleu

sont placés sur le diamètre, le blanc et le noir aux pointes (figure 2.9.)

Figure 2.8. : Modèle TLS : Ce

modèle, qui ressemble très fort au

modèle de Munsell, si ce n’est qu’il est

plus « fin », est très répandu dans le

domaine du traitement électronique de

l’image.

Page 34: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -26-

Cette toupie est alors présentée en « tranches » triangulaires, chacune d’entre elles

présentant les variations d’une même teinte.

Dans ce système, une couleur est codée comme suit :

- La tonalité (teinte) est un code représentant un pourcentage de mélange entre 2

couleurs fondamentales parmi R (rouge), Y (jaune), G (vert) et B (bleu) : B80G

désigne un mélange de bleu (20 %) et de 80 % de vert. Le nombre représente donc

la proportion de la deuxième couleur fondamentale. Seules les combinaisons

suivantes sont autorisées : YxxR, GxxY, BxxG et RxxB.

- La teneur en noir (de 0 à 100 par pas de 10) : plus la valeur est élevée, plus la

couleur est sombre.

- La teneur chromatique (similaire à ce qu’on appelle ailleurs la saturation) entre 0 et

100 : plus la valeur est élevée, plus la couleur est forte (saturée).

Par exemple, un rose saumon (figure 2.11.) est codé S 2030-Y90R : 20 % de noir, 30 %

de teneur chromatique (saturation), mélange de 10 % de jaune et 90 % de rouge. Le préfixe

« S » indique qu’il s’agit d’un code standard dans le système NCS seconde édition.

Figure 2.9. : Système NCS : Toupie

du « Natural Color System ». Le rouge,

le bleu, le vert et le jaune sont placés

sur le diamètre alors que le blanc et le

noir sont placés aux pointes.

Figure 2.10. : Numérotation NCS :

Quelques exemples de numérotation

de la teinte. Le nombre représente la

proportion de la deuxième couleur

fondamentale.

Page 35: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -27-

Autrement dit, le « S » est présent pour les 1950 entrées de l’atlas NCS. Pour toutes les

références hors Atlas, on n’indique pas ce « S ».

Les couleurs achromatiques n’ont évidemment pas d’indications de tonalité, et sont

toutes suffixées par « -N ». La blanc a pour code S 0500-N, un gris très clair S 1000-N,

un gris un peu moins clair S 1500-N, jusqu’au noir qui a pour code S 9000-N.

Les produits NCS se présentent classiquement sous forme d’éventails, livres

(triangles du solide NCS), échantillons. A noter l’existence des NCS Translation Keys, qui

permettent d’obtenir l’équivalence entre des codes d’un autre nuancier (RAL, Munsell,

etc.) et NCS.

Contrairement à beaucoup de ses concurrents, et bien que limité à un nuancier

standard de 1950 entrée, le système NCS permet, grâce à sa notation numérique, de

caractériser toute couleur visible par une référence précise. Par exemple, 9324-B17G est

absent du NCS Atlas, mais désigne une couleur bien précise, dont la nuance est située

quelque part entre les triangles B15G et B20G (pas de préfixe « S » pour indiquer qu’il

s’agit d’une couleur hors Atlas NCS). En ceci, il se rapproche d’un « modèle » de

couleurs plus que d’un nuancier.

Le système ISCC-NBS.

Pour simplifier la description d’une couleur, l’ISCC-NBS (Inter Society Color Council –

National Bureau of Standards) a standardisé le nom de 267 couleurs du nuancier de

Munsell. Chaque nom a donc une correspondance exacte avec une couleur bien

déterminée du système Munsell.

Pour ce faire, les 10 termes de base suivants ont été retenus : pink, red, orange,

brown, yellow, olive, green, blue violet, purple. Puis 28 noms ont été créés à partir de ces

Figure 2.11. : Rose saumon : Un

rose saumon peut être codé, par

exemple S 2030-Y90R : 20 % de noir,

30 % de teneur chromatique, mélange

de 10 % de jaune et 90 % de rouge. La

lettre « S » désigne que cette couleur

est un standard présent dans l’atlas

NCS.

Page 36: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -28-

termes, par combinaison en paire : reddish orange (orange tirant sur le rouge), bluish

gree, etc… Auquel il faut ajouter les 3 noms « white », « gray » et « black ». Enfin, une

liste de 8 adjectifs (plus le superlatif « very ») sont choisis pour traduire les nuances

d’une teinte donnée.

Nom Traduction Notation

Pink Rose Pk

Red Rouge R

Yellowish Pink Rose jaunâtre yPk

Brownish Pink Rose brunâtre brPk

Reddish Orange Orange rougeâtre rO

Reddish Brown Brun rougeâtre rBr

Orange Orange O

Brownish Orange Orange brunâtre brO

Brown Brun Br

Orange Yellow Jaune orangé oY

Yellowish Brown Brun jaunâtre yBr

Yellow Jaune Y

Olive Brown Brun olive OlBr

Greenish Yellow Jaune verdâtre gY

Olive Olive Ol

Yellow Green Vert jaune YG

Olive Green Vert olive OlG

Yellowish Green Vert jaunâtre yG

Green Vert G

Bluish Green Vert bleuâtre bG

Greenish Blue Bleu verdâtre gB

Blue Bleu B

Purplish Blue Bleu violacé pB

Violet Bleu-violet V

Purple Violet P

Page 37: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -29-

Reddish purple Violet rougeâtre rP

Purplish Pink Rose violacé pPk

Purplish Red Rouge violacé pR

White Blanc White

Gray Gris Gy

Black Noir Black

Adjectif

Light Clair l.

Dark Foncé d.

Pale Pâle p.

Moderate Moyen m.

Brilliant Brillant b.

Strong Franc, Dur s.

Deep Profond deep

Vivid Vif v.

Very Très v.

Medium1 Moyen med.

Blackish Noirâtre blackish

Grayish Grisâtre gy.

1 : ce terme est exclusivement utilisé en association avec "Gray" dans "med.Gray" (gris moyen).

La combinaison d’une de ces teintes et d’un de ces adjectifs a permis de constituer les

267 noms de couleurs. On combine donc un adjectif, éventuellement précédé de « very »

plus un des 31 noms (28 + 3). Peut également apparaître le terme « grayish » ou

« blackish ». Dans la notation abrégée, on ne peut pas confondre le « v. » de « very » avec

le « v. » de « vivid », puisque « very » ne peut précéder un autre adjectif. Par exemple

« v.P » désigne « Vivid Purple » alors que « v.d.P » désigne « Very Deep Purple ». Notez

que toutes les combinaisons d’adjectifs et noms n’existent pas, car toutes n’ont pas de sens.

Par exemple, il n’y a pas de « Very Light Black » (noir très clair) ni de « Greenish Red »

(rouge verdâtre).

Page 38: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -30-

Ces 267 noms sont appelés « centroïdes » car, s’ils désignent une couleur Munsell bien

définie, on peut visuellement associer les nuances voisines au même terme. La figure 2.12.

montre comment se répartissent les noms ISCC-NBS à cheval sur les pages 4R et 6R du

nuancier de Munsell, et leur emprise approximative.

Le système CIE.

Le système CIE (Commission Internationale de l’Éclairage) est de loin le plus

important des systèmes, non associés à une collection d‘échantillons physiques qui soit

utilisé habituellement avec les instruments de mesure de la couleur. Ce système est basé

sur le fait qu’un stimulus de couleur est fournit par la combinaison adéquate d’une source de

lumière, d’un objet et d’un observateur (figure 2.13.). En 1931, la CIE ébauche la

standardisation de la source et de l’observateur ainsi que la méthodologie permettant

d’obtenir des nombres qui fournissent une mesure d’une couleur illuminée par une source

standard et vue par un observateur standard.

Figure 2.12. : Noms ISCC-NBS :Noms ISCC-NBS des couleurs à cheval

sur les pages 4R et 6R du nuancier de

Munsell.

Page 39: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -31-

Les sources et illuminants standard de la CIE.

Alors qu’en 1931, la CIE recommandait seulement l’utilisation des sources standard

A, B et C, qui ont rapidement été définies comme illuminants standard, dès que leur spectre

fut mesuré, l’utilisation croissante d’agents de blanchiment fluorescent a rendu nécessaire

l’utilisation d’illuminants (et de sources) qui émettent également dans l’UV, de façon plus

comparable avec la lumière du jour naturelle.

Finalement, l’illuminant D65, qui représente la lumière moyenne du jour, avec UV et

qui a une température de couleur corrélée de 6500 K, s’est imposé largement. Rappelons ici

que bien qu’il existe plusieurs sources qui se disent D65, aucune n’est recommandée par la

CIE.

Les observateurs standard de la CIE.

La seconde recommandation de la CIE en 1931 était celle d’un observateur standard

dont la vision de la couleur est représentative de la moyenne de la population humaine ayant

une vision de la couleur normale.

La façon dont les données représentant l’observateur standard de la CIE sont

dérivées, transformées et utilisées est un des concepts le plus difficile à comprendre dans le

système CIE. Nous ne rentrerons pas en détail dans les développements mathématiques qui

ont été nécessaires pour parvenir à définir l’observateur standard, mais nous nous

contenterons de la description simplifiée qui suit.

Dans une très vieille expérience, la lumière d’une lampe test brille sur un écran blanc

et est vue par un observateur. Une portion voisine de l’écran est illuminée par la lumière

provenant d’une ou plusieurs de trois lampes, équipées pour donner des lumières de trois

A B C D

Figure 2.13. : Origine d’un stimulus coloré : Un stimulus coloré (D) est fournit par la combinaison

adéquate d’une source de lumière (spectre A), d’un objet (courbe de facteur de réflexion B) et d’un

observateur (courbe de réponse spectrale C).

Page 40: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -32-

couleurs très différentes, à savoir rouge, vert et bleu. Ces trois lumières primaires sont

choisies arbitrairement, mais sévèrement contrôlées. En ajustant les intensités de ces

lampes, l’observateur peut fabriquer la couleur combinée qui s’accordera à celle de la lampe

test, sur l’écran. Les quantités des trois lumières primaires sont les trois nombres décrivant

la couleur test (figure 2.14.).

Si les couleurs des trois lumières primaires sont assez différentes, une grande

quantité de couleurs tests peuvent être accordées de cette façon, mais en aucun cas, toutes

les couleurs tests possibles, et ce, quel que soit le set de lumières primaires. Ce problème

peut être déjoué de plusieurs façons. L’une d’elles consiste à ajouter une des lumières

primaires à la lampe test, plutôt que d’être mélangée avec les autres deux lumières

primaires. Cela revient en quelque sorte, lors du test évoqué ci-dessus, à soustraire cette

couleur des autres couleurs primaires. La couleur test peut alors être décrit par une

combinaison de quantités positives et négatives de lumières colorées primaires.

En utilisant des quantités négatives de lumière, comme décrit ci-dessus, il est

possible d’accorder n’importe quelle lampe test en mélangeant seulement trois lumières

colorées. Si on sélectionne des couleurs primaires du spectre telle que le rouge à 700 nm

(R), le vert à 546,1 nm (G) et le bleu à 435,8 nm (B), la figure 2.15. montre les quantités

relatives, que nous appellerons r , g et b , qui sont nécessaires à une personne, avec une

vision normale de la couleur, pour coordonner n’importe quelle couleur, pour autant que

chaque source de lumière émette la même quantité de puissance. Dans sa recommandation

de 1931, la CIE a adopté les valeurs moyennes de r , g et b obtenues par un petit nombre

d’observateurs comme étant la définition expérimentale de l’observateur standard CIE.

Figure 2.14. : Test CIE : Test de correspondance entre la couleur d’une lumière test et celle d’une

lumière combinée qui a permis de définir l’observateur standard.

Page 41: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -33-

En 1931, cependant, il était considéré comme important de supprimer les valeurs

négatives des fonctions décrites ci-dessus. Dès lors, une transformation mathématique des

donnée de l’observateur standard ont été réalisées, conduisant au remplacement des rouge,

vert et bleu primaires originaux (R, G et B) par un nouveau set, qui ne peut être produit par

aucune lampe réelle et appelées, simplement, primaires X, Y et Z. Les fonctions illustrées à

la figure 2.16. définissent l’observateur CIE X, Y, Z standard de 1931.

La CIE aurait pu sélectionner n’importe quel set, du nombre infini de lumières

primaires colorées X, Y et Z obtenus mathématiquement, comme définition de l’observateur

standard. Celui qu’ils ont sélectionné possède un nombre d’avantages qui vont devenir

évident au fil des pages qui vont suivre. L’un d’eux est que y a été sélectionné tel qu’il soit

égal, en quantité de puissance totale, à la courbe de réponse spectrale de l’oeil que nous

avons vu à la figure 1.15., ce qui a pour résultat que la valeur de Y fournit une information

sur la luminosité d’une couleur et ce, quelles que soient les autres valeurs. La courbe y est

parfois appelée efficacité lumineuse spectrale ; à chaque longueur d’onde, elle montre

Figure 2.15. : Fonctions d’accord decouleur RGB de la CIE en 1931 : Les

fonctions d’accord de couleur sont les

quantités de lumières primaires

nécessaires pour accorder la lumière test

monochromatique à la longueur d’onde

définie en abscisse.

Figure 2.16. : Observateur standard de

1931 : Correspondant mathématique des

fonctions d’accord de couleur RGB, en

utilisant, cette fois, des lumières colorées

fictives X, Y et Z.

Page 42: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -34-

l’efficacité de l’oeil à convertir la puissance en sensation lumineuse. Notons que

l’observateur standard (CIE 1931) que nous venons d’étudier est parfois accompagné de la

notation 2° pour indiquer qu’il correspond à un angle de vision de 2° (mais la notation seule

X, Y ou Z correspond par défaut à cet angle de vision de 2°). En 1964, la CIE a défini un

observateur standard supplémentaire, accompagné de la notation 10° pour indiquer qu’il

correspond à un angle de vision de 10° (en faisant abstraction de ce qui se passe sous 2°

d’angle de vision). Cet observateur supplémentaire rend compte du fait que la rétine

possède une région centrale morphologiquement différente (et donc de sensibilité différente),

appelée fovéa. Notons toutefois que les différences sont assez minimes (mais il convient de

savoir de quoi on parle et notamment que la valeur de Y10 ne représente pas exactement la

luminosité d’une couleur, contrairement à Y).

Calcul des coordonnées X, Y et Z CIE.

Nous allons maintenant indiquer comment calculer les coordonnées X, Y et Z CIE à

partir des informations concernant l’objet étudié, d’un illuminant standard CIE et d’un

observateur standard CIE.

La courbe P (spectre de l’illuminant) est multipliée par la courbe R (courbe de facteur

de réflexion et/ou transmission) et x , y ou z (courbes de réponse spectrale de

l’observateur suivant X, Y et Z) pour donner les courbes PR x , PR y et PR z dont

l’intégration, puis la normalisation, dont nous allons parler plus bas, fournit les coordonnées

X, Y et Z (figure 2.17.).

Figure 2.16. : Détermination des

coordonnées X, Y et Z : Les

différentes étapes sont illustrées : on

effectue d’abord le produit de P (haut

gauche) par R (haut droit) pour obtenir

la courbe PR (milieu). PR est ensuite

multiplié par x , y ou z (gauche,

centre, droite) pour donner les produits

PR x , PR y et PR z , dont l’intégrale

sous la courbe, après normalisation

donne les coordonnées X, Y et Z.

Page 43: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -35-

Par convention, lorsque l’on travaille avec un objet réfléchissant, on assigne la valeur

de 100 à Y à un blanc idéal, non fluorescent, qui réfléchit 100 % à chaque longueur d’onde.

Lorsque l’on travaille avec un objet transparent, on assigne la valeur 100 à Y pour un objet

(fictif) parfaitement incolore et qui transmet à 100 % à chaque longueur d’onde. La façon de

tenir compte de ce fait, est de normaliser les valeurs de P x , P y et P z de sorte que

l’intégrale sous la courbe de P y soit égale à 1. Mathématiquement, on peut exprimer cela de

la façon suivante :

∫= λdxPRkX , ∫= λdyPRkY , ∫= λdzPRkZ avec ∫

=λdyP

k 100

Coordonnées de chromaticité et diagramme de chromaticité.

Pour la facilité d’obtenir des cartes de couleurs bidimensionnelles, il est habituel de

calculer des coordonnées de chromaticité, qui décrivent les qualités d’une couleur et plus

spécifiquement, en plus de son facteur de luminance, sa chromaticité, laquelle correspond

en quelque sorte à la teinte et la saturation. Dans le système CIE, les coordonnées de

chromaticité x, y et z sont obtenues en normalisant les valeurs X, Y et Z, dont nous avons

parlé plus haut par leur somme. Ainsi, ZYX

Xx++

= , ZYX

Yy++

= et ZYX

Zz++

= .

