158
Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014 AERES Vague A IPAG / UMR5274

Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

ContratQuinquennal2016‐2020

Dossierd’évaluation19/09/2014 AERES Vague A IPAG / UMR5274 

Page 2: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Vague A : campagne d’évaluation 2014 – 2015 janvier 2014

1

Vague A : Campagne d’évaluation 2014 - 2015

Unité de recherche : IPAG /UMR5274

Dossier d’évaluation

Nom de l’unité : Institut de Planétologie et d’Astrophysique de Grenoble Acronyme : IPAG Nom du directeur pour le contrat en cours : Jean-Louis MONIN Nom du directeur pour le contrat à venir : en discussion Type de demande :

Renouvellement à l’identique Restructuration □ Création ex nihilo □

Choix de l’évaluation interdisciplinaire1 de l’unité de recherche :

Oui □ Non

1 L'évaluation interdisciplinaire concerne les unités de recherche dont les activités relèvent au minimum de deux disciplines appartenant à des domaines scientifiques différents (SHS, ST, SVE).

Page 3: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Vague A : campagne d’évaluation 2014 – 2015 janvier 2014

2

Annexe1:Presentationsynthétique(executivesummary).........................................................................2I. DOSSIERD’ÉVALUATION...................................................................................................................................71.IPAGPRESENTATION.............................................................................................................................................71.1Introduction.........................................................................................................................................................71.2Scientificstrategy..............................................................................................................................................71.3IPAGinstrumentation......................................................................................................................................81.4Goalsandresults................................................................................................................................................81.5IPAGProfile..........................................................................................................................................................91.6Organizationandlifeoftheresearchunit..............................................................................................91.7Highlights............................................................................................................................................................161.8Technologytransfer,Valorization...........................................................................................................17

2.ACHIEVEMENTS......................................................................................................................................................182.1ActivityReportoftheteamAstromol.....................................................................................................182.2ActivityReportoftheteamCRISTAL......................................................................................................222.3ActivityReportoftheteamFOST.............................................................................................................262.4ActivityReportoftheteamPLANETO...................................................................................................292.5ActivityReportoftheteamSHERPAS....................................................................................................332.6ActivityReportoftheinter‐teamthematicgroups..........................................................................362.6.1.ExoChemistrythemathicgroup(A.Faure,P.Hily‐Blant,E.Quirico):.............................362.6.2.ComparativePlanetarySciencethematicgroup(M.Barthelemy,X.Delfosse):.........36

3.IPAGIMPLICATIONINFORMATIONTHROUGHRESEARCH...............................................................384.IPAGSTRATEGIC&SCIENTIFICPERSPECTIVES......................................................................................404.1ProspectiveoftheteamASTROMOL.......................................................................................................434.2ProspectiveoftheteamCRISTAL.............................................................................................................494.3ProspectiveoftheteamODYSSEY...........................................................................................................534.4ProspectiveoftheteamEXOPLANETS..................................................................................................584.5ProspectiveoftheteamPLANETO..........................................................................................................634.6ProspectiveoftheteamSHERPAS...........................................................................................................66

II. ANNEXES...............................................................................................................................................................69Liste des annexes demandées par l’AERES Annexe1:Presentationsynthétique(executivesummary)déplacéeaudébutdudocument Annexe2:SansobjetAnnexe3:Listedeséquipements&plateformesAnnexe4:OrganigrammefonctionnelAnnexe5:RèglementintérieurAnnexe6:Productionscientifique(listedepublications)documentfourniindépendammentAnnexe7:ListedescontratsfinanciersetlistedesthèsesAnnexe8:DocumentUniqued'évaluationdesrisques(DUER)Annexe9:ListedespersonnelsAnnexe10:ProspectiveinstrumentaleAnnexe11:ProjetFonctionnementetressourcesdulaboratoireen2016‐2020Annexe12:CommuniquésdepresseIPAG2011‐2014Annexe13:SéminairesIPAG2011‐2014

Page 4: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Vague A : campagne d’évaluation 2014 – 2015 janvier 2014

3

Section des unités de recherche

ANNEXE1

Présentation synthétique de l'entité

Unité de recherche : IPAG Vague A : campagne d’évaluation 2014-2015

___________________________________________________________________________________________

Intitulé de l’unité : Institut de Planétologie et d’Astrophysique de Grenoble (IPAG/ UMR5274)

Nom du directeur de l’unité ou de l’équipe pour le contrat en cours : Jean-Louis MONIN

Nom du directeur de l’unité ou de l’équipe pour le contrat à venir : ___________________________________________________________________________________________

Effectifs au 01/01/2009 des 2 laboratoires (LAOG, LPG) et mouvements avant la fusion : LAOG : 26 enseignants-chercheurs ; 17 chercheurs, 27 techniciens et ingénieurs et 5 autres personnels, 14 post-docs, 8 doctorants Recrutement : 3 CEC(1 Astro-Adj, 2 CR) ; 2 ITA CNRS ( 1 AI concours, 1 T concours réservé) LPG : 5 enseignants-chercheurs ; 8 chercheurs, 4 techniciens et ingénieurs et 3 autres personnels, 10 doctorants Départ : 1 IE CNRS (9 mois) Recrutement : 2 CEC (1 Astro-Adj, 1 MCF)

Effectifs de l’IPAG à sa création au 1ier janvier 2011 : 36 enseignants-chercheurs ; 28 chercheurs ; 33 techniciens, ingénieurs et 8 autres personnels ; 9 post-docs et 32 doctorants.

Personnels ayant quitté l’IPAG pendant le contrat en cours :

STATUTAIRES : 2 Chercheurs en retraite (1DR 15 mois, 1CR 42 mois) ; 3 Chercheurs en mobilité à l’UMI Chili (1 DR 19 mois, 2 CR 19 et 30 mois) ; 2 Astronomes en détachement à l’ESO et Berkeley(2 x 20 mois) ; 1ADJ UJF en mobilité (9 mois) ; 2IE CNRS en mobilité(11 mois et30mois) ; 2 IR CNRS en détachement (8 et 40 mois).

NON STATUTAIRES : 24 doctorants (374 mois) ; 15 post-docs (340 mois).

Nombre de recrutements réalisés au cours de la période considérée et origine des personnels

2 CR en mobilité CNRS (LESIA et IAS), 1 Astronome (réintégration après détachement IRAM), 2 Astronomes Adjoint par concours (CDD IPAG et étranger), 1 MCF par concours (Post-doc à l’étranger), 1 Adjoint-Technique par mobilité UJF (antenne PHITEM), 2 AI par mobilité (1 UJF-DISI et 1 CNRS-SIMAP), 2 AI par concours externe CNRS (CDD), 2 IR par mobilité (1 UJF-DISI et 1 CNRS-Lagrange). ___________________________________________________________________________________________

Réalisations et produits de la recherche au cours de la période écoulée (1er janvier 2009 – 30 juin 2014) : 1) Analyse des premières données Planck ; contrainte sur les modèles d’Univers (série d’articles Planck collaboration 2011-2014 les plus cités de la discipline au niveau mondial). 2) Détection en imagerie directe de la planète géante B Pic b ; détermination de son orbite, de sa masse dynamique et de son spectre (Lagrange et al. 2009 ; 2010 ; Chauvin et al. 2012 ; Bonnefoy et al. 2013). 3) Détermination de la fréquence des systèmes exoplanétaires autour des naines M (Bonfils et al. 2013). 4) Conception, développement, mise en opération de SPHERE sur le VLT (Beuzit et al. 2014 ; http://www.eso.org/public/news/eso1417/) 5) Elaboration, soumission et acceptation du Labex FOCUS "Des détecteurs pour observer l’Univers" (PI P. Kern)

Page 5: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Vague A : campagne d’évaluation 2014 – 2015 janvier 2014

4

______________________________________________________________________________________

Bilan quantitatif des publications de l’entité. 1068 publications de rang A (à referee) pour le laboratoire sur la période 01-2009 / 06-2014, dont 6 dans Nature. Par équipes, les publications se répartissent ainsi : Astromol 242 ; Cristal 90 ; Fost 432 ; Planeto 164 ; Sherpas 194. Total 1122 ; ce nombre inclue 54 publications de rang A qui concernent plusieurs équipes (1122 – 54 = 1068). ______________________________________________________________________________________ Indiquer les 5 publications majeures de l’entité (avec leur titre et en soulignant, dans le cas de publications communes, le nom du ou des membre(s) de l’entité). 1) Planck reveals an almost perfect Universe. The most detailed map ever created of the cosmic microwave background, the relic radiation from the Big Bang, was released. 30 publications in 2013 from the Planck collaboration, which includes 2 IPAG members. 2) The study of the chemical properties of Nitrogen hydrides and ammonia in the cold interstellar gas has demonstrated for the first time the importance of nuclear spin conservation in the reactivity of hydrides. This work has opened a new avenue for a detailed understanding of gas phase reactions: nuclear spin chemistry. Refs: Faure et al. 2013. 3) Direct detection of β Pictoris b (VLT/NaCo), the closest directly imaged giant exoplanet known to date; first orbital and spectroscopic characterization, providing the first direct constraints on the mass of an exoplanet. Refs: Lagrange et al. 2010, 2012; Chauvin et al. 2012. 5) Discovery of the first unambiguous gamma-ray emission from an X-ray binary, Cygnus X-3. Refs: Abdo et al. 2009; Dubus et al. 2010; Cerutti et al. 2011; Corbel et al. 2012) 6) The MARSIS radar instrument on board ESA's Mars Express orbiter has discovered a subsurface blanket of low-density material around the north polar cap, supporting theories that a large body of water once covered the northern lowlands of Mars. Refs: Mouginot et al. 2012. ______________________________________________________________________________________ Indiquer au maximum 5 documents majeurs (autres que les publications) produits par l’entité (par exemple : rapport d’expertise, logiciel, corpus, protocole, brevet en licence d’exploitation …). 2 Licences avec la startup Resolution Spectra Systems Logiciel 'Attributor' (spectroscopie de masse), procedure en cours pour licence. ______________________________________________________________________________________ Indiquer au maximum 5 faits illustrant le rayonnement ou l’attractivité académiques de l’entité (par exemple : invitations à donner des conférences, organisation de colloques nationaux ou internationaux, réseaux collaboratifs, cofinancements, prix et distinctions). Médailles d'argent CNRS J. Bouvier (2011) Cristal CNRS L. Jocou (2010) Nomination Dr Honoris Causa de M. Mayor par l'UJF (2014) IUF (Pierre Hily-Blant) et ERC (Xavier Bonfils) juniors (2012) Légion d'Honneur A.-M. Lagrange (2011) ______________________________________________________________________________________ Indiquer au maximum 5 faits illustrant les interactions de l’entité avec son environnement socio-économique ou culturel (par exemple : contrat industriel, collaboration à une exposition majeure, émission audiovisuelle, partenariats avec des institutions culturelles…). Participation projet "Moulins de Villancourt" Création des startups "Fisrt Light Imaging" et " Resolution Spectra Systems" FUI "Swift 400-1000", 2009, 5 ME consolidé ; FUI "Anagram", 2013, 7 ME consolidé. Planeterrella : simulateur d'aurores boréales, nombreux prix dont le prix national "le goût des sciences" en 2012 Labex FOCUS, piloté par l'IPAG, 11 ME sur 8 ans ______________________________________________________________________________________ Indiquer les principales contributions de l’entité à des actions de formation (par exemple : conception et coordination de modules de formation en master et en doctorat, accueil et suivi des doctorants, conception d’outils à vocation pédagogique, action de formation continue…). Soutien au M2 A2P, 12-15 étudiants / an, Convention IRAM-UJF : stages 30m Serveur national de stages de M2, utilisé par toutes les formations de M2 en Astrophysique. Communication par SF2A. Ecole FOCUS : 1 semaine de formation à la detection, Observatoire Haute Provence, 20 étudiants Formation continue Orbitrap, 6-10 participants d'entreprises privées. ______________________________________________________________________________________ Le directeur d’unité/le responsable de l'équipe peut indiquer ici brièvement 3 points précis sur lesquels il souhaite obtenir l'expertise du comité. - Qualité de la fusion et du projet scientifique ? - Mode de fonctionnement et projet commun de laboratoire (prélèvements sur projets ; justifications) ? - Equilibre R&D / Projets ?

Page 6: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Vague A : campagne d’évaluation 2014 – 2015 janvier 2014

5

Section des unités de recherche

APPENDIX1

Executive Summary

Research Unit : IPAG Vague A : Evaluation campaign 2014-2015

___________________________________________________________________________________________

Name of the Unit: Institut de Planétologie et d’Astrophysique de Grenoble (IPAG/ UMR5274)

Director's name for the unit or team during the current period: Jean-Louis MONIN

Director's name for the unit or team during the next period: in discussion ___________________________________________________________________________________________

People as of 01/01/2009 for LAOG & LPG and moves before the fusion: LAOG: 26 university teachers, 17 researchers (CEC); 27 technicians & Engineers (ITA) and 5 other personals; 14 post-docs; 8 PhD students. Recruitments: 3 CEC (1 Astro-Adj, 2 CR); 2 ITA CNRS (1 AI concours, 1 T concours réservé). LPG: 5 university teachers, 8 researchers (CEC); 4 technicians & Engineers (ITA) and 3 other personals; 10 PhD students. Depart : 1 IE CNRS (9 months). Recruitement: 2 CEC (1 Astro-Adj, 1 MCF).

People in IPAG at its inception (1ier january 2011): 36 university teachers; 28 researchers (CEC); 33 technicians & Engineers, and 8 other personals; 9 post-docs et 32 PhD students.

Personals who left IPAG during the current evaluation period: PERMANENTS: 2 CEC retired (1DR 15 mois, 1CR 42 mois); 3 CEC moved to Chilean UMI (1 DR 19 mois, 2 CR 19 & 30 mois); 2 Astronomers on leave at ESO and Berkeley (2 x 20 months); move of one 1ADJ UJF (9 mois); move of 2 IE CNRS (11 mois & 30 months); 2 IR CNRS on leave (8 et 40 mois).

NON PERMANENTS: 24 PhD students (374 mois); 15 post-docs (340 mois).

Nomber of recruitments during the current evaluation period and origin of the personals: 2 CR CNRS moving from other labs (LESIA et IAS), 1 Astronomer (reintegration after a long stay at IRAM), 2 assistant Astronomers recruited via national competition (CDD IPAG & abroad), 1 UJF assistant professor via competition (Post-doc abroad), 1 ADJ UJF moving within UJF (PHITEM), 2 AI moving (1 UJF-DISI et 1 CNRS-SIMAP), 2 AI via CNRS national competition (CDD), 2 IR moving (1 UJF-DISI et 1 CNRS-Lagrange). ___________________________________________________________________________________________

Realizations research products during the current evaluation period (1er january 2009 – 30 june 2014): 1) Analyze of the first Planck data; constraints on the current models of the universe (series of papers from the Planck collaboration in 2011-2014 the most cited of our discipline in the world. 2) Direct imaging detection of the B Pic b giant planet; determination of its orbit, its dynamical mass and its spectrum (Lagrange et al. 2009; 2010 ; Chauvin et al. 2012; Bonnefoy et al. 2013). 3) Determination of the frequency of occurrence of exoplanetary systems around M dwarfs (Bonfils et al. 2013). 4) Conception, development and commissioning of the VLT SPHERE instrument (Beuzit et al. 2014; http://www.eso.org/public/news/eso1417/) 5) Elaboration, submission & acceptation of the FOCUS Labex "Des détecteurs pour observer l’Univers" (PI P. Kern).

Page 7: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

6 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

______________________________________________________________________________________

Publications quantitative results of the laboratory: 1068 publications (refereed) for the whole laboratory on the following period: 01-2009 / 06-2014, out of which 6 in Nature. By teams, the publications are distributed as follows: Astromol 242; Cristal 90; Fost 432; Planeto 164; Sherpas 194. Total 1122; This number includes 54 refereed publications that concern several teams (1122 – 54 = 1068). ______________________________________________________________________________________ Indicate the 5 major publications of the laboratory (give the title; in case of common publications, underline the name(s) of the member(s) of the laboraytory). 1) Planck reveals an almost perfect Universe. The most detailed map ever created of the cosmic microwave background, the relic radiation from the Big Bang, was released. 30 publications in 2013 from the Planck collaboration, which includes 2 IPAG members. 2) The study of the chemical properties of Nitrogen hydrides and ammonia in the cold interstellar gas has demonstrated for the first time the importance of nuclear spin conservation in the reactivity of hydrides. This work has opened a new avenue for a detailed understanding of gas phase reactions: nuclear spin chemistry. Refs: Faure et al. 2013. 3) Direct detection of β Pictoris b (VLT/NaCo), the closest directly imaged giant exoplanet known to date; first orbital and spectroscopic characterization, providing the first direct constraints on the mass of an exoplanet. Refs: Lagrange et al. 2010, 2012; Chauvin et al. 2012. 4) Discovery of the first unambiguous gamma-ray emission from an X-ray binary, Cygnus X-3. Refs: Abdo et al. 2009; Dubus et al. 2010; Cerutti et al. 2011; Corbel et al. 2012). 5) The MARSIS radar instrument on board ESA's Mars Express orbiter has discovered a subsurface blanket of low-density material around the north polar cap, supporting theories that a large body of water once covered the northern lowlands of Mars. Refs: Mouginot et al. 2012. ______________________________________________________________________________________ Indicate 5 major documents (other than publications) produced by the laboratory (eg: expert report, software, corpus, protocol, patent and license…). 2 Licenses with the startup "Resolution Spectra Systems" Software 'Attributor' (mass spectroscopy), licensing in progress. ______________________________________________________________________________________ Indicate 5 facts illustrating the attractiveness of the laboratory (eg: invitations in conferences, organization of national and international workshops, networks, grants and distinctions). CNRS silver medal J. Bouvier (2011) CNRS cristal L. Jocou (2010) Nomination Dr Honoris Causa of M. Mayor par l'UJF (2014) IUF (Pierre Hily-Blant) and ERC (Xavier Bonfils) juniors (2012) French "Légion d'Honneur" A.-M. Lagrange (2011) ______________________________________________________________________________________ Indicate 5 facts illustrating the interactions of the laboratory with its socio-economic and cultural environment (eg: industrial contract, collaboration to a major radio or TV show, partnership with cultural institutions…). Participation project "Moulins de Villancourt" Creation of spin-offs: "Fisrt Light Imaging" and " Resolution Spectra Systems". FUI "Swift 400-1000", 2009, 5 ME consolidated ; FUI "Anagram", 2013, 7 ME consolidated. Planeterrella: Boreal dawn simulator, several prices (eg. le prix national "le goût des sciences" en 2012). Labex FOCUS, driven by IPAG, 11 ME for 8 years. ______________________________________________________________________________________ Indicate the main contributions of the laboratory to teaching actions (eg: conception & coordination of teaching modules in master and for PhDs, welcoming and following PhD students, conception of pedagogical tools, participation to long life learning…). Support of the M2 A2P, 12-15 students / yr; IRAM-UJF convention: internships at the 30m telescope; National internship server for M2 students, now used by all the M2 formations in astrophysics in France; FOCUS national detection school: 1 week at the Observatoire de Haute Provence, 20 students; Long life learning on the Orbitrap facility, 6-10 participants from private companies. The laboratory director may indicate 3 brief precise points on which s/he wishes more specifically to have the expertise of the committee. - What do you think of the quality of our project and the efficiency of the LAOG-LPG fusion? - What is your advice about the current functioning mode of our laboratory? What would be the ideal balance between recurrent / projects funding? - Is our balance between instrumental R&D and realization projects correct?

Page 8: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

7 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

I. DOSSIER D’ÉVALUATION

1. IPAG PRESENTATION

1.1Introduction IPAG results from the merging, on the 01/01/2011, of LAOG ("Laboratoire d'Astrophysique de Grenoble") and LPG ("Laboratoire de Planétologie de Grenoble"), under the authority of UJF and CNRS-INSU. Both labs were young (LAOG: 30 yrs; LPG: 10 yrs) and very attractive, and both have known a rapid expansion phase since their inception (see figure 1). In 2010, during the preparation of the merging, it was decided to build on the complementarity of the two labs and to organize IPAG research themes according to three main questions:

- How do stars and planets form and evolve? – How do we, and the solar system, fit in? – Do we understand the extreme of the universe?

These are three of the four major research issues defined in 2007 by the European Astronet Working Group as the one where significant advances and breakthroughs can be expected in the coming two decades. To address these fundamental questions, IPAG is structured in 5 teams:

- ASTROMOL (molecular astrophysics) - CRISTAL (instrumental research) - FOST (star and planets formation, brown dwarfs) - PLANETO (planetary sciences) - SHERPAS (high energy phenomena)

Last but not least, IPAG hosts an important technical group, and we are involved in major instrumental projects on the ground, (e.g. SPHERE, GRAVITY, MUSE, PIONIER for the VLT and VLTI), and in space (e.g. CONSERT & VIRTIS on-board Rosetta). The laboratory is spread over 3 buildings on the Grenoble East Campus, and hosts a large proportion of teachers, so we have a strong link with students. With almost 100 permanents, IPAG represents most of Astrophysics and Planetary Sciences in Grenoble.

1.2Scientificstrategy IPAG strategy relies on its strong thematic coherence and on the complementarity of the skills available in the laboratory, from laboratory experiments, theoretical calculations, models, observations and building of instruments, to finally data reduction and signal processing. IPAG is working on star and planetary formation, from the initial stages of the cloud collapse, when molecular complexity develops, up to the physics and chemistry of circumstellar disks, formation of planets, and the star-disk interaction via the stellar magnetosphere. IPAG is also working on plasma and physical processes involved in the accretion-ejection phenomena around young stellar objects as well as around compact objects, where the energies involved are huge, with relativistic effects. In planetary sciences, IPAG is studying solar-earth interactions, planetary surfaces and sub-surfaces, small bodies of the solar system and the chemical evolution of the original solar system material. In close connection with these thematic researches, IPAG performs first class instrumental research and development to prepare the instruments of the future. These various research themes are described in more detail in the dedicated pages of the research teams of the Institute. Our laboratory is also involved into the conception, development and scientific exploitation of numerous instruments on the ground (NAOS, WIRCAM, SPHERE, GRAVITY, AMBER, PIONIER, etc.), and in space (CONSERT and VIRTIS on ROSETTA, Cassini-Huygens, Mars Express, MRO). We develop instruments equipping the most powerful telescopes in the world (VLT, VLTI, CFHT), or on-board space probes (Mars Express, Rosetta). Our areas of technical expertise include adaptive optics, integrated optics, interferometry, infrared detection and radars. We are positioned to participate to the development of the instrumentation for the future European giant telescope, the ELT, and to be co-I of the JUICE mission. Our instrumental research leads us to develop collaborations on a national and international scale, in collaboration with national, European and international

Page 9: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

8 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

agencies (CNES, ESA, ESO, NASA) as well as large public and private industrial groups (Sofradir, ONERA, CEA- LETI, Thales, e2V). The laboratory management strategy is to stimulate and develop a strong added value to the research of the teams that constitute the substrate of the laboratory. This task is even more crucial after the merging. Although the current research funding methodology encourages individualized projects, IPAG refuses to be a mere "hotel à projets". Within such a strategy, during the current contract, we developed two "transverse axes" in the laboratory in the purpose to create and develop strong new links between the previous two labs, and steer the development of new areas of research, or new teams. The success of this operation can be measured e.g. via the number of international inter-team publications during the past five years (54). The success of the global laboratory strategy can be measured through the highlights listed at the end of section 1.

1.3IPAGinstrumentation

Instrumentation at IPAG deserves a specific paragraph (see also figure 3 in section 1.6). The presence of a large common technical group (~ 30 permanent Engineers and Technicians, ITs) is a major asset of our laboratory, that allows us to participate into the implementation and scientific exploitation of several major instruments for the VLT & VLTI, the CFHT, soon the ELT instruments, as well as space probes. This technical group is one of IPAG main strengths. It has grown over the years, gathering exceptional people, mainly through a proactive moving action from Paris' region to Grenoble in the 1990s. Our instrumental strategy is based on the scientific interests of IPAG teams, and the fact that the technical group is common to the whole laboratory (ITs are not "distributed" within teams). This strategy is paying off in terms of optimization of achievements, allocation of staff and skills, in terms of exchanges within the group and motivation of its members. Instrumental developments of the laboratory are discussed and decided in coherence with the scientific interests of the teams; in other words, we do not want to provide ' outsourcing '. For any given new instrument, we take care that several researchers from at least one thematic team are involved in its development and scientific exploitation phases. Our technical group is backed by the laboratory and especially by the team 'CRISTAL', IPAG's task force for the preparation of future instruments. Many research and development projects are conducted in IPAG, sometime requiring a delicate balance between pure R&D and projects. Our R&D projects give rise to industrial development resulting in several patents. Our laboratory is at the origin, or closely related to 3 high-tech start-ups (ALPAO, RSS, FLI). We can illustrate our instrumental strategy by the recent success of our current instrumental developments that can be dramatically measured in 2014. The Rosetta probe and the PI CONSERT instrument were successfully awoken in early 2014; MUSE first light took place in March 2014, and the first data obtained are impressive; SPHERE saw its first photons in early May 2014 after an impressively quick and efficient implementation on the VLT platform; We are co-I of the GRAVITY instrument that will reach Paranal in early 2015; after its remarkable fast-track development, PIONIER is now used by a large community and will soon be fully supported by ESO; a major update of PIONIER is planned in 2014-2015, with the commissioning of a new detector ("RAPID") developed at IPAG, expected to remarkably improve the overall performances of the instrument.

1.4Goalsandresults

After the fusion, IPAG now occupies a strategic position at the intersection of astrophysics and planetary sciences, geophysics, physics, chemistry and engineering sciences. In the past 5 years, we have worked out a significant increase of our visibility and recognition within OSUG and our university authority UJF. Within IPAG, the action of a scientific deputy director has been key to foster inter-team collaborations via monthly meetings and funding of specific projects and workshops, thereby strengthening the fusion. This action, plus our "CAMPI" group (see below) is a fundamental tool in our "added value" strategy. IPAG hosts half of the CNAP members in OSUG, and we operate a large number of "Observation Services" (SO), in close association with our scientific goals. These SO include SPHERE, VLTI activities, CTA, CONSERT, GHOSST, SPIROU, IRAM/NOEMA, ALMA & JMMC. In 2015, we plan to support the new NIKA2 instrument currently in development between IPAG, IRAM and Néel Institute. This large number of CNAP members and SOs is a major asset of IPAG, and we work closely with OSUG for these projects; in particular, we will be very attentive to the evolution of the status of astronomers. IRAM is a historical scientific partner in our strategy and our next-door neighbour. We have strengthened our links with this unique international institute on the UJF East-campus. We have organized and led the signing of an agreement between IRAM and UJF, opening the future to common PhD thesis, students' internships and

Page 10: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

9 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

CNAP recruitments. With the implementation of NOEMA, we expect many progresses to be made in this collaboration. Within OSUG, we were strongly involved in the inception, and we are now a major partner of the LABEX "OSUG@2020", with strong benefits in term of IPAG projects and PhD funding. We need to remain closely associated to the call for tenders and decisions taken by the Labex management. In 2012, we have created and we now manage the LABEX FOCUS, in close association with the SAP Saclay. This is an essential part of our instrumental strategy. Since 2013, we are strongly involved in the teaching of a yearly 'detection school' organised during one week by FOCUS at OHP. From a general point of view, we have updated and enhanced our involvement in astrophysics teaching on the UJF campus; this is presented in section 3. A major asset of our students attractivity is the hosting of the "Astrophysics, Plasma, Planets" (A2P) Master, ensuring a source of students for future PhDs (see section 3). It is one of our important permanent goal to keep this teaching alive and strong within our laboratory. Whether via the observatory or directly, IPAG is very active in the preparation process of the future common university UGA. One of the UGA future research poles, "PAGE" will gather particle physics and astrophysics together with Geosciences on the Grenoble-Annecy site; this will bring us closer to laboratories such as LAPP and LPSC with whom we have scientific links through developments like HESS and CTA. Strengthening our links with the LPSC, with whom we collaborate via our implication on Planck (2 researchers involved), has been one of our goal and will remain a priority for the next research contract, including instrumental works e.g. on the LSST project. These various elements, and others, will be further developed in our prospective section (4).

1.5IPAGProfile IPAG is a fundamental research laboratory, and our activity is research and scientific production. Indeed, IPAG, with more than 1000 refereed papers during the evaluation period, has been extremely productive. However, the growing number of call for tenders and individual project funding drives every one of us, but especially the management team, to more and more administration and project-managing burden. This shows in table 1 where we display the repartition of team activities following AERES instructions: most of the time, academic research is not the dominant activity of IPAG scientists. If we aim at an 'international research model', we feel that we are only half way there, because our scientific action is slowed by the need to justify each and every expense, with no simple method to apply simple and fair overheads on projects to participate to the laboratory operation.

Unité/Équipe Effectifs

Recherche académiqu

e

Interactions avec

l'environnement

Appui à la recherche

Formation par la recherche Total

Ensemble 61 50 12 25 13 100 %

Astromol 13 43 22 18 17 100 %

CRISTAL 8 40 10 35 15 100 %

FOST 18 32 18 39 11 100 %

PLANETO 14 59 5 25 11 100 %

SHERPAS 8 48 9 26 17 100 %

Table 1: personnel and activities within IPAG research teams

IPAG is a pluridisciplinary laboratory. The table below lists the series of CNU and CNRS sections of IPAG scientist.

Tutelle UJF CNAP CNRS Section 30 31 34 35 13 17 Nombre 1 1 15 1 19 2 22

IPAG scientists 'sections' in UJF, CNAP (no section) and CNRS

1.6Organizationandlifeoftheresearchunit A/ Human Resources

IPAG research personnel (CEC) are employed either by CNRS or UJF. Within UJF personnel, we distinguish 'teaching researchers' (UJF assistant professors and full professors) and 'astronomers' who have 'observation duties managed by OSUG (SOs).

Page 11: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

10 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

There are 94 permanent staff in active: 34 Scientists and Teachers staff, 24 Researchers, 36 Engineers Technicians and Administrative staff (ITA/IATOS – 30 belonging to CNRS and 6 to UJF). Twenty-four non-permanent staff, Emeritus Professors and 31 PhD students complete IPAG staff. The percentage of A-grade members reaches 45% including all categories. Non-permanent staff represents 30% of the Engineers Technicians and Administrative staff. The figure 1 shows the recent evolution of the number of permanent staff in the laboratory by distinguishing the staff of the researchers/teachers-researchers from the technicians ITA/IATOS. In both cases the situation is stable since the creation of IPAG (01/2011). IPAG includes 5 scientific teams with well-balanced staff. A technical department and an administrative/financial department complete the structure of the Institute. NB: the technical department is strongly related to the instrumental scientific team CRISTAL. Concerning the permanent staff, the recruitment policy is based on the strategic vision of the Laboratory Management and on the needs the team leaders or the support department heads regularly express to anticipate recruitment campaigns. The Laboratory Management and the Laboratory Board prioritize the needs for each supervisory authority. During the reference period (2009-2014 included), IPAG has recruited 10 new scientists (4 CNRS, 6 UJF) and we have welcomed 2 young scientists moving from Paris' region laboratories. Half of them have joined the Team FOST, working on stellar and planets formation. This repartition is linked to our policy to support research on planetary disks and exoplanets (see figure 2)

Figure 2: Repartition of recruitments and mutations between the teams over the 2009-2014 period

Concerning the non-permanent staff, the Project leaders take in charge recruitment and funding. However there is a structure in the Institute – CAMPI (for "Cellule d’Aide au Montage de Projet": assistance for project development group) - that assists project leaders in their planning and especially for the recruitment of PhD Students, Postdoctoral fellows or engineers. Job profiles, risks, range of skills needed in the Institute, professional achievements of future temporary staff are discussed there.

Figure 3: Repartition and population pyramid of IPAG personnel as of 2014

In figure 3, one can check that Engineers and Technicians represent a third of IPAG personnel. This is directly linked to our deep involvement into designing and building first class instruments for the largest telescopes on

Figure 1: Evolution of CEC (incl. 3 Emeritus Prof.), & ITA

Page 12: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

11 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

the planet (NAOS, AMBER, WIRCAM, CONSERT, SPHERE, PIONIER, etc.). Our age picture diagram is currently robust, with a rather 'flat' profile, and IPAG is still a young laboratory (45 years average age). However, we are going to loose a ten of scientists in the next 5 years (15%), a first for IPAG, and this is a concern for the future of our lab. PhD students are an essential part of IPAG non-permanent staff. Over the 2009-2014 period, we have welcomed 52 new PhD, 9 per year on average. Out of these 9 theses, 3 to 5 are funded by the various Doctoral Schools related to IPAG. The others are funded by various agencies within our research contracts (CNES, ANR, ESO, OSUG & FOCUS labex, etc.). There are currently 33 PhD students in IPAG, yielding a ratio of approximately 0.5 PhD students per IPAG scientist. This ratio is small but not unusual in French astronomical laboratories. Figure 4 shows the repartition of PhD students between teams in 2014.

Figure 4: repartition of PhD students between teams in 2014

B/ General and technical services Engineers, technicians, administrative (ITA), and temporary staff provide most of the support functions in the laboratory. At IPAG services are structured into two distinct entities: the technical group and administration. The Technical Group serves the missions of the laboratory providing the FTE (full time equivalent), skills and tools necessary to achieve the instrumental and experimental projects. Structure: the majority of IPAG ITA are mostly from two "BAP": C (Instrumentation, 18) and E (Computers, 10). The grades distribution is: 13 IR, 7 IE, 5 AI, 4 T. This reflects our capacity to design and manage new instruments. It also reflects IPAG involvement in R&D activities (see "Valorization" paragraph later on). The technical group is sub-divided into job areas: computing –development & ASR (Administration of Systems and Networks)-, instrumentation, electronics, and mechanics. Most members of these pools with the exception of ASR are assigned to one or more specific project (s) for a fixed term. Department heads are responsible for managing the activities of members of their service. Staff members are evaluated by their department head who will interact with the project managers before the annual interview. Also note the presence in the technical group of a Project Assistant position. The Technical Group is involved in the strategic decisions of the laboratory through pre-project reviews organized by the CAMPI cell (see below) and also through representatives participating to the laboratory Board.

The administration (1 IE, 2 AI, 2 T, 2 Adj) has three major tasks controlled by the Laboratory Management: human resources, financial management and dialogue with both supervisory authorities. The organization chart of the laboratory reflects this fact with a delegate for each of these activities under the supervision of the Administrative Head. The latter's main duties are compliance, regulatory and administrative structure monitoring, overseeing officers (BIATOSS, ITA) in particular agents of his department and interface with the Laboratory Management. The Responsible for budget and finances is involved in the development of the budget, controls its distribution and execution, monitors and analyses expenditures and is in charge of the accounting team. Human resource activity is becoming more prevalent because of the growing number of non-permanent staff, the delegation to the laboratory of the management of university permanent staff and new regulations.

Page 13: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

12 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

Note that to fit the skills of the staff so that the latter meet the changing needs of service to the laboratory while adapting to new techniques, tools, regulations, etc., a training plan is developed each year. Thus, in 2011 54 members of the laboratory followed a training course proposed by the CNRS, 30 in 2012 and 42 in 2013. The proportion of ITA and related staff amounted to 82%, 63% and 74% respectively. Note that the initial and follow-up trainings regarding first aid concern a dozen people a year. C/ Pooling and sharing At IPAG pooling and sharing is exercised primarily in services and quality approach. The distribution of resources provided by the technical group for the projects takes place at different levels. For emerging projects (pre-project) requiring a technical and / or administrative substantial support from IPAG, detailed reviews are organized. These reviews include on the one hand the project leader, his team leader and all other members of the laboratory involved, on the other hand representatives of the Laboratory Management, the CAMPI cell and the technical group constituting the review committee. A review of pre-project must meet the following objectives: (i) whether it is possible and desirable to start a new project (ii) to better plan the future program of the Technical Group (iii) to involve systematically the technical group in the decision process. For the pre-project leader, it is to communicate, convince and to initiate the insertion inception phase of the project in the lab. Moreover interest to engage in this exercise is to increase the technical quality of the pre-project in order to maximize the chances of its implementation and success. The project leader prepares his speech by making a prior study that addresses the scientific, technical, HR, budget and contract aspects. For existing projects, the fine distribution of resources is performed regularly at management meetings of the technical group. Another form of pooling and sharing involving the technical group was tested in the laboratory through the creation of job areas. These involve both permanent and non-permanent staff (on projects) that gather their skills to meet the most efficient manner to the specific needs of current operations. D/ Financial Resources The total IPAG staff represents a payroll of around 7 million euros (see table 2). For comparison, the operating budget / lab infrastructure varies between 3 and 4 million euros approximately between years (see table 2 and figure 5). Less than 10% of our total revenue consists of grants from our supervisory authorities, 70% originating from the funding of research projects by European Agencies and national resources (ANR, CNES, etc..., see figure 6 & 7). The money obtained from INSU national programs and from local calls for proposals forms the rest. In this matter, the abrupt drop of our ANR resources forecasted in 2015-2016 represents a major threat for our scientific project (see figure 7).

Table 2: Global IPAG budget

IPAG detailed budget in 2012 & 2013 (not including 210 & 56 kE investments resp.)

Page 14: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

13 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

The existence of IPAG is too recent for us to assess significant changes in global finance over the recent years. The share of the budget devoted to the common expenses of the laboratory is approximately 10-12% of the total, which is the same as the average budget of a team but more than the (recurring) basic financial support of the supervisory authorities. Therefore the missing funds are obtained by taking a share on contracts for which we provide the financial justification of expenditures. As long as a real and assumed overheads politics is not designed at the CNRS and University level, this method will continue to provide a huge amount of painful work to our administration. Moreover, the decrease of ANR funding in 2013 & 2014 (see figure 7) that is experienced by all public laboratories in France is a real thread to our common budget policy.

Figure 5: Budget repartition between teams

The existence of a common laboratory budget supplied by state grants and especially by the share on project contracts is also a form of pooling and sharing with strict internal rules. The common budget is used to fund the operating costs, infrastructure, scientific management, and allocation of grants (purchases of laptops for example). In the last two cases we apply systematically the internal rules for awarding grants, the highest expenditures being examined by the management staff and the Laboratory Board. For managing the budget, we have at our disposal two official accounting software (one per supervisory authority) but an adequate internal IT organization also gives us a global vision. Key budget allocation reflects the various positions of common expenses (general operations, infrastructure, technical and IT equipment, administrative non-permanent staff) and the availability of funding from the supervisory authorities (CNRS, UJF) towards projects according to contractual obligations. Regarding the second point, grouping of budget lines is performed at the level of scientific teams that form group entities in our system of management. Finally in financial management, a special effort is made to ensure the eligibility of expenditures under the rules of the funding agencies or the regulation of public markets.

Figure 6: IPAG contracts, numbers (left) and amounts (right) since 2011

Page 15: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

14 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

Figure 7: Number of IPAG ANR projects won & managed by the laboratory over the period (blue: new

projects) E/ Relationship between the research unit, its supervisory authorities and its various partners These relationships are first punctuated by periodic events. Every year on the occasion of the campaign "DIALOG", we built our request means concerning Operation-Equipment-Investment (FEI) and human resources to the CNRS. On the side of the University we meet an annual survey of research that includes a balance sheet / perspective of our budget. It is on the basis of this survey and through direct contacts that UJF Direva reviews and responds to our needs within the four-year contract. Every 2 years the management dialog sparked by the CNRS and the UJF steering committee is subject to present the scientific, financial, human and social results of the laboratory and the review of our prospective. Finally the relationship between IPAG and OSUG takes many forms, e.g. in terms of participation to the governing instances, requests for resources, and co-management of official observation services (SO). F/ Laboratory governance There are several governing instances at IPAG. First we find a Executive Committee (CD) whose members are the Director, 3 Deputy Directors (see organisation chart) and the head of the Administration. The CD meets weekly to initiate, prepare, coordinate and evaluate the multiple actions required to ensure a smooth operation of the laboratory and dialog with the supervisory authorities. For that purpose the committee relies on 9 advisers following affairs in their respective fields of expertise and representing IPAG in instances. The CD informs, reports to and consults the Laboratory Board, the latter meeting once every 7 weeks on average. Each meeting of the Laboratory Board produces an official report quickly published on the IPAG intranet and accessible to all lab members. In particular there is an annual and half-year report on the budget and resources. Also discussed are scientific projects, recruitment policy for permanent researchers and ITA, terms of promotion for them, modes and organizational rules, etc ... In addition, the Director calls the lab in general meeting (AG) once or twice a year. Several committees complement the steering bodies at IPAG. First the committee “DAS-REX “ involving the Scientific Deputy Director and all team managers meets monthly. Its role is to facilitate a regular dialogue between the Laboratory Management and the teams, with information transiting in both directions. Also depending on deadlines, the committee prepares the research recruitment policy, coordinates the preparation of reports and prospects, and gathers the teams’ operating, equipment and investment needs. The CAMPI structure, led by the Resources Deputy Director, implements a quality system for the projects’ elaboration, integration and monitoring in the laboratory. Since March 2013, 6 pre-project reviews (see § C) were performed and 5 projects pre-selected by the ANR have benefited from technical optimisation procedure of the project (scientific and technical aspects, budget, HR etc.) before submission. The committee for monitoring thesis prepared at IPAG has for primary mission to interview each PhD student at least once a year over the three years of thesis preparation. In addition, about 10% of PhD students are closely followed because of particular issues. The Monitoring Committee also organises talks / meetings about the scientific employment of the PHD whether in academia (each year), or in industry (every two years with company representatives). To best manage the annual promotion campaigns of ITA staff members, IPAG has created a progress committee made up of The Director, the Technical Deputy Director, the Administrative head, the service heads and two-elected ITA. The number of ITA in IPAG does not exceed the critical threshold that would require the creation of a Joint Committee. Finally, the laboratory is equipped with a Health and Safety Commission (CHSCT) that is a key forum for dialogue and analysis in terms of Quality-Environment-Health-Safety HSE (see below) and meets twice a year. For their operation, governing instances use the IPAG information system. G/ Internal and external communication The IPAG information system comes with a wide set of tools and practices: intranet, Twiki’s, databases, displays, weekly time devoted to the exchange, ... etc... We can group each tool according to the type of

Page 16: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

15 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

information processed, stored or communicated. For example all publications of the lab are gathered and made available via a database: scientific information. The internal information uses mailing lists, displays, IPAG agenda and can be archived in the intranet. It is the same for the information coming from the supervisory authorities. Technical information is managed through a document database that allows other archiving and version tracking of documents. Finally, the various working groups at IPAG (teams, management, services, etc...) have at their disposal mailing lists, Twiki’s, and collaborative workspaces . Regarding practices, note the regular organisation of various meetings (Thesis' day, Lab' day, Instrumentation, Science, Seminars, etc.) that are part of the internal communication about scientific animation. H/ Background information on Health and Safety Today through our dynamic Health and Safety Officers (HSO), many HSE tools have been created or significantly updated: the global risk assessment document, records of Health and Safety, the registry monitoring of chemical wastes, HSE messages on IPAG information Display (TV Lab). In addition a HSE credit line was created for expenses related to Health and Safety. Also with the help of HSOs at the university and the Alps CNRS delegation, IPAG has performed an assessment of its facilities and associated risks (see our Global Document for Risk Assessment ("Document Unique" provided in the appendix 8). Thus, several actions were taken to reduce or eliminate these risks. In addition, the laboratory is equipped with a Health and Safety Commission (CHSCT) which is a key forum for dialogue and analysis on HSE: organisation of two meetings a year, publication in advance of an agenda, participation of members of the Committee on certain issues, participation of Health and Safety Officers and prevention physicians to the meetings, and an annual report of the work of CHSCT is presented to the Laboratory Board. I/ list of equipment, experimental, instrumental, computing facilities, etc. In the following table we list all IPAG platforms, equipments and facilities (internally or externally funded)allowing us to realize projects and instruments. IPAG is involved in many instrumental projects. Through the years, we have acquired and maintained a significant number of equipments and facilities to fulfil our goals. Our main equipment is obviously the 'instrumentation hall' where NAOS, Amber, Wircam, PIONIER and SPHERE have been integrated and tested before their shipment to the telescope. We host a series of dedicated laboratories ("technical rooms") for projects like FFREE, SWIFTS, CONSERT or NEAT. We also host a series of laboratory experiments related to our activities in chemistry for planetary sciences. These facilities and equipments are funded partly by specific funding, IPAG maintenance, and OSUG and / or Labex participation. Some of them are used to operate the "Service d'Observation" (SO) we are involved in.

Identification Description and associated projects

Integration Hall Hall for instruments assembly (NAOS;AMBER;WIRCAM;SPHERE)

Mechanical workshop

Optical Alignment facility Autocoll, wavefront analysis, shear interferometers

Betti Achromatic VLTI bulk simulator (RAPID ; NAOMI)

Sylvi VLTI Fibered simulator with dispersed fringe detection (Picnic) (IONIC ; PIONIER ; GRAVITY)

Orbitrap High Resolution Mass Spectrometry

Spectro-photo-goniometer Experimental setup placed in a cold chamber for the measurement of the bidirectional reflectance factor of planetary analog materials.

Planetary Spectrometry Microscopy and spectrometry facility for characterizing molecular solids and extra-terrestrial materials.

Chemical Laboratory Chemical analysis of extra-terrestrial material, mostly meteorites (extraction of insoluble organic matter and handling of microscopic objects)

SERAC & Carbo-NIR Controlled cells developed for studying hydrated minerals under the Martian environment, the microphysics of CO2 condensation, the metamorphosis of the carbonic snow and the associated spectral evolutions.

Consert lab Electronic and computing facility for the calibration of the Consert instrument, for numerical simulations of wave propagation through comet nucleus and for the visualization of data.

Infrared Nulling Bench to characterize infrared integrated optics in nulling condition (IODA)

Spectrometer for Infrared Integrated Optics

Characterisation of infrared integrated optics components (Smart Lasir)

Page 17: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

16 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

Clean Room For integrated optics & detector assembly

SWIFTS Cal Characterisation and calibration of SWIFTS components (SWIFTS 400-1000 ; ANAgRAM ; OCT-LLIFTS)

FFREE Adaptive Optics bench for coronography (FFREE ; )

NEAT Astrometry characterization of detectors (CNES)

Infrared Detector Characterization

Tools for detector characterization (Integrating Sphere, Electronic analyzer, cryostats , leak detection …) (RAPID; OPTICON )

Fiber Bench facility Fiber connectorisation facility with OPD equalization

List of IPAG instrumental bench and facilities

1.7Highlights Members of IPAG have been involved in more than 50 Press Releases over the period 2011-2014, either locally, nationally, or internationally (see Appendix 13). Besides, IPAG members have published more than 1000 refereed articles over the period 2009-2014 (see Appendix 6). It is therefore quite uneasy to list here only a few highlights. For the sake of compactness, we nevertheless selected 12 such achievements, a strongly biased and severely incomplete list indeed. 1) Studies of young embedded protostars (Herschel, IRAM PdB) have shown that deuterated water is very abundant in the area where planets might form. Water deuteration on Earth was thus set up already in the very first phases of the Solar System formation, even though subsequent processes mitigated that first heritage. Refs: Taquet et al. 2013; Coutens et al. 2012. 2) The study of the chemical properties of Nitrogen hydrides and ammonia in the cold interstellar gas has demonstrated for the first time the importance of nuclear spin conservation in the reactivity of hydrides. This work has opened a new avenue for a detailed understanding of gas phase reactions: nuclear spin chemistry. Refs: Faure et al. 2013. 3) Planck reveals an almost perfect Universe. The most detailed map ever created of the cosmic microwave background, the relic radiation from the Big Bang, was released. Press release: http://www.esa.int/Our_Activities/Space_Science/Planck/Planck_reveals_an_almost_perfect_Universe. Refs: 30 publications in 2013 from the Planck collaboration, which includes 2 IPAG members. 4) Long term R&D provides key components of astronomical instruments: fast new generation detectors were developed, e.g., OCAM on SPHERE, and RAPID on PIONIER; NIR integrated optics were fully characterized for PIONIER and GRAVITY interferometric instruments. Refs: e.g., Beuzit et al. (2014). Press release: http://www.eso.org/public/news/eso1417/ 5) Complete instrument analysis is needed to complete new instrumental designs, e.g., SPHERE: 1st instrument dedicated to high contrast on VLT with spectacular performance more than 10 years after the initiation of a new design approach, and the finest expertise in radar instrumentation and data analysis is now involved for the final optimization of ROSETTA/CONSERT operations. 6) Direct detection of β Pictoris b (VLT/NaCo), the closest directly imaged giant exoplanet known to date; first orbital and spectroscopic characterization, providing the first direct constraints on the mass of an exoplanet. Refs: Lagrange et al. 2010, 2012; Chauvin et al. 2012. 7) Detection and characterization of super-Earth exoplanets in the habitable zone of their host stars; determination of the frequency of super-Earths in the Galaxy. Refs: Mayor et al. 2009; Delfosse et al. 2013; Bonfils et al. 2013. 8) ALMA Sheds Light on Planet-Forming Gas Streams. Vast streams of gas are seen flowing across a gap carved in the circumstellar disc of a young star. These are the first direct observations of these streams, thought to be created by giant planets as they grow in the disc. Press release: http://www.almaobservatory.org/en/press-room/press-releases/524-alma-sheds-light-on-planet-forming-gas-streams. Refs: Casassus et al. (2013). 9) Discovery of the first unambiguous gamma-ray emission from an X-ray binary, Cygnus X-3. Press Release: http://www.nasa.gov/mission_pages/GLAST/news/fermi-cygnus.html. Refs: Abdo et al. 2009; Dubus et al. 2010; Cerutti et al. 2011; Corbel et al. 2012)

Page 18: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

17 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

10) Disentangling the complex environment of Seyfert galaxies with intensive multi wavelength observations (Nu Star, Chandra, XMM, INTEGRAL). The precise structure of the surroundings of the massive black hole powering active galactic nuclei wad derived. Press release: http://www.spacetelescope.org/announcements/ann1121/. Refs: Cappi et al. 2009, Longinotti et al. 2010, Cerruti et al. 2011. 11) Analysis of organic material of micrometeorites collected in Antarctica reveal that they originate from the outer region of the Solar System. Refs: Dartois et al. 2013. 12) The MARSIS radar instrument on board ESA's Mars Express orbiter has discovered a subsurface blanket of low-density material around the north polar cap, supporting theories that a large body of water once covered the northern lowlands of Mars. Press release: http://sci.esa.int/mars-express/49949-mars-radar-finds-possible-ocean-sediments/. Refs: Mouginot et al. 2012. At the time of this writing, the Rosetta Probe is actually orbiting the "Tchouri" comet, and the landing site of the Philae module has been selected. We expect a supplementary particularly bright highlight to be available during the committee visit, namely the first results on the comet structure by the CONSERT radar instrument.

1.8Technologytransfer,ValorizationIPAG instrumental research and development leads us to develop patents and licenses. Within our industrial collaborations, we have managed 4 'FUI' (funding to support projects associating academic and industrial actors). FUI project SWIFTS DROP RAPID ANAGRAM Period 2008-2011 2010-2013 2009-2014 2013-2016 Amount managed by IPAG (kE)

564 325 845 96

FUI projects managed by IPAG during the 2009-2014 period IPAG is at the origin, or strongly associated to 3 spin-off firms (see also the team CRISTAL report, sec 2.2.3): ALPAO (incepted in 2006), Resolution Spectra Systems (RSS, incepted in 2011), First Light Imaging (FLI, 2011), corresponding to about 25 new jobs. Depending on the employer of the IPAG personnel involved in the patents and the spin-off development, CNRS and/or UJF manage the contracts we may have with these companies. As an example, FLI is currently selling a detector within a 'valorization agreement' involving one IPAG Research Engineer (CNRS) and 6% of each sale is supposed to be paid back to IPAG. This money should is currently received by Aix-Marseille University, who is supposed to transfer the due amounts to IPAG.

Page 19: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

18 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

2. ACHIEVEMENTS

2.1ActivityReportoftheteamAstromol

2.1.1.ActivitiesandresearchresultsThe team ASTROMOL consists of 12 permanent staff, whose expertise is organized around four poles: astrochemistry, molecular collisions, star formation, cold universe and cosmology. The team is characterized by a strong expertise in radio astronomy, with an active participation to software and instrumental developments for IRAM. In addition to its observational and instrumental expertise, the team is also characterized by a strong expertise in astrophysical modeling, and its theoretical activity in quantum dynamics. The gathering of astrophysics and quantum dynamics inside ASTROMOL makes it unique among the French community, and constitutes one of the great strengths of the team. Both the astrophysical and quantum dynamics expertise of the team are renowned worldwide: the former for its contribution to astrochemistry and cosmology, thanks to its implication and its leadership into international Large Programs, and the latter for its work in the field of collisional excitation of interstellar molecules with H2, He and e-, that has accompanied the observational (mainly astrochemical) programs of the team. The interplay between astrophysics and quantum dynamics is one of the keys to the success of the team, as is the leadership in international observational Large Programs. Our main research activity deals with the physical and chemical processes affecting the interstellar gas and dust in the Universe, with the aim to understand the emergence of molecular complexity in the Universe, and putting particular emphasis on the early phases of protostellar evolution. These studies combine theory, observations, modeling, and laboratory experiments, based on the analysis of dust and gas properties from infrared to millimeter wavelengths, and lately mostly driven by the Herschel and Planck space missions. From January 2009 to May 2014, the activity of the team yielded 247 refereed publications.

Astrochemistry with Herschel The exploitation of the very successful Herschel space mission has driven a large part of the activity of the team, especially through the Large Programs IRAM/TIMASS, Herschel/CHESS and IRAM/ASAI. We have thus performed high-quality spectral line surveys of large samples of young objects covering the various stages of solar-type star formation, which provides us with the most comprehensive view on the chemical composition of solar-type protostars, their temporal evolution, and the physical and the chemical processes at play. The scientific exploitation of these projects is based on an international scale consortium. The origin of water deuteration in the inner regions of young embedded protostars is a particularly important result, which stems from Herschel CHESS data, Plateau de Bure observations and the theoretical work carried out within the ANR FORCOMS. We have shown that, in the zone where planets possibly form, deuterated water is very abundant, with a ratio HDO/H2O 1:100 with respect to normal water. This number is to be compared with the elemental D/H abundance, 2x10-5, and with the HDO/H2O in the terrestrial oceans of about 2x10-4. These results show that the factor 10 increase of water deuteration on Earth was set up already in the very first phases of the Solar System formation, even though subsequent processes mitigated that first heritage. The computation of the collisional excitation coefficients of H2O and its isotopomers, HDO and D2O, with (ortho- and para-)H2 by the theoreticians of the team is a result of major importance, which is extensively used in the interpretation of the Herschel observations by various groups, worldwide. These computations have been successfully compared with experiments of pressure broadening, integral and differential cross section determinations, and van der Waals complex spectra (Nijmegen, NL; JPL/NASA; Perugia, Italy; Boulder, USA). The study of the chemistry of nitrogen in the cold interstellar gas has led to a complete upgrade of the chemical network of nitrogen in dark interstellar clouds. Among the successful results, the abundances of nitrogen hydrides observed with Herschel could be reproduced, also providing tight constraints on fundamental quantities such as the budget ratio of carbon to oxygen in the gas. The specificity of our new network is the comprehensive upgrade of the nuclear spin chemistry of nitrogen hydrides. New branching ratios of the crucial dissociative recombination reactions have been determined in a self-consistent fashion, which allowed us to explain the "anomalous" ortho-to-para ratio of ammonia (~0.7) observed in various interstellar regions and show that ratios of the abundances of nitrogen hydrides are particularly sensitive to the ortho-to-para ratio of H2. Finally, comparing with measurements of the nitrogen isotopic ratios in Solar System bodies, we proposed a scenario of the proto-solar heritage of nitrogen.

Complex Organic Molecules

Page 20: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

19 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

The inventory and the origin of Complex Organic Molecules (COMs) in protostellar environments is one of the hot questions in astrochemistry, which led to the ANR FORCOMs. Among many results, our team as detected for the first time the signature of formamide (NH2CHO) in a protostar that will eventually form a Solar-like system. This molecule is considered particularly important by biochemists because it can form both genetic and metabolic macromolecules, namely it is considered a very important pre-biotic precursor. New observations obtained within the project IRAM/ASAI show that it is present in large quantities in solar-type protostars. The Herschel/CHESS and IRAM/ASAI data have provided the most complete census of the chemistry induced by mild molecular shocks around protostars. Small to large molecules have been studied, neutral and ionized, allowing for the first time a complete study of the chemical composition and its variation caused by the shocks. Notably, specific chemical signatures have been associated to different kinematical components of the molecular shocked region. As part of the Large Program CALYPSO dedicated to interferometric observations of a large sample of nearby Class 0 protostars with IRAM/PdBI, we have resolved for the first time the hot corino region, in which the temperature is high enough that the ice mantles around dust particles sublimate and release their material in the gas phase, while endothermic reactions trigger the formation of daughter COMs. The study of the kinematics of the infalling envelope and its interaction with the protostellar disk during the Class 0 phase also constitutes the subject of the ANR Chemodyn. The discovery of COMs in cold, dense cores at temperatures below 10K challenges the current paradigm of COM formation, which requires temperatures above 30K. Such a discovery raises new questions about non-thermal desorption mechanisms of dust grain mantles, as well as reactivity rates at very low temperatures. Cosmic Rays and the ISM IRAM/30m and PdB observations have been used to detect and study the impact of cosmic rays on interstellar molecular clouds lying close to Super Novae Remnants. It has been shown for the first time that the ionisation is hugely increased in regions with large fluxes of cosmic rays, a result that has two major consequences. First, it brings evidence that Super Novae Remnants are the sources of the cosmic rays acceleration. Second, it opens up a totally new way to study the process of cosmic rays acceleration, providing information on the low energy (<1GeV) end of the spectrum, an interval not accessible from Earth because of the heliosphere. The Cold Universe as seen with Planck The team was deeply involved in the analysis of the data obtained by the Planck space mission (2009-2013), in collaboration with LPSC. The whole sky emission maps obtained with Planck from centimeter to sub-millimeter wavelengths have been released in 2013. At the same time, about 30 articles were submitted to A&A, some of which range among the most cited ones worldwide. The main result deals with the model(s) of Universe in agreement with the background anisotropies measured by Planck. Of all the models proposed, only the inflationary Big Bang model is found to be consistent. Work is still going on to deliver the whole dataset of the Planck mission, as well as polarization maps.

Instrumentation The team is involved in the development of a new millimeter continuum camera for the IRAM 30m telescope, NIKA2. This camera is based on the new Kinetic Inductance Detector (KID) technology, of which Institut Neel (PI of the project) is world leader. KID technology is especially promising for future space missions in the sub-millimeter range. A prototype of this camera, NIKA, is already in operation at the IRAM 30m telescope, and was offered to the IRAM community in February 2014. In addition to conducting the astronomical observations, we were in charge of the photometric calibration and the data reduction, both in real time and offline. The first astrophysical results from NIKA deal with the Sunyaev-Zel’dovitch effect in galaxy clusters.

2.1.2.InternationaloutreachandacademicattractivenessAmong the 12 permanent members of ASTROMOL, C. Ceccarelli was awarded the Médaille de l’Universite Joseph Fourier in 2010; P. Hily-Blant has been appointed member (Junior) of the Institut Universitaire de France in 2013; L. Wiesenfeld was “Distinguished Visiting Scientist” at NASA in 2013; B. Lefloch was awarded the prize of the best French-Spanish Joint Scientific Project in Astronomy 2014 (SF2A-SEA). Most of the projects of the team are linked to the exploitation of observational Large Programs led by team members, in relation with cutting-edge instrumental facilities: IRAM/TIMASS, Herschel/CHESS, IRAM/ASAI, IRAM/CALYPSO, and IRAM/NIKA2. The scientific exploitation of these programs is based on international scale consortia, and involves long-standing collaborations with first rank institutes in Europe and worldwide. These

Page 21: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

20 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

projects have led to numerous communications (more than 30 invitations at international conferences, including major ones in the field, e.g., Protostar and Planets 2013, Astrochemistry 2011). The preparation and exploitation of these programs relies on federative structures and collaborative projects at various scales: regional (CIBLE), national (PPF, 3 ANRs) and European scales (2 COST actions). Additional funding is obtained from bilateral PHC collaborations (NH, China, Japan, Spain), as well as from CNES. Four foreign colleagues visited us for long-term stay at IPAG as UJF invited professors, and 2 team members spent sabbatical periods in foreign institutes (CAB Spain, NOW NH, NASA USA). The capacity to hire non-permanent staff (PhD and post-docs) is mainly driven by the ANR projects. During the present quinquennial, 9 students have obtained their PhD in the team and 4 fellows have held a post-doctoral position with us. Team members serve (or have served over the considered period) in many committees, at local, to national, and international levels. This includes ESA and CNES groups, ERC panel, CS members of PCMI and PNG, director of ASA, member of CNESER, INSU prospective groups, CNAP, UJF, OSUG, Labex Focus, IPAG seminars, etc. The expertise of team members is also acknowledged by our participation to the SOC and LOC of various conferences: e.g., Herschel conference in Grenoble (2012), the series of conferences on the “Early Phases of Star formation” (EPoS), held at Ringberg Castle every two years, the COST ‘Chemical Cosmos’ Action conference in 2009 and school in 2013, the kick-off meeting of the COST action ‘Our Astro-Chemical Heritage’ in 2014.

2.1.3.Interactionwiththesocial,economic,andculturalenvironmentTeam members regularly participate to events aimed at popularizing science towards a wide audience of non-specialists, e.g., the yearly « Fete de la Science », conferences, public astronomical observations, etc. One of us has co-authored the book "Le big bang n'est pas une théorie comme les autres", (J.-M. Bonnet-Bidaud, F.-X. Désert, D. Leglu, G. Reinisch, Ed. La ville brûle, 2009). Another team member (C. Kahane) was in charge of the project « Mission Sciences » from 2007 to 2011, organized by the Académie de Grenoble, whose first goal is to encourage high school pupils (especially girls) to undertake scientific and technical studies at university level. This action has led to the development of partnerships with colleges and high schools of the academy, among which 2 major long-term programs: ASUR, a networking action between teachers at university and high school level, and “100 sponsors for 100 classes”, which allow primary and secondary high school students to carry out a scientific project, under the guidance of researchers and school teachers. The Ministère de l’Enseignement Supérieur et de la Recherche is at the origin of an artistic project led by Marie-Helene Le Ny, to present science through a vision combining both aesthetic and emotion. C. Ceccarelli participated to this project, which draws the portrait of 140 female researchers in all academic fields, from chemistry to astrophysics, history, philosophy, etc… who talk about their passion for scientific investigation.

2.1.4.TeamorganizationandmanagementWeekly meetings, a large fraction of which is devoted to seminars, punctuate the scientific life of the team. One meeting per month is dedicated to administrative duties. The choice was made of favoring as much as possible collegiality in the team: regarding governance, one person is in charge of the seminars, another of the administration duties (the team leader), and yet another of the budget. Funding originating from the National Programs of CNRS is shared within the team. Some of the scientific questions addressed in our team lie at the interface with other IPAG teams and have thus led to specific collaborations with colleagues from PLANETO, FOST and SHERPAS. This is particularly true of the transverse thematic axis “ExoChemistry”, devoted to the investigation of chemical processes in astrophysical media. One can mention the co-supervised PhDs of A. Ratajczack on D/H exchange on methanol ices (with Planeto) and S. Vaupré on the interaction between Cosmic Rays and molecular clouds (with Sherpas). In order to foster collaborations between teams, it has been decided to organize joint science days dedicated to informal scientific discussions with the other teams of the Institute.

2.1.5.ImplicationinformationthroughresearchOver the present quinquennial, 18 Master (M1, M2) students did an internship in the team, and 9 PhDs were defended. Note that we are also solicited to co-supervise the PhD thesis of foreign students, without formal pedagogical links. As part of their training, PhD students attend one conference every year at least and a training school (e.g. IRAM summer school) in order to strengthen their expertise. Overall, each PhD thesis has led to 4 publications in main journals. Team members are also regularly invited to give lectures at

Page 22: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

21 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

International Schools at PhD levels: millimeter and infrared astronomy (IRAM, COSPAR); astrobiology (NASA); molecular astrophysics (COST); interstellar medium (Les Houches, 2014). Half of the team members are “enseignant-chercheurs” or “astronomers”. As such, they give lectures in the training classes proposed at the University, at all levels, from 1st year of undergraduate studies (L1) to Master 2. Other members participate to the academic training of students. One of us was in the faculty staff management team, responsible for the first two years of License in science and technology until 2011. Our team has facilitated the signature of an agreement between IRAM and the University of Grenoble. This agreement has increased the visibility of radio astronomy on the campus and opened the organization of observing sessions at the IRAM 30m telescope as part of the training of the Master 2 students in Astrophysics.