Comme la somme des coordonnées chromatiques est un, il est seulement nécessaire de

préciser deux des trois coordonnées chromatiques pour décrire une couleur. L’une des

coordonnées X, Y et Z, doit également être spécifiée, habituellement Y. On obtient ainsi une

« coupe » de l’espace CIE XYZ, tel que représenté à la figure 2.18.

Y

X

Z

Figure 2.17. : Espace CIE XYZ.

Page 44: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -36-

La couleur, telle que décrite par la CIE, peut être tracée sur un diagramme de

chromaticité, habituellement un tracé des coordonnées de chromaticité x et y. L’une des

représentations les plus courantes est celle de la figure 2.19. La ligne connectant les points,

pour lesquels sont indiquées des longueurs d’ondes, représente les chromaticités des

couleurs du spectre. Les chromaticités du corps noir (la ligne noire courbée), les illuminants

CIE standard A, B, C, et D65 ainsi que le point achromatique E (x, y et z = 1/3) sont

également indiqués.

Figure 2.18. : Diagramme de

chromaticité : Le diagramme de

chromaticité consiste en une coupe de

l’espace CIE XYZ suivant le plan x+y+z=1.

Figure 2.19. : Diagramme de

chromaticité CIE 1931 :

Notons que ce diagramme ne

prend pas en compte la notion

de luminosité. Par exemple, un

brun, qui est un orange de

faible luminosité, n’apparaît

pas sur ce diagramme (d’où la

nécessité, en plus d’indiquer

les coordonnées x et y,

d’ajouter la valeur Y).

Page 45: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -37-

Il est bon de noter que le diagramme de chromaticité CIE1964, n’est que légèrement

différent du diagramme de chromaticité CIE1931. Nous n’en parlerons donc pas plus.

Un set de coordonnées alternatives (figure 2.20.), dans le système CIE, parfois

appelées coordonnées de Helmholtz, que sont la couleur dominante et la pureté

correspondent plus ou moins aux aspects visuels que sont la teinte et la saturation, bien que

leurs gradations ne paraissent pas visuellement uniforme. La couleur dominante d’une

couleur est la longueur d’onde de la couleur du spectre dont la chromaticité est sur la même

ligne droite que le point d’échantillon et d’illuminant. A noter qu’il n’est possible de trouver

une couleur dominante spectrale qu’à condition que la couleur échantillon se trouve entre le

point de l’illuminant et la courbe de spectre (courbe en forme de fer à cheval). Si le point

d’échantillon se trouve entre le point de l’illuminant et la droite correspondant aux couleurs

pourpres, la longueur d’onde que l’on trouve est dite « couleur dominante associée » et la

couleur dominante de cet échantillon est dites « non spectrale ». La pureté est la distance

entre le point correspondant à l’illuminant et celui correspondant à l’échantillon, divisée par la

distance entre le point correspondant à l’illuminant et le point de la longueur d’onde

dominante correspondante.

Figure 2.20. : Coordonnées de Helmholtz : Supposons des objets de couleur B et B’ éclairés par un

illuminant C. Les couleurs sur un segment [C,A] correspondent à la combinaison d’une lumière spectrale pure

(A) à de la lumière blanche (teinte constante et saturation variable). La couleur A est la couleur dominante

associée à l’échantillon B. A’, qui se trouve sur la droite des pourpres, est une couleur non spectrale et est la

couleur dominante de B’. Notons que dans ce cas, A est la couleur dominante complémentaire de B.

Finalement, B’ est la couleur complémentaire de B (et vice-versa). La pureté de la couleur B est égale à

CB/CA (et celle de B’ est égale à CB’/CA’).

Illuminant C

Page 46: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -38-

Il est important de noter que le système CIE n’est associé à aucun set particulier

d’échantillons physiques. C’est seulement accidentellement que des sets d’échantillons ont

été produits pour illustrer le système. Le système n’est pas non plus basé sur des étapes de

perception visuelles égales, bien que de nombreuses modifications du système CIE ont été

proposées pour ce faire. En fait, le système CIE n’a d’autres objectifs que de dire si deux

couleurs concordent (ce qui est le cas, si elles ont les 3 mêmes valeurs de X, Y et Z). Le

diagramme de chromaticité CIE, de la même façon, est proprement utilisé seulement pour

déterminer si deux couleurs ont la même chromaticité, pas pour savoir de quoi elles ont l’air,

ou en quoi elles diffèrent, si elles ne concordent pas.

Quoiqu’il en soit, il est souvent souhaitable de savoir, approximativement, où

certaines couleurs se situent sur le diagramme de chromaticité et si, en se limitant soi-même

à des couleurs vues sous un illuminant de type « lumière du jour » par un observateur

adapté à cette lumière, nous n’en sommes pas trop éloignés. C’est sur cette base qu’ont été

assignés les noms de couleurs que l’on retrouve dans le diagramme chromatique de la figure

2.19.

Système plus uniformes.

Il a souvent été dit qu’un des plus grands désavantages du système CIE réside dans

son manque d’uniformité (il est évident, en observant la figure 2.19., que la proportion du

diagramme réservée au vert, par exemple, est beaucoup plus importante que celle réservée

au bleu). Au fil des années, plusieurs essais ont été réalisés pour transformer le système

CIE ou même pour inventer de nouveaux systèmes plus uniformes, tout en permettant une

transformation simple des coordonnées de couleur, à partir des, ou vers les, coordonnées X,

Y et Z.

Transformations linéaires du système CIE.

Dans l’étude des transformations du système CIE pour augmenter son uniformité, il

est important de considérer séparément deux types de transformations : la linéaire et la non

linéaire. Les mathématiciens (et les ingénieurs ?) reconnaîtront et comprendront les

implications de ces termes, mais il est suffisant, pour nous, de savoir que les transformations

linéaires préservent certaines caractéristiques importantes du système CIE associées au

mélange additif des couleurs, dont nous parlerons ultérieurement.

L’une des premières transformations linéaires du système CIE fut l’UCS (Uniform

Chromaticity Scale) de Judd (1935). Plus tard, un UCR rectangulaire (RUCS) fut créé par

Breckenridge (1939). MacAdam (1937) a, pour sa part, développé un système (u, v) qui fut

recommandé en 1960 par la CIE comme approximation à la perception visuelle uniforme

Page 47: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -39-

(figure 2.21.). Plus tard (1943), il développera un autre système, permettant de calculer des

petites différences de couleurs, mais ce système ne peut être décrit pas des équations

simples et est loin d’être linéaire.

Finalement, un accroissement de la coordonnée v, de 50 %, a permis d’obtenir un

diagramme de chromaticité, qui fut recommandé par la CIE en 1976, et qui est illustré à la

figure 2.22.

Figure 2.21. : Diagramme de

chromaticité CIE 1960.

Figure 2.22. : Diagramme de

chromaticité CIE 1976 : Pour lequel la

variable v’ correspond à une augmentation

de 50 % de la variable v du diagramme de

chromaticité CIE 1960.

Page 48: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -40-

Echelle de luminosité.

Comme la luminosité d’un objet est une des plus importantes coordonnées de

couleur, une attention particulière a été portée au développement d’échelles de luminosité

correspondant à une perception visuelle uniforme de cette variable. Une des premières

échelle de luminosité, proposée par Priest en 1920 suppose que la luminosité de Munsell

(« Munsell Value ») est proportionnelle à la racine carrée du coefficient de luminosité Y (V =

Y1/2). Ce qui est approximativement vrai lorsque des échantillons d’une échelle de gris sont

observés sur un fond blanc. Cette échelle a été adoptée plus tard, par Hunter (1942) qui a

conçu un colorimètre à lecture directe de la luminosité, L, qu’il a défini comme étant L = 10

Y1/2. Si les échantillons sont observés sur un fond gris moyen, l’équation doit être modifiée

pour tenir compte du facteur de réflexion de ce fond (Y/YMgO = 1,2219 V – 0,23111 V2

+0,23951 V3 – 0,021009 V4 + 0,0008404 V5). En fixant YMg0 comme étant égale à 1,026 pour

certaines conditions bien déterminée, on obtient une échelle de luminosité de Munsell

encore largement utilisée à présent : Y = 1,1913 V – 0,22532 V2 + 0,23351 V3 – 0,020483 V4

+ 0,00081935 V5. Plus tard (1958), Glasser a montré qu’une racine cubique est une bonne

approximation de cette équation et c’est finalement cette fonction qui sera retenue par la CIE

en 1976 pour définir sa luminosité métrique (L* = 116 (Y/Yn)1/3 – 16). A noter que dans cette

équation, Yn est fixé à 100 par convention et que pour des valeurs de Y/Yn inférieures, ou

égales à 0,008856, on utilisera plutôt la formule L* = 903,3 (Y/Yn). L* varie donc de 0 (noir

parfait) à 100 (blanc parfait) en passant, entre autre, par un gris moyen, dont la valeur de L*

est d’environ 50.

Les espaces de couleur uniformes.

Il est tout d’abord important de réaliser qu’il n’existe pas d’espace de couleur

uniforme en tant que tel et que donc, l’appellation « espace de couleur uniforme » n’est

qu’une approximation. Nous ne considérerons que quelques uns des espaces les plus

courants dans l’industrie, et tous, seront des transformations non linéaires du système CIE

X, Y, Z de 1931.

L’un des système les plus utilisé, mis à part le CIE 1931, est l’espace de Hunter L, a,

b (1942), dont le grand avantage, est d’avoir permis de construire des colorimètres qui

permettent la mesure directe de ces paramètres, et ce, bien avant l’émergence des

ordinateurs modernes.

L’espace Adams (1942) s’est également montré utile, principalement grâce à ses

équations associées, permettant d’évaluer les différences de couleur (dont nous reparlerons

ultérieurement). En 1952, Nickerson va affiner cet espace, que l’on retrouve parfois sous

l’appellation « espace Adams-Nickerson » ou « espace ANLAB ».

Page 49: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -41-

En 1973, MacAdam suggéra à la CIE que l’espace ANLAB pouvait être modifié pour

faciliter les calculs. Cette modification fut officiellement recommandée, en 1976, pour devenir

l’espace CIE L*a*b* avec l’abréviation officielle CIELAB (figure 2.23.).

En même temps, la CIE recommandait une seconde approche, à l’espace de couleur

uniforme, basée sur la combinaison du diagramme de chromaticité u’, v’ avec la luminosité

métrique L*. Les coordonnées résultant de cette combinaison sont appelées L*, u* et v*, le

système lui-même étant connu sous le nom de système CIE L*u*v* avec l’abréviation

officielle CIELUV (figure 2.24.)

Figure 2.23. : Espace CIELAB :

La luminosité métrique L* consiste

en l’axe vertical qui relie le noir au

blanc.

Figure 2.24. : Espace CIELUV : Espace CIELUV à gauche et détail des coordonnées à droite.

Page 50: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -42-

3. Mesure de la couleur et des différences de couleur. Nous avons vu à plusieurs reprises que trois facteurs sont nécessaires pour la

production de couleur : une source de lumière, un objet illuminé et un observateur qui, à la

fois, détecte le signal et le convertit en ce que le cerveau humain reconnaît comme étant une

couleur. Nous avons également vu que, pour diverses raisons, il est intéressant de pouvoir

associer des valeurs numériques à cette réponse appelée couleur, de sorte qu’elle puisse

être décrite, avec précision, à quelqu’un d’autre, ailleurs et à un autre moment. Nous en

arrivons donc à la question de savoir comment cela peut être fait, et c’est l’objet de ce

chapitre.

Lorsque nous utilisons les mots « mesure de la couleur », la plupart d’entre nous

pensent à l’utilisation d’instruments. Mais il s’agit là, seulement, d’une façon de mesurer la

couleur, et probablement pas la plus courante, ni la plus simple. L’examen et la comparaison

visuels, plutôt qu’instrumentaux, de produits colorés, est autant une mesure de la couleur

qu’une méthode faisant intervenir des instruments complexes et élaborés. Il n’y a pas besoin

de considérer l’œil et un instrument comme des outils de mesure de la couleur

fondamentalement différents. Nous devons, bien entendu, ne jamais oublier que la couleur

est « ce que nous voyons », et qu’une mesure de l’aspect purement physique d’une couleur

ne peut jamais fournir une réplique exacte de ce que notre cerveau nous fait percevoir.

Les principes de base de la mesure de la couleur.

Quelles que soient les techniques utilisées, la mesure de la couleur peut être divisée

en 2 étapes majeures : l’examen et l’estimation.

L’examen.

L’étape d’examen d’une couleur inclut seulement la triade que nous avons déjà

mentionnée si souvent :

a) Une source de lumière qui illumine l’échantillon et le standard.

b) L’échantillon qui doit être évalué et le standard auquel on le compare. En examen

visuel et avec certains instruments, l’échantillon et le standard sont observés en

même temps. Examiner l’échantillon et le standard, l’un après l’autre, n’est pas une

bonne pratique, visuellement, mais se fait couramment en mesure instrumentale.

c) Un moyen de détecter la lumière qui vient de l’échantillon examiné.

Page 51: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -43-

L’estimation.

La seconde étape, dans la mesure d’une couleur, est divisée, pour des raisons

pratiques, en trois opérations nécessaires pour déterminer si un échantillon est identique ou

non au standard.

a) Un rapport doit être établi si il y a une différence entre l’échantillon et le standard. Ce

rapport peut être rédigé en termes de mesures instrumentales, ou de mots.

b) A supposer qu’il y ait une différence, le rapport conséquent doit être exprimé en

termes qui aient la même signification pour toutes les personnes impliquées. Ces

termes peuvent être une description verbale standardisée, en utilisant une

terminologie de couleur préalablement acceptée, ou le simple rapport des lectures

instrumentales elles-mêmes, ou encore, les coordonnées d’un point dans un système

de classement acceptable, dans lequel les données visuelles ou instrumentales ont

été converties.

c) La différence, bien qu’établie, doit être évaluée et une décision doit être prise quant à

son acceptabilité. Nous avons choisi de grouper des deux étapes ensembles, bien

qu’en pratique, elles puissent être entreprises séparément, même par des personnes

différentes de celles qui ont effectué les mesures.

C’est cette dernière étape qui est la plus difficile de toute la procédure de mesure et

évaluation d’une couleur, mais c’est également celle qui remplit les objectifs du processus

entier.

L’échantillon.

Alors que nous débutons notre discussion des étapes impliquées dans la mesure de

la couleur, nous nous trouvons d’abord confrontés au problème de l’origine et de la

préparation des échantillons. Envisageons ce point un peu plus en détail.

Les échantillons pour analyse.

Une chose que les professionnels de la couleur ont tendance à oublier, c’est que la

mesure de la couleur n’est rien d’autre qu’une technique spéciale d’analyse. En tant que

telle, elle partage avec toutes les autres méthodes d’analyse, le même problème

fondamental, à savoir : obtenir un échantillon représentatif. Il convient de bien faire attention

à la façon de choisir l’échantillon qui sera analysé, et ce, quelle que soit la technique qui sera

utilisée pour ce faire. Que la mesure doive être faite sur un lot d’articles moulés dans du

plastique, de morceaux de tissus teintés ou de boites peintes, il faut être certain que

l’échantillon examiné représente vraiment l’ensemble considéré.

Page 52: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -44-

Une forme adaptée à l’analyse.

Avant de commencer toute mesure de couleur, qu’elle soit visuelle ou instrumentale,

la première question à se poser, est de savoir si l’échantillon représente bien le matériel qui

doit être étudié. Cette question inclut à la fois l’aspect de l’échantillon sélectionné, dont nous

venons de parler, mais également l’étape suivante qui consiste à le transformer sous une

forme qui soit analysable. Alors qu’il existe seulement quelques cas où le produit fini est

déjà, en tant que tel, sous une forme souhaitable pour l’examen, visuel, ou instrumental,

après un échantillonnage adéquat, la plupart des matériaux exigent en revanche que

l’échantillon soit modifié d’une façon ou d’une autre. Par exemple, un échantillon de tissu doit

être plié, de sorte qu’un nombre standard de couches soient présentées pour l’examen, ou

encore, un échantillon de peinture ou une poudre de plastique doivent être convertis en un

objet coloré.

Dans le cas de substances colorantes, telles que les teintures ou les pigments, le

problème est encore beaucoup plus difficile, puisqu’il n’est pas possible de se faire une idée

des performances d’un colorant sur la base de son apparence en tant que poudre sèche. Il

n’y a pas de substitut pour la conversion du colorant en sa forme finale sous laquelle il doit

être utilisé, et il est souvent difficile de développer une technique, à l’échelle du laboratoire,

qui soit comparable aux résultats obtenus en usine, avec une teinture ou un pigment donné.

La conversion de n’importe quel échantillon de matière colorée, dans une forme

acceptable pour l’examen, requière une procédure standardisée, qui soit à la fois répétable

(par la même personne, dans le même laboratoire) et reproductible (par des personnes

différentes, dans différents laboratoires, à différents temps). On ne saurait trop insister sur

l’absolue nécessité d’examiner chaque procédure de préparation d’échantillons par des

techniques statistiques, pour s’assurer une connaissance précise de sa répétabilité. Etant

donné la précision des appareils de mesure actuels, c’est bien souvent la préparation de

l’échantillon qui représente le maillon faible dans la chaîne d’analyse.

Regardez !

La question de la conversion de la substance colorante en une forme souhaitable

pour l’analyse est encore plus importante lorsqu’on envisage d’effectuer des mesures

instrumentales. La confiance aveugle, dans les mesures instrumentales dans des

laboratoires où des machines sont simplement « alimentées » en échantillons et les résultats

renvoyés centralisés, peut amener à de sérieuses erreurs, dues à des échantillons

inadéquatement préparés. Lorsque, par exemple, un panneau peint est regardé et comparé

avec un standard, un observateur entraîné peut repérer si l’échantillon et le standard sont

dans de bonnes conditions. C’est quelque chose qu’aucune machine, aussi complexe fut-

Page 53: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -45-

elle, ne peut faire. Les machines, bien qu’extrêmement utiles, ne peuvent réfléchir. C’est

pour cette raison qu’il est important que les échantillons, dont on veut mesurer la couleur,

soient regardés avant toute analyse, quelle que soit la technique que l’on envisage d’utiliser

pour ce faire. Ceci est spécialement vrai dans les grands laboratoires où la préparation de

l’échantillon n’est pas réalisée par la même personne que celle qui effectue l’analyse.

Mesure visuelle de la couleur.

Simplement par facilité et non à cause de différences fondamentales, les sujets

« mesure visuelle » et « mesure instrumentale » ont été séparés. Dans chaque section, les

trois subdivisions des étapes d’examen et d’estimation conservent leur importance. Dans un

examen purement visuel, toutefois, certaines étapes, dans la procédure d’estimation,

peuvent être combinées. Dans plusieurs examens de ce type, l’évaluation consiste

simplement en une décision d’acceptabilité ou non, sans description de la différence ou en

ne la décrivant qu’en des termes strictement qualitatifs.

Un échantillon et un standard unique.

L’examen et l’évaluation visuels d’une couleur est l’une des technique la plus utilisée.

Il existe plusieurs méthodes standard pour faire ce type de mesure (ASTM D 1535, D 1729).

Dans sa forme la plus simple, les éléments essentiels sont l’échantillon qui doit être évalué

et un standard unique, les deux vus en même temps par un observateur en utilisant une

source de lumière standardisée. Si un accord peut être trouvé entre l’acheteur et le vendeur,

sur le standard qui doit être utilisé et sur les conditions d’examen (y compris le type exacte

de source de lumière utilisée), un grand pas est franchi, bien que l’évaluation soit tout de

même laissée à des yeux et des cerveaux de deux personnes différentes.

Pour déterminer si deux échantillons de couleur sont, ou non, identiques, l’examen

visuel des deux échantillons, l’un à côté de l’autre, sous des conditions standardisées de

lumière est idéal. Dans de nombreux cas, une seule source de lumière n’est pas suffisante

pour une inspection sérieuse et deux ou plusieurs sources de lumière standardisées peuvent

alors être utilisées.

Avec l’utilisation croissante de sources de lumière variées, spécialement celles qui

sont assez différentes de la lumière du jour, ou des lampes à tungstène, il est devenu

essentiel d’utiliser deux (et dans de nombreux cas, trois) sources de lumière standardisées

pour l’examen. Il est important que l’acheteur et le vendeur, aussi bien que tous les

laboratoires à l’intérieur d’une même compagnie, se mettent d’accord sur les caractéristiques

de ces sources de lumière, puisque les propriétés des cabinets de lumière (figure 3.1.) sont

significativement différentes d’un fabriquant à un autre.

Page 54: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -46-

Le problème de variabilité des observateurs, par contre, n’a pas encore trouvé de

réponse satisfaisante. Des différences entre des observateurs, qui sont pourtant tous

reconnus comme ayant une vision normale de la couleur par divers tests, peut malgré tout

conduire à une grande diversité dans la détermination d’une concordance, au même titre que

le ferait une variation de source lumineuse. A moins que les différences au niveau des

observateurs ne soient connues et prises en compte, par exemple, par un accord préalable,

aucune standardisation des sources lumineuses ne peut conduire à des résultats

satisfaisants. A nouveau, nous ne pouvons que mettre l’emphase sur ce paramètre, bien trop

souvent ignoré. Des tests simples, utilisant des paires d’échantillons métamériques, sont

disponibles pour démontrer les différences au niveau des observateurs (et des sources

lumineuses). Ils devraient être utilisés pour trier les observateurs et éliminer ceux dont la

vision des couleurs s’écarte de la moyenne, tout en étant considéré comme ayant une vision

normale de la couleur. Lorsqu’une standardisation des observateurs de cette façon n’est pas

possible, une importance plus grande doit être accordée à la moyenne d’observations à

partir d’un ensemble d’observateurs.

Un échantillon et des standards multiples.

L’utilisation d’un seul standard auquel l’échantillon est comparé conduit

immédiatement à des difficultés lorsque les deux ne sont pas identiques. Cela vient du fait

qu’un seul standard représente seulement un point dans le monde tridimensionnel de la

couleur. Si l’échantillon et le standard ne concordent pas, on aimerait pouvoir décrire la

différence avec précision et savoir si elle s’inscrit à l’intérieur de limites précédemment

établies. C'est-à-dire que nous aimerions savoir, à la fois, comment et de combien le

standard et l’échantillon diffèrent-ils ?

Cela nous amène à faire un jugement quantitatif et analytique, auquel l’œil est moins

adapté que dans le jugement de savoir si oui ou non deux matériaux sont identiques. L’œil

est un bon détecteur d’absence de différence, en quelque sorte… par contre, la situation se

Figure 3.1. : Cabinet de lumière : Modèle MiniMatcher MM-

1e de la marque Geneq. Il est habituellement équipé de trois

sources de lumière : jour artificiel D65, lumière fluorescente

blanc froid (CWF) et lumière domestique (incandescente). Il

est en outre, en général, possible d’équiper ces cabinets

d’une source UV.

Page 55: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -47-

complique beaucoup lorsqu’il existe une différence et qu’il faut dire quelle est cette différence

et la quantifier.

Cette limitation de l’œil humain peut être compensée en lui fournissant plus d’un

standard avec lequel faire une comparaison. Si l’observateur dispose d’un second standard

qui se situe à une distance connue du premier (en terme d’espace de couleur), son

évaluation de savoir si l’échantillon est plus proche du premier standard, le standard cible, ou

du second standard, le standard limite, sera facilitée.

L’examen visuel avec l’aide d’un ou plusieurs standards limites en plus du standard

cible est relativement commun. Le nombre de standards limites de même que le degré de

différence par rapport au standard cible dépend du niveau de tolérance de couleur désiré.

Une combinaison habituelle consiste en un standard cible et 6 standards limites : une limite

supérieure et une limite inférieur, pour chaque coordonnée de couleur, que sont la

luminosité, la teinte et la saturation. L’utilisation d’un set complet de standards limites,

combiné avec des sources standardisées, fournit une procédure de contrôle relativement

satisfaisante en routine. Il est essentiel que ces standards limites soient non métamériques

par rapport au produit qui doit être inspecté, ce qui n’est pas toujours le cas avec les

systèmes de ce type, disponibles commercialement.

Une procédure faisant intervenir des standards limites conduit logiquement à

l’utilisation d’instruments. Comme les standards limites définissent l’intervalle d’acceptabilité,

leur mesure avec un instrument de sensibilité adéquate fournit des valeurs numériques de

ces limites. Le type de valeurs obtenues dépend de l’instrument utilisé et ne devraient être

utilisés que comme accord préalable.

Mesure instrumentale de la couleur.

Il est possible d’établir un classement des colorimètres en fonction de la façon dont ils

traitent la lumière durant la mesure.

Classification des méthodes

La lumière inaltérée.

Il semble normal d’envisager utiliser des méthodes pour lesquelles de la lumière

blanche inaltérée éclaire les échantillons. Après tout, c’est la situation habituelle d’examen

visuel d’un objet coloré.

Notons également que le choix de la source n’a que peu d’importance lorsque le

produit testé n’est pas coloré. Un exemple de mesure de ce type, est la densitométrie de

films photographiques noir et blanc : pratiquement n’importe quelle source de lumière et de

détecteur peuvent permettre de déterminer la quantité de noir dans un tel système.

Page 56: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -48-

Si, par contre, il est nécessaire que l’instrument mesure l’un des aspects de

l’apparence d’objets colorés, spécialement leur luminosité ou quelque chose qui y est relié

(facteur de réflexion lumineuse, transmission, etc.), d’une façon qui soit en corrélation avec

ce qu’un observateur humain peut voir, il est nécessaire de se montrer plus prudent. La

condition nécessaire est alors que le produit du spectre de la source par la réponse spectrale

du détecteur soit égal au produit du spectre de l’illuminant désiré (habituellement C ou D65)

par la réponse spectrale V(λ) de l’observateur standard (figure 3.2.). Des filtres de lumière

sont disponibles pour remplir cette condition avec la plupart des sources et des détecteurs.

Lumières de trois couleurs.

L’étape suivante de raffinement consiste à utiliser la lumière comme sonde, pour

détecter la couleur avec des instruments, dans lesquels l’échantillon est éclairé sous trois

types différents de lumières. Elles sont sélectionnées de sorte que les lectures de

l’instrument soient sous la forme de trois nombres, qui, avec des standards adéquats, sont,

soit directement égaux aux coordonnées X, Y et Z du système CIE, soit facilement

convertibles en ces coordonnées, par un calcul simple. Ces instruments sont appelés

« colorimètres », au sens propre du terme.

Lumière monochromatique.

Le terme monochromatique signifie « d’une seule couleur » et une lumière

monochromatique est donc une lumière qui ne contient qu’une seule couleur du spectre. Un

monochromateur est un montage, qui peut contenir un prisme ou un réseau, produisant ce

genre de lumière en décomposant la lumière blanche, en son spectre et en isolant une partie

de ce dernier à la fois. Un instrument de mesure de couleur utilisant une lumière

monochromatique peut mesurer la courbe de facteur de réflexion, ou de transmission, d’un

échantillon. Comme nous l’avons vu, cette courbe contient toutes les informations

Figure 3.2. : Condition de mesure de luminosité : Si un instrument doit mesurer la luminosité d’un objet

coloré, ou une caractéristique qui lui est reliée, alors, le produit du spectre de la source, éventuellement

modifié par l’utilisation d’un filtre, par la réponse spectrale du détecteur doit être égal au produit du spectre

de l’illuminant désiré par la réponse spectrale de l’observateur standard.

Page 57: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -49-

nécessaires au calcul de la couleur d’un échantillon pour n’importe quel source et

observateur. Nous allons, à présent, voir comment ce type de mesure, appelée

spectrophotométrie, est mise en œuvre et voir comment les coordonnées de couleur peuvent

être obtenues à partir des courbes spectrophotométriques ou de facteur de réflexion.

Spectrophotométrie.

La spectrophotométrie, c'est-à-dire la mesure du facteur de réflexion ou de

transmission des objets en fonction de la longueur d’onde, a beaucoup d’applications, autres

que la mesure de la couleur. Nous ne décrirons, ici, que la spectrophotométrie dans le

domaine visible du spectre, soit entre 380 et 750 nm environs, comme cela se passe

effectivement dans les instruments adaptés à la mesure de la couleur.

Source, monochromateur et détecteur.

Les principaux composants de tout spectrophotomètre sont : la source de radiation,

un moyen d’isoler une lumière monochromatique, et un détecteur photoélectrique adapté.

Dans la plupart des instruments analytiques, et dans certains spectrophotomètres de mesure

de la couleur, la lumière blanche provenant de la source, souvent une ampoule à filament de

tungstène, est dispersée en son spectre, par un prisme ou un réseau. Une fente est utilisée

pour sélectionner une petite portion du spectre pour illuminer l’échantillon. Cette portion peut

être comprise entre quelques dixièmes à une dizaine de mm de large, en fonction de

l’instrument. La longueur d’onde de la lumière passant à travers la fente est variée, par

scannage automatique, pour couvrir l’entièreté du spectre visible. L’irradiation

monochromatique illumine l’échantillon, et la lumière réfléchie est collectée par un détecteur

(figure 3.3). Ce type de procédé est appelé illumination monochromatique.

Figure 3.3. : Illumination

monochromatique : La lumière

blanche provenant de la source

est décomposée par un

monochromateur, puis une portion

de cette dernière illumine

l’échantillon. La lumière réfléchie

par l’échantillon est ensuite

détectée.

Page 58: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -50-

D’autres instruments de mesure de la couleur utilisent le procédé inverse, lequel

s’appelle illumination polychromatique. Cette fois, la lumière pleine provenant de la source,

habituellement une lampe à filament de tungstène filtrée ou un arc à xénon, illumine

l’échantillon, et c’est la lumière réfléchie, cette fois, qui est passée à travers un

monochromateur avant d’être détectée (figure 3.4.).

Calcul des coordonnées X, Y et Z CIE.

Cfr. pg 34. Note : Les spectres des illuminants standard et la courbe de réponse

spectrale de l’observateur standard sont en général des données associées au logiciel de

traitement des données du colorimètre.

Standardisation et précision.

Nous n’allons pas nous étendre sur ce point, retenons simplement que, comme tout

appareil de mesure précis, un spectrophotomètre doit être régulièrement calibré, pour

s’assurer que les résultats fournis sont bien reproductibles. Cette calibration requiert

habituellement, au minimum, 2 standards : l’un étant un blanc de travail, qui peut être

constitué de téflon, d’émail, ou de céramique, par exemple, et dont l’écart par rapport au

blanc parfait est connu du logiciel de traitement des données ; l’autre étant un piège à

lumière, qui permet de fixer le noir parfait. Souvent, on utilise un standard de plus, un vert,

par exemple.

Estimation de la différence de couleur.

Estimation par méthodes visuelles.

Nous avons vu que la combinaison œil-cerveau constituait un détecteur pratiquement

inégalable lorsqu’il s’agissait d’estimer si deux échantillons étaient de couleur identiques ou

non. Une fois qu’une différence entre l’échantillon et le standard est détectée, toutefois, il y a

des variations importantes d’opinion, même parmi des observateurs entraînés. Cette

Figure 3.4. : Illumination

polychromatique : La lumière

blanche provenant de la source

illumine directement l’échantillon

est c’est, cette fois, la lumière

réfléchie par ce dernier, qui est

détectée, après être passée par

un monochromateur.

Page 59: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -51-

variation est une source de confusion et de découragement. Avec un instrument, par contre,

la description de la différence entre le standard et l’échantillon est non ambiguë, même si

l’interprétation des résultats, en terme visuel, peut être sujet à interprétation.

La conversion de la description de la relation entre le standard et l’échantillon, en des

termes de couleur, telle qu’elle est perçue, n’est pas du tout évident. En se fiant à des

coloristes entraînés et à un système standardisé, il est possible de décrire la différence entre

le standard et l’échantillon de façon à la rendre compréhensible par d’autres personnes

entraînées. Habituellement, toutefois, on fera plus confiance à des standards limites et

l’estimation finale consistera simplement à dire si la couleur de l’échantillon tombe ou non

dans la zone de tolérance,

Estimation par méthodes instrumentales.

Idéalement, le résultat final d’une mesure de couleur instrumentale devrait être une

série de nombres, décrivant la nature et l’amplitude de la différence en couleur, entre

l’échantillon et le standard, de façon à ce que, les nombres aient toujours la même

signification en terme de perception visuelle. Cela a été l’objectif de nombreux chercheurs

qui ont modifié les systèmes de classement de couleur uniformes dont nous avons parlé

dans le chapitre 2. Comme nous l’avons vu alors, cet objectif n’a pas été atteint et il parait

improbable, à certains experts, que l’on puisse jamais y arriver.

Quoiqu’il en soit, il y a de nombreuses façons de calculer un nombre représentant

une amplitude de différence de couleur, aussi longtemps que l’on se souvient que ce nombre

n’aura pas la même signification, en terme de perception visuelle, pour différentes couleurs.