Page 23: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

22 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

2.2ActivityReportoftheteamCRISTAL

2.2.1.ActivitiesandresearchresultsIn between the activity of producing some of the new astronomical instruments selected by the community and the astronomical use of these instruments by astronomers in the various other teams, the scope of team CRISTAL is the research and development in instrumentation needed to benefit from the latest capabilities of new technologies and to propose and validate the novel concepts that fulfill the very specific requirements of astronomical challenges. This research has very strong connections with other research teams, in particular FOST and PLANETO. In terms of fields of expertise, the team activity mainly covers the domain of high angular resolution in the optical and NIR domain (in a wide sense, from long baseline interferometry to high contrast imaging), space-based radar sub-surface observations, imaging spectroscopy. These fields heavily use a high expertise and long term relationship with industrial or academic partners concerning integrated optics and new generation detectors. In the past years, important studies have also been carried in the field of high-resolution mass spectroscopy: new concepts present a very high potential for future space missions. And, in all these studies, research on data analysis, and signal processing is recognized as increasingly important to support the development and the exploitation of instrumentation. Whereas the presentation of the prospective will be organized according to these main fields, we hereafter illustrate some of the major contributions and achievements of the team according to the methodological approaches of our work, roughly speaking from technology to final instruments:

‐ New technologies: understanding the potential of new technological developments, orient and push some of the key specifications, and characterize them

‐ New concepts: to propose, demonstrate, and optimize the potential of novel concepts ‐ New instruments: developing overall and consistent instrument analysis most relevant to answer key

astronomical questions. New technologies: The development per se of new technologies, that usually involves heavy infrastructure and equipments, is beyond the scope of an astronomical institute as IPAG. However, our long-term approach is to valorize very fruitful collaborations with academic and industrial partners involved in new technologies. Astronomical instruments are very demanding in terms of performance (using very faint sources, in spectral ranges much more extended than in usual non-astronomical applications, and with very high specifications on calibration accuracy). Applications in the domain of astronomy are often also quite spectacular and illustrative of new capabilities. For these reasons, they are excellent application tests for new devices. On our side, such collaborations require to invest the time and expertise needed to have valuable exchanges in between different communities. We also bring our expertise in terms of component test and calibration. Such an approach has been very successful and productive in at least two main domains: integrated optics and detectors. In both cases, we have developed very strong collaborations (CEA-Leti, SOFRADIR, FEMTO-ST, E2V, Teem Photonics, IMEP, FEMTO-ST, ONERA, etc.), which have already made possible the exploitation of these new capabilities in operating instruments (see below). Keeping on preparing the future, we can highlight in the recent achievements the development of new fast and very low noise detectors first in the visible and then in NIR (with similar astronomical motivations but completely different technologies and partners). Also the development of new functions of integrated optics: filtering and transmission properties are better handled now including at wavelengths longer than the telecom reference, up to K band at 2.2 microns, or even, with different material and technologies up to 10 microns. For integrated optics, we have also discussed and demonstrated the potential of a new material (lithium niobate) with active properties to control optical length for the control of fringe stability, sensing, or even flux balance at high frequency for high accuracy interferometric measurements:

V3

V1

V2GND

I1

I2Iout

w

Ld

Sketch of a mid-IR active beam combiner. By application of a tension we can control on-chip the relative intensity (V1, V2) and phase (V3) of the interfering beams. [G.Martin et al, Opt. Eng. 2014]

Page 24: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

23 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

Development in collaboration with industrial partners and tests at IPAG of new generation fast and low noise detectors in visible (left, see for instance Feautrier et al SPIE 2012) and near infrared (right) New concepts: Another aspect of the research in instrumentation is the capability to propose and discuss the relevance of completely new concepts. Such new concepts may arise in response to new observational specific requirements and/or in association to new technologies opening up new ways to detect and characterize the light. Depending on cases, such new concepts may be directly proposed to operational instruments (see next paragraph) or they may require a dedicated analysis and laboratory demonstrations. In the past, such demonstrators in integrated optics have been a mandatory step before being implemented in interferometric instruments like PIONIER or GRAVITY, or the proposition of a 2nd generation fringe tracker for VLTI. We have proposed that a concept (ORBITRAP) used in ground-based heavy instrumentation for high resolution mass spectrometry could be adapted for space-bound solar system exploration missions. Key analysis and early demonstrations convinced the agencies and partners to set up a development plan with the aim to establish the required TRL in preparation to future missions. The potential gain of more than one order of magnitude in spectral resolution opens up the range of in situ composition analysis attainable by such space missions.

Picture and sketch of the Orbitrap analyzer. [C. Briois et al, Proceed. EGU Conference, 2013].

Left: NEAT Optical bench [A. Crouzier et al., SPIE Proceed., 2014]. Right: SWIFTS concept (F. Thomas et al, SPIE 2014) Another space proposal led by the team is the idea of extreme astrometric accuracy aimed at the detection of terrestrial exoplanets around nearby stars (NEAT). In parallel to an extensive science analysis, the team investigates in laboratory some key aspects of the proposed self-calibrated detector to achieve micro-pixel accuracy in stellar centroid measurement. This work is supported by CNES and the result will be critical to dimension and propose new missions of this kind. A completely different field of development originating from the team in the previous years is integrated spectroscopy. The novelty is to consider the measurement of interferometric fringes directly within a single mode optical guide located just onto a detector (SWIFTS concept). This approach allows highly compact and

Page 25: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

24 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

stable instruments, as appropriate for space-based applications. Various flavors of multiplex extensions of the concept can be considered to extend the simultaneous spectral range or provide a larger beam étendue. Intensive work on this topic has included theoretical analysis, laboratory experiments, and calibration development to upgrade the initial demonstrator into an operational instrument. Prototypes now deliver real-time spectrometric measurements, and address the concept’s ultimate performances and application domains. New instruments: Last but not least, the team CRISTAL has a well-known expertise in the field of system analysis. In high contrast imaging, such an analysis has been critical to propose and support the development of VLT/SPHERE. We should emphasize that, in parallel to all the required expertise needed for the development and integration of the instrument itself, the in-depth research and understanding of the fundamental limitations of high contrast performance is mandatory to launch 10-years in advance the key developments in this rapidly evolving domain. In parallel and for the future, the team was also in a leading position for the system analysis of a possible high contrast imager for the future E-ELT (named EPICS in this phase-a study) and will benefit from the lessons learnt from SPHERE. In high angular resolution, the contribution of the team to the interferometric instrument GRAVITY includes the procurement and extensive characterization of the key component, the integrated combiners in K-band with unprecedented performance. The team also contributes to the system analysis in the context of global integration and test of the system.

Instruments where IPAG is PI with specific expertise originated from team CRISTAL. Left: Operating scheme of the orbiter and lander of the radar CONSERT/ROSETTA. Center: PIONIER visitor instrument in operation at ESO/VLTI. Right: SPHERE instrument in IPAG integration hall. The potential and applicability of integrated optics for interferometry has been spectacularly illustrated in the case of the VLTI visitor instrument PIONIER. In RADAR instrumentation, the team expertise is also internationally recognized to design and dimension the key parameters of space-instruments depending on the mission constraints and science goals. The team was leader for RADAR instruments on board of proposed missions (such as ESA M3 Marco-Polo) and is, as PI, currently responsible for the final optimization of operations of ROSETTA/CONSERT (including the contact of the lander with the comet in November 2014). The general data flow, from the initial preparation of observations with appropriate simulations and calibrators down to the ultimate data reduction, should be considered as part of an operational instrument at large. This topic represents an increasing domain of activity with the development and support of appropriate tools for the preparation and exploitation of interferometric observation within JMMC; major developments have also been carried out for novel data reduction algorithms in collaboration with partners in the domain of signal processing for interferometric and high contrast imaging.

2.2.2.InternationaloutreachandacademicattractivenessOn top of the indicators of production as mentioned above, the expertise of the team is also visible in terms of responsibilities and coordination of various activities for the community. Members of CRISTAL are directly involved for their expertise in instrumentation in the organization of the community at national level (chargé de mission INSU, ASHRA, INSU working groups for the preparation of E-ELT and for the national prospective, PHASE, CSAA). We have a leading role for the Labex FOCUS (Focal Plane Array for Universe Sensing), a Laboratoire d’Excellence initiative that aims at animating and stimulating the sub-millimeter and infrared detectors development. At the international level, beyond our recognized PI-ship position on major instruments (eg SPHERE, CONSERT), members of the team also have leading positions in European groups within OPTICON for detectors, developments for AO, and interferometry. The central position of IPAG for the implementation and support of JMMC products, and its overall coordination, has also an important role in the international interferometric community.

Page 26: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

25 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

2.2.3.Interactionwiththesocial,economic,andculturalenvironmentFinally, the activity of the team is the opportunity to develop productive partnerships with various industrial companies. These collaborations were efficient to define and successfully develop common projects, 3 of them with successful FUI support for both the academic and industrial actors. Also, a number of innovative ideas have motivated several patents and some could evolve to commercial devices: previous developments in deformable mirror motivated the transfer of technology to the ALPAO start-up (created in 2006, and with a robust growth rate since then). Since then, two other spin-off firms have emerged: Resolution Spectra System, based on the high resolution integrated optics spectrometers and First Light Imaging, based on high speed, very low noise detectors.

2.2.4.TeamorganizationandmanagementThe team has strong interactions with, on one side, other research teams for the motivation and use of new instruments (in particular with PLANETO and FOST, with numerous common publications), and on the other side with the structure of projects, under the coordination by the institute direction. In this context, the team does not interfere with the management of individual projects but focuses on the scientific animation and stimulation concerning new instrumentation ideas and developments. It encourages the supervision of PhD on this topic (within 2 Ecoles Doctorales: Physics and EEATS) and acts as a relay in between research actors and the institute direction.

2.2.5.ImplicationinformationthroughresearchThe range of expertise involved in the team also translates into contribution to teaching in various structures, not only at UJF Physics Department, but also at IUT-Dept. Mesures Physiques and Engineering School PHELMA. Enlarging upon this panel of teaching activities, within the framework of Labex FOCUS, a week of formation to astronomical detection is proposed since 2013 to Master students, and an increasing number of experiments in the domain of astronomical observation and optics is under development to be offered as teaching modules

Page 27: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

26 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

2.3ActivityReportoftheteamFOST

2.3.1.ActivitiesandresearchresultsOver the period under review, the team FOST has totalized 28 researchers, 8 postdocs, and 13 PhD students. FOST (FOrmation Stellaire, objets SubStellaires, et Systèmes planéTaires) is thus a large team whose prime goal is to study the formation and evolution of stellar and planetary systems, and characterize their properties. Within this overall framework, the spectrum of FOST activities and expertise is quite broad, including investigation of isolated and clustered star formation, the physics of young stellar objects, the observation and modeling of protoplanetary and debris disks, the detection and characterization of exoplanets and brown dwarfs, stellar activity and the stellar-solar connection, etc. Beyond this thematic diversity, the specificity of FOST is to hold together a wide spectrum of competences in a coherent research field. Instrument designers, observers, modelers and theoreticians work together around common projects. A general trend of the team managing activity in recent years was to maintain the equilibrium between observing and modeling and the related synergy. The goal is to be able to carry out in one team complete astrophysical studies centered on objects from instrument design up to theoretical modeling. This considerably enhances reactivity and has proved efficiency in recent years. FOST interacts with the other IPAG teams: with CRISTAL around the conception of high angular resolution instruments; with SHERPAS on the physics of star-disk interaction, the stellar magnetic activity and the physics of jets; with ASTROMOL on grain-gas coupling and chemistry in protoplanetary disks; with PLANETO for the comparison between physical properties of exoplanets and those of solar system bodies. FOST is deeply involved in the conception, management and use of various instruments. We present here results obtained with recent instruments like VLT/NACO, VLTI/PIONIER, OHP/SOPHIE, ESO/HARPS, HERSCHEL, ALMA. We have taken leading positions in several great international collaborations to ensure a high scientific return. FOST leads for instance deep survey programs dedicated to the detection of exoplanets around M dwarfs and young stars within SOPHIE and HARPS consortia, and with NACO. FOST shared responsibility in the GASPS and DUNES HERSCHEL key programs. Similarly, the modeling activity (dynamical studies, radiative transfer modeling) also kept growing, using mainly local computing clusters. Highlights 2009-2014 Given the limited space available in this report to review the team’s activity, we merely outline here a few selected results. A more complete view of the team’s results can be obtained by browsing the 413 refereed FOST publications listed in the Appendix of this report. (i) Direct imaging (using NACO) of planetary companions and exoplanets; direct imaging of the lightest exoplanet HD95086 b. First exoplanet imaged around a binary star system; confirmation of the β Pictoris b giant exoplanet, the closest directly imaged exoplanet known to date; investigation of the interaction between the disk and the planet; first orbital and spectroscopic characterization of this planet, with direct constraints on the mass (first time for an exoplanet); orbital fit of the very long period imaged exoplanet Fomalhaut b. Direct planet imaging is a real success of IPAG and a clear example of the synergy between instrument design, observing campaigns and dynamical modeling. We also developed skills for the characterization of cool atmospheres of brown dwarfs and exoplanets. (ii) Exoplanets detection with radial velocities: detection of exoplanets around M dwarfs, young stars, and massive stars. With HARPS/SOPHIE radial-velocity surveys, we brought the detection of exoplanets into the super-Earth regime, in the habitable zone and/or in transit. Examples of potentially habitable planets detected by FOST are GJ581 c&d, GJ667C c and GJ 163 c. These studies also led to the determination of the frequency of super-Earths in the Galaxy: η = 0.41+0.54

-0.13. Besides we also detected GJ3470b, a warm Neptune that transits a bright late-type star, which is currently one of the most observed exoplanets for the characterization of its atmosphere. Two other surveys were completed, one on massive main sequence stars, the other on stars in young close-by associations, that led to the detection of several planets and brown dwarfs. We have shown that stellar activity strongly impacts the detectability of exoplanets. Using an empirical approach based on the analysis of activity indices, we demonstrated the possibility to determine whether a radial velocity signal is due to activity, and in this case how it can be subtracted. (iii) Dynamical studies of circumstellar disks and planetary systems: an N-body symplectic code has been developed to follow the secular dynamical evolution of debris disks and planetary systems, as well as specific least square and MCMC codes for orbital fitting of the direct planet detections. Tidal interaction between planets and their host stars have been recently added to the symplectic scheme. This allowed us to investigate in detail the dynamics of the exoplanet GJ 436b and propose a new scenario based on a Kozai resonance. We

Page 28: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

27 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

also accounted for secular non-axisymmetric structures triggered in debris disks by eccentric perturbers, with an application on the HERSCHEL imaged disk of 2 Reticuli. To account for the presence of hot dust in evolved disks, we demonstrated how a chain of planets could scatter comet-like bodies inwards from a distant belt analogous to the Kuiper belt, and produce a high-level of cometary activity (iv) Protoplanetary and debris disks: using PIONIER at VLTI, we have been able to reconstruct images from optical and infrared interferometric data and realized the first interferometric milliarcsecond scale images of the inner edge of the circumstellar disk of a Herbig Ae stars. Over the last 4 years, we obtained a census of the cold debris disk population around nearby stars with Herschel (DUNES key project), finding that 20% of these have extra-solar Kuiper belts. We showed that the young solar-type star HD181327 hosts a belt of icy planetesimals that may be a source for the future delivery of water and volatiles onto forming terrestrial planets. At the protoplanetary stage, we refined the models of puffed inner disk rims, taking into account the effect of magnetic fields. We also investigated the structure of dust traps, i.e., pressure gradients generated by planets opening gaps in the disk. Finally, to model the combined evolution of gas and dust in disks, we have coupled the radiative transfer code MCFOST with the chemistry code PRODIMO. This allows us to model the complex physics of protoplanetary disks with a much higher accuracy (cf. e.g., HD135344B) (v) Star formation and the physics of young stellar objects: the magnetic properties of young stars have been derived; the magnetic star-disk interaction has been investigated and modeled, and shown to be crucial for the development of accretion/ejection structures at all scales; the origin of protostellar jets as well as their impact on the regulation of stellar angular momentum and on the inner disk physics has been addressed, notably through spectro-imaging studies at high angular resolution in the near-infrared (SINFONI/VLT) ; new angular momentum evolution models have been developed. Substantial progress has been made in the determination of the low-mass IMF in young star forming regions, with the detection of new T dwarfs candidates with masses as low as a few Jupiter masses; a new functional form as well as an origin based on stochastic growth have been proposed for the IMF and tested against hydrodynamical simulations of stellar cluster formation; a large number of simulations of low-N clusters have also been performed to look for signatures of initial conditions in the spatial and kinematic distribution of stars and brown dwarfs in preparation for GAIA.

2.3.2.InternationaloutreachandacademicattractivenessFOST members are heavily involved in the development of new-generation instruments: PI and project scientist on VLT/SPHERE, project scientist of CFHT/SPIRou, and PI of ExTrA. We also work in strong synergy with space missions TESS, CHEOPS, PLATO and JWST (scientific preparation, data exploitation, ground based follow-up of sources). Over the considered period, FOST has hosted 6 ANR projects, 1 Junior ERC grant, several bilateral or multi-lateral projects (CIBLE, AGIR, PICS, Capes-Cofecub, etc.); 13 foreign colleagues visited our group for a month or more as UJF invited professors. Team members are involved in many committees at the local (e.g., OSUG deputy director, UJF council, Labex FOCUS), national (e.g., PNP, PNPS, CNRS S17, CNAP), and international (e.g., Chief Editor of A&A, ESO STC, ESO E-ELT Project Science committee, CFHT Board, Herschel key programs, etc.) levels. A number of awards have been granted to FOST members in the last years (Prix Irene-Joliot Curie, Trophée “Femmes en Or”, Légion d’Honneur, siége à l’Academie des Sciences, Médaille d’Argent du CNRS, Prix Jeune Chercheur SF2A). FOST team members have organized or contributed to the SOC of a number of international conferences and have been regularly invited to give reviews and lectures at international events.

2.3.3.Interactionwiththesocial,economic,andculturalenvironmentFOST members are very active in the area of public outreach. Conferences are regularly given on planet and star formation and evolution, and exoplanetary systems, as well as TV and radio broadcasts. One of us is responsible at the UJF level for the follow-up of the “Moulins de Villancourt” project to build a public center dedicated to scientific culture centered on Earth and Space sciences. The project is led by the city of Pont de Claix (near Grenoble) and UJF and the goal is to create a site in strong synergy with both the academic world and that of scientific outreach. A planetarium for 120 people is scheduled, as well as a permanent exhibition on large surfaces, 400m2 space for temporary exhibitions, a large conference room, and other smaller teaching rooms. About 70,000 visitors per year are expected. IPAG research themes will be well represented. Another team member is responsible at the OSUG level for the organization of lectures (150h in 2014) in astrophysics, geophysics and on environmental topics for the general public and for high-school teachers. One of us is also involved in the organization of public astronomical observations at IPAG.

2.3.4.TeamorganisationandmanagementFOST currently includes 25 permanent staff members (excluding those presently abroad for long-term stays), 8 post-docs and 11 PhD students, with 3 new permanent positions allocated to FOST over 2010-2014. Team seminars are organized every week either to provide lectures by visitors or team members or to discuss strategic issues. Specific several-day meetings (“FOSTiades”) are organized regularly (every 2-3 years) to

Page 29: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

28 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

discuss the present status of the research of the team and to define our prospective. Special attention is given to our PhD students. Between 2010 and 2014, 6 FOST students defended their PhD. The typical global annual work budget of FOST is 170 k€. A small part (25%) comes from INSU via national thematic funding programs (PNP, PNPS), while the main part follows from specific grants, including ANR, ERC, Rhône-Alpes region, and local funding sources (Labex, University). The most striking evolution since 2010 resides in the relative ratio of these contributions. In 2010, national programs funded more than 60% of our budget, while most of the budget resides now in specific grants. In recent years, the exoplanet activity in FOST has kept growing, thanks to the exploitation of high quality spectra from HARPS and SOPHIE, and direct images from HERSCHEL and NACO. We are preparing today the design and exploitation of a new generation of dedicated instruments: SPHERE, SPIRou, ExTrA. The increasing weight of the exoplanet part in FOST, together with the demand for this activity to gain a better visibility outside IPAG, motivated us to organize a splitting of FOST into two separate teams as of January 2015. FOST has indeed grown to a size that brought it to a significantly larger size than the other IPAG teams and with a very wide thematic spectrum despite its unity. All team members agreed upon this new step in the fall of 2013. Basically, the exoplanet group, with its key position in various international collaborations, has now acquired a sufficient autonomy to legitimate a new team. This new direction is also in line with the creation at IPAG in 2010 of a “transverse axis” dedicated to compare planetary science between solar system bodies and extrasolar planets. Consequently, as of 01.01.2015, FOST is expected to evolve into two separate teams: one dedicated to the study of young stellar objects and protoplanetary disks, and one to the study of exoplanets and debris disks. Both groups will of course keep having strong links (there will be a few common members), but they shall present their prospective separately in this report.

2.3.5.ImplicationinformationthroughresearchFOST has always been highly implicated in doctoral and predoctoral supervision of student. 8 PhD have been defended between 2010 and 2014 in the team, and 6 other will be during fall 2014. Meanwhile, FOST members have been very active at supervising Master 2 and Master 1 internships. PhD students are often former Master 2 trainees. FOST members are free to propose internships and PhDs, but the overall politics of FOST is to avoid as much as possible conflicting subjects, especially when PhDs are concerned. Such conflicts are nevertheless rare. A major difficulty concerning internships arose in recent years: payment for trainees. Trainees must now be paid, but regular funding sources such as national programs usually exclude grants for trainees. This turns out to be an issue for internships not related to contracts (e.g., ANR). Therefore, a yearly control of scheduled internships as well as the way they are funded has been organized. FOST members are also deeply involved in teaching activities. More than half of FOST members (CNAP or UJF) are teaching; 5 of us give courses at the Master 2 “Astrophysique, Plasmas, Planètes”, and many others have teaching activities in predoctoral courses at UJF. One of us is responsible for the Licence “Diffusion du Savoir” at OSUG.

Page 30: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

29 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

2.4ActivityReportoftheteamPLANETO

2.4.1ActivitiesandresearchresultsThe research activity of the team PLANETO covers a vast area encompassing the study of planets, comets and meteorites, and is essentially limited to the Solar System. It is strongly related to the exploration of the Solar System by spacecrafts. Researchers in the team are involved in the preparation, operation, and interpretation of measurements made by space missions such as Cassini-Huygens to Saturn and its satellites, ROSETTA to comet Churyumov-Gerasimenko, and Mars Express/ Mars Reconnaissance Orbiter to our planet neighbor. The highly interdisciplinary approaches developed by the team include the observation of solid surfaces and of planetary upper atmospheres including the Earth, the analysis of data collected by space probes for planetary surfaces and sub-surfaces (Mars, the Moon, Titan, etc.), the modeling and laboratory simulations of the physico-chemical processes and the chemical analysis of extraterrestrial or analog materials. The expertise built from all these activities leads regularly to innovative developments, and is the reason for our involvement in the design and development of space instrumentation. During the quinquennial period, the team has produced 459 publications (ADS), among which 156 refereed publications in the main journals of the discipline, including one article in Science, two articles in the Proceedings of the National Academy of Sciences and 15 letters in specialized journals. The published material has been cited 1729 times during the period, 3 articles have been cited more than 10 times per year. The study of primordial material of the Solar System, linked to the preparation of the Rosetta mission was identified as a very important theme of this quinquennial (59 articles published). The team includes the Principal Investigator of the Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT), and Co-Investigators on the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument. The activity relied on the development of specific tools to interpret the radar signal: development of representative models of the comet nucleus and surface, expert codes to simulate the signal propagation in the object and retrieve the experimental observables, and operation simulations tools to be used in the course of the mission. It also implied a preparation work in terms of spectroscopy and chemistry of representative materials in order to prepare the interpretation of VIRTIS data in terms of composition and physical conditions (temperature, texture, etc.). Key publications in this respect were a model of the comet nucleus taking into account all phase changes of water, and systematic studies of primitive chondrites to understand the volatiles effects in reflectance spectra. Another way to evaluate primordial matter is through the analysis of extra-terrestrial material, and mostly meteorites. The team has established an expertise in Raman and IR spectroscopy, the extraction of insoluble organic matter and the handling of microscopic objects. This field has blossomed during the quinquennial, because of the availability of abundant and pristine material arising essentially from collects in Antarctica, completed by samples brought back from space exploration (Stardust and Hayabusa). Benefitting from recent recruitments and the careful constitution of an extensive collection of meteorites, key results were obtained concerning metamorphic aspects, the impact of the various forms of water on the spectroscopy, isotopic enrichments and segregation, sulfur and iron speciation, and the analysis by mass spectrometry (Orbitrap, SIMS) and spectroscopy (FT-IR, XANES, Raman) of the organic matter in extraterrestrial material. The expertise thus developed led to our contribution to the characterization of the exceptional UltraCarbonaceous Antarctic MicroMeteorites and Hayabusa grains. Beyond the preparation of the comet exploration, the heritage of primordial processes in the Solar System has also been evaluated through its isotopic signature, studied experimentally via the H/D exchange in ice at the molecular level, or through a comparative evaluation of the 15N enrichment, from dark clouds to objects of the Solar System. These works were elaborated in close collaboration with the team Astromol. Water ice itself is an important constituent of the Solar System, often associated to primitive material. Its structure, its ability to trap or release primordial gases, and the effects of mixture on its spectroscopy, has been a further route of investigation by the team. This activity builds from a long lasting expertise in synthesis, thermodynamic measurements, and spectroscopy of ice mixtures, put in the planetary and astrophysical perspective. Key results have been an extensive review on ices sublimation and the spectroscopy of clathrates hydrades made of diverse mixtures, and gas trapping efficiency by amorphous ice. The implication of the team in Mars exploration by Mars Express and Mars Reconnaissance Orbiter led to 37 articles, representing very transverse activities, taking advantage of all its expertise. If the surface of the planet and its immediate sub-surface represent the majority of the work done by radar sounding and hyperspectral image analysis, meteorite investigations (shock-induced processes), laboratory reflectance, minerals hydration and ice stability measurements, atmosphere observation and ionospheric modeling helped

Page 31: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

30 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

to develop a refined image of Mars. Key results include a complete dielectric map of Mars, which provides strong hints at the localization and abundance of water in the sub-surface, the analysis of the composition, structure, and seasonal evolution of the polar caps, and a series of methodological developments in the field of physics of remote sensing to characterize the physical state of the surface and to monitor aerosols (Omega, CRISM). An important realization during the quinquennial has been the setup of an environmental chamber (CarboN-IR) to study the formation and evolution of CO2 snow and ice under Martian conditions (pressure, temperature, composition) with long term morphological, thermodynamic and spectroscopic monitoring. This led to the demonstration that the most stable forms on Mars should be polycrystalline CO2 ice slabs. The atmosphere of planets and their response to geomagnetic activity (space weather) is an important aspect of the team activity. During the quinquennial, 13 articles in this theme addressed a large variety of objects from earth to exoplanets. The methods rely on observation from Earth or space, and development of accurate models simulating the physics of the processes linked to energy absorption and emission by atmospheres. Key results include the detection of polarization in auroral emissions, the implementation of methods to reconstruct the solar spectrum from different observables, the detection of Uranus aurora, a review on doubly charged ions and their effect on atmospheric escape Works related to the Titan exploration by the Cassini-Huygens mission led to 32 articles, and one book chapter, representing the highest cited works of the team, and recently acknowledged by a Participating Scientist status. The activity concerns essentially aeronomy, the modeling of the chemistry and molecular build up, leading eventually to aerosols and the analysis of analog materials produced in the laboratory. Key results are an improved thermosphere model, the interpretation of the negative ion chemistry in the upper atmosphere, an extensive review of nitrogen chemistry in Titan, and the experimental demonstration using the Orbitrap of the feasible synthesis of biological molecule in the Titan atmosphere when considering the minor presence of oxygen in the Titan chemistry. The team has established a long-term expertise in space radars and space radiometers, which leads to its (almost systematic) association in missions embarking a radar. 5 articles were published, related to the SMOS mission around the earth, the SELENE mission around the moon, and the JUICE mission around Jupiter. Beyond publications, the team endorsed the leadership in space instrument or system proposals, in response to Announcements of Opportunities (AO) of ESA. These productions often represent more than a few dozens of man.month work by international teams. The two proposals were Fantina, an asteroid surface probe in response of AO for Marco polo, M3 class mission aiming at an asteroid, and Dust OrbiTrap Sensor (DOTS) in response to the AO for JUICE, L3 class mission aiming at Jupiter. None was selected in the extremely competitive selection process. Another major production, representing a considerable and long term investment by the team, is the constitution of a unique spectroscopic and thermodynamics database of solid material for astrophysics and planetary sciences, GhoSST. The team has defined the specifications, led the development, and feeds regularly the database, which is now operational as a service (AA SO5) to the community. Two articles describe the project underlying its development. The database architecture is further proposed as a benchmark for an European database infrastructure.

2.4.2.InternationaloutreachandacademicattractivenessPlanetary science is a very cooperative activity. The team members are involved in a vast amount of research programs and networks, at all levels, from local to international. Beyond active participation as partners, thanks to the specific expertise developed in the team (let us cite 3 European contracts (VAMDC, Europlanet, ATMOP)), members of the team have been acting as leaders of a space instrument (CONSERT), a labex contract (OSUG@2020), 4 ANR grants (Vahiné, TitanChimie+, I2Mars, Spring), and the Cost action 1104 (polarization). Team members are involved in several space instruments, either in operation or in preparation, as described in the figure to the right. The team members were invited to chair or co-chair international conferences (SASP 2012, Astropol 2014, Space Weather

Page 32: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

31 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

Week, 2009-14, Goldschmidt 2013) or take part in the scientific organization of major conferences (EPSC 2010-2013, IMSC 2014, Desorption 2011, whispers 2009-13). The Team hosts almost permanently 1 or 2 Post-doctoral researchers and 2 to 4 technical fixed terms employees, hired on specific, project oriented funding (essentially CNES and EU). Five invited professors were hosted over several months to work on extraterrestrial material analysis and on Titan chemistry and analogs analysis. Their presence triggered specific seminars or master classes that were very beneficial in know-how transfer. During the quiquennial, three researchers were recruited, two as “Maitre de Conference”, and one as “Astronome Adjoint”. The opening of the positions led to a vast number (>30) of candidates, which were evaluated by independent committees and led to excellent recruitments. The team hosts (1) or hosted (1) associate researchers, i.e. PhD students engaged in college education continuing some research projects with the team. The excellence of the activity of team members was recognized at the national as well as international level through the following distinctions: 4 PEDR, 3 PES, Europlanet Prize in 2010 and “Le gout des sciences” distinction in 2012, nomination for the UJF prize of the best Thesis in 2012. It also led to regular solicitation for active participation in research administration: members of PNP, PNST, ANR SU6, ESA Ssac, CNES SHM, and Labex ESEP Scientific Committees, elected participant in CNU, leader of the Soleil Synchrotron PRC1, and French delegate to the United Nations (COPUOS - ISWI) for space weather. Beyond the regular refereeing activity of PhD Thesis, HDR’s, research projects and scientific articles, a member of the team is editor in chief of the Journal of Space Weather and Space Climate and another is Editor of the Journal of Geochemica and Cosmochimica Acta. A team member was also the scientific vice-director of OSUG.