Un problème additionnel provient, toutefois, du fait qu’il existe de nombreuses façons

différentes de calculer de telles différences de couleur, couramment utilisées, et que ces

différentes façon de faire ne sont pas compatibles entre elles, sans même parler de

perception visuelles. Beaucoup d’études ont visé à démontrer ce fait, à présent bien accepté,

mais trop peu reconnu. Plus important, encore, il est impossible de convertir les différences

de couleurs calculées par deux méthodes différentes en ayant recours à des facteurs de

conversion moyens (à une exception près).

Nous allons à présent décrire certaines des formules de différence de couleur qui ont

été, et qui sont toujours, largement utilisées.

Equations basées sur les données de Munsell.

L’uniformité des espaces entre les échantillons du livre des couleurs de Munsell

implique une différence de couleur constante entre des échantillons adjacents (en tenant

compte de la nature cylindrique de ce système).

Page 60: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -52-

La première équation de différence de couleur qui ait été utilisée, l’index d’effacement

de Nickerson (1936), additionne simplement les différences de coordonnées de Munsell

entre l’échantillon et le standard : CVHCE ∆+∆+∆=∆ 3652

(avec C = saturation, V =

luminosité et H = teinte). Balinkin a modifié cette formule, en 1941, pour l’adapter à une

géométrie Euclidienne, dans laquelle la distance oblique entre deux points est la racine

carrée de la somme des carrés des distances entre eux, suivant trois axes de coordonnées

mutuellement perpendiculaires : ( )2

22 206

52

⎟⎠⎞

⎜⎝⎛ ∆+∆+⎟

⎠⎞

⎜⎝⎛ ∆=∆ CVHCE

π.

A cause de la difficulté de calculer des coordonnées de Munsell à partir des

coordonnées X, Y et Z CIE, ces équations et leurs modifications ultérieures n’ont jamais été

très populaires. Adams, en 1942, développa les formules, modifiées par Nickerson, qui

aboutirent aux équations ANLAB, dont l’équation de différence de couleur :

( ) ( )( ) ( )( )222 4.023.040 zyyxy VVVVVE −∆+−∆+∆=∆ (avec Vy,x,z = luminosités de Munsell

calculées à partir de la formule donnée en page 40, avec Y, X/0.9804 et Z/1.1810). Plus tard,

Glasser, Sauderson et Reilly ont introduit quelques modifications mineures à ces équations,

que nous avons déjà abordées à la page 40.

Equations basées sur des données de différences tout juste perceptibles.

Une unité de différence de couleur basée sur l’échelle uniforme de chromaticité de

Hunter a été désignée comme unité du Bureau National des Standards ou unité NBS. Ce

système n’est que rarement utilisé, mais le terme « unité NBS » a souvent été appliqué, à

tort, aux résultats d’autres calculs de différence de couleur, dont les équations ANLAB. Une

autre unité de différence de couleur, est celle dérivée simplement et directement des lecture

d’un colorimètre en coordonnées L, a, b de Hunter : 222 baLE ∆+∆+∆=∆ (avec L, a et b,

les coordonnées de Hunter, dont nous avons parlé à la page 40). Finalement, la

transformation de MacAdam du diagramme x, y, qui est devenu le diagramme u, v CIE 1960,

a été combinée avec la racine cubique de l’échelle de luminosité pour donner l’espace de

couleur et les équations de différence de couleur adoptées par la CIE en 1964. Ces

équations ont été remplacées par les équations CIELUV recommandées par la CIE en 1976.

Equations basées sur la déviation standard de correspondance de couleur.

MacAdam et ses assistants ont déduit un tas de données de l’incertitude avec

laquelle une correspondance de lumière colorée pouvait être faite. Ces données

comprennent les fameuses ellipses de MacAdam dans le diagramme x, y (figure 3.5.), ou, si

Page 61: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -53-

la luminosité est prise en compte, les ellipsoïdes correspondants. Plus tard (1957), Brown a

trouvé des ellipses pour 12 observateurs, Wyszecki (1971) en a étudié encore plus, et Rich

(1975) a obtenu des ellipses similaires, mais pour des surfaces colorées, cette fois. Les

variations observées représentent l’écart dans la perception des différences de couleur, d’un

observateur à un autre, dans les limites d’une vision normale de la couleur.

MacAdam a montré comment utiliser ces ellipses pour calculer des différences de

chromaticité. Simon, pour sa part, les a combiné avec un calcul de luminosité de Munsell

modifié pour fournir des ensembles de tableaux très utiles pour un rapide calcul manuel de

différences de couleurs et comme tableaux de tolérance de couleur. Plus tard, MacAdam,

Friele et Chickering ont collaboré pour produire deux équations de différence de couleur,

connues comme FMC-1 et FMC-2. Cette dernière a été utilisée, plus tard, dans différents

softwares de colorimètres et sa popularité s’est accrue. Malgré l’utilisation courante de ces

équations, ni elles, ni aucune autre équation dérivée des ellipses de MacAdam ne sont

présentes dans les recommandations de la CIE 1976.

Recommandations de la CIE.

Les équations de différence de couleur connues comme équations CIELAB et

CIELUV accompagnent la recommandation CIE de 1976 (CIE 1978) pour les nouveaux

espaces de couleur, équations de différence de couleur et termes de couleurs discutés en

page 41. Les équations dérivent directement des définitions des coordonnées de couleur

psychométriques décrites alors. La CIE ne tranche donc pas sur l’équation à utiliser, soit la

CIELAB, soit la CIELUV. L’une des raisons en est qu’il y a très peu de différence entre elles,

Figure 3.5. : Ellipses de MacAdam :

représentées sur le diagramme de

chromaticité x, y de la CIE 1931. Les

ellipses illustrées sont 10 fois plus grandes

que les ellipses réelles. Chaque ellipse

(réelle) correspond à la région du

diagramme de chromaticité qui contient

toutes les couleurs qui sont non

distinguables, pour un œil humain moyen,

de la couleur se trouvant au centre de

l’ellipse.

Page 62: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -54-

dans leur façon de s’accorder avec des données visuelles. Il a également été montré

qu’aucune de ces équations ne reproduisait ni les ellipses de MacAdam, ni les écarts dans

les couleurs de Munsell. Il est probable que les personnes travaillant dans les domaines de

reproduction de la couleur, qui préfèrent un espace de couleur qui possède un diagramme

de chromaticité qui soit une transformation linéaire du diagramme CIE x, y, préfèreront

l’espace CIELUV et utiliseront probablement les équations de différence de couleur

correspondantes. Par contre, les personnes qui devront travailler avec des colorants dans

des peintures, des plastiques, textiles, etc. et ceux qui sont familiers avec les équations

d’Adams-Nickerson, préfèreront certainement utiliser CIELAB.

Comme nous l’avons signalé à la page 51, il existe une exception au fait qu’il soit

impossible de passer facilement d’une différence de couleur obtenue par une équation à une

autre. Cette exception vient du fait que l’équation CIELAB est très proche de l’équation

ANLAB et qu’il est en général possible de passer d’une différence de couleur déterminée par

ANLAB 40 à une différence de couleur CIELAB, simplement en multipliant par le facteur

constant 1,1.

Il est parfois intéressant de séparer la différence de couleur ∆E* CIELAB ou CIELUV,

en ses composants se rapportant à la teinte (H*), luminosité (L*) et saturation (C*) :

( ) ( ) ( )222 **** CVHE ∆+∆+∆=∆ .

Un mot d’avertissement : Les appareils modernes de mesure de la couleur calculent

les différences de couleur à deux (ou plus) décimales. Sans même se soucier de l’équation

utilisée, tout ce qui se trouve derrière la première décimale n’a pas de signification en terme

visuel.

Perceptibilité vs acceptabilité.

Que l’on ait, ou non, converti des données instrumentales en valeur désignant la

différence de couleur, en prenant toutes les précautions nécessaires, le problème, en fin de

compte, dans la mesure de la couleur, est d’évaluer la différence de couleur en terme

d’acceptabilité de l’échantillon, comparé au standard. Si des standards limites,

adéquatement sélectionnés et préparés, sont utilisés, cette dernière étape se fait

automatiquement.

Si les limites d’acceptabilité sont exprimées en termes de valeur de différence de

couleur, il y a un réel problème auquel faire face. Il n’est pas seulement vrai que des valeur

de différences égales, dans n’importe quel système de calcul, ne correspondent pas à des

différences de couleurs visuellement perceptibles égales, mais il se trouve que, ce qui

constitue une différence de couleur acceptable, est un phénomène statistique. C'est-à-dire

que toutes les personnes ne seront pas d’accord sur ce que devrait être une différence de

Page 63: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -55-

couleur commercialement acceptable. Les différences de perception des couleurs et les

goûts personnels, à la fois, prennent, ici, une importance indubitable.

La meilleure procédure, dans les cas où la préférence du client doit jouer un rôle, est,

peut-être, d’effectuer des mesures de couleurs sur une période suffisamment longue pour

disposer d’un historique. Si le client est constant dans sa façon d’accepter ou de rejeter le

produit, il est possible, de cette façon, d’atteindre un accord sur ce qui constitue une

différence de couleur acceptable, même si il semble qu’il y ait peu de relation avec ce qui

semble être une différence perceptible. Certain coloristes estiment qu’il n’y a pas de

différence fondamentale entre perceptibilité et acceptabilité, excepté que les limites

acceptables peuvent parfois être quelque peu plus importantes que les limites de

perceptibilités ; d’autres estiment que la question fondamentale de ce qui est, ou non,

acceptable, doit être établi, d’avance, par un accord entre le vendeur et l’acheteur. Si des

méthodes instrumentales doivent jouer un rôle dans l’examen, elles doivent être définies

exactement, y compris les techniques de mesure, la conversion des données, les calculs et

l’évaluation des résultats.

Utilisation appropriée des calculs de différence de couleur.

Quelle est donc la bonne façon d’utiliser les calculs de différence de couleur ? Cela

peut être résumé dans les 5 règles qui vont suivre. Si elles étaient universellement suivies, la

plupart des incertitudes, confusions, débats et altercations sur les tolérances de couleurs au

niveau commercial, disparaîtraient et la vie de nombreux coloristes s’en trouverait plus

heureuse.

1. Sélectionnez une seule méthode de calcul et utilisez la logiquement. Pour une

utilisation interne, puisqu’il n’y a pas de différence fondamentale suivant l’équation

qui est utilisée (aucune n’étant réellement bien conforme à un jugement visuel),

choisissez en fonction de la familiarité, de la facilité, ou de l’expérience. MAIS, pour

un usage externe, suivez les recommandations CIE en cours en utilisant les

équations CIELAB ou CIELUV pour une question d’uniformité.

2. Spécifiez toujours exactement comment les calculs sont réalisés. Soyez sûr que

les formules exactes, avec tous les facteurs d’échelle et autres variables spécifiques,

soient écrites à un endroit bien déterminé, comme un rapport de la compagnie, une

méthode ASTM, un livre, ou une publication, ou encore dans un accord client-

fournisseur. Référez-vous alors régulièrement à cette source. N’oubliez pas que le

résultat global dépend du type d’instrument utilisé et veillez à ce qu’il soit également

spécifié.

Page 64: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -56-

3. N’essayez jamais d’interconvertir des différences de couleurs obtenues avec

différents types d’équations en utilisant des facteurs de moyenne. Avec la seule

exception dont nous avons parlé précédemment (ANLAB 40 – CIELAB), la seule

bonne façon de convertir des valeurs, est de retourner aux données originales de

standard et d’échantillon, puis d’effectuer un nouveau calcul. Il faut insister sur le fait

qu’il n’existe, en général, pas de concordance entre des valeurs de différences de

couleur obtenues par deux méthodes différentes, quelles qu’elles soient. La

comparaison de différentes méthodes montre invariablement que les réponses

obtenues ne sont pas les mêmes, quel que soit le facteur de « correction » ou

d’ « ajustement » appliqué. Il est toutefois qualitativement intéressant de se rappeler

que l’unité de MacAdam est approximativement une différence de couleur tout juste

perceptible, alors que de nombreuses autres unités sont 2 à 4 fois plus importantes.

Parmi ces unités plus importantes, toutes approximativement de la même échelle, on

retrouve Adams, CIELAB, CIELUV, Hunter et NBS.

4. N’utilisez des différences de couleur calculées que comme première

approximation dans l’établissement des tolérances, jusqu’à ce qu’elles

puissent être confirmées par jugement visuel. Si pour un rouge clair, par exemple,

vous estimez que 2 unités CIELAB constituent une bonne tolérance, ne vous

attendez pas à ce que ce soit toujours le cas pour un jaune fort, ou un marron, ou un

vert lumineux, ou encore un bleu marin foncé.

5. Rappelez-vous que personne n’accepte ou ne rejette de couleurs à cause de

nombres : c’est toujours l’apparence qui compte. Utilisez les calculs de différence

de couleur pour assurer une certaine régularité, pour l’archivage de données, par

facilité ou objectivité, mais observez toujours visuellement aussi.

Spécification de la couleur et tolérance.

Au final, la vente et l’achat d’un matériau coloré repose sur la conformité des

échantillons à certaines tolérances de différence de couleur. Considérons à présent

comment ces tolérances doivent être définies.

Les tolérances de couleur sont, malheureusement, définies de deux façons peu

recommandées. La première consiste à rendre la tolérance aussi étroite que possible, aussi

longtemps que le vendeur peut fournir un produit satisfaisant. La seconde consiste à fixer la

tolérance à la limite absolue pour un observateur humain, ou pour un humain, de détecter

une différence de couleur. Ces deux méthodes ont le défaut majeur de ne pas être reliées à

ce qui est requis. Si ce qui est requis nécessite un maximum de contrôle, alors, c’est ce qui

doit être fourni, mais, pour utiliser un exemple d’un autre type d’industrie, il serait idiot de

Page 65: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -57-

commander des barres d’acier machinées avec une tolérance de 25 µm si c’est pour les

utiliser comme barres de renforcement d’un béton armé. Une des raisons pour laquelle ce

n’est pas fait, entre autre, est le fait que, plus la tolérance est étroite, plus le prix sera élevé.

Une tolérance, plus réaliste qu’une concordance « exacte », peut être facilement définie par

des standards limites dans plusieurs dimensions de l’espace de couleur. Bien entendu,

lorsqu’une concordance « exacte » est nécessaire, elle peut être fournie… pour autant que

l’on soit prêt à en payer le prix.

Les tolérances de couleur devraient être définies pour correspondre à un accord

entre l’acheteur et le vendeur. Une façon d’y arriver, en utilisant des lectures instrumentales,

est de développer une table de tolérance en gardant un enregistrement des mesures de

chaque lot d’une couleur donnée produite. Ces données peuvent être tracées dans un

espace de couleur uniforme approprié, comme sur le diagramme CIELAB (figure 3.6.).

Comme illustré, les lectures correspondant à chaque lot sont rapportées en indiquant si ce

dernier a été accepté ou non. A mesure que le nombre d’enregistrement augmente, il devient

possible de tracer une figure de tolérance qui peut être un cercle, une ellipse, ou même une

forme irrégulière, centrée, ou non sur le standard. Avec l’expérience, on peut estimer

d’avance la probabilité que le prochain lot, fabriqué, mesuré et rapporté, sera accepté ou

non. Des standards limites, pour un contrôle visuel, peuvent être sélectionné à partir des

lots, dont le point tombe à proximité du tracé de la figure de tolérance.

Cette procédure, pour laquelle une grande confiance est placée dans les mesures

instrumentales et les standards limites, requière une extrême prudence dans la

standardisation des techniques employées. Comme les standards physiques peuvent

changer, il est important que leur stabilité soit vérifiée avant d’utiliser la conformité à ces

standards comme un critère d’acceptabilité. Il faut insister sur le fait que les standards

limites, qu’ils soient utilisés comme assistants à l’examen visuel, ou pour fixer des intervalles

Figure 3.6. : Limites de tolérances : tracées sur un

diagramme de type CIELAB. Les points correspondent

aux valeurs mesurées pour des lots acceptés et les

croix, à des lots refusés.

Page 66: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -58-

numériques d’acceptabilité, doivent montrer la même modification de couleur (ou absence de

modification) que l’échantillon, avec un changement de source de lumière.

Tous les instruments sont sujets à des erreurs instrumentales et il convient de bien

veiller à ce que ces instruments soient utilisés de façon adéquate, dans des conditions

adéquates. Cela peut paraître évident, mais la somme de ces erreurs ne peut dépasser, ou

même constituer une partie significative des limites de tolérance. Si ces conditions sont

remplies, toutefois, il en résulte une grande économie de temps et d’énergie, lorsque les

mesures, qu’elles soient instrumentales, ou visuelles, permettent de classer

automatiquement le produit, sans plus de discussion ou de calcul.

L’intérêt d’avoir une spécification (pas seulement au niveau de la couleur) est de

doter le fournisseur d’un moyen lui permettant d’offrir à l’utilisateur un produit qui sera

satisfaisant pour son utilisation. Si la spécification est trop stricte, il sera impossible de fournir

un produit satisfaisant ; si elle est trop large, le produit final ne sera pas satisfaisant. De

nouveau, c’est un cas d’accord entre l’acheteur et le vendeur : la spécification définit un

produit que le fournisseur puisse offrir et que le client puisse utiliser, le tout dans des limites

financières satisfaisantes.

4. Les colorants. Jusqu’à présent, nous avons répété à plusieurs reprises que la couleur que nous

percevions, d’un objet, dépendait de la combinaison du spectre de la lumière, de la courbe

de facteur de diffusion ou de transmission de l’objet sur lequel la lumière tombe, et de la

courbe de réponse spectrale de l’observateur. Nous le répétons une fois de plus, pour que

nous ayons bien à l’esprit que la couleur est le fruit de trois facteurs, alors que, dans ce

chapitre, nous n’allons considérer qu’un seul d’entre eux. En effet, nous considérerons que

la source et l’observateur, sont deux constantes et n’examinerons que les substances

utilisées pour modifier la courbe de facteur de réflexion ou de transmission d’un objet.

Nous désignerons ces substances par le terme général « colorant ». Nous ferons

ultérieurement une distinction entre les teintures et les pigments, ainsi qu’entre les colorant

chromatiques et achromatiques.

Teinture vs pigment.

Dans le passé, lorsque les choses étaient relativement simples, il était facile de faire

la distinction entre une teinture et un pigment. Une teinture était une substance, soluble dans

l’eau utilisée pour colorer des produits à partir de solutions aqueuses. Un pigment était une

matière insoluble, sous forme de particules dispersées dans le milieu qu’il colorait. Bien que

cette distinction soit toujours valable dans la plupart des cas, il existe de nombreuses

Page 67: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -59-

exceptions, de sorte que des critères additionnels ont du être imaginés pour faire une

distinction entre ces deux types de colorants. Aucune définition n’est complètement

satisfaisante, puisqu’un composé chimique donné peut être, soit un pigment, soit une

teinture, en fonction de la façon dont il est utilisé. Dans les paragraphes suivants, nous

allons examiner certains des critères les plus communs permettant de distinguer une teinture

d’un pigment.

La solubilité.

Pendant de nombreuses années, il a été communément établi que les teintures sont

solubles et les pigments insolubles. C’est généralement vrai : la plupart des teintures sont

solubles dans l’eau. Il existe toutefois des exceptions, ou tout le moins, des cas limites.

Depuis un certain temps, dans le but de diminuer la pollution des eaux, l’industrie

textile utilise parfois des bains de teinture à base de solvants. Dans ce cas, à l’exception

qu’un solvant organique est substitué à l’eau, le critère de solubilité est satisfait, le solvant

utilisé servant seulement à assurer un contact intime entre la teinture et le matériau devant

être coloré.

Par contre, les pigments sont toujours insolubles dans le milieu dans lequel ils sont

utilisés : tout caractère soluble est considéré comme un défaut dans l’industrie utilisant des

pigments.

La nature chimique.

Une autre distinction traditionnelle entre pigment et teinture était que les teintures

étaient des substances organiques, alors que les pigments étaient des substances

inorganiques. Cette situation a évolué avec le temps. Si le nombre de teintures inorganiques

est toujours pratiquement nul, il n’en va pas de même des pigments organiques, dont le

nombre ne cesse de croître. Il est donc toujours vrai que la plupart des teintures sont

organiques, mais il n’est plus exact que la plupart des pigments sont inorganiques.

La transparence.

Une autre distinction provient de l’utilisation de pigments ou de teintures pour colorer

les polymères. Les colorants qui se dissolvent dans une résine et qui donnent donc un

mélange transparent, sont appelés teintures, alors que les pigments, qui ne se dissolvent

pas, mais diffusent la lumière, donnent un matériau trouble, translucide ou opaque.

Cette distinction est valable dans la plupart des cas, mais plusieurs pigments

organiques (et quelques inorganiques) peuvent être si bien dispersés que la résine colorée

qui en résulte, est pratiquement transparente. Dans plusieurs cas, il y a si peu de diffusion

Page 68: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -60-

qu’il est impossible, à partir d’un simple examen visuel, de déterminer si le plastique est

coloré avec une teinture soluble dans la résine, ou avec un pigment très dispersé.

Pour arriver à un tel degré de transparence, il est nécessaire, dans la plupart des cas,

qu’outre une excellente dispersion, la résine et le pigment possèdent des indices de

réfraction similaires. Avec des pigments organiques, cette condition est remplie. Quelques

pigments inorganiques, tels que l’oxyde de fer, sont constitués de particules tellement petites

qu’ils ne diffusent pas la lumière visible et sont dès lors transparents.

A contrario, une bonne opacité est obtenue plus facilement en utilisant un pigment

dont l’indice de réfraction est très différent de celui de la résine. Les substances organiques

sont donc en général des pigments à faible pouvoir opacifiant, à cause de leur indice de

réfraction trop proche de celui de la résine, et ce, malgré leur insolubilité. Dans ce dernier

cas, les particules du pigment organiques doivent être assez grandes pour permettre une

bonne diffusion de la lumière.

Présence d’un liant.

Une dernière distinction, peut-être celle qui possède la plus grande validité et qui

donne le moins lieu à des exceptions, est basée sur le mécanisme par lequel le colorant est

fixé au substrat. Si le colorant a une affinité pour le substrat (textile, papier, etc.) et va

devenir une partie de la matière colorée, sans nécessité d’un liant intermédiaire, on

considère un tel colorant comme étant une teinture. Cette affinité pour le substrat permet de

distinguer clairement les teintures des pigments. Les pigments n’ont pas d’affinité pour le

substrat et requièrent un liant pour qu’ils se fixent au substrat. Un pigment appliqué à une

surface, sans liant, n’adhèrera pas à cette surface.

Les teintures, quelles qu’elles soient, ne nécessitent pas de liant pour adhérer au

matériel coloré (même si dans certains cas, un liant est utilisé lors de l’étape de fixation, au

final, sa présence n’est plus nécessaire dans le cas d’une teinture).

D’un autre côté, les pigments doivent être incorporés à un liant pour être attaché au

substrat, comme dans un film de peinture sur le mur d’une maison, par exemple. Dans le cas

d’un plastique, qui est entièrement coloré par dispersion d’un colorant dans la résine, nous

considérons le plastique lui-même, comme étant un liant, alors que si une teinture soluble

est utilisée, nous considérons ce même plastique comme le substrat.

Résumé.

Il est évident que les critères que nous venons de discuter sont tous en accord, la

plupart du temps. La majeure partie du temps, les mêmes colorants seront solubles,

Page 69: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -61-

organiques, transparents et ne requérront aucun liant dans un système donné. Ils seront dès

lors appelés teintures.

Colorants spéciaux : fluorescents et métallisés.

Les colorants fluorescents comprennent les blanchissants fluorescents et les

pigments et teintures fluorescents chromatiques. Toutes ces substances absorbent la

lumière à une longueur d’onde et réémettent une partie de celle-ci à une longueur d’onde

plus élevée. Les blanchissants fluorescents absorbent des radiations ultraviolettes (< 380nm)

et réémettent dans la région du visible. Pour cette raison, la quantité de lumière à la longueur

d’onde d’émission peut excéder 100 % de la lumière incidente à cette longueur d’onde. C’est

la conversion de radiations invisibles en lumière visible qui donne aux agents blanchissants

fluorescents la capacité de faire paraître un matériel « plus blanc que blanc ». L’explication

en est qu’un tel matériel est capable d’irradier plus de lumière visible qu’il n’en tombe

dessus, le rendant plus lumineux qu’un matériel non fluorescent, qui ne peut, au mieux, que

réfléchir toute la lumière visible qui tombe sur lui. Pour obtenir cet effet, la source de lumière

doit contenir de l’énergie aux longueurs d’ondes appropriées, dans le domaine de

l’ultraviolet, pour exciter les molécules, qui vont réémettre dans le visible. En absence du

spectre adéquat, on ne peut obtenir de fluorescence. Il est évident qu’il ne peut être réémis,

par un échantillon, plus de radiation qu’il n’en tombe sur lui.

La réémission des agents blanchissants fluorescents se situe dans la région bleue du

spectre. Puisque les textiles souillés sont habituellement jaunâtres, la quantité de lumière

bleue absorbée par le jaune est remplacée par la lumière bleue réémise. De la même façon,

les agents blanchissants fluorescents peuvent diminuer l’aspect jaunâtre des résines.

Il est important de se rappeler qu’une source de lumière spéciale, contenant la

quantité adéquate d’ultraviolet est nécessaire. La lumière du jour, aussi bien que plusieurs

lampes fluorescentes populaires, contiennent suffisamment d’UV pour exciter les colorants

fluorescents, mais en des quantités qui peuvent différer fortement d’une source à une autre.

Les matières « blanchies » de cette manière ne peuvent être mesurées correctement,

excepté avec une source de lumière de spectre adéquat pour donner l’effet visuel désiré. Ce

que nous avons vu, jusqu’à présent, sur la mesure des couleurs n’est donc pas d’application

pour les éléments fluorescents.

Une autre classe de matériaux, les pigments métallisés, comme par exemple,

l’aluminium utilisé dans les peintures métallisées, est fortement dépendante de la géométrie

d’illumination et d’observation. Ces conditions doivent être spécifiées avec précisions pour

l’examen visuel des peintures ou polymères contenant ces pigments. De l’équipement

spécial est également nécessaire pour la mesure de la couleur de tels objets.

Page 70: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -62-

Sélection du colorant à utiliser.

La capacité à sélectionner les colorants appropriés, pour une utilisation spécifique,

est bien plus importante, pour un utilisateur de pigments et de teintures, que la

compréhension de leur chimie, ou de leurs autres propriétés. Nous ne pourrons, ici,

qu’esquisser les prémices de ce problème, mais au moins aurons-nous au final une petite

idée sur ce sujet.

Sources d’information.

Il y a trois sources majeures d’information sur la sélection des colorants.

Personnel expérimenté.

Le personnel le plus ancien, le plus expérimenté, du laboratoire ou de l’usine,

représente souvent la meilleure source d’information sur le choix des colorants.

Malheureusement, cette situation peut également servir à perpétuer les mythes qui ont cru

dans cette usine ou ce groupe de personnes.

Les fournisseurs de colorants.

Une source importante d’information pour la plupart des gens, est le fournisseur de

colorants. Leur information est disponible via le web, des catalogues, ou même via le contact

direct avec un représentant de la compagnie. Bien qu’il y ait un biais commercial dans les

informations fournies, admettons-le, il peut être facilement identifié et pris en compte, et ce,

même avec peu d’expérience. Habituellement leurs méthodes de test sont conformes aux

standards internationaux (ISO, ASTM), ce qui permet une comparaison aisée d’une

compagnie à une autre.

Les livres et périodiques.

Si les livres et les périodiques consacrés aux teintures et aux pigments sont

relativement rares (comparés à ceux consacrés à la chimie), ils n’en sont pas moins souvent

d’excellente qualité. Malheureusement, les informations qui y sont disponibles sont souvent

les mêmes que celles qui peuvent être obtenues des fournisseurs (avec peut-être un peu

plus d’objectivité).

L’expérience de l’utilisateur.

A mesure que le coloriste gagne de l’expérience, ses propres connaissances vont

prendre le pas sur n’importe quelle source d’information. Il doit en être ainsi, puisqu’il est le

seul à travailler dans les conditions exactes d’application dans son usine. Cela dit, si

Page 71: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -63-

l’expérience d’un coloriste, relative à un problème particulier, est contraire à l’expérience

générale, il convient de réexaminer cette question. Il se peut en effet, que quelque chose

n’ait pas été fait correctement et, dans ce cas, des consultations fréquentes avec le

fournisseur de pigments ou de teintures, peut être d’une grande aide. Cette remarque est

également vraie lorsque, le protocole étant suivi « à la lettre », les résultats diffèrent pourtant

de ce qui était prédit par le fournisseur du colorant impliqué.

Principes généraux dans le choix des colorants.

Dans la plupart des cas, le type de colorant à utiliser est dicté par la nature de la

matière à colorer. Plus encore, c’est habituellement décidé par une autre personne que le

coloriste dans le laboratoire. Chaque classe de textile, chaque type de plastique et chaque

sorte d’encre ou de peinture, a ses propres nécessités.

Une des principales tâches du coloriste, dans l’industrie, est d’obtenir suffisamment

d’informations de ses supérieurs et des vendeurs, pour sélectionner, de manière rationnelle,

la méthode de coloration à utiliser, lorsqu’un choix est possible. Le recours aux sources

d’information évoquées précédemment, donnera, en général, une réponse préliminaire au

coloriste. Dans le cas où il faut choisir entre une teinture et un pigment, la décision peut être

basée sur des aspects économiques, de disponibilité ou d’équipement, ou encore suivant

des considérations d’ingénieries.

Il devrait apparaître, après cette longue discussion sur les colorants et la

comparaison entre pigments et teintures, qu’il n’y a en fait, que peu de choix, entre eux.

La couleur en tant que matériel d’ingénierie.

Propriétés d’ingénieries des colorants.

Considérons les choix disponibles pour un designer, qui est appelé à spécifier le

matériel et les colorants, pour un objet spécifique devant être coloré. Idéalement, il voudrait

avoir une liberté illimitée à la fois au niveau des matériaux de construction et des couleurs.

Cette situation idéale, n’est malheureusement jamais réalisée et le coloriste interprétant les

demandes du styliste, peut immédiatement dresser une série de limitations dans lesquelles

le projet devra s’inclure. Ces limitations comprendront, entre autre, des considérations de

prix de colorants, de méthodes de coloration et de solidité du produit.

La capacité à être coloré d’un matériau est donc l’une des nombreuses propriétés,

qu’il convient de considérer lors de sa sélection pour un travail particulier. Bien entendu,

l’importance qui peut être placé dans le facteur « colorabilité » varie fortement d’un cas à

l’autre. Dans de nombreux cas, le choix du matériau n’est pas libre et le coloriste doit alors

Page 72: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -64-

faire du mieux qu’il peut. Dans ce dernier cas, il lui est quand même souvent loisible de

choisir la méthode de coloration. Plus le choix de la couleur intervient tard dans la

fabrication, plus le producteur dispose d’une grande flexibilité. Par contre, plus tôt le choix de

la couleur intervient dans la fabrication, plus importants sont le contrôle et l’uniformité qui en

résultent. Ces deux extrêmes sont rencontrés dans l’industrie.

Avec tant de paramètres dont il faut tenir compte dans le monde industriel, le choix

du colorant et de la méthode de coloration est, habituellement, un compromis entre les

désirs du designer et le monde réel des colorants disponibles et des considérations

économiques qui gouvernent la coloration de l’objet en question. Dans un monde idéal, il n’y

aurait pas de restrictions dues au coût, et il y aurait des colorants disponibles pour chaque

teinte, dans chaque substrat au niveau de solidité désiré. Mais malheureusement, cette

situation n’existe pas. Pour cette raison, le coloriste, qui doit adapter les projets des

designers au monde réel de l’industrie, doit disposer, lors de la planification de la couleur,

d’une liste complète des propriétés d’ingénierie qui sont nécessaires.

Gammes de couleurs.

Une gamme de couleurs représente l’ensemble des couleurs perceptibles, qui

peuvent être obtenues dans des conditions déterminées. Elle est le fruit de limitations qui

peuvent être discutées en terme de système CIE. Par ordre croissant de sévérité, il y a :

1. Les limites de toutes les couleurs réalisables, comme indiquées par le lieu spectral

du diagramme de chromaticité CIE.

2. Les limites de toutes les couleurs possibles, ayant un coefficient de luminosité donné

(valeur Y), comme défini par les limites de MacAdam (figure 4.1.).

Figure 4.1. : Limites de MacAdam : définissent toutes les surfaces possibles, possédant des couleurs de

coefficient de luminosité donné.

Page 73: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -65-

3. Une limitation supplémentaire provient du fait que, même les couleurs les plus

foncées reflètent un peu de lumière, indépendamment du degré d’absorption. Cette

quantité de réflexion varie avec le « brillant » et peut varier de teinte en teinte. Elle

peut représenter approximativement 4 % de la lumière incidente. Lorsque cette

correction est appliquée, on obtient une nouvelle série de limites.