2.4.3.Interactionwiththesocial,economic,andculturalenvironmentA member of the team has created an aurora simulator, the Planeterrella, which is regularly presented to a very large audience. Its design is freely available for copy, provided credits are given to the inventor and CNRS. During the quinquennial, 17 copies were made in Europe and in the USA. 3 articles further describe it. A team member is also deeply involved in a long-term project: the development of a digital planetarium and a museum for Sciences of the Universe in Grenoble suburbs to become operational in 2017 (Les Moulins de Villancourt, cf. Sect.2.3.3. in FOST activity report). All the team members (including students) are very keen to answer to the interest of the public for the Solar System, its exploration, and the recent results. Beyond the classical ‘Fetes de la science’ and specific public conferences, radio, and television interviews by team members, the astronomer of the team has been in charge of the organization of scholar visits in the Observatoire facilities (‘sentier planétaire’, observation of the Sun, etc.) to promote science towards a large audience. We also frequently answer at demands from the public for expertise on rocks with strange shape or aspect, and supposedly meteoritic…though none was, up to now. On the economics front, team members have undertaken the development of cutting edge computer tools to address complex datasets. The community recognizes these programs for their relevance, and some transfer to the community is undertaken. (i) The Vahiné software for visualization of planetary hyperspectral images (Mars, Venus, Mercury, …) is optimized to detect, map and quantify planetary compounds together with their physical and structural properties. (ii) The Attributor software for visualization of high-resolution mass spectra of complex materials is optimized to evaluate, calibrate, and attribute the molecular content in diverse media, either synthetic or natural. It can handle spectra from any high-resolution instrument. A procedure to patent some elements, and proceed with the development of a commercial product is undertaken, in collaboration with a local start-up.

2.4.4.TeamorganizationandmanagementThe team has organized its research around five themes, identified as follows: (i) Primary solids and comets (ii) computer assisted 3D visualization of planetary bodies and a Martian Geographical Information System (GIS). (iii) Physics of the remote sensing of surfaces and subsurfaces (iv) Upper atmospheres of (exo-) planets, their evolution under the Sun (v) Molecular evolution / chemistry. The aim is to share efficiently the competences following a pragmatic and project oriented approach. A majority of researchers are involved in more than one theme. The infrastructures are available to all in a very transverse mode of operation. The team has also been deeply involved in the two transverse axes of IPAG, i.e. Astrochemistry and Comparative Planetary science, with regular and numerous participations in the proposed activities. Specific collaborations with other teams of IPAG have hence been undertaken, in particular with the teams ASTROMOL and FOST. Furthermore, due to the instrumental activity undertaken in the team, a strong association with the team CRISTAL has been maintained in order to foster the developments. The period of this report encompasses a major evolution of the team, from ‘Laboratoire de Planétologie de

Page 33: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

32 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

Grenoble’ (LPG), led by O. Dutuit and B. Schmitt, to become the PLANETO team of the new IPAG in January 2011, led by R. Thissen. The process of merging was triggered in late 2008 and effective from early 2010. A reorganization of the daily life was undertaken, leading to the systematic meeting of the team on Wednesday afternoons. These meetings were 2 hours long at the beginning of quinquennial, half administrative and half scientific. This large investment in administrative life was necessary to elaborate and transfer efficiently (in both directions), the new methods imposed by the merging into IPAG. Since 2012, as the merging was settled, the weekly team meeting has been limited to one hour-long scientific seminars. PhD Students present their work once a year, permanent researchers report their progress on a regular basis, and trainees are invited to show their results at the end of their stay. A member of the team volunteered to organize the agenda of these meetings. Beyond team meetings, Planeto proposes regular (~5 per year) planetary science seminar by invited external orators for the general seminar of IPAG. Team members are involved in various representative mandates in the laboratory; one is deputy director, 3 members are serving in the laboratory council (elective and nominative), and the head of the team attends the monthly team leaders’ meeting with the executive. There are roughly 3 team meetings per year devoted to strategic issues such as recruitment strategy, space usage and sharing, or student management. The decisions are made on a collegial basis. The finances are managed on a project-oriented basis, under the responsibility of the project leaders. Starting in 2013, a one-day seminar for the full team is organized in summer in a nearby location in order to foster further the collective strategy of the team and the management of the PhD students. In terms of working space, the team is located in a building separated from IPAG’s main building, essentially because of history and the long term establishment of optimized experimental spaces, allowing various spectroscopic measurements, mass spectrometric analysis, sample and chemical preparation, and space operation activities. The team expressed very early the wish for an optimized pathway, still to be constructed, in order to reach easily the other buildings of IPAG. The year 2011 was particularly challenging for the team, as the University engaged in an in-depth restoration of the building. This poorly organized construction work lasted for one year, and eventually led to an emergency evacuation and relocation of the complete team during the most intense part of the reconstruction, for a period of 4 months. All experimental facilities had to be put on stand-by, which impacted badly the PhD and trainees’ work. However, the benefits of the reconstruction are nowadays patent and the working spaces have gained in quality. The implementation of experimental spaces is still ongoing today, with the decision made in late 2013 to develop new spaces for (i) micro object manipulation and meteorite curation, (ii) computer assisted visualization and treatment of planetary surface spectro-imagery.

2.4.5.ImplicationinformationthroughresearchPlanetary Science is very attractive to young students. Two open space rooms totalizing 11 individual desks are designed to host trainees wishing to increase their knowledge and skills at all level of their education (‘stage de 3ème’, L1/L2 ‘stage d’excellence’, optional training in L3 and Magistere, and Master training). Every year, those spaces are fully booked from May to early July. On the period, the team trained 7 students at the level of Master 2. Researchers in the team are affiliated to two Doctoral Schools: 9 (5 with habilitation) in ‘Terre Univers Environnement’ and 5 (2 with habilitation) in ‘Physique’. There is a member of the team acting as representative in both schools as well as in the IPAG ‘Comité des theses’. 4 habilitations were defended during the period. On average, 2 PhD students start a thesis every year, half on project funding and half on ministry funding. The origin of students with schooling from outside Grenoble is a specificity revealing the team visibility and attractiveness. The number of PhD defended in the period sums up to 11. The team experienced 2 PhD interruptions during the second year of training in 2013, and has strengthened its collective student management in order to limit such hazards. This implies once a year presentation for each student during a team meeting, an extended seminar during the one-day seminar, and regular (twice a year) meeting of the permanents to evaluate the status and progress of each student. PhD students share an office with a permanent researcher, are encouraged to attend yearly international conference and to publish regularly their results. Due to their status, half of the team members are ‘Enseignant Chercheurs’ or ‘Astronomes’; as such, they give lectures in the training classes proposed at the University, at all levels, from L1 to Master 2. Notably, a member of the team became responsible for the Master A2P hosted by IPAG since 2012. Other members of the team participate to the academic training of students, Masters training and specific schools organized by CNRS.

Page 34: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

33 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

2.5ActivityReportoftheteamSHERPAS

2.5.1.ActivitiesandresearchresultsThe SHERPAS group (standing for Sources of High Energy, Relativistic Plasmas and Accretion Structures) has been formed historically around the personality of Guy Pelletier, who worked on fundamental processes in plasmas astrophysics. Although originally purely theoretical, its scope has widened and includes also observational and instrumental activities. It currently comprises 3 university positions, 5 CNRS, 1 post-doc and 2 PhD students. Its fields of interest concentrate on the physics of accretion around young stars and compact objects, the jet formation, and the high-energy phenomena, from particle acceleration to the emission of high-energy radiation. The group is an unusual gathering of expertise in all these domains. The general topics covered by the activity of the group includes (i) the physics of magnetized accreting and ejecting systems, (ii) the high-energy phenomena, and (iii) astrocladistics and astrostatistics. (i) The first topic is mainly addressed through the use of semi-analytical models of (most often magnetized) fluids, using hydrodynamics and magnetohydrodynamics equation, and through the development of intensive numerical codes. The latter activity has been particularly developed during this period thanks to a recruitment at CNRS. Accretion/ejection phenomena can occur around protostellar and protoplanetary system, or around compact objects such as neutron star, stellar mass or supermassive black holes. They span many orders of magnitude of masses, characteristic timescales, and accretion rates, but with common features. The issues we address are the origin of the dissipative processes leading to accretion, the link between accretion and ejection, the transport of magnetic field and the interaction between the accreting structure and the central object. Some of these studies are done in close collaboration with the team FOST, e.g., the problem of star formation and star-disc interaction, and with the team ASTROMOL on the cosmic ray ionisation of gamma ray emitting molecular clouds. (ii) The second topic, high-energy phenomena, covers both theoretical activity and participation to observational programmes. Theoretical efforts address the problem of particle acceleration in relativistic shocks, the modelling of high energy emitting sources such as X-ray binaries, gamma-ray binaries, radio loud AGN (including TeV blazars) and radio-quiet Seyfert galaxies, gamma-ray bursts, and some peculiar objects such as gamma-ray novae and so called « dark accelerators ». The observational programs are performed through the participation to X-ray observations, and through the membership to gamma observatories, e.g, Fermi, H.E.S.S and the future TeV observatory CTA (the team is also involved in the instrumental development of the light concentrators of CTA). There is also an on-going collaboration on the use of optical interferometry to study compact objects. (iii) Astrocladistics is a peculiar tool developed by a member of the team, using the methods of evolutionary biology, to classify and identify the evolution of astrophysical objects such as galaxies, clusters or stars. It uses mathematical and statistical methods applied to astronomical catalogues. Since 2009, the team has co-signed 196 publications in refereed journals (including 67 as part of the HESS collaboration). The main results obtained by the team are: (i) Physics of accreting systems Regarding accretion-ejection processes around young stars, we have demonstrated a clear link between the magneto rotational instability (MRI) and magnetically driven outflows, thus opening the way to simultaneous studies of both effects in the same numerical setup. We have also explored for the first time the dynamics of discs dominated by the Hall effect, a situation which corresponds to typical protoplanetary discs in the planet formation region (1-30 AU). More recently, we have extended this work to fully non-ideal MHD simulations including all non-ideal effects and demonstrated the presence of a large-scale stress in the “dead zone” of protoplanetary discs. This world premiere has a significant impact on our understanding of planet formation processes. As to ejection processes, the group has long been studying the issue of the formation of a jet by a magnetized accretion disc (or JED = Jet Emitting Disc). We have studied recently the effect of a jet on the disk’s dead zone where the ionisation becomes too low to sustain accretion. We showed that in JEDs where a near-equipartition magnetic field leads to a dominant torque due to the jet, the disc density stratification is strongly altered, leading to a significant modification of the extent of the dead zones. A key problem in star fomation is how to explain the low rotation velocity of young stars, the so-called initial angular momentum problem. Using 2D numerical simulations, we have found that the magnetic star-disc interaction can lead to sporadic ejection events that carry away angular momentum from both the star and the

Page 35: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

34 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

underlying disc. Such magnetospheric ejections are currently the best candidates for braking young accreting stars. (ii) High energy astrophysics The work of G. Pelletier, in collaboration with M. Lemoine, has brought a deep understanding of the acceleration mechanism in relativistic shocks. They have shown the importance of the development of magnetic micro turbulence to accelerate suprathermal particles at the shock front. The radiation emitted by these particles scattered off magnetic microturbulence can explain the spectrum of gamma-ray bursts. They have also shown that the generation of Ultra High Energy Cosmic Rays could be better explained by mildly relativistic shocks (such as internal shocks of GRBs or AGN jets) than by highly relativistic shocks. The modeling of gamma-ray emission of blazars has been a major activity of the team in the field of high-energy astrophysics. We have proposed an original model for extragalactic jets, the « two flow model », which assumes the coexistence of a mildly relativistic, proton-electron wind from the disc and a relativistic electron-positron beam inside, responsible for the high energy emission and superluminal motions. Recent progresses in this field include the study of the influence of the geometrical opening of the jets on the beam characteristics, a comparison with the luminosity distribution of blazars observed with Fermi, and the development of a complete model of gamma-ray emission including most known possible sources of photon.

The study of gamma-ray emission from binaries has benefited from the funding of an ERC during the period 2009-2013. Various groups of binaries are now detected in high and very high-energy gamma rays: novae, microquasars, colliding wind binaries, black widow pulsars, and the new class of « gamma-ray binaries. We participated actively in the search, characterization and early modeling of binaries within the HESS and Fermi collaborations. In particular, we were major participants in 3 Science papers (discovery of gamma-ray emission from a microquasar, from a nova, from a new previously unknown binary), two of those as corresponding author. We have also studied high-energy radiative processes in the context of binaries, where anisotropic effects have a strong impact on the observed light curve and spectrum, yielding new insights into the origin and location of gamma ray emission in binaries. Finally, in collaboration with S. Fromang (CEA), we have developed a relativistic extension of the hydrodynamical code RAMSES in order to model the emission zone. Since 2006, as originally initiated by an ANR JC from 2006 to 2009, we have proposed a new theoretical framework for X-ray binaries (XRB) where the whole structure of the accretion disc has been revisited by taking the disc-jet interrelation into account. In this framework, we were able to propose a new explanation for the hysteresis behavior of XRB based on the evolution of the magneticity in the JED. As a continuation of this work, we now benefit from an ANR Blanche, with IRAP and AIM as partners. In order to better understand the origin of the high-energy emission in radio-quiet AGNs, we took part in a massive monitoring of Mrk 509 and NGC 5548. These campaigns made use of various satellites (XMM, Chandra, NuSTAR, INTEGRAL, SWIFT, HST) observing simultaneously for more than 1 month. For both campaigns, we are in charge of the analysis of the high-energy broadband spectra (UV-X-ray) using realistic comptonization models. We also participate to the CNRS/PICS project CHEESES (2013-2016) in collaboration with Italian researchers (co-PI A. De Rosa, Rome). This project aims at performing a systematic and detailed spectral analysis of a large sample of AGN using the most up-to-date high-energy radiative models applied to an unprecedented legacy of X-ray observations. This project will also benefit from results obtained by new space missions, e.g. NuSTAR (2012) and ASTRO-H (2014). (iii) Astrocladistics The main astrophysical results have been obtained on galaxies, globular clusters and Gamma-Ray Bursts. A paper studying stars is under revision. More theoretical work regarding cladistics with continuous variables has been published with another submitted paper. In parallel, the question of the clustering of a large number of galaxy spectra has been studied using a partitioning approach based on k-means.

2.5.2.InternationaloutreachandacademicattractivenessSherpas team members are involved in a variety of international collaborations, such as, e.g., HESS, Fermi, CTA, monitoring campaigns on Seyfert galaxies. We benefited from an ERC Starting Grant and from a Marie Curie Reintegration grant, led 2 ANR projects, and were associated in 3 others, one driven by the FOST team. Recently, a PICS project was set up with Italian colleagues. A school on Astrostatistics and an international meeting on plasmas were organized. The team greatly benefited from the CNRS recruitment of Geoffroy Lesur in 2009 and hosted 7 PhD students and 6 postdocs over the considered period. Around 20 colleagues paid short term visits to our group, and 3 more as longer term invited professors. Team members participated to a number of scientific organizing

Page 36: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

35 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

committees for international conferences, as well as to local and national responsibilities (OSUG, Labex, CS IN2P3, CNRS Section 17, CS Programme Particules Univers, Direction PNHE, HESS Extragalactic Working group, etc.).

2.5.3.Interactionwiththesocial,economic,andculturalenvironmentThe team SHERPAS has been involved in many public outreach events: conferences (Club astro Lyon Ampère, MJC Pont du Sonnant), festivals (Oufs d’astro in Vaux en Velin, Festivals de Fleurance et de Haute Maurienne), classrooms (100 parrains, 100 classes), Observatory open doors, and science-art cultural gatherings and performances (« Les Gens ont des étoiles qui ne sont pas les mêmes », interactive simulation of an accretion disc, etc.), animation of « Cafés des sciences Grenoble». G. Lesur is also the Webmaster of the IPAG website.

2.5.4.TeamorganizationandmanagementThe team meets on various occasions: - a regular group meeting every week, partly devoted to general management problems and partly to scientific presentations given by team members or invited researchers. The PhD students are asked to report on the status of their thesis once every 2 months. - a more episodic (~once a month) journal club devoted to the study of a recent scientific paper of interest. - once a year, there was traditionally a team meeting, the “Sherpiades”, held outside the laboratory and devoted to a general review of the team’s activity of the team, free brain storming, and discussions about future plans. Due to the growth of the team, this has been recently replaced by more specific workshops with only part of the team, but keeping the friendly and busy atmosphere. The budget of the team is mainly funded by the various contracts and grants awarded to its members: ANR, ERC, Marie Curie grants. Most of the members benefit from one of these grants, which cover the salaries of postdocs and travel money.

2.5.5.ImplicationinformationthroughresearchWith three professors, the team has always been strongly involved in teaching. One of us has managed the 2nd year master of Astrophysics (M2) from 2007 to 2012 and initiated, through SF2A, the development of a national website to gather the announcements of interships in France, common to all masters in Astrophysics. Other responsibilites include the direction of the 1st year of the Master mention physique (M1), common to all physics degrees, the direction of the Master de physique, the deputy direction of the Physics department of UJF. A member of the team has also been appointed to UJF’s Administration Board between 2002 and 2012, and since october 2012, is deputy to the vice–president for teaching at UJF, in charge of all masters, and of the budget of the departments. Many PhD students of the team have been teaching through a « monitorat » (64 h a year) and a SHERPAS member is heavily involved in the « Comité des Thèses » at IPAG, which monitors PhD students, organizes regular meetings with them, and issues recommendations for students and their supervisors.

Page 37: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

36 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

2.6ActivityReportoftheinter‐teamthematicgroupsThe so-called “Axes Transverses” (inter-team thematic groups) were set up at the time of the LAOG-LPG merging that gave birth to IPAG, with the goal to foster the collaborations between the teams of the former two labs. Two main themes were identified: “Exochemisttry” (Exochimie) and “Comparative Planetary Science” (Planétologie comparée). Their activity is reported below. A third theme is now emerging at IPAG on “Astrostatistics” led by D. Fraix-Burnet

2.6.1.ExoChemistrythemathicgroup(A.Faure,P.Hily‐Blant,E.Quirico):The objective of the ExoChemistry thematic group is to foster collaborations related to chemistry between the IPAG teams. The “chemistry” theme emerged from the scientific prospective work conducted in 2010 and was identified as the most promising in terms of scientific breakthrough and synergy. In our definition, exochemistry is the study of chemical elements and chemical compounds that are found in space beyond Earth, i.e., in stars, (exo-)planets, comets, meteorites, interstellar matter, etc. This interdisciplinary field encompasses observations with ground-based and spaceborn telescopes, in situ measurements (e.g. Titan's atmosphere and cometary nuclei), laboratory simulation experiments, and theoretical modeling. The exochemistry projects currently developed at IPAG are related to all these aspects and include, e.g., the measurement of isotopic anomalies from dark interstellar clouds to Solar System objects, the study of cosmic-ray induced chemistry, and the development of (photo-)chemical networks for interstellar clouds, protoplanetary disks, and planetary atmospheres. The ExoChemistry thematic group at IPAG aims at covering many of the various aspects of exochemistry and especially at building bridges between cosmochemistry (studies of solar system objects) and astrochemistry (studies of the interstellar medium) fields and communities. In parallel to this interdisciplinary objective, national collaborations are of uttermost interest and are encouraged through an ongoing series of thematic workshops. The first IPAG ExoChemistry Workshop was held on 24-25 November 2011 and was devoted to "Isotopic ratios, gas-phase chemical networks and high-energy interactions". The full program as well as presentation slides (PDF) is available at http://ipag.osug.fr/Exochemistry/workshop2011.shtml. The second IPAG ExoChemistry Workshop was held on 14 February 2014 and was devoted to "Comets: dynamics, nuclei and coma". The full program as well as presentation slides (PDF) is available at http://ipag.osug.fr/Exochemistry/workshop2014.shtml. A list of IPAG inter-teams publications related to exochemistry topics can be found at: http://ipag.osug.fr/Exochemistry/publications.shtml and currently includes:

Localized SiO emission trigerred by the passage of the W51C supernova remnant shock; Dumas G.; Vaupré, S.; Ceccarelli, C.; Hily-Blant, P.; Dubus, G.; Montmerle, T.; Gabici, S., ApJL 786 L24 (2014) The 15N-enrichment in dark clouds and Solar System objects; Hily-Blant, P.; Bonal, L.: Faure, A.; Quirico, E., Icarus 223 582 (2013) Radiation thermo-chemical models of protoplanetary discs. IV. Modelling CO ro-vibrational emission from Herbig Ae discs; Thi, W. F.; Kamp, I.; Woitke, P.; van der Plas, G.; Bertelsen, R.; Wiesenfeld, L. , A&A 551 A49 (2013) Supernova-enhanced Cosmic-Ray Ionization and Induced Chemistry in a Molecular Cloud of W51C; Ceccarelli, C.; Hily-Blant, P.; Montmerle, T.; Dubus, G.; Gallant, Y.; Fiasson, A., ApJ 740 L4 (2011) The puzzling deuteration of methanol in low- to high-mass protostars; Ratajczak, A.; Taquet, V.; Kahane, C.; Ceccarelli, C.; Faure, A.; Quirico, E., A&A 528 L13 (2011)

2.6.2.ComparativePlanetarySciencethematicgroup(M.Barthelemy,X.Delfosse):The « Comparative Planetary Science » thematic group has been at the center of interactions between the teams FOST and PLANETO. The goal was to increase the synergy between exoplanet and Solar System research and resulted in several members of the team Planeto enlarging their field of research to actively contribute to exoplanetary science. A PhD thesis has been defended in 2011, and another one in 2014, both on exoplanet characterization through the study of atmospheric diagnostics. Also, X. Bonfils was granted an ERC (Extra) on a

Page 38: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

37 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

topic relating exoplanet detection and characterization. A workshop on “Exo-Abundances in Planetary Atmospheres” has been organized at IPAG in May 2014. Yet, this group has encountered 2 difficulties. One was the lack of a specific expertise on exoplanet characterization. D. Ehrenreich who was a postdoc at IPAG and the leading actor on exoplanet atmosphere characterization was unfortunately not hired at IPAG, which would have secured the development of this theme. The other problem was the main result of D. Bernard’s PhD thesis that clearly showed the difficulty of observing thermospheric emissions of exoplanets with current technologies. Nevertheless, this interface between planetary and exoplanetary sciences remains of much interest, and the advent of a specific team dedicated to exoplanet in Jan.2015 at IPAG will certainly help developing it further.

Page 39: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

38 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

3. IPAG IMPLICATION IN FORMATION THROUGH RESEARCH The broad spectrum in its fields of expertise has led the laboratory to be represented in several Doctoral Schools:

1. ED47 “Physique”: for general astrophysics; 2. ED105 “Terre, Univers, Environnement”: mainly for topics related to planetology; 3. ED220 “Electronique, Electrotechnique, Automatique, Traitement du Signal”: topics related to

instrumentation.

The majority of IPAG researchers are related to ED54 (with currently two researchers belonging to the ED council). Most of the PLANETO team members, formerly members of the LPG, are related to ED105. Some CRISTAL team members, as well as three Research Engineers from the technical group, are related to ED220. This participation allows us to expect about 4 to 5 PhD contracts per year, regardless of the other project-related (ANR, LABEX, ERC etc...) sources. Given the importance of the chemistry in the research fields of teams Astromol and Planeto, and following the recent development of the astro-chemistry topic in the laboratory, we are exploring the possibility to get related to the Doctoral School of Chemistry. This again illustrates the large pluridisciplinarity of IPAG. The university policy is to allocate PhD contracts proportionally to the number of laboratory members having a research "habilitation" (HDR); consequently, IPAG policy is to strongly encourage young scientist to apply for HDR, after a few years experience in the laboratory, when they have proven capable to define their own research projects. Finally, some members of IPAG give lectures in the 'College Doctoral' at the PhD level.

Located at the center of the eastern Campus, at close vicinity to the Master studies building and nearby the IRAM, IPAG represents an attractive and well-known destination for the students in Physics, from the Licence to the Master degrees. As a consequence, IPAG receives annually a large amount of students, from L2 to M2 internships, but also from the IUT and engineering School (PHELMA). The laboratory has always maintained and provided full support to the Master 2 “Astrophysics, Plasmas and Planets” (or A2P, formerly known as the DEA “Astrophysique et Milieux Dilués”) since its creation in 1991. This is the third largest formation of this kind in France (after Paris and Toulouse), providing a thorough and broad formation in general astrophysics for 10 to 12 students per year. IPAG provides students with a dedicated classroom, teachers and full access to computers, xerox and textbooks. During their stay, the M2 students are immersed within the laboratory life, share the cafeteria with the researchers and attend the weekly astrophysical seminars. The M2 cursus includes a week of practical work on the field, to present the students with actual observations on real telescope. This session was historically implemented at OHP to work in the optical; since 2012, due to the signing of an UJF-IRAM convention initiated by IPAG, a fraction of the students can now perform radio-astronomy on the IRAM 30m in Granada, Spain. Since 2012, IPAG hosts the first online national web server for Master 2 internships in Astrophysics. Based on an initial suggestion by J. Ferreira in 2010, IPAG has provided full support (travel money, computer engineering time, network and backup) allowing the realization of this premiere. The server is now being used by all French (and non-French) students looking for internships and possible PhD subjects and more than 200 subjects in Astrophysics where listed in Fall 2013. The server has been advertised by the SF2A and is now an emanation of all French formations in astrophysics. This is an unprecedented cooperative realization and an annual meeting of the various M2 directors is now being maintained. About half of the A2P M2 students received at the IPAG are coming from the Master 1 in Fundamental Physics.

Page 40: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

39 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

This is a high quality formation that students must succeed in Grenoble if they wish to pursue world-class PhD researches on condensed matter, nanosciences, astrophysics, particle physics or on complex systems (bio-physics, morphogenesis...). There are about 70 to 90 students (including 20 ERASMUS students on average), a team of about 40 teachers (of which some from IPAG) for more than 1400 hours of teaching provided. One important aspect of this formation is the large number of laboratory experiments and in particular the so-called "TPs CESIRE". These experiments are performed within the laboratory units with professional equipment. IPAG is one of the laboratories proposing such highly attractive possibility with, e.g., photometry and spectroscopy using the lab telescope, the development of high angular resolution experimental devices, and a project of radar observations. Actually, the implication of IPAG is such that the need for the creation of a dedicated platform in the laboratory (people, rooms, computers) has recently been discussed. A final aspect is the link between IPAG and structures such as LABEX, which can provide funding for grants (M2 or even PhD), schools or for buying experimental equipment. For a given formation, this can provide a tremendous added value (superseding the usual –low- university funding) although it must be exactly aimed at the preferred themes of the LABEX. IPAG is currently involved in two LABEX. The first, OSUG@2020, has not yet provided much funding for astrophysics-related courses. But, while being rather focused towards Earth Sciences, it is quite open and more astrophysics proposals should be made. The second LABEX, FOCUS, is driven by IPAG. It provides funding and organises a one-week M2 school on detectors at the OHP since 2012. This 'detection school' is opened to students from all over the country and of course to our M2 students, hereby nicely complementing their initial observation stay. The following figure shows the results of a survey performed in 2013 on 52 IPAG PhD students having started their thesis between 2001 and 2008 (8 years in total). It shows that more than a third of them currently work on research, either in IPAG (8) or in other lab or agencies.

Where do formerly IPAG PhD students now work? An 8 years statistics.

Page 41: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

40 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

4. IPAG STRATEGIC & SCIENTIFIC PERSPECTIVES

Foreword At the time of this writing, the next laboratory direction is not identified yet. The analysis presented here results from the experience of the current director; hence it could be completed or bent by the future management team, especially during the presentation before the visiting committee in January 2015.

Introduction IPAG is an extremely active and productive laboratory that it is an honour to lead. The fact that we address 3 of the 4 key questions identified by the European Astronet working group in 2007 gives a strong international pertinence to our project. This is illustrated by the blossoming of projects, the number of ANR, FUI, ESO, ESA, CNES, ERC, etc., contracts won by the lab, as well as by prices, medals and distinctions obtained by lab members (Scientists and Engineers) during the current period. Another sign of the vivid scientific life of the laboratory is the significant number of publications written in total, and especially in collaboration between teams (54) during the past 5 years, going well beyond the activities of our thematic inter-team groups. IPAG research themes and skills are very complementary and integrated, and the proximity of its 5 teams (soon to be 6) allows a real added value to be brought by the lab management. We estimate that this strategy should be continued during the next period through a voluntary scientific animation action. However, the possible decrease of our resources in the future might impose to make choices and better focus our research aims. The merging of astrophysics and planetary sciences has given us a stronger visibility within OSUG and UJF: we are the second larger laboratory of OSUG and we host more than half of its CNAP members. However, Astrophysics is not part of the current "National Research and Innovation Strategy" (SNRI), so we have to be struggle even more to better promote our research goals. During the whole period of the next contract, we will remain full members from two major Labex (OSUG@2020 & FOCUS), providing us with significant resources for our scientific projects. The next IPAG management team will have to maintain a close collaboration with the Labex heads to bring all the necessary information to IPAG members. On the same hand, the future UGA University and its research departments will bring an even better visibility to IPAG and its scientific project, thanks to our participation to the "PAGE" research pole (Particles, Astrophysics, Geophysics, Environment). We host a very attractive Master-2 class welcoming 10-15 students every year, including several Erasmus students. However, there is no "astrophysics' main course in the UJF Syllabus, and we have to be even more active to develop lectures on astrophysics subjects within the dominant solid state physics UJF environment. Other actions toward high level students include: increase our participation to the FOCUS annual school on detection (started in 2012); When the future University Spatial Center (CSU) is implemented in UGA (see below), we will have a leading role to play in the management of this center and in the teaching that will be there given. IPAG technical group and its instrumental research team are major assets to get involved in future international ground based and spatial instruments, while performing cutting edge R&D. Among others, note the recent bright examples of this capacity: SPHERE on the VLT, CONSERT on ROSETTA and integrated optics on PIONIER on the VLTI. That being said, these successes bear a strong commitment for the future. It will be one of the main tasks in IPAG strategy to finely manage the future instrumental schedule of the laboratory. We estimate that our instrumental task force is essentially based on three pillars: ground-based, spatial (mostly radars) and R&D developments. Examples of current or planned major ground-based developments are SPIROU on the CFHT, MAORY/MICADO on the ELT and NAOMI on the VLTI. Concerning ELT, we also plan to develop a centre of expertise on control-command software for its first light instruments. The spatial opportunities of IPAG are no less ambitious: we are co-I of the RIME instrument on board of the JUICE mission, and we have been solicited to participate to the design and operation of radar instruments on missions like Europa, Fantina, or Discovery. Concerning R&D for future instruments, our results on the RAPID detectors or on the SWIFTS concept, highly supported by the FOCUS labex, are strong priorities for IPAG. Given that every opportunity can hide a threat and that each threat can possibly turn into a new opportunity, we present in the following, like in a SWOT analysis, a series of issues that we think the future laboratory direction should consider closely to ensure an even larger success for IPAG.

IPAG issues, SWOT analysis

Completing the LAOG-LPG merging process: we need to unify more our "Astrophysics" and "Planetary Sciences" parts; this can be done through a strong scientific leadership in the laboratory and it is crucial to maintain the

Page 42: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

41 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

needed resources for this animation. The results of this strategy during the previous contract are remarkable in terms of inter-team publications and international conferences funded. The role of the future 2016-2020 IPAG management should be to even more strengthen the coherence of our research topics. From this point of view, the fact that IPAG is still spread over 3 different buildings, with one team isolated from the others, is a real threat for our strategy. Adapting our resources to our scientific ambitions: the decrease of recurrent laboratory fundings is a major threat on our strategy, and may lead us to refocus our actions and the number of our research projects. We need to identify our main strengths and reaffirm the European Astronet research axes on which we based our laboratory project: - Stellar and planetary formation, exoplanets ; - Chemistry and molecular complexity from interstellar medium to planetary atmospheres; - Physical processes and high-energy processes - Instrumental Research, laboratory experiments, major projects and technological expertise. As in many other laboratories, a major challenge for the success of IPAG in the coming years will strongly rely on our ability to get more European funding. We are already well positioned in this process: we wan 2 'starting' ERC (in 2007 and 2012), several COST, and an OPTICON program, but we need to improve this performance. A key tool of this success will be our "CAMPI" committee, to aid scientist design their research project applications. Adapting to the end of rocket growth: IPAG and before it LAOG and LPG have experienced long periods of growth due to their attractiveness and significant recruitment action. As can be checked on figure 1, the growth curve of the laboratory appears to have stabilized since a few years, possibly a marker of maturity. There have not yet been significant retirements in IPAG (apart from a few "éméritats"). On the contrary, we anticipate several departures during the next 5 years, including a handful of researchers and one ITA. The issue here is more about maintaining the laboratory skills than the mere number of its members. This situation will become more and more difficult in the next years as CNRS recruitments are about to dry up. As a consequence, the future IPAG management could consider lobbying toward other laboratories to convince new young scientists to come and join IPAG. Fragmentation of research projects: the ever growing number of independently funded "small" research projects, while the global resources of the laboratory are dropping, is a major challenge for our common project. IPAG as a whole receives nearly 30 % less recurrent funding than did the LAOG and LPG altogether! The multiplicity of funding sources, the official impossibility for the laboratory to collect "overheads" on project funds makes the leading of the laboratory and its management more and more difficult. Nowadays, a laboratory director and his management team spend most of their time performing financial engineering instead of driving the laboratory. The necessity to justify each and every cent spent on research is a heavy load on IPAG administrative staff. Senior scientists in lab management: Possibly a consequence of the previous point, one danger that IPAG currently faces in particular, perhaps like the whole research community, is the lack of senior people, theoretically well positioned to take local responsibilities (DU), but who do not feel interested or available to assume these responsibilities. Four years after the merger, the risk of centrifugal forces on the consistency of IPAG still exists. The fact that the laboratory is dispersed over 3 buildings adds to this risk. While "hotels à projets" are currently blooming, it seems even more essential to us to build a common laboratory. Future instrumental developments: the ELT/CAM or RIME/JUICE are very exciting scientific projects, and are consistent both with our previous expertise (AO high contrasts imaging, Radars) and with our scientific interests in circumstellar environment or planetary science studies. However, as already mentioned, the size of these projects will force us to finely tune the repartition of our technical resources, especially in the next coming years, as we have lost several of our Research Engineers (IR). We expect the AERES visiting committee to advice us about the balance between these directions. Integration within PAGE: the implementation of the PAGE research pole of UGA is a real opportunity for IPAG, as it can help us mitigate our attenuated influence relative to the ever growing number of OSUG research units working on Geosciences, and foster stronger collaborations about high energy & astroparticles with nuclear research labs from the Grenoble site, in particular for projects like HESS and CTA. This collaboration could also address developments for space missions. Links with IRAM: with the first NOEMA antenna inauguration in September 2014, and one new antenna built each following year, the development of the NOEMA project will almost exactly follow the next IPAG contract. We thus need more than ever to strengthen our collaboration and to go further in developing scientific projects and PhD theses in common with IRAM. After the signing of an UJF (IPAG) – IRAM convention in 2012, IPAG is ideally situated to fully participate to the success and the scientific exploitation of the NOEMA interferometer, a historical opportunity. Over the recent years, IPAG/OSUG and IRAM agreed to jointly submit CNAP applications, a first in our IRAM-IPAG history. We need to capitalise on this investment.