4. Les limitations dictées par les propriétés et réactivités du substrat, ainsi que les

performances requises pour le matériau au terme de sa fabrication, contribuent

également à limiter la gamme de couleurs disponibles, mais d’une façon qu’il n’est

pas aisé de calculer, contrairement aux trois premiers paramètres décrits.

5. Il faut également tenir compte du fait qu’en pratique, on travaille à réaliser

physiquement des couleurs, à partir des matières colorantes existantes, ce qui

habituellement, résulte en une limite encore plus petite que celle qui est

théoriquement réalisable (figure 4.2.).

6. La dernière limitation réside dans le fait que seuls certains colorants, parmi ceux

disponibles pour chaque problème, sont économiquement rentables. Si nous

pouvions ignorer ce point, cela augmenterait considérablement le nombre de

matières colorantes qui pourraient être utilisées pour n’importe quelle substance.

Malheureusement, les conditions financières ne peuvent être ignorées et le coût

d’obtention de certaines couleurs est de loin trop substantiel. Cela diminue donc à

nouveau le nombre de colorants pouvant être utilisés et la gamme résultante se

trouve encore réduite.

La sélection des colorants.

La sélection d’un colorant est toujours le fruit d’un compromis entre les propriétés

désirées par le designer et le coût nécessaire pour donner la bonne teinte, la bonne

Figure 4.2. : Gammes RGB et CYMK :

ces deux gammes sont sans doutes parmi

les plus connues des infographistes. La

gamme RGB (rouge/vert/bleu) correspond

aux couleurs qu’il est possible d’obtenir

avec un moniteur, alors que la gamme

CYMK (cyan, jaune, magenta, noir)

correspond aux couleurs que l’on obtient

avec une imprimante. La première

correspond donc à des mélanges de

lumières et la seconde à des mélanges de

matière.

Page 74: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -66-

saturation et la bonne luminosité à un objet. Il y a peu de colorants qui conviennent à tous

les matériaux et ceux qui le sont, sont rarement les plus avantageux au niveau du prix. Il faut

également souligner que tous les colorants sont des substances chimiques et qu’en tant que

telles, ils réagissent plus ou moins avec les autres substances chimiques. Ce qui peut

paraître n’être qu’une modification mineure au niveau de l’ajout d’un additif, par exemple,

peut se révéler avoir une impacte majeure lorsque entre en jeu le colorant. Un matériau

adapté à une formulation, par exemple, peut se révéler totalement inadapté si la résine et les

catalyseurs d’un autre fournisseur sont utilisés. Il est donc important de toujours réfléchir sur

l’ensemble du système plutôt que sur un colorant spécifique ou un certain matériau seul.

Tout ce qui est ajouté au système peut l’influencer dans sa totalité. Ainsi, outre les

paramètres dont nous avons parlé lors de la construction des gammes, il convient d’ajouter,

lors du choix du colorant, des facteurs tels que la réactivité de ce colorant, sa résistance à la

lumière, au lavage et à d’autres traitements, sa stabilité aux températures élevées, sa facilité

d’incorporation ou d’utilisation et, surtout, son coût.

5. La coloration en industrie. Ce chapitre concerne le travail que doit effectuer un coloriste industriel, la personne

responsable de produire les matériaux, dont la couleur correspondra à un échantillon

physique, ou à la description verbale que lui en fera une autre personne. Il sera conscient

que la couleur perçue est un phénomène qui peut être approximativement décrit par une

combinaison de spectre de lumière, courbe de facteur de réflexion ou de transmission d’un

objet, et courbe de réponse spectrale de l’œil d’un observateur. Il réalisera également que de

tous ces paramètres, il ne peut en modifier qu’un seul, puisqu’il n’a pas d’influence sur la

source de lumière qui sera utilisée pour illuminer l’objet et encore moins sur la réponse

spectrale d’un œil. Son travail consistera donc à utiliser des colorants, que nous venons de

classer en pigments et teintures dans le chapitre 4, pour modifier la courbe de facteur de

réflexion ou de transmission de l’objet, jusqu’à ce que la couleur désirée soit obtenue.

Notre coloriste doit également être attentif au fait qu’il change plus que la couleur

perçue de l’objet. Beaucoup d’autres propriétés du matériau doivent être modifiées et

contrôlées si l’on veut que l’article final soit fonctionnel. Certaines de ces propriétés sont

influencées par les colorants utilisés, ce qui peut résulter en diverses limitations, qui doivent

être bien identifiées. Cet aspect d’ingénierie du processus de coloration a été partiellement

discuté dans le chapitre précédent.

Page 75: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -67-

Lois des mélanges de couleurs.

Si l’on veut espérer pouvoir retrouver une couleur en mélangeant des colorants et si

le coloriste veut pouvoir déduire quelque chose des résultats obtenus en faisant de tels

mélanges, il faut que certaines lois de mélange de couleurs existent et soient

raisonnablement respectées. C’est le cas et, même si ces lois sont assez complexes, dans

certains cas, elles fournissent à la fois la base qualitative de la compétence du coloriste à

pouvoir retrouver une couleur, mais aussi la base quantitative des techniques de calcul, qui

peuvent aider ce même coloriste dans de nombreux cas. Nous allons jeter un œil à ces lois

avant de considérer les techniques de concordance de couleurs en détail.

Mélange additif.

Le type de mélange de couleurs, qui est peut-être le plus simple, en terme d’actions

physique, ne fait pas intervenir de mélange de colorants, mais plutôt le mélange de lumières

colorées. Ce peut être réalisé de différentes façons. Des lumières colorées de différentes

lampes peuvent être superposées sur un écran blanc. La couleur réfléchie sur, ou traversant,

différentes portions colorées d’un disque qui tourne, peut donner la sensation d’une seule

couleur. Finalement, une autre alternative consiste à mettre des points colorés tellement

proches les uns des autres, qu’à une certaine distance, l’œil ne soit pas capable de les

distinguer (comme dans les téléviseurs cathodiques). Dans les deux derniers cas, l’addition

des couleurs se déroule au niveau de l’esprit et l’observateur et doit donc être un effet

psychologique ou physiologique ; quoiqu’il en soit, le résultat est le même que lorsque des

lumières colorées sont directement additionnées sur un écran blanc.

Comme nous l’avons décrit dans le chapitre 2, une grande variété de couleurs peut

être réalisée par mélange additif de lumières à partir de trois lampes. Par commodité, nous

appellerons le choix le plus pratique de couleurs pour ces lampes « couleurs primaires »

pour mélange additif, ou encore « primaires additives ». Il s’agit du rouge, du vert et du bleu.

Elles n’ont rien de magique, ou d’unique, si ce n’est qu’elles permettent d’obtenir une plus

grande variété de couleurs par mélange, que n’importe quel autre choix. Un mélange de

rouge et de vert donne du jaune, un mélange de vert et de bleu donne du cyan et un

mélange de rouge et de bleu donne du pourpre ou du magenta. Si les trois primaires sont

correctement choisies et mélangées, dans les bonnes proportions, elles s’additionnent pour

donner du blanc, ou dans le cas de lumières réfléchies, du gris clair. L’action de ces

primaires est représentée à la figure 5.1.

Comme le système CIE a été dérivé d’expériences de mélange de lumières colorées,

le résultat d’un tel mélange peut être très facilement déterminé avec l’aide d’un diagramme

de chromaticité CIE x, y. Il faut, dans un premier temps, spécifier la couleur des lumières par

Page 76: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -68-

leurs coordonnées x, y et Y. Cela fait, Grassmann a montré que la luminosité (Y) d’un

mélange de lumières est la somme des luminosités de chacune d’elles, quels qu’en soient

les spectres. Les lois de Grassmann montrent également que, sur un diagramme de

chromaticité, la chromaticité (coordonnées x et y) d’un mélange de deux lumières se trouve

sur le segment de droite reliant les chromaticités des deux primaires utilisées. Avec trois

primaires, toutes les couleurs se trouvant à l’intérieur du triangle formé en reliant les

chromaticités des trois primaires, peuvent être produites. La raison pour laquelle le rouge, le

vert et le bleu ont été choisis comme couleurs primaires additives devient dès lors évident :

ils forment le triangle le plus grand qui puisse être inclus dans le diagramme de chromaticité

et permettent donc la formation de plus de couleurs que n’importe quel autre choix.

Mélange soustractif simple.

Tout comme le terme mélange additif est descriptif du processus d’addition de

lumières colorées, le mélange soustractif se réfère à l’enlèvement, par un objet, d’une partie

de la lumière provenant d’une source. Les façons dont cette lumière peut être enlevée

comprennent l’absorption et la diffusion. Nous appellerons le cas qui n’inclut que

l’absorption, sans diffusion « mélange soustractif simple » et nous appellerons la situation

plus complexe, où il y a à la fois absorption et diffusion « mélange soustractif complexe ».

Nous parlerons de ce dernier cas ultérieurement.

Les primaires les plus utiles pour les mélanges soustractifs sont le jaune, le cyan et le

magenta. L’action de ces primaires est représentée à la figure 5.2.

Figure 5.1. : Mélange additif (sensations) : Les primaires additives rouges,

vert et bleu peuvent s’additionner pour donner du magenta, du jaune, du cyan

et du blanc, par exemple.

Figure 5.2. : Mélange soustractif (matière) : Les primaires soustractives

magenta, jaune et cyan peuvent s’additionner pour donner du rouges, du vert,

du bleu et du noir, par exemple.

Page 77: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -69-

Le vert résulte du mélange de jaune et de cyan, le bleu du mélange de cyan et de

magenta et le rouge du mélange de magenta et de jaune. Lorsque les primaires

soustractives sont balancées en couleur et en quantité, leur mélange absorbe toute la

lumière provenant de la source, produisant, bien entendu, du noir. La relation entre les

mélanges additifs et soustractifs est joliment illustrée par l’arrangement en « roue

chromatique » illustré à la figure 5.3. Chaque primaire additive a une primaire soustractive

comme couleur complémentaire, se trouvant directement à l’opposé sur la roue.

Le mélange soustractif simple est largement utilisé en photographie et pour la teinte

des plastiques transparents.

La prédiction des couleurs résultant du mélange soustractif simple de colorants est

plus complexe que dans le cas des mélanges additifs. La loi fondamentale du mélange

soustractif simple est la loi de Beer, qui est plus complexe que les lois de Grassmanns,

parce qu’elle ne s’applique qu’à une seule longueur d’onde à la fois (cfr. page 8). Pour

calculer la couleur résultant du mélange soustractif simple, il faut donc appliquer la loi de

Beer au maximum de longueurs d’onde à travers tout le spectre pour obtenir la courbe de

transmission spectrale du mélange et obtenir les coordonnées CIE par les techniques

d’intégration décrites dans le chapitre 2. Pour cette raison, les courbes de transmission des

primaires soustractives ont une influence importante sur les couleurs résultant d’un mélange

soustractif.

Heureusement, avec l’aide de l’informatique, les calculs de la loi de Beer, puis les

intégrations subséquentes, nécessaires à la prédiction des couleurs résultant d’un mélange

soustractif, ne posent plus le moindre problème.

Mélange soustractif complexe.

Le type le plus commun, et malheureusement, le plus complexe de mélange de

couleur que nous rencontrons est celui pour lequel les colorants, non seulement absorbent la

lumière, mais la diffusent également. Comme diffusion et absorption interviennent toutes

Figure 5.3. : Roue chromatique : La complémentaire de chaque

couleur primaire additive est une couleur primaire soustractive.

Page 78: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -70-

deux dans ce phénomène, ces deux paramètres sont pris en compte dans les lois régissant

le mélange soustractif complexe. Les équations mathématiques qui correspondent à ces lois

sont bien trop complexes que pour être décrites dans le cadre de ce cours. Par contre, nous

pouvons décrire des équations simplifiées, qui en fournissent une bonne approximation. Les

plus utilisées de ces équations simplifiées, sont celles de Kubelka et Munk. Le cas que nous

allons envisager, le plus simple, consiste en un échantillon totalement opaque.

Plusieurs des principales suppositions dans le traitement de Kubelka-Munk sont les

suivantes :

1. Il doit y avoir suffisamment de diffusion pour que la lumière à l’intérieur de

l’échantillon soit entièrement diffuse. Ce qui est habituellement vrai pour les textiles et

les films ou plastiques peints, qui sont complètement opaques.

2. Il n’y a pas de modification d’indice de réfraction entre les différentes couches de

l’échantillon. Cette condition est remplie dans certains cas, mais ne l’est pas pour la

plupart des mélanges communs de pigments. Saunderson a toutefois réussi à

modifier les équations de Kubelka-Munk pour inclure les effets dus aux modifications

d’indice de réfraction aux interfaces.

3. Comme c’est le cas pour la loi de Beer, décrite dans le mélange soustractif simple,

Les calculs avec les équations de Kubelka-Munk doivent être réalisés à chaque

longueur d’onde du spectre.

Les équations de Kubleka-Munk forment les bases de pratiquement tous les calculs

d’appariement de couleurs dans les systèmes opaques. Un travail de préparation

considérable est nécessaire avant de pouvoir utiliser efficacement les équations de Kubelka-

Munk. Il doit être établi que le système de production de la couleur est complètement sous

contrôle et que les colorants suivent les lois de mélange dans le système utilisé.

L’établissement de ces faits et la détermination de toutes les valeurs nécessaires de K et S,

les coefficients d’absorption et de diffusion de Kubelka-Munk, pour chaque colorant, à de

nombreuses longueurs d’onde, requièrent de nombreuses et rigoureuses préparations et

analyses d’échantillons.

Les couleurs résultant d’un mélange soustractif complexe, sont déterminées, d’une

façon générale, par des calculs similaires à ceux des mélanges soustractifs simples. Des

calculs basés sur les équations de Kubelka-Munk sont réalisés à travers le spectre, pour

donner une courbe spectrale de facteur de réflexion, et sont suivis par une intégration pour

obtenir les coordonnées CIE correspondantes.

La gamme de couleurs qu’il est possible d’obtenir par mélange soustractif d’un petit

nombre de pigments colorés est bien plus limitée que celle résultant d’un mélange additif ou

soustractif simple. Il est dès lors nécessaire de disposer de beaucoup de pigments colorés

Page 79: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -71-

pour pouvoir obtenir une grande gamme de couleurs si on envisage le cas de mélanges

soustractifs complexes.

Appariement de couleurs.

La première fonction d’un coloriste industriel est de préparer un matériau coloré qui

réponde aux exigences de son industrie, ce qui peut correspondre à réaliser les vœux d’un

designer, ou à "copier" un produit concurrent. Le travail du coloriste consiste à sélectionner

les colorants appropriés et à ajuster leurs quantités jusqu’à ce qu’un résultat satisfaisant soit

obtenu.

En industrie, le processus de détermination, de la quantité adaptée du colorant

désiré, est divisé en deux étapes :

1. La préparation d’un premier essai d’appariement, qui, en pratique, peut inclure la

sélection des colorants.

2. L’ajustement de cet appariement pour qu’il soit adapté au processus standard

(passage de l’échelle du laboratoire à l’échelle de production, par exemple), ou pour

maintenir l’uniformité du produit coloré.

Puisque les techniques, comme les objectifs, de la formulation initiale et de

l’ajustement subséquent, sont relativement différents, nous les considèrerons séparément. Il

est, plus que tout, important de donner à la sélection des colorants, l’importance qu’elle

mérite et qui est malheureusement trop souvent bâclée.

Types d’appariement.

Avant de préparer un appariement de couleur, la première question à poser, est de

savoir si les deux échantillons devront être identiques pour tous les observateurs, sous tous

les types de sources lumineuses. Comme nous l’avons vu dans le chapitre 1, si tel est le

cas, cela nécessite que les deux objets aient des courbes de facteur de réflexion identiques,

ou presque. On appel ce type d’appariement un appariement invariable.

Appariements invariables.

La condition sine qua non, que deux objets doivent avoir des courbes

spectrophotométriques identiques pour former un appariement invariable, est sévère, mais O

combien vraie ! Cela nécessite différentes choses.

La première de toutes, l’appariement doit être réalisé avec des colorants identiques à

ceux utilisés dans l’échantillon qui doit être apparié. Ceci nous conduit directement à la

question de savoir comment identifier ces colorants et ce point sera abordé ultérieurement.

Page 80: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -72-

Deuxièmement, principalement à cause des limitations liées aux propriétés des

colorants, le même type de matériau doit être coloré. Il est par exemple, presque impossible

qu’un tissu teinté puisse être formulé de sorte qu’il soit un appariement invariable d’un film

pigmenté. Un appariement proche peut être obtenu, mais, comme il est nécessaire d’utiliser

des colorants différents et que les propriétés optiques du tissu et du film sont différentes, un

appariement invariable ne peut être obtenu (à moins d’un miracle).