Page 43: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

42 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

Strengthening interdisciplinarity: IPAG hosts a broad interdisciplinarity, especially around chemistry. We could develop links with the local 'Doctoral School' on Chemistry, with the CNRS Institute of Chemistry (INC), with more OSUG colleagues, in order to reinforce this research activity. On the same hand, extending our research on molecular complexity toward astrobiology is a real opportunity for IPAG. Attractiveness of IPAG for students: It is crucial that we promote the teaching of astrophysics and planetary sciences in our university. From this point of view, the inception of UGA should be an advantage for us, as it could increase the number of students interested in astronomy. A Student Spatial Center (CSU) in Grenoble: IPAG is involved in several space-borne projects, either as PI or co-I of in situ space borne instruments, or through the scientific exploitation of space observatories, and as such has been recently identified by UJF as a natural leader for the "Student Spatial Center" (CSU) project that will eventually be built on the campus. This is a real opportunity for IPAG, gathering fundamental, instrumental research, and student formation. We need to put forward our capacity to design new space borne instruments, especially using radars (like in the CONSERT experiment), without taking the load of a full spatial laboratory. UJF is a natural partner and we need our university support on this project.

Page 44: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

43 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

4.1ProspectiveoftheteamASTROMOLOur studies deal with the physical and chemical processes affecting the interstellar gas and dust in the Universe, in order to understand the emergence of molecular complexity in the Universe, with a particular emphasis on the early phases of protostellar evolution. These studies combine theory, observations, modeling and laboratory experiments, based on the analysis of dust and gas properties from millimeter to infrared wavelengths. They are supported by PhD thesis, projects funded by regional/national agencies (CIBLE, ANR, CNES) and European structures (COST, FP7) and the observational Large Programs of the team. We benefit from a marked support by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI), to which we contribute as board members. We drive major observational programs (CHESS, ASAI, CALYPSO) and research projects (ANR/Chemodyn, ANR/Hydrides, CIBLE). Our activities involve an extended network of collaborations with members of the French community and laboratories worldwide, mainly CAB, OAN (Spain), Arcetri (Italy), U. Amsterdam (Holland), UCL (UK), MPI (Germany), and U. Tokyo (Japan). ASTROMOL is characterized by a strong expertise in radioastronomy, with participation to software and instrumental developments for IRAM, e.g., the NIKA2 camera. Links with IRAM are crucial. We are also involved in ALMA, partly in the commissioning of the instrument, and one team member is the head of “Action Spécifique Alma”. The team is also characterized by a strong expertise in astrophysical modeling, and its theoretical activity in quantum dynamics. The gathering of astrophysics and quantum dynamics inside ASTROMOL makes it unique among the French community, and is one of the keys to the success of the team, as is the leadership in international observational Large Programs. We think extremely important that both elements keep driving the activity of the team in the forthcoming years, and that theory keeps supporting the future observational projects of the team, which will be carried out with IRAM 30m, NOEMA and ALMA. We have started to develop an expertise on grain surface chemistry modeling, centered on the formation of complex organic molecules, which remains one of the major unsolved questions in astrochemistry. Astrochemical modeling is accompanied here too by theoretical chemistry calculations and laboratory activity, mainly in collaborations with PLANETO at IPAG, and other teams in France or abroad. Our projects and their expected results will naturally shape the team activities in the next quinquennial. We plan to open new lines of investigation, based on our experience in the recent years. In what follows, we present our research perspectives according to the four following federative themes: (i) Emergence of molecular complexity; (ii) Galactic and extragalactic interstellar medium; (iii) Protostellar collapse; (iv) Primordial Universe. Some of the questions addressed lie at the interface with other teams of the Institute and will lead to specific collaborations with colleagues from PLANETO, FOST, and SHERPAS. We also review the methods and future instrumentation that will be developed in the forthcoming years, and summarize the resources in terms of observational capabilities, computing resources, and manpower required to maintain the team research activity at the present level. A. Emergence of Molecular Complexity Complex Organic Molecules The formation of complex organic molecules (COMs) in the early phases of low-mass star formation is the main unifying theme of the team activity in the next quinquennial. Observationally, our activity will rely on the Large Programs IRAM/TIMASS, Herschel/CHESS and IRAM/ASAI, which offer high-quality spectral line surveys of a large sample of template objects covering the various stages of solar-type star formation, and will provide us with the most comprehensive view on the chemical composition of these objects, their time evolution, the physical and the chemical processes at play. These Large Programs will bear direct impact on molecular spectroscopy through discovery of new species and on chemical network modeling. The scientific exploitation will be based on international scale consortium. Thanks to the gain in angular resolution permitted by the large millimeter interferometers ALMA and NOEMA, we will explore down to scales of 10 to 50 AU the inner protostellar regions, which are expected to emit a rich spectrum of COMs. It will be possible to study how the matter from the infalling envelope is incorporated to the circumstellar disk, and how its chemical composition changes during the accretion process, determining the initial chemical conditions in the disk. Current PdBI surveys, e.g. CALYPSO, allow us to undertake the exploration of the chemical composition of the environment of the closest Class 0 protostars and their hot corinos. The recent discovery of COMs in prestellar cores opens new prospect on gas phase reactivity at low temperature and non-thermal dust grain desorption mechanisms. Observationally, the spectroscopic capability of the JWST will permit investigating the composition of the ice mantles of dust grains, the chemical reactivity in these ices, their role in the emergence of molecular complexity in low-mass protostellar environments. The installation of the camera NIKA2 at the IRAM 30m

Page 45: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

44 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

telescope will permit studies of the dust properties in the very low temperature regime and their evolution, for instance as a result of grain coagulation in the prestellar core, or in relation with molecular depletion. A model for COM formation on dust grain ice mantles was developed in the PhD thesis of V. Taquet; this modeling effort is now pursued by considering pure gas phase formation scenarios (PhD thesis of. Al-Edhari). Deuteration of organic molecules has been the motivation of laboratory experiments in collaboration with the team Planeto (PhD thesis of A. Ratajczak and M. Faure) as well as theoretical studies (PhD thesis of P. Peters). We wish to expand our modeling capabilities of physical and chemical processes through collaborations with the theoretical and experimental leading groups, in France and abroad, on COM formation on ices. In theory, the challenge will be to understand the excitation mechanisms of COMs: collisionally, from the determination of the collisional coefficient rates of molecules crucial for the characterization of chemical processes in the star forming regions, in particular those of pre-biotic interest. Our group has shown recently that the emission of COMs at centimeter wavelengths can reflect (weak) maser action in cold and low-density regions of the ISM. It is therefore crucial to compute the relevant collisional rate coefficients, which is computationally very demanding. The knowledge of these collisional rates is necessary to derive robust abundances and to put strong constraints on chemical models. The reactivity and the collisional properties of COMs in the gas phase and on the ice mantles of dust grains will be studied through French and foreign collaborations, both theoretically (Montpellier, Dijon, Turin, Delaware) and experimentally (Rennes, Perugia, Marseille). Confrontation between calculations and experiments is one of the strengths of our group, thanks to joined works with Nijmegen, Bordeaux and JPL. This link with experimentalists will be maintained and expanded to cosmochemical problems. Protostellar shocks CHESS has unveiled the importance of protostellar outflows and shocks from an astrochemical point of view. Shocks appear to be almost ubiquitous in the envelope of protostars, while dominating the formation of water, a key-molecule for both the dynamical and chemical protostellar evolution. In the early protostellar stages, they trigger a molecular spectrum of richness comparable to that of hot corinos, opening the door to pre-biotic chemistry. The results of Herschel emphasize the need for interferometric observations at subarcsec scale in order to elucidate the chemical and physical structure of protostellar shocks, a goal which will become accessible thanks to NOEMA. Also, integral field spectroscopy of the pure rotational lines of H2 and the fine structure atomic and ionic lines in the mid-infrared with the JWST will permit identification and characterization of the structure of time-dependent shocks. NOEMA will allow resolving the chemical structure of shocks. Observations at (sub-)millimeter and far-infrared wavelengths bring a wealth on constraints both on the shock structure and the chemical network at play. Interpretation of the shock molecular emission requires new developments in modeling, an effort we will undertake in close collaboration with theoretical groups involved in the CHESS project (LERMA in Paris; UCL in London). Hydride chemistry and excitation As building blocks of interstellar molecules, hydrides provide key information on the chemical formation pathways in the ISM. The chemistry of nitrogen hydrides in dark clouds and protostellar envelopes was investigated in the PhD thesis of R. LeGal, based on Herschel CHESS and OT1 observations, within the framework of the CIBLE program. This work has opened a new avenue into a detailed understanding of gas phase reactions: the nuclear spin chemistry. Thus, by including the para and ortho symmetries of hydrides as separate species, theoretical models can now account for the “anomalous” ortho-to-para ratios determined observationally. The next step will consist of including other elements to the ortho/para chemistry of hydrides, starting with deuterium, carbon and oxygen and, in a second step, sulphur, fluorine, and chlorine. The objective is to elaborate a full ortho/para gas phase chemical network, not restricted to hydrides, and including complex organics. The excitation of these hydrides, including radicals with fine and hyperfine structure, is studied experimentally and theoretically within the framework of the HYDRIDES ANR project. This project aims specifically at comparing theory and experiment at the state-to-state level and at providing extensive sets of collisional data (inelastic and reactive) for hydrides to the astronomical community. The question of the impact of the "chemical" pumping will be also addressed, both theoretically and experimentally. Our expertise will develop towards the state-to-state reactive collisions, which are of fundamental interest in the field of reactivity. Cosmochemistry Early protostellar environments, including prestellar cores, are the main astrophysical objects to which we have applied our studies on molecular complexity. In the next years, we will turn to the more evolved phases of star and planet formation, in particular the first stages of our solar system. The objective is to better understand the connection between the interstellar and solar system material, based on simulation experiments and analysis of meteorites, in close collaboration with the team PLANETO.

Page 46: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

45 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

This theme will obviously benefit from the Rosetta mission to comet 67P/Churyumov-Gerasimenko, to which the team PLANETO strongly contributes, by providing a detailed estimate of the nature and isotopic composition of the material present at the surface of the comet (PhD thesis M. Faure). The group also masters quantum and classical techniques, which are necessary to compute dynamical effects on spectral lines. These computations have a wide range of applications, including cometary atmospheres with the MIRO instrument onboard ROSETTA, and possibly in planetary atmospheres. New theoretical and experimental approaches are currently under definition, in close collaboration with other French and NASA groups. Molecular deuteration studies have been one of our major domains of activity in the past. In the forthcoming years, we will investigate the link between the molecular deuteration of protostellar objects and that of the small bodies, like comets and meteorites, which witnessed the early phases of the Solar system. To what degree molecular deuteration is a good probe of the chemical history of protostellar objects, from the parental core to comets is a question far from being settled. This issue will be addressed in collaboration with the team PLANETO, thanks to its expertise in heterogeneous chemistry. As a first step, our goal will be to measure the kinetics of thermally induced hydrogen/deuterium exchanges between water and organic molecules in the solid phase (PhD thesis of M. Faure). Finally, protoplanetary disks are research area at the interface with the team FOST, where the joined expertise of both teams would permit powerful modeling of the physical and chemical processes of the disk gas and dust. This theme is obviously highly competitive at world level, and teams benefitting from a high visibility have already been organized, in view of observing with ALMA. On the longer term, the breakthrough that the E-ELT will provide leads our team to think about a possible synergy with FOST to address these questions. Whereas our domain of observational expertise traditionally deals with millimeter to far-infrared wavelengths, that would imply a move to near-IR wavelengths, a domain in which we have very limited experience yet. B. The Galactic and Extragalactic Interstellar Medium Ionization of the Galactic Interstellar Medium In highly irradiated regions such as XDR/PDR, where the fractional ionization exceeds 10-5, electron collisions compete or even dominate the molecular excitation owing to the strong charge-dipole interaction. In such regions, it is therefore important to include all colliding partners when modeling the radiative transfer of polar ionic species. Electron-impact rotational excitation of hydride cations (e.g. HCO+, HOC+) will be studied within the framework of the HYDRIDES project. The molecular gas ionization rate from cosmic and X-rays is a key-parameter of the gas chemical evolution in protostellar environments. Because the determination of the ionization fraction in the molecular gas requires expertise in high-energy astrophysics, these studies are led in collaboration with the team SHERPAS. Two aspects are considered: (i) Interaction between cosmic rays (CR) and molecular clouds The goal is to use the ionization fraction as a probe of the regions of acceleration of cosmic rays, and to study the consequences of ionization on cloud chemistry. We have selected the supernova remnant shocks W51 and W28 for a pilot study (PhD thesis of S. Vaupré). In the forthcoming years, we will investigate in a more systematic way a sample of Supernova shocks, which coincide with gamma-ray emitting sources, two properties that favor a high CR flux, and enhance the probability of finding highly ionized regions. (ii) X-ray irradiation of inter/protostellar matter Based on recent Herschel/CHESS observations of protostellar systems in Orion, we showed that the high-excitation lines of molecular ions such as HCO+ and N2H

+ are a powerful probe to detect and measure the flux of high-energy particles (>MeV) emitted by protostars in their infancy. We plan to increase the statistics on the number of protostellar systems, and to characterize the properties of the ionized gas with ALMA. These data will bring unique constraints on the magnetic field and on the anomalous overabundance of short-lived nuclides observed in some meteorites. We plan to collaborate on this project with colleagues from Museum d’Histoire Naturelle (Paris) in order to strengthen this connection between protostellar and cosmo-chemistry. The Extragalactic Interstellar Medium Thanks to the gain in sensitivity and angular resolution offered by the new generation of large millimeter arrays (PdBI, ALMA, and NOEMA), it is now possible to explore the composition of interstellar matter in nearby and low-z galaxies. We shall pursue two new lines of investigations in the next years: (i) the impact of CR irradiation in nearby galaxies: our studies on galactic objects have provided us with tools that can be applied to AGNs environments, to discriminate irradiation from other processes such as e.g. shocks. A pilot-study is starting at the PdBI; (ii) astrochemistry of nearby galaxies: molecules can now be used as sensitive probes of the physical processes at work in the different regions of galaxies, even though they are now spatially resolved.

Page 47: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

46 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

We are starting collaborations with experts in extragalactic studies who need our expertise in astrochemistry, and more generally, in molecular line analysis, to address the issue of AGN feedback in galaxies, and the quenching of star formation. The polarimetric capabilities of the camera NIKA2 at the IRAM 30m telescope will also allow us to map the magnetic field distribution in nearby galaxies and to study its role at galactic scale. Protostellar collapse The key question of the formation of solar-type type stars is one of the main, federative lines of investigation of ASTROMOL, in particular the earliest phases from molecular clouds to prestellar and protostellar cores. The dynamics of the gravitational collapse is tightly related to the chemical composition of the molecular gas. The determination of the physical conditions (density, temperature, velocity field) from molecular line observations therefore requires an accurate description of the microphysical processes (chemistry, molecular excitation), as well as a careful modeling of the radiative transfer. For these studies, we use mainly IRAM instruments (30m, PdBI) and ALMA. The Large Program CALYPSO has observed a few chemical tracers at subarcsec scale in a comprehensive sample of the Class 0 protostars. This database permits a detailed investigation of the dynamics of the protostellar collapse in relation to the evolution of the angular momentum in the innermost central regions, which is the main goal of ANR Chemodyn. The analysis is performed by computing the chemical evolution of a protostellar core whose collapse is simulated with the MHD code Ramses, a work done in collaboration with colleagues from CRAL. Disk formation in the protostellar collapse is one of the major unsolved issues in star formation. Only a few Class 0 sources have been observed to exhibit a protostellar disk until now. Thanks to the improvement in sensitivity and angular resolution offered by ALMA and NOEMA, we plan to obtain a much more statistically significant sample of objects. Our goal is to study the interaction region between the infalling envelope and the protostellar disk, where models predict the formation of an “accretion shock”. NOEMA will be most suited to lead systematic studies, and a few objects will be investigated with ALMA at a resolution of a few AU. The central role of magnetic field in star formation is still poorly understood. This situation is evolving thanks to recent progress in the instrumentation. Planck has measured the polarization of the galactic foreground over the whole sky, with a resolution of 5 arcmin or less. We participate to the balloon experiment Pilot (CNES), which will extend the spectral coverage obtained with Planck and measure polarization towards the galactic plane to study interstellar dust properties and the galactic magnetic field. The camera NIKA2 will map the polarization of the dense interstellar filaments at a resolution of 12”, which Herschel showed to play a fundamental role in star formation. ALMA, and possibly NOEMA, will offer polarimetric capabilities, allowing studies of the magnetic field in the inner protostellar regions. We will thus soon be able to study the transfer of angular moment during star formation, from the molecular cloud to protostellar objects. This could trigger collaborations with ODISSey (ex-FOST), as part of follow-up studies to the GAIA space mission. C. Primordial Universe Diffuse Cosmological Background (DCB) The goal is to study the primary and secondary anisotropies of the DCB at 2.725K. To do so, we measure the continuum emission and the polarization in the (sub-)millimeter domain thanks to the ESA Planck satellite and in the millimeter domain thanks to NIKA2, a camera with KID detectors, installed at the IRAM 30m telescope. The analysis of the interstellar matter radiation, which adds up to the DCB, constitutes a “by-product” of the Planck data, which stimulates numerous studies on the Galactic interstellar medium (cf. above). In the next years, our priority is to perform follow-up studies of the Planck results with ground-based telescopes. We will focus on galaxy clusters, the diffuse infrared background, and the polarization of the millimeter radiation. We have contributed to develop the KIDs camera prototype NIKA at the IRAM 30m telescope (300 pixels at 1 and 2mm), which was made available to the community in winter 2014. The next step will be the development of a second generation camera, NIKA2 (5000 pixels), to be commissioned and installed in winter 2016 (at the IRAM 30m telescope) with the goals to measure the detailed properties of galaxy clusters (Sunyaev-Zel’dovich effect), to resolve the infrared and millimeter diffuse background, and to measure the polarisation of the millimeter emission from interstellar grains and nearby galaxies. The Dark Ages On the longer term, we are interested in searching for cosmological probes of the ionization period, which would be accessible to the radio and millimeter domains. Such probes would complement the dramatic advances expected from LOFAR and SKA. They would constrain the scenario of the dark ages, from the

Page 48: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

47 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

formation of the first structures in the Universe (z=20) until the re-ionization (z=6). The probes could be molecular, atomic (C+), or related to the small-scale secondary anisotropies. These studies will be accompanied by theoretical developments on primordial chemistry in collaboration with French colleagues (Montpellier, Dijon). A great advantage of the primordial chemistry with respect to interstellar chemistry is that the number of species is much smaller (typically a few tens with respect to several hundreds) and grains are absent. As a result, the primordial Universe is amenable to state-resolved chemistry, i.e. a chemistry where each molecular state (and not only each nuclear spin symmetry) is considered as a separate species. Such a treatment has been so far hampered by the lack of accurate state-to-state collisional data. In collaboration with French colleagues, we recently started to revise a number of key reactions such as the conversion of ortho-H2(j=1) to para-H2(j=0) by H and H+ using time independent quantum methods. These new sets of molecular data will be used to revisit the molecular cooling of the primordial gas with the aim to eventually elaborate a full state-to-state chemical network for the early Universe. D. Instrumentation and Methods Instrumentation The team makes heavy use of IRAM instruments for its research, and for teaching/training activities. Team members are also contributing to IRAM through technical support in operating the PdBI, developments for GILDAS software, the development of the NIKA2 camera based on KIDs technology at the IRAM 30m telescope, following the installation of the prototype camera NIKA. These instrumental developments, initially triggered by our studies on the Primordial Universe, are led in a French collaboration involving CEA/Saclay, and, locally, Institut Neel and LPSC. They are supported by Labex FOCUS, which also includes IRAM. On the longer term, we contemplate as future instrumental developments a low-resolution spectrometer array coupling an array of KID detectors with the SWIFTS principle technology, in collaboration with the IPAG instrumental team CRISTAL. As for ground-based observations, the IRAM instruments will remain central to our activities, with an increasing importance of millimeter interferometry with NOEMA, to arrive in full operation near 2020. In the Southern hemisphere, we will pursue the exploration of the (sub-) millimeter window with APEX and ALMA. We have entered the post-Herschel/Planck operation phase, dedicated to the scientific exploitation of the databases acquired. These data will remain of high value, waiting for the next large European space mission at infrared wavelengths, with possible opportunities for M4 in 2028 or L4, beyond 2038. The JWST, to be launched in 2018, with ESA participation, is the next major space mission of our discipline with an expected strong impact on studies of interstellar ices and their composition and of protoplanetary disks. Some team members participate to the elaboration of the Legacy programs of the mission. Theoretical methods The emergence of new problems in quantum dynamics (collisions with radical species, heavy molecules; inner motions, etc…) requires new theoretical approaches and methods: collision codes, time-dependent Hamiltonian resolution, semi-classical methods. In the short term, we foresee important developments both in formalism and in numerical codes, stimulated by our implication in high(er)-frequency observations, with e.g. the JWST space mission, and in laboratory experiments (detailed measurements of total and differential cross-sections). E. Needs To strengthen our expertise in millimeter interferometry The team possesses a strong expertise in the (sub-)millimeter and infrared domains, as evidenced by its leading role in international Large Programs performed with the major instruments in the field (Planck, Herschel, IRAM 30m and PdBI). On the short term, the exploitation of these Large Programs will require a strong involvement of the team resources, while driving new follow-up and complementary observations with IRAM and ALMA. The capabilities of NOEMA will open new opportunities in our field. Our priority is to maintain our observational expertise at the highest level, which will imply an active participation to or the leadership of international observing projects, such as Large Programs and surveys, in particular with larger millimeter arrays (ALMA, NOEMA). It is important to hire a young astronomer with strong expertise in millimeter interferometry to ensure an optimum exploitation of these instruments. To strengthen our wide-field millimeter observing capabilities Ground-based follow-up observations of Planck and Herschel frequently requires mapping at millimeter wavelengths. IPAG is ideally suited to participate to these observational large programs, and to prepare the future space missions, with the use of prototypes. It is important to keep supporting this activity in our team.

Page 49: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

48 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

To amplify our leadership in theoretical studies on molecular collisions Our group is recognized worldwide for its work on the collisional excitation of interstellar molecules with H2, He, e-. It is important to maintain this lead, acknowledged by all other experts in Europe and in the US. This requires strengthening the theoretical assets of the team in order to anticipate the retiring of one member, foreseen in 2022, enhancing our computation capacity (stronger ties with the OSUG data center, the center for computation CIMENT and its computing capabilities are necessary), and improving our expertise in quantum chemistry as such. To strengthen our modeling expertise in astrochemistry and heterogeneous chemistry

In the past years, the team has begun to develop a modeling activity on heterogeneous chemistry. This has led to the gas-grain chemical code GRAINOBLE, which has had a significant impact in the community. This work is being pursued in collaboration with leading theoretical and experimental groups in France and abroad, focusing on complex organic molecule formation on ices. It is necessary to expand our modeling capabilities of physical and chemical processes to keep making progress in the field, and, more generally, to address the emergence of molecular complexity in the interstellar medium. It is therefore important to hire a young astronomer with a strong expertise in astrochemical modeling and a good understanding of observations. This will complement our world leading expertise in observations, sensitively enhancing the impact by the combined theory-model-observations activities.

Page 50: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

49 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

4.2ProspectiveoftheteamCRISTALThe scope and motivation of the team CRISTAL is maintained for the future in the continuity of its current activity, to animate and stimulate research specifically on the new concepts and instruments that the astronomy and the planetology needs to fulfill the increasingly challenging observation requirements. This activity is closely related to other research teams and to the actual realization of instruments organized on their own (through the technical group managed at the institute level, and through specific project management structures, generally at a multi-institute scale, for each individual project). Such close relations are natural and desirable for the consistency and the interest of the instrumentation effort. They do not replace the need for a dedicated team focused on these specific questions on new instrumentation, as a key and stimulating environment to animate and coordinate this research even if (or especially because) it represents a relatively small number of involved FTE, it involves a large number of partners in various fields of expertise (see also Strength and Weakness analysis below).

1. Major fields of activity

The major fields of research for opening, demonstrating and proposing new instrumental concepts can be structured into 3 main axis: High angular resolution and high dynamic, RADAR, and Imaging Spectroscopy. In terms of expertise or required components and in support to the fields of application above, we identify 3 domains as strategic in which we wish to maintain or strengthen our contribution and position: signal processing, detection, and integrated optics (or photonics). High angular resolution and high dynamic in the optical and NIR

The domain includes both long baseline interferometry and large aperture equipped with Adaptive Optics (AO). Actors of IPAG have continuously been involved in the development of such instruments in the past (close to the system analysis, validation, and/or critical components). We are currently close to the delivery of 2 major instruments (SPHERE and GRAVITY), major in terms of scale and of performance challenge as 2nd generation instruments of VLT and VLTI. The validation on sky of these instruments will still require significant work, not only for the functional validation, but also for the full understanding (learning curve) and the optimization of these performances in operations. Because they provide also very stable and accurate calibrations, they will be ideal starting points to analyze and design the future generation of instruments and they offer excellent opportunities for upgrades that will feed the community with both new results and the mandatory experience to gain further orders of magnitude in performance. There are longer-term drivers in this field with very challenging requirements pulled by key astronomical questions such as exoplanet detection and characterization (with low mass and at short separation), witnessing the planet formation with planet-disk interactions and planet-star interactions at even shorter scales. The corresponding long-term goals for infrastructure are identified at the international level, as ELT or space-based instruments (WFIRST-AFTA or submitted proposals) for imaging, and PFI for interferometry. However, the exact route to the achievement of such instruments on these infrastructures is not precisely defined yet. Our approach in this context is ‐ To start with the full valorization and learning, improvement if possible, of the new upcoming

instruments in which we are directly involved and which offer potential for improvement/identification of ultimate limitations, as a key starting point for any new development

‐ On intermediate timescale, to valorize such experience on new instruments, in interaction with research teams such as FOST for intermediate performance gains. We want to avoid too large gaps between the delivery of a major instrument and the next generation potentially 10 years later. This can be avoided by the contribution to upgrades as already mentioned, intermediate scale instruments able to implement and test on sky new ideas and concepts, or collaboration with other teams. Over the period covered by the prospective, this should concern at least one experiment for interferometry and high contrast (and/or potentially at the interface). As examples, contributions and specific R&D research are considered for NAOMI (AO for VLTI-auxiliary telescopes), more sensitive interferometric instruments in the visible range (collaboration with Nice-Chara), upgrades/potential of integrated optics interferometers (towards longer wavelength or with higher dispersion) with the opportunity of a potentially simple implementation on existing infrastructure, specific analysis of high contrast for 1st generation ELT instruments such as CAM and HARMONI (even though not designed for high contrast).

‐ In preparation to the longer timescale: to continue fundamental research on ultimate performance achievable, both on theoretical point of view (with analytical or numerical approaches) and experimental demonstration of key elements. This includes component-level developments (detectors for new fast and low-noise sensors, further integrated-optics functions and the accuracy of their calibration), modules

Page 51: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

50 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

(focal sensor of wavefront errors), and system analysis supported by simulations and experience gained on existing instruments (heavy simulations of AO for ELT, algorithm for combined instrument calibration and signal extraction, extrapolation of performance in different instrument context). Even though, by essence, this R&D is to remain open to very new ideas, for each development we will associate specific identified drivers for potential future instruments and corresponding key requirements (e.g. requirements for new detectors for future AO sensors, specific integrated optics functions like junctions in 10mic guides or full K-band IO components in the past) and the activity will be organized according to milestones discussing such achievements before deciding to continue or re-orient such studies. Of course, we will be reactive to the opportunities to apply directly on operating instruments the results of such R&D as much as possible, as was the case for instance of Pionier, components for Gravity, and could be the case for demonstrated new concepts and calibration capabilities, such as for NEAT in the context of space-based astrometry.

The exact involvement on individual projects or studies up to 2020 will obviously depend on resources and opportunities and the decision for formal involvement in a project development is also validated at the institute level. The general coordination of the team will aim at preserving the balance in these 3 aspects, keeping the activity in close relation to national context (in ASHRA and PHASE environment, and overall INSU prospective), keeping the mutual interest for R&D research and fundamental analysis of performance together with an actual investment in the instrument realization for the community. Radar

The expertise at IPAG in this domain is primarily focused on the system analysis, data simulation, and signal extraction in relation to planetary science interpretation. This expertise on such critical aspects of RADAR instrument is very well recognized at international level and this field offers still long-lived perspective for the exploration of small bodies’ deep interior and telluric planets and satellites’ subsurface. In parallel to the approach applied for HRA, the strategy is based on the full interpretation of ROSETTA CONSERT data for both the planetary science purpose and the analysis of ultimate instrument effects and performances, in order to be present in the upcoming projects. For the small bodies aspect, the team is in a privileged position in Europe, due to CONSERT heritage, and naturally leader in propositions related to small bodies exploration (PI position for instruments on ESA M4 Cosmic Vision and opportunity missions, associated to NASA Discovery mission). As to large bodies, the team has a recognized expertise and a key position (system analysis and technical participation) in large consortia to develop future radar instruments (e.g. RIME on JUICE). In support to the primary contribution to system analysis and data interpretation, some specific R&D will be followed on specific items only (such as low mass and consumption electronics, and development of new operation modes). Spectro-Imagery; Imaging Spectroscopy

Fifteen years ago, the R&D work on the potential of integrated optics for interferometry, led in close collaboration with industrial or academic partners, yielded efficient and powerful instruments widely used by the astronomical community. Current developments explore new approaches for integrated spectrometry whose intrinsic limitations are now well identified and understood. While not a universal solution for future spectrometers, it has a huge potential for some specific observational niches currently investigated in terms of beam étendue, SNR, resolution-bandpass, wavelength range, etc. Some applications are beyond the scope of astronomy: our resource will nevertheless be kept involved here because the original ideas and expertise originate from the system analysis gained from astronomical experience, and also because such drivers allow further developments that prompt a higher level of demonstration and maturity of prototypes. The photonic approach may lead to a change of paradigm for some future spectrometers (for instance: stacking numerous very small instruments instead of a huge single bulk optics spectrometer). Each sub-element may be produced and distributed in other fields of application, like medicine or network sensing. For this effort, partnership with both academic institutes (in particular with Earth sciences at OSUG, or with signal processing institutes, in an interdisciplinary approach) and with industrial partners (see also below valorization) should be fostered so that the internal resource is focused on system analysis and calibration issues common to other applications. Our main effort will be focused on a better identification and demonstration of this approach for some astronomical applications as a primary driver, the first of which is a compact spaced-based optical and/or NIR spectro-imager for planetology. This represents an important opportunity where the team can play a central role, with very constructive interaction between the component level characterization, expertise in detectors and integrated optics, demonstration and calibration capabilities, coupled system and science analysis (together with the PLANETO team) to issue the best design addressing the key science requirements. Transverse expertise and developments

Page 52: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

51 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

Signal processing is a central aspect of signal extraction for data reduction, and must be considered as such from the instrument conception phase. Our contributions to this field, as well as established collaborations with other institutes, must be further exploited, as such a role is identified as critical at the national level (ASHRA). This expertise will enrich our activities, from RADAR to HRA imaging instrument, and from initial instrument design stages to data analysis. At the local scale, exchanges within OSUG must be stimulated and OSUG workshops are certainly appropriate and a good opportunity to do so. Detectors are of course present in all instruments. Not only are they critical components as contributors of the final performance (sensitivity, speed, format, calibration), but also as potential showstopper of full system (e.g. future AO sensors). They can open the way to fully new designs when the intrinsic detector properties are intimately linked to the instrument measurement principle, e.g. integrated spectroscopy/interferometry, KIDS detectors. IPAG has in this area an internationally recognized strategic position, at the interface between new technological developments, characterization capabilities, and the implementation of such devices in astronomical instruments. Our leading role in Labex FOCUS and in European OPTICON work-packages should be fully exploited to ensure that the most suitable detectors be developed and characterized for the next generation of instruments. The resources will be primarily focused on the interaction with technological partners and the follow-up and orientation of upstream R&D, the ability to characterize new devices, and their early implementation and use in operational instruments. Photonics is now involved in many operating instruments and research. IPAG has played a decisive role to transpose the heavy R&T developments initiated in industry for telecom applications into components appropriate for astronomical use, with extended capabilities in terms of functions, transmission, wavelength, and improved calibrations. The benefit of such a strong position, with numerous local and international contacts (industrial partners and institutes), and of mature characterization capabilities should be consolidated. The potential for applications is huge and well exceeds the scope of the institute’s activity. The goal will be to select a few developments that we want to push to full and published demonstrations. The possibilities include the extension of existing functions (initially developed in NIR around 1.5 mic) to other (longer or shorter) wavelengths according to direct needs for astronomical instruments, or to further validate new functions like optical path modulation, interferometric combinations, and/or direct relation to the detector itself. The ultimate goal is integration into an operational system. 2. SWOT analysis

Strengths and weaknesses have been mentioned above in the context of various opportunities. Without repeating them, we identify hereafter some aspects associated to the broad team context, organized by topic. Resource and priority selection: relation to other research teams and project development.

The activity of instrumentation, considered as a field of research in the team CRISTAL, is naturally and intimately related to the other research teams for the motivation and use of instruments, including the feedback experience from these instruments, and to the activity of pure instrument development (or realization) by the technical group, as decided at institute (and/or national) level according to a wider instrumentation policy. Such a complementarity is a strength: it has made possible the proposition of very relevant and timely new instruments, and it also provides a favorable and stimulating environment for new demonstration and R&D. This relation should then be maintained. However, the immediate consequence is that most (if not all) actors in CRISTAL devote only a fraction of their time to this research (with a typical fraction of 20 to 50%). Valorization activities also use part of IPAG’s resources under objectives not directly driven by the sole institute priorities. This inherent dilution is to be kept in mind when considering the capability to react fast and massively to opportunities. Also, the strategy might be impacted by urgent commitments on instrument realization and/or astronomical data interpretation. Reaction and/or mitigation: the optimal focus and priorities of activities is essential. General: we clearly identify a priority on the system analysis and the role of interface and coordination between actors (other institutes and technological development in industry), both on the local and national/international scales. Maintain/consolidate the work in collaboration: consistency of effort at national level, dedicated topics in particular with co-supervision of PhD. Priorities and milestones: among various fields of potential developments (both for upstream R&D and demonstrators), for which boiling and stimulating brainstorming phase should be kept quite open to new ideas, identify only a few subjects onto which efforts and developments should focus. Recruitment will be essential on system analysis and corresponding design (Project scientist profile and/or system engineer), experimental characterization (AIT, calibration, performance analysis), in good complementarity for both R&D and instrument realization.

Page 53: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

52 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

Relation to Valorisation

Thanks to the expertise gathered in the institute on astronomical instrumentation, the level of interest for the R&D initiated at IPAG for astronomical purposes has proved to be high enough to generate a number of patents and licenses, and start new companies (with a much wider scope than astronomical purposes). IPAG members directly interact with industrial partners for the orientation and benefit of new technological developments, and some are part-time involved for advice or contributions to industrial companies. These are very positive indicators and/or achievements. The corresponding threat or weakness is that it reduces the availability of internal resource. In the context of a reduced number of technical positions, this threat cannot currently be turned into a virtuous loop for further activity, expertise and resource. Strong and close relationships are maintained between the institute and partner companies, through shared material resource, gained experience, and/or shared PhD projects, and are beneficial to both partners. However, in the context of overlapping but distinct purposes, a risk remains that the definition and driving of strategic choices on further developments becomes less optimal, transparent and long-sighted. Reaction and/or mitigation: strengthen efforts to formally communicate with privileged partners in terms of strategy for further R&D developments, and possible synergy for realizations (e.g. NAOMI). Establish a clear and open identification of activities related to the institute/company. External context, instrument plan, and strategy

The plan for future instrumentation, as inspired by the priorities of the astronomical community, is of course beyond the perimeter of the institute’s choices and IPAG members are strongly involved at this larger scale (participation to ESA groups, ESO STC, ELT PST, ASHRA, INSU) as well as on the instrumentation development side (OPTICON JRA’s, INSU strategy for ELT and R&D, Labex FOCUS, etc.). The success of previous instrument realizations by the technical group also makes the institute a natural contact when considering new projects. This strength should be maintained and every effort made to be able to answer favorably to relevant opportunities (e.g., space-based RADAR instruments, new studies for E-ELT, new projects in which we have invested R&D: NEAT, spectro-imageryImaging Spectroscopy). A difficulty is the current and increasing tendency for unfunded R&D, or even instrumentation realization « plans » (see ESO), for ground-based projects. The insufficient instrumentation funding is partly mitigated by the Agencies, which as a side effect induces a restriction on the R&D support. Other sources of support can be searched for at the national (ANR) or European levels, albeit independent of a national (INSU) coordination and of an efficient observatory drive. Reaction and/or mitigation: i/ maintain the effort needed to follow and contribute to a consistent instrumentation (selection and R&D) policy at national and international levels in our fields of expertise, and search for additional sources of support consistently with the (inter)national framework and within (pro)active coordination with partners. Ideally, the choices ensuing from the INSU prospective should be wide and public enough so as to be used as an efficient reference frame for other sources of support; ii/ fields of expertise (e.g. radar, detection, HRA system analysis) to be maintained fundamental and strong enough in the continuity so that they can be used in various contexts and not critically dependent on a single project; iii/ keep the balance between instrument realization (alternating leading role in major instruments with smaller contributions or realization of smaller scale instruments) with the resource to fully analyze the limitations and exploit the results of existing instruments and to propose and demonstrate new concepts. Inter-disciplinarity

Even though we want to stay focused on a limited number of fields of expertise, our activity intrinsically involves the combination of various skills and partners. It is (and will remain) out of scope to cover all the required skills and technological platforms. We should however maintain the ability to interact, understand, and stimulate the various partners, like industrial partners for technological developments or downstream application, and other academic institutes (photonics, signal processing, other fields of application). This inter-disciplinarity is also illustrated in the contribution to lectures given in various environment, starting from general Physics lectures at University, to Engineering schools, and the participation to two « Ecole Doctorales » Physics and EEATS. Being well inserted and positioned in various communities is both an asset and a difficulty. Reaction and/or mitigation: maintain this inter-disciplinarity aspect with the ability to interact with various partners. Foster the relations with students and other communities (contribution to lectures in various environments, astronomy as an exemplary field of application and driver for most challenging developments, PhD co-supervisions and/or shared projects). Without dilution of internal resource, focus on system analysis expertise and characterization: how to benefit from new technological capabilities? How to insert them in operational systems? Which impact on new possible concepts? What actual calibration and limitations?

Page 54: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

53 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

4.3ProspectiveoftheteamODYSSEYIt is a key goal of modern astronomy to understand how planets and stellar populations form and evolve. This is the main objective of our research team. To address this broad question, we will focus on three aspects aiming at understanding the property evolution of young stellar systems, investigating the origin and impact of magnetic field on the evolution of young stellar objects and their surrounding disks, and modeling the gas and dust evolution in protoplanetary disks. A. Origin and evolution of young stellar systems Formation and evolution of embedded stellar clusters Studies of embedded clusters reveal that about 75-80% of stars are born in clusters with N≥100 members while the others form in smaller associations. However, only about 10% of star-forming regions are destined to become bound, long-lived open clusters, while the remaining 90% dissolve rapidly. Thus, to understand the general rules that govern how the majority of stars form, as well as the properties of stars that populate the Milky Way, it is crucial to fully decode the formation and early evolution of young stellar clusters. Smooth particle hydrodynamics (SPH) calculations are now able to simulate the collapse and fragmentation of large turbulent molecular clouds forming several hundreds of stars. However, these simulations are CPU expensive and stop after ~1 free-fall time (~200,000 years), while the observational characterization of stellar population cannot be done before a few Myr, when the gas has already started to dissipate. A direct comparison between models and observations is thus impossible. Indeed, the early cluster dynamical evolution, when the interactions between members are the strongest, affects the general properties of the stellar content (mass function, multiplicity, spatial distribution, kinematics). This needs to be taken into account if we want to trace back the cluster properties at birth and constrain the star formation theories. To go around this issue, we will combine observational cluster characterization to numerical simulations of the early dynamical evolution. On the observational side, we will establish the present-day statistical properties of young clusters (1-10 Myr), extending from the highest mass objects all the way down to brown dwarfs. GAIA will provide extremely accurate distances and proper motions for most stars (down to G~20 mag) in young nearby clusters, that will be complemented by radial velocity measurements from the GAIA-ESO Survey (GES). To reach the substellar domain and beat extinction in star forming regions, we have initiated the DANCe (Dynamical Analysis of Nearby Clusters) project, a ground based survey aiming at measuring proper motions for faint stars. The unprecedented accuracy of these datasets (<1km/s) will allow us to build precise 6D maps for each cluster, refine cluster IMF determination and resolve cluster substructures and internal kinematics. New statistical tools are being developed in our group for this purpose. On the numerical side, we will run simulations of the early dynamical evolution of low mass clusters using an hybrid code combining both gas and collisional stellar dynamics (including the treatment of binaries). This code is being developed in IPAG in the framework of the ANR-JC “DESC” (Dynamical Evolution of Stellar Clusters, finishing at the end of 2014). The simulations will start with initial conditions that correspond to the ending state of the SPH calculations (still accreting protostars + remaining gas) and will follow the subsequent dynamical evolution of stellar clusters over ~10 Myrs. This will allow us to investigate the cluster structure evolution (including mass segregation set-up) during the embedded phase, and the effect of gas dispersion on the shape of the mass function if the cluster survives. We will also investigate how the cluster initial conditions (density, energy balance) can be traced back from its observed properties. Eventually, these simulations will provide the missing link between collapse model predictions for cluster formation and the observed properties of young stellar and substellar populations in clusters. The angular momentum problem One of the greatest challenges in stellar astrophysics is to understand the origin and evolution of stellar angular momentum. As we highlighted in a recent Chapter of the Protostars & Planets VI conference proceedings (2013), spectacular advances have been made in the last years on both the observational and modeling fronts. The derivation of thousands of rotational periods from photometric monitoring campaigns now provides a clear view of the evolution of stellar spin rate from stellar birth to the end of the Main Sequence. Angular momentum evolution models incorporating the main physical processes thought to govern the star’s rotational evolution (star-disk interaction, wind braking, core-envelope decoupling) have been relatively successful in accounting for the observations (cf. F. Gallet’s thesis work). Much progress is still expected in the years to come. In response to a White Paper we submitted to the call for Kepler 2-wheel projects, the satellite will monitor continuously over several months a number of star forming regions and young open clusters in 2014-2015. After our first campaigns using CoRoT and Spitzer (2008-2011), this new project will provide the best ever rotational distributions measured for young stars. Now selected by ESA, Plato 2.0 with its 2,232 sq. deg. FOV (i.e., 20 times larger than Kepler’s!) will be even more efficient for such studies. On the modeling side, a lot remains to be done to understand the net exchange of angular momentum between a young star and

Page 55: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

54 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

its accretion disk. Large-scale 3D MHD simulations of the star-disk interaction, incorporating accretion-powered stellar winds, magnetospheric ejections, and the interaction between the stellar and disk’s magnetic fields are sorely needed to address this issue. The currently funded ANR Toupies (“TOwards Understanding the sPIn Evolution of Stars”, 2012-2016, cf. http://ipag.osug.fr/Anr_Toupies/) has been devised as a pilot project towards these long-term goals. So far, our team has mostly focused on the angular momentum evolution during the early evolution of stars. It would be desirable to extend these studies to young protostellar objects, in order to understand how the angular momentum evolves during the star formation process. Indeed, the so-called « angular momentum problem » (Spitzer 1978), is still one of the major open question in star formation. Millimeter and sub-millimeter interferometric line observations can provides important hints on this question. A large observing program, led by P. André in Saclay and also involving S. Maret in the team ASTROMOL, is ongoing at the Plateau de Bure interferometer. One of the objectives is to measure the rotation profile in a large sample of embedded (Class 0/I) protostars, using multiple lines. In order to interpret these observations, we are developing a new chemo-dynamical model combining the results of state-of-the art MHD simulations of core collapse with a complete chemistry network and a radiative transfer model. This effort is funded by the ANR project Chemodyn (2013-2016, c.f. http://ipag.obs.ujf-grenoble.fr/~marets). The observations should also allow us to detect and characterize young protoplanetary disks. So far disks have been detected in a couple of Class 0 protostars only, and it is not clear yet when these disk appear during the star formation process. The comparison of the properties of these nascent disks with that of older (Class II) protoplanetary disk should allow us to understand how these disks form and evolve. This is of course a field of research that will greatly benefit from observations with NOEMA and ALMA B. A multi-scale approach to the accretion/ejection process in young stellar objects (YSOs): exploring the role of magnetic fields Dynamics of the magnetospheric accretion/ejection process Considerable progress has been made in the last few years in measuring the intensity and topology of the magnetic field of young accreting stars. A large-scale observing program performed at CFHT with the ESPaDOnS spectropolarimeter and led by Jean- Francois Donati in Toulouse, also involving several FOST team members, has for the first time revealed the complex 3D structure of the magnetosphere of accreting young stellar objects (YSOs). Based on these results, MHD and radiative transfer models have been developed, that account for most of the spectro-photometric variability of young stars. We showed that the stellar magnetic field plays a major role in controlling the accretion flow from the inner disk edge onto the star, and most of the properties of young stellar objects, as well as their extreme variability, indeed find their origin in this so-called magnetospheric accretion/ejection process. The next step will be mostly driven by the advent of SPIRou at CFHT in 2017, a new generation spectropolarimeter working in the near-IR, which will give access to magnetic field measurements in embedded (Class I) protostars and circumstellar disks. In parallel, large-scale spectro-photometric monitoring campaigns are crucially needed to understand the dynamics of the magnetospheric accretion/ejection process and to identify the various accretion regimes suspected to occur in YSOs (magnetospheric, unstable, propellers, etc.). This will be best performed by using VLT/X-shooter covering an instantaneous wavelength range from 340 to 2300 nm, thus including a variety of accretion/ejection diagnostics, together with simultaneous high resolution spectroscopy (VLT/FLAMES, VLT/CRIRES), and optical and IR photometry (cf. L. Venuti’s thesis work). While this represents a huge coordinated effort, applying all these techniques simultaneously on a number of prototypical YSOs appears as the most promising route to understand the physics of the accretion/ejection process in young stars and its impact on planetary formation. With this goal in mind, it would be highly desirable to enlarge the expertise of the team FOST and develop the interpretation tools that are needed to understand these rich datasets. This includes 3D MHD simulations of the accretion/ejection process based on realistic magnetic field geometries, as well as 3D radiative transfer models to reproduce the observed variability of accretion/ejection line profiles. Evolution and mass dependence of the accretion/ejection process Until now, the processes of accretion in Class II objects have been considered to be similar at all masses, i.e., in T Tauri (TTS) and Herbig Ae/Be (HAEBE) stars. In particular it is assumed that magnetospheric accretion/ejection is the main process at work both in HAEBE and TTS stars. Yet, the HAEBE stars are hotter than the TTS, they are dominantly radiative, and more than 90% of them have no or weak magnetic fields (while 100% of the TTS are strongly magnetized). The spectral signatures of the circumstellar environment of the HAEBE stars show a large diversity, and do no seem to show similarities with those of the TTS. All of this suggests that the star-disk interaction, as observed and modeled in the TTS, might not well fit HAEBE stars. The intermediate-mass (M>1.5 Msun) T Tauri stars (IMTTS), is a sub-class of the TTS that will evolve as HAEBE stars before reaching the main sequence. They are very similar to the lower mass TTS, but will not end up as low-mass convective stars, but as intermediate-mass radiative stars. In order to understand the global accretion phenomena of the Class II objects, and in particular their dependence on the mass and stellar evolutionary stage, we will characterize the accretion and magnetic properties in the IMTTS and HAEBE stars

Page 56: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

55 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

using high-resolution spectral et spectropolarimetric data (mainly ESPaDoNS, Narval and HARPSpol), and compare them to the lower mass TTS. Then, we will use the 3D MHD models developed for T Tauri stars to model our results and investigate the origin of the accretion processes in IMTTS and HAEBE stars. Spatial properties of the accretion/ejection regions High Angular Resolution provided by long-baseline optical interferometry is a unique mean for bringing direct spatial constraints on the launching regions of the jets, on the geometry of the winds, and on the accretion/ejection scenario at scales smaller than 1 AU for the Herbig Ae/Be stars. We aim at combining high spatial resolution and spectral resolution in the Hydrogen lines, in the visible and in the near-infrared ranges, so as to probe different ingredients and different spatial scales of these complex environments. Today a few objects are reachable with the only existing spectro-interferometer in the visible (VEGA/CHARA). In the 3 Herbig stars we investigated so far, we surprisingly detected visibility drops in the Hα emission line, implying emission sizes on the order of 1-3 mas that are more consistent with an outflow than accretion. For the spectroscopic binary MWC361 (B2e) we detected a more extended Hα emission at the periastron than at the ascending node, supporting the scenario of an outburst of accretion, followed by a massive ejection, at the periastron. In a first step, we aim at increasing our sample of HAEBE to cover a wider range of stellar properties (e.g., in luminosity and spectral type), and understand whether the spatial characteristics of the Hydrogen emission show specific trends with mass and age. We also intend to explore the temporal variability of these complex environments using the unique capabilities of VEGA/CHARA. On the short term, GRAVITY will allow to spatially and spectrally resolve these objects in the K band (He, H, Br[g] and CO lines). On the longer term, we explore the possibility to be involved in a VEGA-like instrument whose higher sensitivity would dramatically increase our sample size and add T Tauri stars to it and/or increase the effective spectral resolution for detailed kinematics studies. Towards a better understanding of the origin of the fossil magnetic fields Fossil magnetic fields are observed in less than 10% of the radiative stars (OBA, HAEBE stars). They are also believed to be present in the radiative core of the lower-mass stars, and play an important role on the dynamo action that is at work in the radiative/convective transition region. Fossil fields are presumably arising from primordial fields accumulated during the star formation process. However, the exact origin of such fields, as well as the reason why only 10% of the radiative stars are able to retain strong magnetic fields, are still mysterious. It is also not clear at which evolutionary stage the fossil fields are shaped. The rotation rate of young stellar objects may play a major role in their origin. We therefore aim at understanding the magnetic and rotation properties of the evolutionary progenitors of the HAEBE and OBA stars at different stages. This involves the study of Class II intermediate-mass T Tauri stars, as well as the intermediate-mass and high mass Class I protostars using the optical and infrared spectropolarimeters ESPaDOnS, Narval, HARPSpol and SPIRou. The initial magnetic properties of the star forming regions are also believed to have an impact on the fossil field origin and evolution. In order to evaluate the impact of such initial conditions, we will study close binary systems, which contain two stars that share the same origin and history. We will analyze the magnetic properties as a function of the binary properties, of intermediate-mass and massive stars, and will estimate if the initial conditions of formation have been retained. This requires the combined use of optical spectropolarimeter and the VLTI. Finally, it would be highly valuable to develop models of magnetic fields generation inside Class I and Class II protostars, and the interplay between magnetic fields and rotation in stellar interior, to confront all these empirical results to model predictions. C. Gas and dust evolution in circumstellar disks: towards planetary systems Properties and dynamics of the inner disk warp One of the central questions regarding dusty protoplanetary disks is the composition, size, and geometry of dust grains and their temporal evolution as the disk evolves and eventually dissipates. The determination of grain properties is the key to understanding the planetary formation process on a timescale of several million years. Multi-wavelength photometric monitoring studies have recently opened a new window to derive grain properties at the inner disk edge. Coordinated CoRoT and Spitzer monitoring campaigns have revealed that about 1/3 of YSOs are periodically occulted by dust located in the inner disk. The simultaneous optical and IR light curves reveal successive eclipses of the central star on a timescale of a week, corresponding to the Keplerian period of dust at the inner disk edge. The analysis of optical and IR eclipses have the potential to reveal the properties of the occulting dust grains. The azimuthal distribution of dust at the inner disk edge is readily derived from simple geometric modeling of the inner disk warp, which is found to be extremely dynamic on a timescale of a few days (cf. N. Fonseca’s thesis work). Dust grain physical properties could be further explored by combining simple geometrical models of the circumstellar occultation to radiative transfer models, such as MCFost, aiming at reproducing the relative depth of the eclipses simultaneously in the optical

Page 57: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

56 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

and in the near-IR. First results indeed indicate that the circumstellar extinction law is quite different from the interstellar one, thus pointing to different grain properties. Another exciting prospect is to develop full SPH models of the star-disk interaction to account for the development and dynamics of the inner disk warp. Also, it is not implausible to assume that, at least in some cases, young hot massive planets are already orbiting the star close to the inner disk edge at an age of a few million years. Certainly, such a configuration would strongly impact the structure and dynamics of the inner disk, an issue that could be addressed through SPH simulations, with the aim to provide observers with potential diagnostics of disk-embedded protoplanets. Spatially resolved observations of the inner disk warps will be obtained using GRAVITY/VLTI, in the specific case of the intermediate-mass young stars (Herbig AeBe stars). With this sensitive 4-telescope NIR instrument, we will aim to study the structure of the inner disk and the structural changes that causes the observed photometric variability. Disk mineralogy The initial conditions of planet formation are governed by the growth of (sub-) micron-sized silicate dust grains in the early phases of young proto-planetary disks. Statistical studies with mid-infrared spectrographs (~10μm), such as Spitzer/IRS, enabled us to study the mineralogy of these dust grains (J. Olofsson's PhD thesis). By constraining dust coagulation and crystallization processes, and comparing these results with theoretical work, we obtained valuable information about dynamical processes, such as radial and vertical transport mechanisms likely due to turbulence, and coagulation versus fragmentation equilibrium. Unfortunately, these observations were spatially unresolved, a strong limitation for their interpretation. We currently are at the dawn of the era of mineralogy at high angular resolution, with the forthcoming spectro-interferometer VLTI/MATISSE. Pioneering work with the two-apertures instrument MIDI has demonstrated the power of such studies for a few individual objects. With 4 telescopes, MATISSE will improve upon these first studies and greatly complement, or most likely challenge, our understanding of dust evolution in the regions of terrestrial planet formation. With both the spectrally dispersed observations and the spatial information, we will directly image the regions where dust grains are heavily processed, and will learn more about the radial segregation (or lack of) of crystalline grains in the innermost regions. Accessing these unprecedented constraints will help us better understanding the composition of asteroids and various bodies of the solar system. The scientific exploitation of Herschel/PACS observations is currently reaching maturity, and we may have detected grains coated with water ices for a couple of young bright disks. The arrival of the SAFARI instrument onboard SPICA will open a whole range of fainter targets in the far-IR, thanks to its improved sensitivity. Better assessing the presence of ice coated dust grains in the first 10 AU of young disks may help to overcome some of the contemporary challenges in the current planet formation paradigm. Further along the road, the availability of the JWST facility, with instruments like MIRI (spectroscopy and coronagraphic imaging in the mid-IR), and of the ELT with the METIS instrument, ensures a bright future for mineralogical studies of protoplanetary disks. The synergy between MIRI and MATISSE will provide a much deeper understanding of the evolution of planets' building blocks. Indirect signatures of planets and global disk structure Planets embedded in circumstellar disks are very difficult to observe directly because the surrounding disk and star outshine them. However, numerous signposts can reveal planets, such as gaps, spiral waves, vortices, warps, clumps, dust traps and filtration, leading to an overall spatial differentiation between small and large dust grains. These structures can reach spatial scales of few 10 AUs tens and be observed by existing telescopes. Direct imaging of young disks in scattered light at high angular resolution with SPHERE/VLT and MagAO/GPI provides a unique way to constrain the properties of young embedded planets (mass, location, eccentricity) and understand the disk evolution. These observations will be combined to complementary high angular resolution observations ranging from the near infrared to millimeter wavelengths (GRAVITY and MATISSE at VLTI, NOEMA at IRAM and ALMA) that probe different dust populations and regions, enabling a complete study of the physical conditions over a large range of disk radii. The datasets will be modeled by a combination of hydrodynamical, dust evolution, and 3D radiative transfer codes. We aim at deriving global disk structures and answer the following questions: Is there any segregation between small and large dust particles (dust filtration) and are there preferential zones of dust accumulation growing into planetesimals? Which of the observed disk features can unambiguously be related to planet-disk interactions? (How do the disk properties (temperature, scale height, mass accretion rate) and features (cavity, spiral waves...) relate to planet properties (mass, location, eccentricity)? Towards a more realistic modeling of protoplanetary disks The structure and temporal evolution of protoplanetary disks are dictated by the dynamics of gas and dust. On the theoretical side, it is now widely believed that the interplay between gas and magnetic fields is playing a major role in disk evolution via outflows and MRI turbulence. On the observational side, we have increasing

Page 58: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

57 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

evidence for the presence of localized structures in the disk thanks to high-resolution observations (e.g., ALMA). These structures are usually interpreted as gaps, spirals or vortices. We are therefore reaching a point where theoretical predictions from first principles could be confirmed (or falsified) by direct observation. In order to make this connection, accurate dynamical disk models must be developed and this involves taking into account the specificities of protoplanetary disks. Most notably, the ionization fraction, which controls the number of free charge carriers in the gas, is one of the most critical parameter. In protoplanetary disks, this ionization fraction is dramatically low (typically less than 10-12), making non-ideal plasma effects (Ohmic resistivity, ambipolar diffusion, and Hall effect) essential to understand the dynamics. Our recent results indicate that these non-ideal plasma effects tightly control turbulence indeed, casting doubts on our understanding of protoplanetary disk dynamics, large-scale structures and outflows. The ionization fraction of protoplanetary disks is a problem on its own. This parameter is controlled by the disk chemistry, the size distribution of dust grains and the ionization rate due to UV photons, X-rays and cosmic rays. In order to make realistic predictions regarding the dynamical properties of accretion disks, one therefore has to couple, in a single model, chemistry calculations to non-ideal plasma calculations. To this end, we will combine our fully non-ideal MHD models developed in the team SHERPAS and implemented in the PLUTO code to astro-chemistry calculations obtained with the Astrochem model from the team ASTROMOL. This will allow us to produce the first self-consistent protoplanetary disk model including all non-ideal plasma effects computed from a realistic chemical network. This model will provide for the first time realistic and quantitative constraints regarding the amount of turbulence stirring, the efficiency of outflows and the production of large-scale structures (vortices, zonal flows) in protoplanetary disks, which will be confronted with the latest observational results.

Page 59: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

58 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

4.4ProspectiveoftheteamEXOPLANETSThe team Exoplanets was built around the theme of exoplanets and their environment. The birth of this new team from the former team FOST was motivated by the growth of the exoplanets research theme in the French astronomical community, and particularly at IPAG. It also aims at achieving a better visibility of this topic at IPAG. The bulk research areas of the team are: studying extrasolar planetary systems, understanding their formation, their physical and atmospheric properties, their relationship with the host star and its environment, and their evolution. As of mid-2014, the permanent staff of this team is: DR CNRS: Fabien Malbet, Jean-Luc Beuzit, Anne-Marie Lagrange, François Ménard Astronomes CNAP: Hervé Beust, Nadège Meunier, David Mouillet, Xavier Delfosse, Thierry Forveille, Alain

Chelli, Christian Perrier, Karine Perrault CR CNRS: Gael Chauvin, Xavier Bonfils, Mickael Bonnefoy Astronomes-adjoints CNAP: Philippe Delorme, Jean-Charles Augereau

The main goals of the team may be listed as follows: The detection of exoplanets from radial velocities, transits, direct imaging, and astrometry. We aim at

enlarging the number of known exoplanets, searching for planets of all masses (down to Earth-sized) around stars of all spectral types. This activity is sustained by the parallel development of methods and numerical tools dedicated to data processing. This includes methods to accurately extract the radial velocity signal from the data, and to correct for parasitic variability sources of stellar origin. We also keep developing statistical fitting tools (MCMC) to reconstruct the orbits of exoplanets from observations.

The characterization of exoplanets, using primary and secondary eclipse transit data, and via direct imaging. This gives access to the photometry and spectroscopy of the exoplanets, and subsequently to a first order physical characterization of their atmosphere and temperature. Combined with radial velocity data, a first estimate of their bulk density is obtained, a prime constraint on internal structure. We plan now to characterize cold atmospheres using low and medium infrared spectroscopy.

The observation of debris disks, via direct imaging, near and mid-IR interferometry, and/or the measurement of their spectral energy distribution. This provides constraints on the population of small bodies (planetesimals) and dust particles in extrasolar planetary systems. Some of these disks harbor indeed exoplanets that are independently detected.

The development of dynamical evolution models, aimed at extending the analysis of the observations and giving access to a global view of the planetary systems. We develop and use symplectic N-body codes to investigate the dynamics of the detected multi-planetary system, to study their dynamical stability, secular evolution, and formation mechanism. A similar work is done with debris disks with the goal to understand both the planet-disk interaction that gives rise to the observed structures and the collisional evolution of small bodies.