Troisièmement, un processus de coloration identique, ou au moins très semblable,

doit être mis en œuvre. Ceci est particulièrement important dans les appariements

soustractifs complexes, où la couleur d’un pigment dépend de sa dispersion dans le milieu

dans lequel il est utilisé. D’autres aspects, comme le « brillant » peuvent être de grande

importance.

Finalement, si des instruments doivent être utilisés comme aide à la formulation

d’appariements invariable, il sera nécessaire d’utiliser un spectrophotomètre plutôt qu’un

colorimètre.

Même si un véritable appariement invariable ne peut être réalisé, il est possible, par

une sélection judicieuse de colorants, de produire une couleur qui sera appariée lorsque les

échantillons seront soumis à de nombreuses sources de lumières communes. Cela peut

constituer un substitut satisfaisant à un appariement spectral exact. Pour arriver à un tel

appariement, il est habituellement nécessaire d’utiliser un nombre assez important de

colorants pour rapprocher au maximum les deux courbes spectrales. Des appariements de

ce type peuvent être bien plus complexes à reproduire en production, à cause du nombre

plus important de variables devant être contrôlées.

L’appariement des couleurs dans différents matériaux est un grand défit pour les

coloristes et la fréquence avec laquelle ils y parviennent est la récompense à leur talent.

Appariements conditionnels.

Dans les nombreux cas où un appariement invariable ne peut être obtenu, il est

nécessaire, pour le coloriste, de se contenter d’un appariement proche, dans un nombre

limité de conditions de vision et d’illumination. Nous définissons cela comme un appariement

conditionnel. Certaines des raisons pour lesquelles un appariement invariable ne peut

toujours être obtenu ont déjà été développées. Si les mêmes colorants, que ceux utilisés

dans l’échantillon qui doit être apparié, ne peuvent être utilisés, il en résulte presque

inévitablement un appariement conditionnel. Ce peut être le cas lorsque des matériaux ou

des procédés de coloration différents sont impliqués.

Même si des matériaux ou des procédés de coloration identiques sont impliqués, le

client peut demander à ce que le nouvel échantillon ait une meilleure résistance, soit moins

Page 81: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -73-

cher, ou diffère, par d’autres propriétés, de l’échantillon soumis. Dans ce cas également, le

problème ne peut être facilement résolu. Il est important d’en être conscient avant d’entamer

quoique ce soit pour éviter de perdre inutilement, énergie et temps.

Dès qu’un accord est intervenu sur le fait qu’un appariement conditionnel est

nécessaire, il est important de savoir sous quelles conditions (source de lumière)

l’appariement doit être jugé, puisqu’il sera nécessairement métamérique et variera donc

suivant la source et l’observateur.

Il est pratiquement impossible de contrôler les caractéristiques de vision de la couleur

des observateurs qui vont juger ces appariements conditionnels (sauf cas extrêmes). Il est

important, par contre, que les appariements conditionnels soient jugés visuellement sous des

sources de lumière standard qui correspondent le plus possible aux conditions d’utilisation

anticipées. Des cabinets de lumière disposant de sources standard sont largement utilisés

(cfr. pg. 45). Le fournisseur et le client doivent utiliser les mêmes modèles de cabinets, avec

les mêmes sources et les mêmes filtres, si possible. Les qualités des lampes peuvent

différer de façon importante suivant ces paramètres et des échantillons qui pourraient

sembler identiques dans un cabinet pourraient paraître différents dans un autre.

En dépit de toutes les précautions que l’on peut prendre au niveau du contrôle de

l’éclairage, il est de loin plus difficile, visuellement, d’arriver à apparier deux couleurs de

façon conditionnelle que de façon invariable. Cela s’explique par le fait qu’il faut trouver le

meilleur compromis sous différentes sources d’éclairage.

Quoiqu’il en soit, il faut également garder à l’esprit qu’utiliser d’autres colorants, que

ceux utilisés dans l’échantillon à apparier, va non seulement conduire à du métamérisme,

mais également à des modifications d’autres propriétés importantes.

Sélection des colorants.

La nécessité d’équilibrer les propriétés coloristiques, les propriétés de travail et le

coût pour fournir une formulation spécifique de couleur demande une approche systématique

de sélection des colorants. Dans cette section, nous allons développer une telle approche en

considérant les objectifs du processus d’appariement des couleurs.

Les objectifs de l’appariement de couleur.

Il y a, grosso modo, deux raisons pour lesquelles on produit une couleur spécifique :

pour créer un style original, ou pour copier un produit concurrent ; ce dernier point

représentant le plus grand défit et monopolisant la majeure partie du temps du coloriste.

Pour chacun de ces objectifs, la sélection des colorants dépend du type d’appariement

désiré, invariable ou conditionnel, et des propriétés de travail requises pour les colorants.

Page 82: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -74-

Les propriétés de travail des colorants sont de deux types généraux. Certaines

d’entre elles sont inhérentes au matériau qui doit être coloré et au procédé de coloration.

Parmi celles-ci, on trouve, par exemple, l’affinité de la teinture pour une fibre particulière ou

la stabilité d’un colorant à la température élevée de mise en oeuvre d’un plastique.

D’autres propriétés de travail sont considérées comme optionnelles, c'est-à-dire

désirables, mais non essentielles. Parmi celles-ci, on retrouve le niveau de solidité et le prix.

Si c’est nécessaire, ces paramètres peuvent être modifiés pour des raisons de stratégie

marketing, alors que les propriétés inhérentes ne peuvent être altérées.

La sélection des colorants, pour différents objectifs d’appariement de couleur, est

illustrée par le tableau suivant.

Nombre de colorants

Type de formulation Type d’appariement Propriétés de travail Parmi lesquels sélectionner Utilisables

Style original - Général Grand Modéré

- Restreint Limité Limité

Appariement dans la même matière Invariable Identique Très limité Extrêmement limité

Invariable Modifié Grand Limité

Conditionnel Egal Limité Limité

Conditionnel Modifié Grand Grand

Appariement dans une matière différente Invariable Egal Limité Très limité

Invariable Modifié Grand Limité

Conditionnel Egal Limité Limité

Conditionnel Modifié Grand Grand

Formulations originales.

Il y a deux catégories de formulations originales qui concernent l’utilisation des

colorants. Le premier type, préparé pour répondre aux besoins du designer, est le cas pour

lequel les propriétés de travail du colorant ne sont pas trop sévèrement limitantes et que le

coût n’est pas de la plus haute importance. Dans un tel cas, les colorants peuvent être

sélectionnés à partir d’un nombre relativement important rencontrant ces besoins généraux

et non restrictifs. Souvent, un nombre raisonnable, de 3-4 à une douzaine, de colorants est

sélectionné pour être utilisé dans un système intermix duquel les couleurs finales seront

préparées.

Le second type de formulations originales est celui où les performances requises

et/ou les considérations économiques limitent drastiquement le nombre de colorants pouvant

être utilisés. Dans ce cas, comme nous l’avons déjà signalé, le nombre de colorants

utilisable diminue, et la gamme de couleurs que l’on peut obtenir, également.

Appariement de matériaux identiques.

Page 83: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -75-

C’est le cas où le coloriste doit apparier deux échantillons de même nature, colorés

par le même procédé. Quatre cas peuvent alors être distingués : la combinaison

d’appariement invariable ou conditionnel, avec ou sans modification des propriétés de travail.

Le cas demandant le plus de précautions est celui d’un appariement invariable, avec

conservation des propriétés de travail. Un appariement de ce type peut être atteint en

utilisant les mêmes colorants que dans le standard, ce qui requiert leur identification, comme

nous allons le montrer ultérieurement. Si certaines propriétés de travail peuvent être

modifiées, différents colorants peuvent être utilisés, mais dans ce cas, il est nécessaire de

les sélectionner à partir d’un grand nombre, pour dupliquer la courbe spectrophotométrique

du standard aussi bien que possible.

Si un appariement conditionnel est permis, les restrictions sur le nombre de colorants

utilisables peuvent être parfois moins sévères, en fonction du degré de métamérisme qui

peut être toléré. Si les propriétés de travail doivent être égales à celles de l’échantillon

original, il reste bien entendu certaines limitations.

Appariement de matériaux différents.

Si l’appariement doit être fait dans un matériau différent, il devient presque impossible

de garantir un appariement invariable, avec tous les aspects d’apparence égaux à ceux de

l’échantillon original. Le mieux qui puisse encore être réalisé, est de sélectionner, à partir

d’une large variété de colorants, ceux qui permettront d’obtenir une courbe

spectrophotométrique aussi proche que possible de celle de l’échantillon original. Alors, au

moins, les modifications de couleur des deux échantillons, lorsque la source et/ou

l’observateur change(nt), seront similaires, même si l’appariement avec l’échantillon original

n’est pas parfait. Dans le cas de propriétés de travail modifiées ou d’appariements

conditionnels, les mêmes considérations, que celles vues dans le cas d’appariement de

matériaux identiques, sont à prendre en compte.

Identification des colorants.

Si un appariement invariable est requis, l’approche que nous avons déterminée

comme étant la plus pratique, est d’identifier les principaux pigments ou teintures qui ont été

utilisés pour l’échantillon à apparier, et de les utiliser pour ce faire. L’identification peut se

faire simplement en extrayant les colorants de l’échantillon, puis en les identifiant par des

tests chimiques simples et des analyses spectrales (IR, UV, etc.).

Couleurs coordonnées.

Page 84: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -76-

Il est parfois souhaitable, pour des raisons commerciales, de fournir des appariement

de couleurs dans différents matériaux, de sorte que, par exemple, les carrelages de la salle

de bain, les rideaux de douche, les éviers et les serviettes puissent être accordés. Outre les

considérations que nous avons déjà abordées, il est alors préférable de commencer le

développement du produit pour lequel la gamme de couleurs et la palette de colorants seront

les plus limitées. Les échantillons de ce matériau deviendront alors les standards auxquels

devront être appariés les autres systèmes, pour lesquels plus de colorants sont disponibles.

Force des colorants.

Suivant Berger-Schunn, on définit la force d’un colorant comme étant son habilité à

modifier la couleur d’un matériau incolore, ou son contenu en substance colorante, comparé

à celui d’un autre échantillon du même colorant, pris comme standard. Comme l’appariement

de couleur requière une connaissance exacte du comportement colorant d’un colorant, la

détermination de la force du colorant est un pré requis important au processus

d’appariement. A première vue, on pourrait croire que la détermination de la force d’un

colorant est un problème simple. En utilisant des quantités égales du colorant standard et de

l’échantillon devant être testé, avec une méthode appropriée pour colorer une quantité

donnée de matériau non coloré, il devrait être aisé de déterminer par des techniques

visuelles et/ou instrumentales, si les deux échantillons ont des pouvoir colorant égaux ou

non. Quand des colorants supposés identiques sont comparés, les matériaux colorés

résultants ne devraient pas varier en teinte, et la différence de couleur, si il y en a une, entre

les deux, devrait être facilement visible. Si la différence est nulle, les deux colorants sont

jugés comme égaux en force.

Malheureusement, il y a des facteurs compliquant les tests des colorants pour cette

propriété de force. Le terme « force » a été appliqué aux résultats de nombreux tests

différents et les différentes approches utilisées peuvent ne pas évaluer la même propriété.

Dans la plupart des cas, il est préférable de considérer les pigments et les teintures

séparément, puisque les pigments doivent être dispersés dans le milieu dans lequel ils sont

utilisés et que la force d’un pigment est fortement influencée par la technique de dispersion.

La détermination de la force de couleur est une procédure analytique et, en tant que

telle, toutes les précautions applicables en chimie analytique doivent être respectées.

L’échantillon doit être prélevé de sorte qu’il représente vraiment l’ensemble du lot du

matériau examiné. Il doit y avoir un accord entre le vendeur et l’acheteur sur le standard qui

doit être utilisé pour les comparaisons. Il doit y avoir un accord, non seulement sur la

méthode de test, qui est habituellement une méthode de laboratoire, mais les résultats

doivent bien entendu également être représentatifs de la production.

Page 85: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -77-

L’appariement initial.

Bien que la sélection de colorants adaptés soit d’une importance majeure,

spécialement dans le cas d’appariements invariables, elle ne fournit pas d’informations sur

les quantités correctes de colorant à utiliser. Ces dernières sont habituellement déterminées

par essais et erreurs, reposant sur les compétences du coloriste, mais également sur des

méthodes instrumentales.

L’appariement visuel.

Comme c’est le cas pour de nombreux procédés dans une industrie où l’aspect

artistique est aussi important que le scientifique, l’expérience du coloriste ne doit jamais être

sous estimée. Il n’y a pas de substitut à cela, et il est impossible d’essayer de le retranscrire

en quelques mots. Il est toutefois extrêmement rare que cette compétence soit utilisée sans

la moindre aide, que ce soit le recours à des notes prises lors d’expériences précédentes,

l’utilisation de mesures instrumentales, ou l’utilisation de calculs sophistiqués.

Le coloriste conserve habituellement une banque de tous les appariements qui ont

été réalisés dans le laboratoire, résultant parfois du travail de plusieurs années. Se référer à

une telle banque est presque toujours la première étape entreprise par le coloriste chargé de

réaliser un appariement visuel. La sélection de la couleur la plus proche de la banque est

suivie par une modification appropriée pour s’accorder à la nouvelle couleur soumise.

Il semble évident que le pré requis, pour un coloriste chargé de réaliser un

appariement visuel, soit de posséder une vision normale de la couleur, toutefois, les

personnes chargées de ce travail, le sont sans véritable évaluation de la vision.

Cette évaluation débute et se termine, habituellement, par des séries de tests utilisant

des planches pseudoisochromatiques (figure 5.4.) contenant des nombres, ou des formes

qui apparaissent différents aux personnes qui ont une vision normale de la couleur et aux

daltoniens.

Figure 5.4. : Planche pseudoisochromatique : Pour autant que

vous ne soyez pas daltonien et que l’impression couleur de cette

image soit correcte, vous devriez voir un 45 à l’intérieur du disque.

Ce genre de test, aussi appelé test d’Ishihara permet de dépister

les personnes souffrant de déficiences dyschromatiques.

Page 86: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -78-

Bien qu’ils soient utiles comme tests de criblage, ces planches

pseudoisochromatiques ne sont pas adaptées à une évaluation quantitative de la vision de la

couleur, ou même, pour certains sets de planches, à l’identification du type de déficience, au

niveau de la vision de la couleur, qui est présente. Des méthodes plus efficaces pour

mesurer une déficience au niveau de la vision de la couleur, sont l’anomaloscope, instrument

qui mesure la quantité de lumières verte et de rouge qui sont nécessaires à un observateur

pour apparier une lampe test jaune (figure 5.5.), ou le Farnsworth-Munsell 100 Hue test,

dans lequel l’utilisateur doit classer une série d’échantillons dans un ordre consécutif, en

fonction de leur teinte (figure 5.6.).

Le test 100-hue permet de trier les observateurs, possédant une vue normale de la

couleur, en fonction de leur capacité à discriminer des couleurs, et sert donc de test

d’aptitude.

Les différents tests que nous venons d’aborder ne sont, bien entendu, pas exhaustifs,

mais le principe des autres tests varie peu de ceux-ci.

L’apprentissage des couleurs, pour un coloriste amené à surtout utiliser des examens

visuels, pourrait commencer par la maîtrise de l’utilisation du classement de Munsell, puis

Figure 5.5. : Anomaloscope : Appareil qui permet de tester la

vision dans la zone rouge-vert, dont le principe repose sur la

comparaison sur un écran, d’une lumière de référence jaune

orangée (partie haute de chaque disque) avec une lumière

composée d’une addition de rouge et de vert (partie basse de

chaque disque).

Figure 5.6. : Test de Farnsworth-Munsell 100-

hue : est un test de discrimination, permettant de

quantifier la capacité de différencier les couleurs, en

faisant classer des pastilles des jetons dans un

ordre consécutif en fonction de leur teinte.

Page 87: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -79-

par l’apprentissage des lois de mélange de couleur. En travaillant avec le système, ou les

systèmes dans le(s) quel(s) les appariements doivent être réalisés, ces lois de mélange des

couleurs pourraient être testées expérimentalement en créant une variété de mélanges de

deux ou plusieurs colorants chromatiques et en voyant ce que cela donne. Une roue

chromatique pourrait alors être élaborée, sous forme de tableaux de mélanges pour pouvoir

relier les résultats de tests de façon qualitative, en trouvant, exactement, comment on doit

modifier les concentrations dans les mélanges pour se déplacer d’une certaine façon dans

les tables.