The team EXOPLANETS is involved in the development and the use of several instrumental projects directly related to its research topics:

Direct imaging of exoplanets and debris disks: SPHERE (PI), JWST, ERIS Radial velocity detection of exoplanets: SPIRou (Project Scientist), ESPRESSO Detection and characterization of exoplanets using transits: EXTRA (PI), PLATO Astrometric detection of exoplanets: GAIA, NEAT Long term related projects: E-ELT/CAM, E-ELT/IF, E-ELT/HIRES, E-ELT/PCS

A. Observation and characterization of exoplanets and disks Planets around M dwarfs Among the various techniques developed to detect exoplanets, two are very efficient and complementary. Radial velocity (RV) studies look for Doppler shifts induced by orbiting planets in the spectrum of their host stars, giving access to the planet mass, while long-term photometric surveys search for regular occultation events caused by planets transiting the stellar disc, yielding the planet radius. For exoplanets detected with both techniques, one can estimate their density and thus constrain their bulk composition. Provided host stars are bright enough, one can even probe the outer atmosphere of transiting planets using transit spectroscopy, opening the new research field of exoplanetology. Also, chromatic measurements of transit light curves can retrieve the transmitted spectra and to infer the atmospheric chemical composition. In some cases it also reveals atmospheric escape, high altitudes hazes, and winds. The atmospheres of exoplanets can also be studied from occultation spectroscopy, where the star-only spectrum is observed when the planet is behind the star and subtracted to the combined star+planet spectrum outside the occultation. This enables to measure

Page 60: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

59 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

many more properties for favorable exoplanets such as the thermal emission, the temperature-pressure profile, the chemical composition, the climate, and more. In this context, much interest has recently focused on M dwarfs, around which habitable super-Earths are easier to detect. Identifying habitable Earth-like planets and searching for biomarkers in their atmospheres is among the major objectives of this new century’s astronomy, motivating ambitious space missions (e.g., JWST, TESS, CHEOPS, EChO). To be considered as potentially habitable, planets must be within the proper range of orbital distances where liquid water can be stable on their surface. This constraint also puts limits on the atmospheric pressure at the planet’s surface, and thus indirectly on the planet mass. The range of orbital distances for habitable zones (HZs) also strongly depends on the mass (and thus on the temperature) of the host star, with lower temperatures moving HZs closer in. Habitable exo-Earths around M dwarfs are thus expected to produce much larger RV wobbles (4 to 8 times for M4 and M6 dwarfs, respectively) compared to the same planet orbiting a Sun-like star. A 1 m/s RV precision is sufficient to detect habitable telluric planets around M dwarfs, the much shorter orbital periods (of order of weeks) also reducing the timescale over which observations must be obtained. Photometric transits are also much deeper for M dwarfs as a result of their smaller radii (by 11 and 45 for M4 and M6 dwarfs, respectively). A prime goal of the coming years is to discover Earths or super-Earths whose atmosphere can be scrutinized and characterized with space missions (such as JWST and/or EChO). Since atmospheric characterization primarily requires as deep an atmospheric transit as possible on the one hand, and as bright a star as possible on the other hand, nearby M dwarfs are optimal targets for this quest. Last but not least, statistical properties of planets around M dwarfs (compared to those around Sun-like stars) can provide key information on the planetary formation process, and in particular on its sensitivity to initial conditions in the protoplanetary disk. Indeed, M dwarfs dominate the stellar population in the solar neighborhood and likely host most planets in our Galaxy. Our team has embarked in these efforts with two strategies. For more than 10 years, we have developed a strong expertise on the detection of planets around M-dwarfs using RV surveys. We conducted HARPS and SOPHIE RV campaigns that allowed the detection of tens of planets. We are now heavily involved in the realization and the scientific exploitation of CFHT/SPIRou that aims at becoming the world-leader on two forefront science topics, the quest for habitable Earth-like planets around very low-mass stars, and the study of low-mass star and planet formation in the presence of magnetic fields. Based on high-precision RV measurements, the SPIRou planet search we propose will greatly expand the current exploratory studies carried out with existing visible RV instruments (e.g., ESO/HARPS, OHP/SOPHIE) thanks to its increased sensitivity and precision. SPIRou will also crucially contribute to the forthcoming extensive photometric surveys of transiting planets around M dwarfs, either from space or from the ground. Spectroscopy is indeed mandatory to discard false detections (e.g., background eclipsing binaries), to assess the planetary nature of all transiting objects detected around low-mass dwarfs, and to measure their mass from RV measurements. More specifically, SPIRou will contribute to exoplanet science along 2 main avenues, namely: the follow-up of transiting planet candidates uncovered by future photometric surveys (ExTrA, TESS, CHEOPS, PLATO), and a RV survey of a large sample of M-dwarfs. In parallel, we are now leading a novel photometric transit search with the ERC-funded project ExTrA. ExTrA will record spectro-photometric time series of late M dwarfs. Its spectroscopic resolution will help to resolve and correct for atmospheric and instrumental systematics, whereas its infrared sensitivity will boost the efficiency in observing M dwarfs. As a result, ExTrA, whose first light is foreseen for the end of 2015, shall have the sensitivity to detect exoplanets down the size of Mars in the so-called habitable zone of late-type stars. On the horizon 2020-2030, our team will also participate to the PLATO space mission, the deepest survey for transiting planets.

High contrast imaging How do giant exoplanets form and evolve, and how is shaped the architecture of planetary systems are among the most pressing questions of modern astronomy. Giant planets play an important role as they carry most of the planetary system masses, and therefore strongly impact the early dynamics and fate of lighter bodies (lighter planets, planetesimals). They govern the final architectures of planetary systems, their stability, and their capacity to host life, an issue directly connected to the ultimate search for life over the Horizon 2020-2030. A number of steps, astrophysical (formation, evolution, dynamics, structure, and atmosphere), biological (bio-markers), and technical (new technologies developed for next generation of instrumentation), must be carried out in that perspective. The role of observations is crucial to provide constraints that will help to model the diversity of exoplanetary properties. The main observables are the occurrence of giant planets, their physical and orbital characteristics (composition, mass, radius, luminosity, distribution of mass, period and eccentricity), but also the properties of the planetary hosts (mass, age, metallicity, lithium abundance, or multiplicity). Despite the success of radial velocity and transit techniques that reported more than 1000 exoplanets, the relatively short time span of the observations limits the detections to the close (≤ 5 − 6 AU) circumstellar environment. Within the coming years, direct imaging represents the only viable technique for

Page 61: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

60 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

probing the existence of exoplanet and brown dwarf companions at large (≥ 5 − 6 AU) separations. This technique is also unique for the characterization of planetary atmospheres that are not strongly irradiated by the planetary hosts. In this context, our team developed in the past decade a unique expertise in the field of high contrast imaging and spectroscopy, with the discovery of almost half of the imaged exoplanets to date, using mostly NaCo at VLT. We also developed skills for the characterization of cool atmospheres of brown dwarfs and exoplanets to study the physical processes in their atmospheres. We are heavily involved in the realization and the scientific exploitation of the next generation instrument SPHERE, dedicated to the search for and the characterization of exoplanets in direct imaging, an area to which IPAG has recently been a major contributor. With the successful and very promising first light obtained in May 2014, our main objective in the forthcoming years, will be to optimally exploit this instrument (260 nights of guaranteed time for the whole consortium and open time) to study: (i) the formation process of giant planets by analyzing the occurrence and the orbital distributions of giant planets on wide orbits, (ii) the architecture and the dynamical stability of planetary systems by characterizing planet-disk or planet-planet interactions, and (iii) the physics of young giant planets to constrain the evolution processes of giant planets, but also the processes at play in exoplanetary atmospheres (cloud formation and condensation, chemical composition, non-equilibrium chemistry and vertical mixing). The use of the SPHERE near-IR imaging and spectroscopic capabilities will be ideal for these studies. Combining SPHERE observations with other techniques such as astrometry with GAIA or radial velocity will also provide us with a global picture of the giant planet population at all separation for young, nearby stars. Additional instruments, such as VLT/NaCo and VLT/ERIS, will be complementary for thermal imaging studies and enable us to prepare the future scientific exploitation of E-ELT instruments as E-CAM (that will access the planet-forming regions) or E-PCS (for the search for biomarkers). Spectroscopy of A-F stars and search for giant planets As mentioned above, giant planets play an important role in the formation, the architecture, and the evolution of planetary systems. They also impact on the detectability of lighter planets as far as indirect methods (RV, astrometry) are concerned. Moreover, the process by which giant planets (GP) form is still debated. For these reasons, it is crucial to have statistical as well as individual information on GPs at all separations, and for various types of stars. We have thus developed a strong expertise in the search for giant planets using RV around early (A-F) type stars. This research is complementary to the direct imaging activity, which focuses on the characterization of individual planets. Our goal here is more statistical and in the upcoming years we plan to address the following issues: How do giant planet properties depend on the central star mass and properties (2014-2015)? It is natural to assume that the mass of the disk (proportional to the mass of the central star) in which GPs form has an impact on the initial distribution of planet masses and orbital properties. Core accretion-based models predict more massive and more numerous GPs with increasing host star masses. The planets found around M-type stars have mostly sub-Jupiter masses, which supports the core-accretion scenario for the internal GP population. At the other end of the stellar mass spectrum, we will study for the first time, the population of inner GPs around early-type main sequence stars. HARPS and SOPHIE data are already available for this purpose. We will compare the statistical information on the occurrence of GPs around more than 200 A-F stars to that of G-K stars and test model predictions. We shall estimate the fraction of “hot Jupiters” (P < 100 days, a < 0.5 AU) around massive stars and get period distributions up to typically 1000 days (~ 2 AU). So far, no short period planets have been identified, and the few planets detected have periods of a few hundreds of days. We will finally test whether massive main sequence stars hosting close-by planets are over-metallic, like solar-type stars, and test how efficient is the pollution of their thin surface convective envelope by planets. Can we get a full exploration of the GP population around a sample of stars (2014-2018)? Although GPs represent a significant fraction of the planets detected so far (50% have masses 1 MJup and 67% have a mass greater than Saturn's mass), we are far from having a complete knowledge of their occurrence, their diversity, and their properties. The GP exploration with RV techniques is indeed limited today to typically 5 AU from the stars (and even closer, 1 AU, for transiting planets). Hence a solar-system analog would be out of reach of present detection capabilities, not only for telluric planets but also for giant ones. Decades would be needed to detect and characterize planets with large semi-major axes with indirect techniques (for instance, Saturn orbiting at about 9.5 AU has an orbital period of 30 yr). Moreover, GPs around MS solar-type stars will not be within the reach of the next generation planet imagers. Therefore, a full exploration of the giant planet population around mature, solar-type MS stars will not be possible until at least the ELT era. We will intensively use HARPS and SOPHIE (two large programs started in 2013) to explore the inner GP population of a selected sample of young stars, while we will use SPHERE to explore their outer environments. During this 3 yr-survey, we will search for and characterize GPs down to sub-Jupiter masses, with periods up to 1000 days (a 2 AU), and identify GPs with periods larger than 1000 days and up to 4000 days (a~2-5 AU). GAIA and HARPS

Page 62: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

61 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

data obtained on a longer time scale will be used for a full characterization, thus opening the way to a full GP exploration.

Debris disks and Exozodis In the solar system, the formation of planets and their subsequent dynamical evolution have resulted in a quasi-total depletion of planetesimals inside the orbit of Neptune, with the noticeable exception of the asteroid belt between Mars and Jupiter. Leftover planetesimals that were not incorporated into planets are today arranged in the form of the Edgeworth-Kuiper Belt (EKB) beyond the orbit of Neptune, and is dynamically sculpted and excited by the planets. Mutual collisions between EKB objects release dust particles that spread over the outer solar system. Similarly, about 20% of solar-type stars are found to be surrounded by cold, tenuous optically thin disks composed of short-lived micron-sized dust grains, resembling to our EKB in many respects. These so-called “debris disks”, which contain much less dust mass than young disks (typically 10−3–10−1 M⊕), may survive over billions of years, pointing towards the presence of large reservoirs of colliding asteroid- and evaporating comet-like bodies. Therefore, dust in debris disks is intimately connected to its parent bodies, the invisible leftover planetesimals that sensitively respond to the gravity of planetary perturbers and can thus be used as tracers of unseen planets. This has been successfully demonstrated in the case of β Pictoris whose now directly imaged planet was predicted to exist from dynamical simulations of its debris disk a decade before the discovery. New instruments are just starting to provide high-resolution images of debris disks. ALMA is readily tracing the population of planetesimals, and SPHERE is about to yield complementary images of the distribution of the smallest grains (cf. PR ESO 417, June 2014), with many of the debris disks hosts being also searched for exoplanets by direct imaging. By observing the dust emission and the light scattered by dust, one can derive their spatial and size distributions, the properties and composition of grains and of their parent bodies, and ultimately, the presence of planets if structures or asymmetries are identified in the disk. To achieve that level of knowledge, we will use a suite of software that we developed to a large extent, which reduce angular differential images obtained with SPHERE (J. Milli's PhD thesis), model the dust emission at all wavelengths (GRaTer code, e.g. J. Lebreton's PhD thesis), and compute the dynamical evolution of the systems. Hot dust located in the innermost regions of extrasolar planetary systems, within a few astronomical units from the central star is also detected with near/mid-IR interferometry but its origin and properties are poorly known. This component is known as “exozodiacal” dust, or “exozodi”, to reflect the similarity with the Solar System’s zodiacal cloud. The study of exozodis has become a rapidly emerging theme due to its direct connection to the dynamical evolution of planetary systems, in particular in the innermost, potentially habitable regions. As part of our ANR EXOZODI project, we have achieved the first surveys of exozodis and derived the first statistics using near-IR interferometry (CHARA/FLUOR, VLTI/PIONIER), and showed that exozodis appear randomly, independent of the age of the star, but are common. We also proposed the most detailed models of exozodis (J. Lebreton's thesis), and we have examined various dynamical scenarios to elucidate their mysterious origin. In particular, we believe that the presence of an exozodi may be a clue for an extrasolar cometary activity connecting the inner and outer regions of planetary systems, and requiring the presence of (relatively low-mass) hidden planets. The expected arrival of new interferometric instruments, in particular the LBTI, VLTI/GRAVITY, and VLTI/MATISSE will further improve the detection statistics of exozodis. Most importantly, these will provide panchromatic measurements from the near- to the mid-IR, which are critically missing for most systems to infer the basic properties of the inner dust grains. This will provide ground results for future dynamical models, and new promising scenarios involving for instance the interaction between the star magnetic field and very small, charged dust grains. Overall, exozodis are the subject of a growing body of research and IPAG is at the forefront of these studies. B. Models and global studies

Dynamical Modeling The main goal of dynamical studies in Exoplanets is to provide support to the observational programs. There are two major activities. First, we develop and use symplectic N-body codes to model the dynamics of planetary systems. This helps constraining their internal structure and specifying unknown characteristics. Concerning multi-planetary systems, investigating their dynamical stability helps to put further constraints on masses. In forthcoming years, systems with low-mass planets, orbiting in the habitable zone of their host stars, will be discovered with new instruments like SPIRou and ExTRA. We will use our codes to investigate the dynamics of these systems. The same also applies for debris disks. N-body codes are used to model structures observed in the disks, the way they can be generated by planetary perturbations (or by stellar companions), their formation mode, and how they may evolve. We use our codes to simulate the dynamical evolution of planets, planetesimals, and dust grains, including planetesimal-driven migration of planets. This helps to understand the global

Page 63: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

62 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

architecture of a planetary system. This work has already been performed on several systems (e.g. Fomalhaut), and in forthcoming years, we expect a wealth of new systems to be discovered by ALMA and SPHERE that will need similar modeling. Our first objective is to maintain and develop our capability to efficiently model these new systems as they appear. This does not only mean using our current codes, how efficient they are. We also need to improve them, essentially by adding new physical effects upon request. Thus, tides have been recently incorporated to the current code. In upcoming years, we will start using a brand new code with unique features developed in the context of the ANR EXOZODI project, which is able to handle both the collisions between bodies of all sizes and the dynamics of a planetary system with a debris disk (LIDT-DD code). Soon to be coupled with the GRaTer radiative transfer code, it will become a fundamental asset to our modeling capabilities. This expertise is crucial to prepare to the arrival of JWST and other high-angular resolution and/or infrared observing facility. A second part of our activity concerns the development of fitting tools to reconstruct planetary orbits from astrometric and radial velocity data. This is of course related to N-body investigations, as the orbital solutions we derive can be used as starting points to the N-body models. We have thus been developing MCMC statistical codes that are extremely useful to constrain the orbits of low-mass companions directly imaged with adaptive optics devices. Usually, only a small part of the orbit is covered by the observations, and the use of MCMC is crucial to efficiently derive probability maps for the orbital elements. In forthcoming years, many new companions imaged by SPHERE will require this kind or orbital fitting to constrain their orbits. In some cases also, we will have both astrometric and radial velocity data. We plan to develop new versions of our software able to handle these various sets of data simultaneously. Our next goal then is to improve the fitting tools in such a way that it takes into account the dynamical perturbations within the fitting procedure, which means combining MCMC with symplectic integration. This improvement is necessary to model multiple systems that will be discovered with SPHERE or SPIRou, and constitutes one of our main goals.

Stellar activity studies We have shown that stellar activity strongly impacts the detectability of exoplanets. In the case of the Sun for instance, the radial velocity impact is dominated by the attenuation of the convective blueshift in plages while, in astrometric signals, it is mostly due to the presence of dark spots and bright plages. Our activity has covered complementary observational approaches, i.e., the use of solar features to simulate RVs, the analysis of various stellar activity diagnostics responsible for signal perturbations, and the simulation of simple activity configurations. The key issues we are considering are the following: is the observed signal variability (RV, astrometric, photometric) due to stellar activity or to an orbiting planet? What is the impact of stellar activity on detection limits? Can we model and subtract, and to which accuracy, the signal due to stellar activity? Our future work will deal with these three issues. We will extend our solar simulation of RVs (HARPS, SOPHIE) and astrometric (NEAT) signals to other stars (solar-type and M stars) and include short-term variations due to convection at different scales. This will allow us to consider the impact of stellar activity on transits as well (EXTRA project). This goal requires a better understanding and characterization of stellar activity for various stellar types, and an in-depth investigation of the relationship between convection and activity. An extension of this work to infrared wavelengths will also be important for SPIRou. Overall, we will pursue our studies to correct for the stellar activity impact, using different techniques (convection, Doppler imaging), with emphasis on multi-instrument approaches (photometry-RV-astrometry, Vis-IR RV, interferometry, etc.). With an empirical approach based on the analysis of activity indices such Ca, Hα or line FWHM, we demonstrated in few case the possibility to determine if an RV signal is due to activity, and we proved the possibility to subtract it. In the case of Gl176 and Gl674, the subtraction of the RV jitter due to activity allowed the detection of Super-Earth and Neptune planets in the system. We will extend this approach in several directions: the determination of the relationship between Ca emission and the rotational period of M-dwarfs (Astudillo thesis), the use of RV determination in a large wavelength domain, from optical to near infrared, as the RV jitter is chromatic (Cabrera thesis), and the use of polarimetric signal taken at the same time as the RV data, allowing us to filter the activity jitter from Zeeman monitoring. The two last points will be applied to the RV monitoring survey to be conducted with SPIRou. Stellar activity is not only important for exoplanet detectability, but it also directly impacts planetary atmospheres. In collaboration with the team PLANETO, we plan to study the impact of stellar activity on planetary atmospheres and therefore on exoplanet habitability. More specifically, we will investigate the impact of stellar winds on planets depending on their properties as a function of age and global evolution of the star.

Page 64: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

63 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

4.5ProspectiveoftheteamPLANETOOur team is deeply multidisciplinary and will continue to address key issues in the field of Planetary Sciences through its broad array of expertise. Our global strategy for the next five years will still rely on space exploration, data modeling, experimental simulations, and chemical analysis of cosmomaterials. We present our perspectives along two main themes as (1) Small Bodies / Solar System Formation and (2) planetary Evolution, and a third section will present specific activities in innovative developments.

A – FORMATION OF THE SOLAR SYSTEM Internal structure, surface and bulk compositions of small bodies. Cosmomaterials analysis. Cosmochemistry. The exploration of small bodies is a key goal for understanding the formation of the Solar System. Their composition and structure bring insights into the chemical and physical processes that happened in the protosolar disk, and which led to the reprocessing of inherited dust from local interstellar medium, formation of the first solids, planetary accretion, and subsequent dynamical evolution. Our strategy here relies on complementary approaches that aim at exploring the internal structure, surface composition, and bulk composition of small bodies. Our activities will include studies on specific target (e.g., P67/Churyumov-Gerasimenko), which provide sophisticated degrees of information but lack a statistical vision of the population of small bodies. In this regard, our activities will turn to broader surveys (e.g., Trans-Neptunian Objects, systematic studies across meteoritic groups and interplanetary dust), which offer a better view on the chemical and dynamical diversity of the Solar System. [A1] Spectro-photometry of dark surfaces of small bodies. A large part of our activity will be devoted to the analysis of VIRTIS data, and to deepen our understanding of reflectance spectro-photometry of dark surfaces (in particular the connection between asteroid spectral groups and meteorites). Another objective will be the interpretation of observational data obtained in the Vis-NIR for Trans Neptunian Objects. We will analyze the data gathered by the New Horizons mission to Pluto, its satellites, and possibly one or two TNOs. We will also get involved in ELT observations. We also aim at building a new reflectance spectro-photo-gonio-radiometer, specifically designed to characterize small dark samples. Through collaborations (in particular with IAS and CSNSM at Orsay), we will investigate the effects of space weathering on the photometric and spectroscopic characteristics of Vis-NIR reflectance, an essential aspect to understand the evolution of planetary surfaces in the outer solar system. [A2] Understanding the composition of interplanetary dust. Cosmomaterials analysis will be pursued but strategically focused on micrometric dust (e.g. stratospheric interplanetary dust particles, HAYABUSA grains, micrometeorites through collaborations) and innovative approaches on free organics in meteorites. A clean room equipped with storage and micromanipulation facilities is currently under installation in IPAG. Innovative analytical approaches will consist in combining chemical and isotopic micro-imaging techniques, and in the exploitation of High Resolution Mass Spectrometry thanks to the Orbitrap instrument at IPAG and to external Fourier Transform Ion Cyclotron Resonance instruments through collaboration. Those activities are strategically important to strengthen our international visibility and to prepare the future, such as accessing to the forthcoming precious samples from the OSIRIS-REX and HAYABUSA 2 space missions. [A3] Probing the interior of comet P67/Churyumov-Gerasimenko and modeling comet activity. The tomographic data from the CONSERT instrument onboard ROSETTA will be the very first direct measurement of the internal structure of a small body. A full analysis of the data will require numerical simulations lasting for several years after completion of the mission. Modeling accretion and internal structure of a cometary nucleus will be a major goal over the period 2016-20, as it will feed the interpretation of the CONSERT data. The modeling effort will be extended to other small bodies, such as asteroids, in collaborations with IRAP (Toulouse) and OCA/Lagrange (Nice). Modeling comet activity will also be pursued to interpret the gas production curves of the comet as probed by different instruments (including VIRTIS), and will also have connections with internal structure modeling. Indeed, huge amount of data will arise from the 20 instruments onboard ROSETTA. Their cross analysis and modeling should provide a more comprehensive understanding of the structure and primordial composition of the comet.

B - PLANETARY EVOLUTION. Martian geology, water and dust cycles. Chemistry and molecular complexity in the atmospheres of Titan and Mars. Aeronomy and space weathering. Habitability of Jovian satellites. Our activities on evolved objects relate to the surface and subsurface of Mars, with special attention to surface-atmosphere interaction and climatic cycle; chemistry in upper atmospheres of Titan and Mars; aeronomy and space weather, with issues on climate change. The preparation of the JUICE mission is also an important objective, due to the strong implication of the team in several instruments.

Page 65: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

64 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

[B1] Mars: climatic volatiles cycles and dust cycle. The characterization of the surface and subsurface of Mars is an issue of primary importance, as their volatile content is connected to the long and short-term climatic evolution. Our team will continue its activity of characterization based on the analysis spectro-imaging data and radar sounding. Mars is a geologically weakly active planet, but its surface is geologically rich. A broad variety of glacier processes have been observed and are controlled by the climatic cycle of the planet. The understanding of atmospheric dynamic requires characterizing simultaneously the evolution of CO2 and H2O that are present as either gas or solids at the surface. Our strategy relies on an approach combining the analysis of spectro-imaging data (OMEGA/MEX, CRISM/MRO, MAVEN) to experimental studies aiming at understanding both microphysical processes and the parameters controlling the reflectance signal during volatile evolution. Another activity will aim at characterizing the dust cycle in connection with Global Circulation Models. The Martian subsurface has been probed by the MARSIS and SHARAD radars, aboard the Mars Express and MRO space missions, respectively. We will continue developing sophisticated models to interpret the full set of data. Dielectric permittivity and volumic scattering should be determined along the first hundred of meters, thus providing new constraints on the nature of the geological terrains. A challenging goal is to quantify the amount of ice present in the Martian subsurface. The team is also involved in the radar WISDOM onboard EXOMARS. This instrument will probe the very shallow surface with a centimetric spatial resolution, and opens the exciting opportunity to confront radar sounding and spectro-imaging probing. [B2] Jovian moons: preparing the JUICE mission. The JUICE mission operated by ESA (launch 2022-end mission 2033) aims at investigating the composition and internal structure of Jovian Moons to assess their internal dynamics, their surface evolution as it interacts with space weathering, and eventually their habitability. Our team is involved in the spectro-imager MAJIS and the radar RIME. The preparation of this mission will be part of our activity over the period 2016-2020. [B3] Atmospheric chemistry of Titan and Mars. Atmospheric chemistry of Titan will be pursued by the development of chemical models constrained by INMS and CAPS data (CASSINI-HUYGENS mission). Meanwhile, experimental studies will be pursued to determine branching ratios, kinetic constants of reactions, and the nature of molecular products. The effects of various parameters also will be tested, such as temperature, excited and transitory states, etc. Over the last years, these measurements have been mainly performed on synchrotron beam lines. Recently, we equipped our Orbitrap instrument with a reaction cell, thus enabling the investigation of ion-molecule reactions at IPAG. We will basically favor two complementary approaches: (1) bottom-up, consisting in studying experimentally individual reactions, and feeding chemical models and (2) top-down, consisting in analyzing the final products from analogs arising in the assumed conditions of Titan’s upper atmosphere (e.g. tholins). Our strategy thus relies on combining observational analysis, modeling, and experimental simulations. In 2014, we should be involved in the analysis of the NGMS instrument aboard the MAVEN mission, and initiate a new activity on the chemistry of the upper atmosphere of Mars. [B4] Aeronomy and Space weather. Activities related to Space weather and to the physics of the upper atmosphere will focus on Earth over the 2016-2020 period. The strategy is twofold: (1) to extend the models to low altitude, to study the effect of solar activity on the troposphere and address some climate change challenging issues; (2) to investigate the interpretation of polarization in auroral lines over the spectral range 400-700 nm. For this latter purpose, we have designed an instrument that operates in this spectral range and is being built at Institut d’Aéronomie Spatiale de Belgique. The main issue here lies in understanding the parameters that control polarization, and to propose new tracers of the physical state of the ionized upper atmosphere.

C - INNOVATIVE DEVELOPMENTS, DATABASES AND OTHERS This section highlights developments of innovative tools and methods, which are shared with or provided to colleagues in France and abroad. [C1] Instrumentation: the team is deeply involved in the development of instruments aboard spacecrafts, as well as on ground-based instruments to observe auroras. Three researchers have a full time activity in this field, 8 out of 13 are co-I or associated scientists of an instrument in a space mission. During the 2016-2020 period, we will continue to investigate innovative approaches in radar and spectro-imaging sciences, in particular with strong relationships with the team CRISTAL (e.g. radar studies, implementing SWIFT-related technology on spectro-imagers or Raman remote sensing). The Premier Cru telescope aiming at studying auroral emission and presently under construction should provide first measurements during 2016-2020. [C2] Modeling, signal and image treatments: developments in modeling, signal, and image treatments are being performed in order to interpret the observations. Strong efforts will be dedicated to model the propagation of electromagnetic waves in order to fully exploit CONSERT data, as well as data from other instruments on current (MARSIS/MARS-EXPRESS) and future (WISDOM/EXOMARS) missions. The modeling of comet activity will be pursued, and will take advantage of laboratory experiments to constrain the physics of

Page 66: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

65 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

thermodynamics exchanges, as well as the production curve of the ROSETTA target P67/Churyumov-Gerasimenko. Innovative approaches in image treatments and 3D radiative transfer will be pursued. [C3] GhoSST and SSHADE databases: the GhoSST database is a National Observation Service (SNO) supported by INSU. It offers spectroscopic data relevant to solids of interest in Planetary and Earth sciences. Presently, the database structure is completed and is being fed. Offering a full database is a main objective of the 2016-202 period. The SSHADE project aims at providing a database infrastructure to the European producers of laboratory and field data on solid spectroscopy. [C4] Analytical chemistry: methodological developments are underway in our team. The HRMS Orbitrap allows characterizing complex organic mixtures in natural or synthetic compounds. The analysis of their mass spectra is challenging due to the high density of information they carry. Our team has developed innovative concepts and algorithmic tools. Further software developments and valorization is a major goal. Other developments deal with innovative approaches for extraction techniques of organic matter from rocks, soils, and dust in collaboration with soils and aerosols scientists. [C5] Experiments: we will develop a new reflectance spectro-photo-gonio-radiometer that will allow us to characterize spectral and photometric properties of the dark surfaces relevant to small bodies. This new instrument should be complementary to the present one that has been designed to study ices and transparent solids. This type of instrument has only few equivalent worldwide, and will allow us to feed insightful data to the Ghosst database.

Page 67: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

66 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

4.6ProspectiveoftheteamSHERPASThe scope of the team SHERPAS includes theoretical, numerical, observational, and instrumental activities. We hereafter develop the most important projects of the team for the next years, along the following topics:

The physics of accreting systems: magnetized accretion-ejection structures and protoplanetary disks. High-energy astrophysics: theory of particle acceleration, especially in relativistic shocks; modeling the

high-energy emission of compact objects: X-ray binaries, Seyfert galaxies, sources of high (GeV) and very high (TeV) energy gamma rays.

Implication in instrumental collaborations: high-energy telescopes: atmospheric Cerenkov telescopes (HESS) and gamma-ray satellites (Fermi), X-ray satellites, and interferometry applied to compact objects (Gravity).