Malheureusement, pour obtenir des résultats vraiment objectifs et quantitatifs, il est

nécessaire d’avoir recours à des techniques instrumentales.

Aides instrumentales.

L’objectif de l’instrumentation et des analyses chimiques de colorants, est de réduire

la quantité d’expériences nécessaires dans le domaine de l’appariement des couleurs, où il

est de plus en plus difficile de compter sur du personnel expérimenté. Ce qui reste toutefois

vrai, c’est qu’il n’existe pas de substitut à l’expérience et que le coloriste doit en acquérir

dans l’utilisation de l’instrumentation et de l’interprétation des résultats avant de pouvoir les

utiliser efficacement dans le processus d’appariement des couleurs. L’avantage majeur, est

qu’un novice peut apprendre à apparier des couleurs plus rapidement avec l’aide

d’instruments qu’il ne peut le faire avec des méthodes visuelles. Inversement, des coloristes

expérimentés peuvent avoir une certaine méfiance, non légitime, devant l’utilisation

d’instruments pour les assister.

Dans la discussion de l’aide instrumentale, il apparaît, à nouveau, assez pratique de

distinguer l’appariement invariable et l’appariement conditionnel séparément. De même,

c’est à nouveau le spectrophotomètre qui se révèle être l’instrument le plus utile pour aider

au processus de formulation d’appariements invariables. Une importante quantité

d’informations peuvent être obtenues à partir des formes des courbes

spectrophotométriques, tant au niveau des quantités que des identités des colorants utilisés

dans l’échantillon cible.

Deux types de représentations, disponibles sur la plupart des spectrophotomètres,

sont particulièrement utiles dans l’interprétation de la forme des courbes

spectrophotométriques. La première est la représentation « log-absorbance », qui trace les

courbes de sorte que leur forme est pratiquement la même, quelle que soit la quantité de

colorant présente (figure 5.7.). Cette représentation est particulièrement utile pour l’utilisation

de mélanges soustractifs simples. Le principe de base qui rend ce tracé utile, est dérivé de la

loi de Beer et établit que, à toute longueur d’onde, les distances verticales, sur le tracé, sont

Page 88: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -80-

proportionnelles à la quantité de colorant présent, la contribution de chaque colorant

s’additionnant indépendamment au total. Un peu d’arithmétique est tout ce dont nous avons

besoin pour calculer par la loi de Beer, les concentrations des différents colorants

nécessaires pour un appariement initial, une fois que les colorants sont identifiés, comme

nous allons le montrer par un exemple numérique (page 156-157 du livre de référence…

c'est-à-dire au tableau, dans votre cas).

Pour les mélanges complexes soustractifs, la loi de Beer n’est plus valable, mais les

équations de Kubelka-Munk sont souvent suffisamment précises pour être utiles. Si on

travaille avec des matériaux totalement opaques, ces équations se simplifient et montrent

qu’il existe une fonction du facteur de réflexion R, qui a la même propriété d’être

proportionnelle à la concentration en pigment, que l’est le logarithme de l’absorbance, dans

le cas des mélanges soustractifs simples. La seconde représentation utile pour les

spectrophotomètres, est le tracé de log(K/S) en fonction de la longueur d’onde (figure 5.8.).

Figure 5.7. : Courbes spectrophotométriques : A gauche : transmission (T) en fonction de la longueur

d’onde, au centre : absorbance (log 1/T) en fonction de la longueur d’onde et à droite : log(absorbance) en

fonction de la longueur d’onde. Remarquez que dans ce dernier cas, la forme des courbes est pratiquement

identique, quelle que soit la concentration du colorant.

Figure 5.8. : Courbes spectrophotométriques : Tracé

de log(K/S) en fonction de la longueur d’onde pour

différentes concentrations d’un pigment vert. Remarquons

que la forme des courbes est pratiquement identique,

quelle que soit la concentration.

Page 89: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -81-

Cela dit, l’adage « on n’a rien sans rien » est bien d’application ici. Il est nécessaire

de connaître le comportement de chaque colorant individuellement avant que les distances,

sur un tracé de log(K/S) ou log(A) puisse être converti en concentrations. Il est donc

nécessaire que des échantillons soient fabriqués dans un intervalle de concentrations d’un

colorant à la fois, et mesuré au spectrophotomètre pour fournir les données nécessaires à la

calibration du système. Un fois que c’est fait pour un milieu et une technique de mise en

œuvre donnée, tous les échantillons qui seront fabriqués ultérieurement, de cette façon,

pourront être traités. Cette étape est absolument nécessaire.

Comme tout ce que nous avons dit, jusqu’à présent, est basé sur la reproduction de

la courbe spectrophotométrique de l’échantillon devant être apparié, cela s’applique

uniquement à la production d’appariements invariables. Lorsque les colorants, qui doivent

être utilisés, sont différents de ceux présents dans l’échantillon devant être apparié, les

méthodes basées sur la seule courbe spectrophotométrique sont de peu de valeur. Il est

alors nécessaire de travailler avec les coordonnées de couleur de l’échantillon. Nous ne

pouvons, toutefois, qu’insister, à nouveau, sur le fait que les appariements conditionnels

doivent être évités dans la mesure du possible.

Malheureusement, la plupart des appariement de couleur, qu’ils soient réalisés

visuellement ou instrumentalement, sont des appariements conditionnels, et donc au moins

légèrement métamériques. Si des instruments doivent être utilisés, le jugement de

l’appariement se fera, certainement, suivant un index de métamérisme. Ce jugement peut ne

pas bien correspondre à l’apparence visuelle de l’appariement pour diverses raisons : les

indices de métamérisme, bien qu’ils soient les meilleurs paramètres que nous puissions

mesurer, ne sont pas de très bons indicateurs de l’acceptabilité d’un appariement ;

l’observateur n’est probablement pas un « observateur standard » et la source, utilisée pour

les observations visuelles, n’est sans doute pas exactement la même que l’illuminant utilisé

dans les calculs de coordonnées de la couleur.

Les coloristes consciencieux voudront certainement contrôler ces variables aussi

précisément que possible. Les indices de métamérisme seront utilisés comme première

estimation, mais on ne s’y fiera pas aveuglément. Un panel d’observateurs sera utilisé pour

des jugements visuels critiques. Et pour des résultats encore plus précis, le spectre de la

source utilisée pour les examens visuels sera déterminé, puis utilisé comme illuminant pour

le calcul informatique des coordonnées de couleur.

Comme seules les coordonnées de couleur, plutôt que les courbes

spectrophotométriques, sont nécessaires pour l’aide instrumentale à l’appariement

conditionnel, on pourrait penser que des colorimètres pourraient être utilisés

avantageusement dans cette situation. La prudence s’impose cependant. Les colorimètres

Page 90: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -82-

conventionnels à filtre sont, à la base, utiles seulement pour mesurer de petites variations de

couleurs entre un échantillon et un standard lorsqu’ils sont préparés avec le même colorant.

Leur performance est bien plus limitée dans le cas d’un appariement conditionnel, puisque

différents sets de colorants sont impliqués.

Comment peut-on formuler un appariement conditionnel initial en connaissant les

coordonnées de couleur d’un échantillon devant être apparié et celles de colorants

individuels devant être utilisés à des concentrations différentes ? La quantité de calculs à

faire est trop importante que pour l’envisager « sur papier », mais le recours aux ordinateurs

nous permet de résoudre ce problème facilement.

La meilleure façon de faire est sans doute de systématiquement enregistrer les

mesures effectuées sur chaque échantillon produit et de construire ainsi une banque de

données utilisables ultérieurement comme point de départ.

Contrôle de la couleur en production.

Tout comme la mesure de la couleur est seulement une forme particulière d’analyse,

le contrôle de la couleur n’est qu’une forme particulière de contrôle de la production. Les

problèmes standard tels que les erreurs d’échantillonnage, les variations lot à lot, les limites

d’acceptabilité, etc. y jouent tous leur rôle.

Comme nous l’avons souligné au chapitre 3, deux prérequis élémentaires de la

mesure de la couleur sont : (1) une définition précise des limites de tolérance, en langage

compris et reconnu par tous les partis présents et (2) une procédure standard pour

déterminer la différence entre l’échantillon et le standard avec suffisamment de précision.

Lorsque l’on discute du contrôle de la couleur, on suppose qu’un accord a été défini sur la

nature et la variation de couleur qui sera permise et la méthode de mesure de cette

différence.

Monitoring.

La valeur de l’instrument.

C’est dans le suivi de la production d’objets colorés que l’utilisation d’instruments de

mesure de la couleur prend toute son importance. Les données instrumentales fournissent

un enregistrement continu de la nature de l’objet étant produit, et de sa variation par rapport

au standard en termes quantitatifs. Si l’instrumentation et l’échantillonnage sont

suffisamment sensibles, de légères déviances peuvent être détectées et corrigées, bien

avant que le processus ne devienne hors de contrôle et que du matériel non standard ne soit

produit.

Page 91: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -83-

Bien que l’œil soit un superbe instrument pour déterminer si un échantillon et un

standard sont identiques, il n’en est pas de même lorsqu’il s’agit de quantifier une différence

et d’en donner la direction. Ceci est particulièrement vrai si plus d’un aspect de la couleur de

l’échantillon diffèrent de celle du standard. Utilisés correctement, les instruments peuvent

très bien caractériser un tel changement de couleur. Sans cette information, une mesure

« corrective » pourrait être décidée, produisant l’effet opposé de celui nécessaire. Même un

coloriste expérimenté ne peut toujours dire ce qui se passe et ce qu’il convient de faire pour

y remédier. Un coloriste inexpérimenté, lui, est carrément fréquemment perdu. C’est dans ce

cas que l’instrumentation peut se révéler de la plus grande aide. Comme dans tous les

problèmes de contrôle, cependant, l’échantillonnage adéquat et l’utilisation adaptée des

instruments sont de la plus haute importance.

L’effet des variations de processus.

La couleur finale de tout objet est habituellement déterminée non seulement par la

formulation de colorants utilisée, mais aussi par les effets de nombreuses autres variables

de la mise en œuvre. L’un des travaux du coloriste, est de déterminer, du mieux qu’il peut,

les effets de telles variables. Il est de loin plus efficace de les maintenir sous contrôle que

d’essayer de compenser leurs effets en changeant la formulation. Pour ce faire, un travail

important est requis, mais meilleure est la connaissance de la capacité du procédé à

produire des objets uniformément colorés, mieux le coloriste peut avertir le département

production de ce qu’il convient de faire si des objets viennent à dévier du standard.

Ajustement.

La principale fonction de la plupart des coloristes, en industrie, est de maintenir

l’uniformité de la couleur d’un produit, une fois que la formulation a été établie. C'est-à-dire

qu’ils travaillent à réduire la différence de couleur entre un échantillon de production et le

standard. Habituellement, le standard devrait être fabriqué avec le même matériau, les

mêmes colorants et le même procédé de coloration que l’échantillon de production.

Quelle que soit la façon de contrôler le procédé, il arrivera un moment où la couleur

du produit devra être modifiée en changeant la formulation en colorants. Que ce soit réalisé

par un coloriste expérimenté utilisant seulement sa compétence et son expérience, ou par

des mesures instrumentales complexes, il y a un principe majeur à toujours respecter pour

ce type d’ajustement : AUCUN AUTRE COLORANT QUE CEUX SPECIFIES DANS LA

FORMULATION NE PEUT ETRE AJOUTE POUR FAIRE UN AJUSTEMENT.

Ce principe fondamental devrait être encadré en grand, de façon permanente dans

chaque laboratoire d’appariement de couleur. Une fois la formulation établie, peut importe sa

Page 92: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -84-

complexité ou sa simplicité, aucun autre pigment, ou teinture, ne peut être utilisé pour faire

des ajustements d’accord au standard. A moins que cette règle ne soit correctement suivie,

les pseudo appariements de couleur au standard seront en fait métamériques et

distinctement non standard.

Une des conséquences de cette règle est que, pour toute opération de coloration, les

colorants doivent être sélectionnés et standardisés de sorte qu’ils donnent toujours le même

résultat, dans les mêmes conditions d’utilisation. Un bon appariement de couleur ne peut

être réalisé sans que cela ne soit fait. C'est-à-dire que l’appariement de couleur ne peut être

meilleur que la qualité de colorant ne le permet. Par qualité, nous sous entendons, non

seulement les propriétés colorimétriques, mais également les propriétés de travail des

colorants – la vitesse d’épuisement d’une teinture dans un bain, la facilité de développement

de couleur d’un pigment, etc.

La comparaison d’un échantillon de production avec le standard est un exemple idéal

de mesure pour laquelle les colorimètres sont le plus adaptés. Les différences de couleur

impliquées sont légères et il n’y a pas de problème de métamérisme (normalement).

Des instruments peuvent être utilisés à la fois qualitativement et quantitativement

pour aider le coloriste dans cette situation. D’un point de vue qualitatif, ils peuvent montrer

dans quel sens l’échantillon diffère du standard. Comme indiqué précédemment dans cette

section, plus la différence de couleur est faible, plus grande est la difficulté, pour un

examinateur visuel, de déterminer la direction de la différence, bien qu’il soit capable d’en

avoir une bonne idée de l’amplitude. Quantitativement, les ordinateurs sont utilisés grosso

modo de la même façon que lors de la formulation originale, excepté qu’à présent, les

colorants sont connus. Mais la tâche d’apporter de légères corrections, en utilisant

essentiellement la même méthode que pour la formulation initiale, n’est pas aussi simple

qu’elle n’y paraît.

L’expérience acquise dans la formulation d’une couleur, archivée avec soin, fournit un

point de départ pour les prochaines couleurs similaires à apparier. C’est vrai pour toutes les

données des formulations de colorant, quelle que soit la façon dont elles sont obtenues. Un

archivage systématique et une méthode de classement facilitant la récupération des

informations, constituent une mémoire inestimable pour un coloriste. Le classement peut se

faire, par exemple, suivant les coordonnées CIE.

Contrôle.

L’objectif ultime, lorsqu’on applique une procédure analytique à une situation de

production, est de développer une technique qui va, non seulement détecter une variation,

mais également servir de signal pour une action corrective. Nous sommes arrivés, ici, au

Page 93: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -85-

point où un contrôle continu du procédé, fiable et bien maîtrisé est appliqué, mais l’étape

suivante à franchir, à savoir que faire des données obtenues, est plus difficile.

Si l’écart d’une couleur normale est connue comme étant dépendant entièrement

d’une seule variable du procédé, comme la température d’un four, par exemple, le résultat

d’une mesure de la couleur pourrait être utilisé pour générer un signal adaptant la

température d’une façon prédéfinie.

Les autres aspects de l’apparence.

Le coloriste doit garder à l’esprit tout le temps que la couleur est seulement l’un des

nombreux facteurs contribuant à l’apparence d’un objet. Une variation dans n’importe quel

autre aspect de l’apparence – brillant, réflexion métallique, fluorescence, etc. – va

inévitablement affecter la perception de la couleur de l’objet. Donc une variation de brillant

ou de texture de surface peut résulter en un produit qui apparaît différer des spécifications

pour sa couleur. Les instruments, aussi bien que les yeux peuvent être trompés. Le coloriste

doit déterminer la cause de cette variation avant que la correction nécessaire ne soit

entreprise.

Page 94: Colorimétrieperso.latribu.com/shagar/steve/pdf/colorimetrie.pdf · Gillet Steve, D.Sc. L’apparence de la couleur. Sources lumineuses, rendu de la couleur et adaptation chromatique

Colorimétrie.

Gillet Steve, D.Sc. -86-

Bibliographie et webographie.

“Principles of color technology”, 2nd Edition de Fred W. Billmeyer et Max Saltzman aux

éditions Wiley-interscience.

“Measuring colour” de R. W. G. Hunt aux editions Halsted Press Edition.

“The colour science of dyes and pigments” de K. McLaren aux editions Adam Hilger.

http://www.kleocolor.com/part1_chapitre1.php

http://www.hunterlab.com/color_theory.php

http://www.efg2.com/Lab/Graphics/Colors/Chromaticity.htm

http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/chap17/chap17.htm

http://www.limsi.fr/Individu/jacquemi/IG-TR-10-11-12-13/couleur-artist.html

http://perso.orange.fr/gueyraud/gcouleurs/doc_01.html

http://www.formation-colorimetrie.fr/

http://pourpre.com/couleur/lumiere.php

http://ophtasurf.free.fr/illusion.htm

http://www.profil-couleur.com/lc/001-couleur-moyen-age.php

http://pages.infinit.net/graxx/index.html

http://tecfa.unige.ch/perso/lombardf/CPTIC/couleurs/couleur_ERAG/Base.htm

http://www.colorimetrie.be/