Astrocladistics and the classification of astrophysical objects In the next sections, we develop both the scientific context and the future research plans for each topics. A. The physics of accreting systems: protoplanetary disks and magnetized accretion-ejection structures Numerical simulations provide a precious tool to explore the fundamental processes in magnetized plasmas, especially to resolve the still unanswered question of the origin of the turbulence in accretion disks, and the generation of jets from accreting systems. This activity has been recently reinforced thanks to the recruitment of Geoffroy Lesur, a young "Chargé de Recherche" in CNRS, who recently developed fundamental studies of protoplanetary disks where the ionization fraction is very low. These studies are also directly relevant to the scientific activity of the team FOST. The structure and temporal evolution of protoplanetary disks is dictated by the dynamics of their gas and dust content. On the theoretical side, it is now widely believed that the interplay between gas and magnetic fields plays a major role in disk evolution (outflows & MRI turbulence). On the observational side, thanks to high-resolution observations (e.g., ALMA), we now have increasing evidence for the presence of localized structures in the disk that are usually interpreted as gaps, spirals, or vortices. We are therefore reaching a point where theoretical predictions from first principles could be confirmed (or falsified) by direct observation. In order to make this connection, accurate dynamical disk models are needed and this involves taking into account the specificities of protoplanetary disks. Most notably, the ionization fraction, which controls the number of free charge carriers in the gas, is one of the most critical parameters. The ionization fraction in protoplanetary disks is dramatically low (typically less than 10-12), making non-ideal plasma effects (Ohmic resistivity, ambipolar diffusion, and Hall effect) essential to understand the gas dynamics. Recent results indicate that non-ideal plasma effects indeed tightly control turbulence, large-scale structures, and outflows. The ionization fraction of protoplanetary disks is a problem on its own. The fraction is controlled by the disk chemistry, the size distribution of dust grains, and the ionization rate from UV photons, X-rays, and cosmic rays. In order to make realistic predictions regarding the dynamical properties of accretion disks, one therefore has to couple chemistry and non-ideal plasma effects into a single model. We will thus combine our fully non-ideal MHD models implemented in the PLUTO code to astro-chemistry calculations obtained with the Astrochem code developed in team ASTROMOL. This will allow us to produce the first self-consistent protoplanetary disk model including all non-ideal plasma effects computed from a realistic chemical network. This model will provide the first realistic and quantitative constraints on the amount of turbulence stirring, the efficiency of outflows, and the production of large-scale structures (vortices, zonal flows) in protoplanetary disks. A very common feature observed in accreting systems is the ubiquitous presence of jets. Most of our current understanding of the disk physics so far comes from local shearing box simulations. A natural drawback is the difficulty to infer a global picture of the disk. For instance, a radial transition from a non-ejecting Standard Accretion Disk (SAD) to a Jet Emitting Disk (JED) cannot be obtained. It turns out that MRI spontaneously evolves into disk winds when the disk magnetization reaches a value close to equipartition, which is precisely the predicted value for JEDs. It is therefore quite timely to turn to global 3D simulations of accretion disks with a non-zero net magnetic flux. This is particularly relevant to the variability and the transition between different spectral states in black hole binary (BHB) systems. According to the paradigm we proposed, the innermost disk regions around a BHB would be in a JED state whenever the magnetic field strength becomes large enough. Understanding the complex phenomenology of BHB requires addressing the amount of magnetic flux available in the close vicinity of the black hole but also if, and under which conditions, this flux could change in time. One thus needs to compute how the large-scale vertical magnetic field varies on the accretion timescale, and to take into account how it affects the disk structure (torques, jets). Such a model is highly challenging. It would require global

Page 68: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

67 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

simulations over 2 or 3 decades in radius over at least one accretion time scale, which is far beyond the actual computational capabilities. In parallel of these dynamical studies, we will also develop new numerical tools to produce broadband spectral energy distributions (SEDs) directly comparable to observations. This will be done in collaboration with the IRAP and AIM groups. The former group will provide a radiative transfer code for the precise computation of the disk energy equation as well as the production of the SED including all radiative processes. The latter group will yield a large panel of observational constraints to test the theoretical framework. Contracting young protostars are slow rotators in spite of accreting angular momentum from their circumstellar disk. None of the proposed models so far (X-winds, Accretion Powered Stellar Winds) seem to be able to spin down these young stars. We proposed that intermittent Magnetospheric Ejecta (ME), triggered by reconnection events occurring at the star-disk interface, could efficiently extract angular momentum from the star-disk system, thus solving the long-standing angular momentum problem of T Tauri stars. These MEs are however uncollimated and need to be confined by an external medium such as a disk wind. 2D/3D simulations with the MHD code PLUTO will be performed to simulate the dynamics of MEs in presence of an outer wind. The goal is to upgrade current MHD simulations of the star-disk interaction process, and also to thoroughly understand the dynamics of accretion-ejection systems when complex magnetic field topologies are involved. B. High-energy astrophysics The theory of particle acceleration in shocks has undergone substantial progress in the last decade, motivated by high-resolution X-ray observations of supernovae remnants (mainly by Chandra). These observations have revealed a strong amplification of the ambient magnetic field in the shock, due to non-linear processes associated with the presence of non-thermal particles. This has motivated the development of new theoretical studies and numerical codes, particularly the « Particle in Cells » (PIC) class of codes that have revealed a complex and interesting physics, coupling non-thermal particles to a variety of instabilities. One of the remaining open issues is the generation of ultra high-energy cosmic rays (UHECR), whose origin is certainly extragalactic but the actual sources are still unknown. A promising candidate would be gamma-ray bursts (GRBs) that are thought to produce highly relativistic ejections, and appear as an attractive solution to accelerate cosmic rays. Yet, our detailed study of the efficiency of the acceleration process in highly relativistic shocks shows that the average magnetic field is very efficient to lock the phase space of the non-thermal particles, which then undergo only modest acceleration. In other words, highly relativistic shocks are actually not so good at producing UHECR. The well-studied Weibel instability, which produces a filamentation of the plasma, does not allow an efficient transport of the particles across the filaments either. A new kind of instability, associated with the development of whistler waves traveling with the shock front, appears to be much more relevant. The efficiency seems to be maximal in mildly relativistic shocks (possibly associated with the inner return shock of GRBs). It would now be interesting to develop hybrid codes that would allow us to describe both MHD and Hall turbulence together with a kinetic description of accelerated particles. The future of this activity in the team is strongly dependent on the possible recruitment of a young researcher. It has relied up to now mainly on the works of Guy Pelletier, who is currently emerite professor, and his PhD student, Illya Plotnikov, who is looking for a post–doctoral position. It is thus critical that the expertise and skill of these researchers can be kept in the group and transmitted to a new generation, but the possibility of such a development in the next years is still uncertain. Another promising field of research is the study of reconnexion processes, which occur in regions where magnetic field lines reconnect and usual MHD approximations break down. There have been recently significant advances in the simulation of the particle distribution formed during reconnexion events, showing a strong, energy dependent, anisotropy of the emitted particle and radiation, which could explain highly variable events such as the Crab flares discovered in gamma-rays by Fermi. These studies have been performed by Benoît Cerutti (currently in Princeton as a Spitzer fellow) during his postdoctoral stay in Boulder, and who could potentially lead this new research within the team. Gamma-ray emission traces high-energy particles, thus offering a window on acceleration processes and on the importance of energy release via non-thermal channels in astrophysical sources. The latest gamma-ray observatories have revealed a wide variety of new source types and phenomena that we have been struggling to understand. The new source types (misaligned AGN jets, bubbles, colliding winds, novae, starburst galaxies, etc.) prove the ubiquity of particle acceleration, whose importance in shuffling around energy we only start to realize. Fast gamma-ray variability in pulsars and blazar jets challenges diffusive shock acceleration and indicates that reconnection processes may play a central role. Detailed models are required to interpret the observations, derive particle acceleration, and understand its impact. Radiative processes need to be investigated in ever-greater details to take into account emission/absorption anisotropies, polarization, relativistic effects, etc. Particle evolution and diffusion must

Page 69: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

68 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

be followed from injection to escape in order to locate precisely the high-energy emission. The dependence of particle acceleration on local conditions, its feedback effects, must also be included to provide a comprehensive and self-consistent picture. This represents a daunting task, but one that computing power is bringing closer to us. Time-dependent simulations of relativistic outflows can now be used as background for particle evolution and emission, replacing obsolete single zone models. Progress is also being made on characterizing particle acceleration from ab initio conditions using PIC simulations. Coupling all of these studies will soon be within reach. We aim at developing such tools and apply them to our areas of foremost expertise (binaries, AGNs), with our sights set on the connection between relativistic outflows and particle acceleration. In contrast to the very high-energy emission of jetted radio-loud objects, radio-quiet AGNs emit the bulk of their luminosity in the UV and X-ray domains. Their spectral energy distributions (SED) are characterized by a UV bump peaking in the UV range, and an apparently non-thermal X-ray power law component extending up to at least 100 keV. A majority of objects show also the presence of a soft X-ray excess relative to the high energy power law. The origin of these components is not well understood, but the basic paradigm assumes that the gravitational energy released by the accreting gas is dissipated partly in UV as thermal heating in an optically thick ”cold” phase, the accretion disk, and partly in X-rays/γ-rays in a hot and optically thin plasma, the so-called corona. But beyond this commonly accepted picture, several issues remain: what are the geometry, dynamics, and energetics of the accretion flow onto the black hole? What processes are at the origin of the high-energy emission released in their close environment? It becomes increasingly obvious that correct answers to these different questions necessarily require broadband observations. Simultaneous information in the UV and X-ray/γ-ray bands are sorely needed to constrain the nature of the different processes acting in disk-corona system. The use of simultaneous UV and X-ray data is also extremely valuable to study outflows and assess their physical and kinematical-dynamical. Current X-ray facilities (e.g. XMM-Newton, Chandra, Suzaku, INTEGRAL, Swift, etc.) are still accumulating precious data on AGNs. The existing archive (noticeably that of XMM-Newton) contains a huge amount of measurements that are continuously used to refine our observational knowledge. New observations (from e.g. NuSTAR or soon with ASTRO-H) will become available in the next years, potentially bearing new discoveries. In this favorable context, we will perform a systematic and detailed spectral analysis of the best quality data of a large sample of AGN by using the most up-to-date high-energy radiative models. We thus hope to make a decisive break-through in our understanding of these objects. The use of realistic and up-to-date comptonization models will allow us to derive the physical and geometrical parameters (temperature, optical depth) of the plasma components responsible for the UV and hard X-ray emission. Through international collaborations, we will contribute to the broad band monitoring of single objects (NGC 5548, NGC 4593), to archival databases (especially the XMM-Newton one but also Chandra, Suzaku, INTEGRAL, Swift, BeppoSAX), and to new observations from NuSTAR (and on a longer term ASTRO-H). C. Implication in instrumental collaborations In all the areas described above, progress has been and will still be driven mostly by observation. The team SHERPAS has been involved for years in the development of new high-energy facilities, especially in the field of very high-energy telescopes, with an active participation in HESS (G. Henri is the current convener of the Extragalactic Working Group). The worldwide gamma-ray community has now united to propose the Cherenkov Telescope Array (CTA). The goals of CTA are (1) to understand the origin and role of cosmic rays, (2) to probe extreme environments, (3) to investigate very high-energy emission on cosmological scales, and (4) to explore the frontiers of physics. To achieve these goals, CTA will be an open observatory with a factor 10 improvement in sensitivity, a field-of-view of more than 8 deg, an angular resolution down to 2 arcmin at 1 TeV, and an energy coverage ranging from about 50 GeV to at least 50 TeV. IPAG takes its share of responsibility by developing light guides for the telescope cameras and by participating in the definition of the science goals and requirements, especially concerning surveys. We are strongly supporting CTA, with a construction foreseen to begin in 2016. As an open observatory, CTA will empower the community and, to enhance the scientific return to IPAG, we plan to further strengthen our collaboration with the team ASTROMOL on cosmic-ray ionization of molecular clouds and seek closer links with nearby CTA groups with expertise in gamma-ray observations. The team will also be involved in the scientific studies around the future L2 mission accepted by ESA « Cosmic Vision » program, under the theme « Hot and Energetic Universe » (Horizon 2028). The best candidate for the mission is the Athena+ project, which should include a very high spectral resolution X-ray spectro-imager and a wide field imager with a very high temporal resolution (down to microsecond). These instruments should considerably improve our knowledge of X-ray emitting compact sources, which are of crucial importance for our studies.

Page 70: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

69 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

The team has also been involved in the design and use of very high-resolution interferometers, such as AMBER and PIONIER at VLT. We will also closely follow the development of GRAVITY, a new interferometer specifically designed to study the immediate environment of the central supermassive black hole of our galaxy, and which could also be used for a variety of compact objects. High-resolution observations should bring new and extremely interesting insights on the physics at work in the innermost central regions around black holes, being able to resolve the Schwarzschild radius of the galactic central black hole. D. Astrocladistics and the classification of astrophysical objects

Astrocladistics (http://astrocladistics.org/) is an original approach to study the evolution of astrophysical objects that Didier Fraix-Burnet proposed about 10 years ago. We will pursue its developments in two directions. Firstly, we will continue to progress on a general multivariate classification of galaxies. After a first goal was reached in 2012 with the first tree of galaxy evolution, extension to other kinds of galaxies will be undertaken. For this purpose, new collaborations will have to be found. Secondly, we have demonstrated how cladistics in general is useful to establish relationships between objects. Successful applications have been made on globular clusters, gamma ray-bursts, and stars. For the coming years, we will investigate the classification of AGNs within the team SHERPAS. This activity around astrocladistics and more generally around multivariate clustering, and the relations D. Fraix-Burnet has established with the community of statisticians in Grenoble, in France and around the world, may have played some role in spreading the use of sophisticated statistical tools at IPAG. A strong need for discussions, formation, and mutual help has emerged, so that we will propose to create at IPAG an expert group (or a “Transverse Axis”) on astrostatistics/astroinformatics for the next quinquennial contract. This group will be opened outside the institute, in particular to statisticians in Grenoble and to members of OSUG. D. Fraix-Burnet leads the French community of astrostatistics (http://astrostatistics.obs.ujf-grenoble.fr/). An ANR project gathering astronomers and statisticians around common goals has been submitted in 2013. Our goal is to create a GdR at the horizon 2020. The first workshop organized on this topic in France took place in 2011 at IPAG, and we intend to give it a regular basis, ideally every year. Also, the first school on astrostatistics was organized by IPAG in October 2013 and was very successful. It will be repeated every two years, focusing on a different topic each time, and targeting a European audience. An ETN project for astrostatistics/astroinformatics is also proposed in 2014 in collaboration with teams in Italy and Germany, to foster this discipline at the European level. Close collaborations are also established with Indian colleagues, both in Calcutta and at IUCAA in Pune. The later institute is central for astrophysics in India, and develops VO tools to help astronomers with statistical analysis. All these projects promote IPAG as a dynamical center, unique in France, for astrostatistics / astroinformatics, a discipline that has recently emerged is developing fast (https://asaip.psu.edu/).

II. ANNEXES

Page 71: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Section des unités de recherche

70 Vague A : campagne d’évaluation 2014-2015 Janvier 2014

ANNEXE 3: IPAG 2016-2020

IPAG platforms & equipments Are listed all constructions or equipments that permit IPAG to realize projects internally or externally funded.

Identification Description and associated projects

Integration Hall Hall for instruments assembly (NAOS;AMBER;WIRCAM;SPHERE)

Mechanical workshop

Optical Alignment facility Autocoll, wavefront analysis, shear interferometers

BETTIi Achromatic VLTI bulk simulator (RAPID ; NAOMI)

SYLVI VLTI Fibered simulator with dispersed fringe detection (Picnic) (IONIC ; PIONIER ; GRAVITY)

Orbitrap High Resolution Mass Spectrometry

Spectro-photo-goniometer Experimental setup placed in a cold chamber for the measurement of the bidirectional reflectance factor of planetary analog materials.

Planetary Spectrometry Microscopy and spectrometry facility for characterizing molecular solids and extra-terrestrial materials.

Chemical Laboratory Chemical analysis of extra-terrestrial material, mostly meteorites (extraction of insoluble organic matter and handling of microscopic objects)

SERAC & Carbo-NIR Controlled cells developed for studying hydrated minerals under the Martian environment, the microphysics of CO2 condensation, the metamorphosis of the carbonic snow and the associated spectral evolutions.

Consert lab Electronic and computing facility for the calibration of the Consert instrument, for numerical simulations of wave propagation through comet nucleus and for the visualization of data.

Infrared Nulling Bench to characterize infrared integrated optics in nulling condition (IODA)

Spectrometer for Infrared Integrated Optics

Characterisation of infrared integrated optics components (Smart Lasir)

Clean Room For integrated optics & detector assembly

SWIFTS Cal Characterisation and calibration of SWIFTS componants (SWIFTS 400-1000 ; ANAgRAM ; OCT-LLIFTS)

FFREE Adaptive Optics bench for coronography (FFREE ; )

NEAT Astrometry characterization of detectors (CNES)

Infrared Detector Characterization

Tools for detector characterization (Integrating Sphere, Electronic analyzer, cryostats , leak detection …) (RAPID; OPTICON )

Fiber Bench facility Fiber connectorisation facility with OPD equalization

Page 72: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Organigramme fonctionnel

DIRECTIONDirecteur Directeur Scientifique Adjoint

COMITE de DIRECTION

Directeur, Directeur Scientifique Adjoint, Directeur Adjoint aux Ressources, Directeur 

Technique 

Direction + Resp.  Administrative

Conseil de LaboratoireSUPPORT à la RECHERCHEEQUIPES DE RECHERCHE

Comité de Suivi des Thèses

Cellule d’Aide au Montage de  Projets

Commission Hygiène & Sécurité

SERVICE ADMINISTRATIF & FINANCIER

Gestion des personnels

ASTROMOLAstrophysique Moléculaire

CRISTALompa

rée

CHARGES DE MISSION

Séminaires CNAP‐OSUG 

SERVICES TECHNIQUES

ELECTRONIQUE INFORMATIQUE

pFinance‐Budget

CRISTAL Recherche & Réalisation 

Instrumentale

FOSTFormation Stellaire &an

sverses 

IMIE 

lané

tologie c o

Stagiaires M1‐M2Stagiaires AutresBibliothèque

Documentation ‐ IntranetCommunication

INFORMATIQUEINSTRUMENTATION MECANIQUEASSISTANCE PROJET

Formation Stellaire & Planétaire – Naines brunes

PLANETOPlanétologie

Axes Tra

CHI

ologie –Exo P

CommunicationSécurité Informatique

WebmasterSHERPAS

Hautes  énergies & Plasmas astrophysiques

Plan

éto

Personnels  Ch/EC/CNAP :  58 ITA/BIATSS : 36 CDD Ch/Post‐Doc : 12

IPAG Emérites/Bénévoles : 4 CDD ITA : 6 Doctorants : 31

Pibaret Béatrice
Typewritten Text
ANNEXE 4
Pibaret Béatrice
Typewritten Text
Pibaret Béatrice
Typewritten Text
Pibaret Béatrice
Typewritten Text
Pibaret Béatrice
Typewritten Text
Page 73: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

ANNEXE 5 : IPAG 2016-2020

               

Page 74: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

IPAG-REG-10000-1256

Révision : 0.2

Date : 19/01/2012

IPAG

REGLEMENT INTERIEUR

Chantal Lathuillère ([email protected] )

IPAG

Auteur : Chantal Lathuillère

Institut : IPAG

Signature :

Date : 09/01/2012

Vérifié par : Conseil de Laboratoire

Institut : IPAG

Signature :

Date : 19/01/2012

Approuvé par :

Institut :

Signature :

Date :

Page 75: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

IPAG-REG-10000-1256 Règlement intérieur

Revision: 0.2 Page 2/11

HISTORIQUE DES CHANGEMENTS

REVISION DATE

AUTEUR

PARAGRAPHES/PAGES MODIFIES

REMARQUES 0.1 09/01/2012 C.Lathuillère All

1st draft 0.2 19/01/2012 Conseil de Labo All

Verification

Page 76: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

IPAG-REG-10000-1256 Règlement intérieur

Revision: 0.2 Page 3/11

TABLE DES MATIERES

Préambule _______________________________________________________________________ 4 

1  Article 1 – Organisation générale ________________________________________________ 5 

1.1  Le personnel du Laboratoire ______________________________________________ 5 

1.2  Le Directeur du Laboratoire et l’équipe de Direction __________________________ 5 

1.3  La structure du laboratoire ________________________________________________ 5 

1.4  Le Conseil de Laboratoire _________________________________________________ 5 

1.5  L’Assemblée générale ____________________________________________________ 5 

2  Article 2 - Organisation du travail _______________________________________________ 6 

2.1  Horaires de travail _______________________________________________________ 6 

2.2  Congés annuels __________________________________________________________ 6 2.2.1  Nombre de jours de congés selon les catégories de personnel ___________________________ 6 2.2.2  Suivi des congés ______________________________________________________________ 7 2.2.3  Report des congés _____________________________________________________________ 7 2.2.4  Compte Epargne Temps (CET) ___________________________________________________ 7 2.2.5  Fermeture de l’IPAG ___________________________________________________________ 7 

2.3  Autres absences _________________________________________________________ 7 2.3.1  Absence pour raison médicale ____________________________________________________ 7 2.3.2  Accident du travail ____________________________________________________________ 7 2.3.3  Missions ____________________________________________________________________ 8 

2.4  Sujétions et Astreintes ____________________________________________________ 8 2.4.1  Les sujétions _________________________________________________________________ 8 2.4.2  Les astreintes _________________________________________________________________ 8 2.4.3  Dispositions spécifiques ________________________________________________________ 8 

3  Article 3 – Fonctionnement du Laboratoire ________________________________________ 9 

3.1  Accueil des nouveaux arrivants ____________________________________________ 9 

3.2  Déclaration des ressortissants étrangers hors U.E. _____________________________ 9 

3.3  Départs de l’IPAG _______________________________________________________ 9 

3.4  Contrats de recherche ____________________________________________________ 9 

3.5  Diffusion des résultats scientifiques _________________________________________ 9 

3.6  Hygiène et Sécurité ______________________________________________________ 9 

3.7  Formation permanente __________________________________________________ 10 

3.8  Utilisation des ressources communes _______________________________________ 10 3.8.1  Informatique ________________________________________________________________ 10 3.8.2  Photocopieuses ______________________________________________________________ 10 3.8.3  Salles de réunion _____________________________________________________________ 10 3.8.4  Véhicule de service ___________________________________________________________ 11 3.8.5  Garage _____________________________________________________________________ 11 3.8.6  Diffusion de l’information _____________________________________________________ 11 

Page 77: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

IPAG-REG-10000-1256 Règlement intérieur

Revision: 0.2 Page 4/11

Préambule L’Institut de Planétologie et d’Astrophysique de Grenoble est un Laboratoire de recherche fondamentale, rattaché à l’Observatoire des Sciences de l’Univers de Grenoble. Il a un statut d’UMR avec pour tutelles l’Université Joseph Fourier et le Centre National de la Recherche Scientifique. L’IPAG est implanté sur 3 bâtiments : le bâtiment A de l’OSUG, les ailes Nord et Est du 1et étage du bâtiment B de l’OSUG (ex-CERMO), et le 3ème étage du bâtiment D de l’UFR PHITEM. Il a pour mission de:

- développer la recherche fondamentale et la recherche instrumentale dans le domaine de l'astrophysique et de la planétologie,

- contribuer à un enseignement scientifique de haut niveau et à la formation d'étudiants pour et par la recherche, notamment en thèse,

- valoriser et transférer les résultats de ces recherches, - assurer la diffusion de l'information scientifique et technique.

Page 78: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

IPAG-REG-10000-1256 Règlement intérieur

Revision: 0.2 Page 5/11

1 Article 1 – Organisation générale

1.1 Le personnel du Laboratoire Il comprend:

- des chercheurs, enseignants chercheurs et personnel astronome officiellement affectés à l’IPAG sur un poste budgétaire permanent,

- des personnels techniques et administratifs (ITA et IATOS) officiellement affectés à l’IPAG sur un poste budgétaire permanent,

- des personnels contractuels : enseignants-chercheurs, chercheurs, personnels techniques et administratifs, étudiants inscrits en thèse, apprentis

- des étudiants stagiaires, - des chercheurs associés et des chercheurs bénévoles. - des personnels affectés à l’IPAG pour une durée éventuellement limitée.

1.2 Le Directeur du Laboratoire et l’équipe de Direction Le Directeur est assisté par deux directeurs adjoints. Ils sont nommés par le Directeur général du Centre National de la Recherche Scientifique (CNRS) et par le Président de l'Université Joseph Fourier (UJF), après avis des instances compétentes et du Conseil de laboratoire, pour un mandat de cinq ans en harmonie avec le contrat quinquennal. Le Directeur est responsable de l’élaboration et de la mise en œuvre des projets scientifiques de l’IPAG. Il assure la gestion de l’ensemble des moyens mis à la disposition de l’UMR. Pour cela il s’appuie sur l’équipe de Direction composée des directeurs adjoints, du directeur technique et de la responsable administrative. Le Comité de Direction se réunit une fois par semaine.

1.3 La structure du laboratoire L’IPAG est structuré en équipes de recherche. Ces équipes sont assistées par un groupe technique, regroupant tous les personnels ingénieurs et techniciens du laboratoire sous la responsabilité du directeur technique, et d’une équipe administrative sous la responsabilité de la responsable administrative. En parallèle, il existe à l’IPAG des axes de recherche transversaux regroupant des chercheurs appartenant à différentes équipes de recherche. L’équipe de direction a une interaction privilégiée avec les chefs d’équipe et les responsables des axes transversaux à travers des réunions spécifiques organisées environ une fois par mois par le directeur adjoint scientifique.

1.4 Le Conseil de Laboratoire Le Conseil de Laboratoire est présidé par le Directeur de l’IPAG. Celui-ci le consulte sur toutes les questions relatives à la politique scientifique, la gestion des ressources, l’organisation et le fonctionnement du laboratoire. Le Conseil de laboratoire est renouvelé tous les 5 ans, en harmonie avec le contrat quinquennal. Sa composition, 3 membres de droit (directeur et directeurs adjoints), 12 membres élus et 5 membres nommés, ainsi que ses modalités de fonctionnement sont prévues en application de la décision CNRS du 28/10/1992. Sa fréquence de réunion est au moins bimestrielle.

1.5 L’Assemblée générale L’Assemblée générale comprend le personnel permanent du laboratoire ainsi que le personnel contractuel sous réserve d’une ancienneté minimale d’un an. Elle se réunit au moins une fois par an sur convocation du Directeur, ou encore à la demande du tiers des membres du Conseil de Laboratoire.

Page 79: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

IPAG-REG-10000-1256 Règlement intérieur

Revision: 0.2 Page 6/11

2 Article 2 - Organisation du travail

2.1 Horaires de travail La durée annuelle de travail effectif est de 1607 h. Les modalités de mise en œuvre dans le laboratoire prennent en compte les dispositions propres à l’employeur :

- Personnels CNRS : dispositions figurant dans le décret du 25/08/00 modifié par le décret 2004-1307 du 27 novembre 2004, ainsi que celles énoncées d’une part dans l’arrêté du 31/08/01 et d’autre part dans le cadrage national du CNRS pour les personnels relevant de cet établissement,

- Personnels IATOS UJF : Arrêté UJF n°2008-012 du 14 avril 2008. Pour les personnels du CNRS la durée hebdomadaire du travail effectif pour chaque agent de l’Unité travaillant à plein temps, est de 38 heures 30 minutes sur cinq jours ou 7 heures 42 minutes journalières. Les personnels autorisés à accomplir un service à temps partiel d’une durée inférieure ou égale à 80 % peuvent travailler selon un cycle hebdomadaire inférieur à 5 jours. Le temps de travail correspond à un temps de travail effectif. Il ne prend pas en compte la pause méridienne obligatoire qui ne peut être ni inférieure à 45 minutes ni supérieure à 2 heures. Pour les personnels IATOS UJF, la durée hebdomadaire de travail effectif est de 37h02, soit un horaire journalier moyen de 7h24 pour un personnel à temps plein. Les personnels dont le temps de travail quotidien atteint 6h bénéficient d’un temps de pause d’une durée de 20min non fractionnable. Ce temps de pause peut coïncider avec le temps de pause méridienne. La pause méridienne obligatoire est de 45 min. au minimum. L’horaire hebdomadaire peut être supérieur à 37h02 et donner lieu à des jours de congés accordés au titre de l’ARTT. L’amplitude horaire hebdomadaire de travail effectif pour un personnel à temps plein est de 32h au minimum et de 40h au maximum. Les obligations de service des personnels exerçant à temps partiel sont calculées au prorata de leur quotité de service. Le laboratoire est ouvert les jours ouvrés de 7h30 à 19h30. La présence de tout le personnel est recommandée pendant la période 9h-16h (hors pause méridienne) afin de faciliter le travail en équipe. Le travail isolé en dehors des heures d’ouverture est interdit sauf dérogation exceptionnelle de la direction. Le travail isolé dans les locaux techniques du laboratoire (voir paragraphe 3.5 et annexe 2) est strictement réservé à certaines activités spécifiques bien définies après accord de la direction.

2.2 Congés annuels

2.2.1 Nombre de jours de congés selon les catégories de personnel - Les personnels CNRS: Les droits à congés annuels sont de 32 jours ouvrés (du lundi

au vendredi), 12 jours d'ARTT (calculés sur la base de 38h30 hebdomadaires et régis par la réglementation du CNRS), et 2 jours de fractionnement. Le nombre de jours de congés est proratisé pour les agents exerçant leur fonction à temps partiel.

- Les personnels IATOS UJF: Les droits à congés annuels sont de 45 jours (calculés sur la base de 37h02 hebdomadaires et régis par la réglementation de l’UJF) et 2 jours de fractionnement. Le nombre de jours de congés est proratisé pour les agents exerçant leurs fonctions à temps partiel.

- Les personnels Enseignants-chercheurs et les personnel astronomes: les articles 4 et 6 du décret relatif aux enseignants-chercheurs renvoient au texte général de la fonction publique, soit le Décret n° 84-972 du 26 octobre 1984 relatif aux congés annuels des fonctionnaires de l’Etat..

- Les personnels non permanents: Les congés sont régis par les différents contrats de financement qui leurs sont applicables.

Page 80: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

IPAG-REG-10000-1256 Règlement intérieur

Revision: 0.2 Page 7/11

2.2.2 Suivi des congés Toutes les catégories du personnel doivent déposer leurs demandes de congé de préférence avec un délai de prévenance de 3 jours, que ce soit du fait de leur statut ou pour des raisons de service. La demande de congés est faite par l’intermédiaire du Service Web GLOP accessible sur l’intranet du Laboratoire. L'absence ne peut excéder 31 jours consécutifs pour les personnels CNRS et IATOS de l’UJF. La validation est réalisée sous la responsabilité du Directeur. En cas d’accident, si les agents sont en congé sans l’avoir déclaré, ils courent le risque de ne pas être couvert.

2.2.3 Report des congés - Personnels CNRS : Le report des jours de congés (annuels et/ou jours de ARTT) non

utilisés, est autorisé jusqu’au 28 février de l’année suivante. Les jours qui n’auront pas été utilisés à cette date seront définitivement perdus, sauf si ces jours ont été déclarés préalablement dans un Compte épargne temps.

- Personnels IATOS de l’UJF : Les jours de congés non pris au 31 août peuvent être reportés jusqu’au 31 décembre de la même année, date au-delà de laquelle le report ou la récupération ne sont plus possibles. Ils peuvent aussi alimenter un Compte Epargne Temps.

- Autres personnels : Le congé dû pour une année de service accompli ne peut se reporter sur l’année suivante, sauf autorisation exceptionnelle donnée par le Chef de service.

2.2.4 Compte Epargne Temps (CET) Les agents CNRS et les agents IATOS de l’UJF, titulaires et non titulaires, employés de manière continue depuis au moins un an dans une administration de l’État ou un établissement public à caractère administratif de l’État, peuvent demander l’ouverture d’un CET. Ce CET pourra être alimenté, selon les modalités prévues par l’employeur, une fois par an, au plus tôt le 1er novembre et au plus tard le 31 décembre de l’année civile de référence, avec les jours de congés (annuels et/ou jours de ARTT) non utilisés avant cette date et non reportés. Au-delà du 31 décembre, les jours de congés non pris au titre de l’année ne pourront pas être portés au crédit du compte.

2.2.5 Fermeture de l’IPAG Des jours de fermeture peuvent être décidés par le Directeur, en fonction de contraintes extérieures par exemple absence de chauffage ou autre besoin de sécurité. Les personnels doivent prendre obligatoirement ces jours sous forme de congés.

2.3 Autres absences

2.3.1 Absence pour raison médicale Toute indisponibilité consécutive à la maladie doit, sauf cas de force majeure dûment justifié, être signalée au responsable administratif de l’unité dans les 24 heures. L’avis d’arrêt de travail doit être transmis sous 48h à l’employeur via le service administratif de l’IPAG pour les personnels CNRS, et le service administratif de l’UFR ou de l’OSUG pour les personnels UJF.

2.3.2 Accident du travail Tout accident de service survenant dans le cadre de l’activité professionnelle devra obligatoirement faire l’objet d’une déclaration à la direction en précisant ses date, heure, lieu et circonstances et en produisant un certificat médical constatant les lésions subies et en mentionnant le cas échéant, les noms et adresses des témoins.

Page 81: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

IPAG-REG-10000-1256 Règlement intérieur

Revision: 0.2 Page 8/11

2.3.3 Missions Tout agent se déplaçant dans le cadre de l’exercice de ses fonctions en dehors de l’agglomération, doit être en possession d’un ordre de mission établi préalablement au déroulement de la mission. Ce document est obligatoire ; il assure la couverture de l’agent au regard de la réglementation sur les accidents de service. L’agent amené à se rendre directement de son domicile sur un lieu de travail occasionnel sans passer par sa résidence administrative habituelle, est couvert en cas d’accident du travail sous réserve de remplir les deux conditions suivantes :

- être en possession d’un ordre de mission - avoir une autorisation du Directeur de laboratoire d'utilisation d'un véhicule de service

ou de son véhicule personnel.

2.4 Sujétions et Astreintes Les spécificités du travail à l’IPAG peuvent exceptionnellement induire des sujétions ou des astreintes entrainant des modes de récupération ou d’indemnisation adaptés :  

2.4.1 Les sujétions Elles induisent un travail de nuit, les week-end et jours fériés, en horaires décalés et/ou une variation importante de la durée hebdomadaire du travail. Elles sont obligatoirement liées à l’activité et aux missions principales de l’agent qui s’inscrivent elles-mêmes dans le cadre des missions de l'IPAG. Les sujétions peuvent être compensées en temps de repos ou indemnisées suivant les conditions et dans les limites fixées par la réglementation en vigueur et après accord du Directeur de l’IPAG. Sauf cas de nécessité de service pouvant conduire le Directeur de l’IPAG à privilégier l’un ou l’autre de ces modes de compensation, le choix est effectué par l’agent, dans les limites réglementaires prévues (Décret n°2000-815 du 25 Août 2000, Arrêté du 15 Janvier 2002, J.O du 18 Janvier 2002, Circulaire CNRS N°030001 DRH du 13 Février 2003).

2.4.2 Les astreintes La notion d’astreinte est définie comme une période pendant laquelle l’agent, sans être à la disposition permanente et immédiate de son employeur, a l’obligation de demeurer à son domicile ou à proximité afin d’être en mesure de répondre à une sollicitation professionnelle et, si nécessaire, d’assurer une intervention sur le lieu de travail. Les astreintes, qu’il s’agisse du temps d’astreinte ou du temps d’intervention durant l’astreinte, peuvent être compensées en temps de repos ou indemnisées suivant les conditions et dans les limites fixées par la réglementation en vigueur et après accord du Directeur de l’IPAG (Décret N°2000815 du 25 Août 2000, Arrêté du 15 Janvier 2002, J.O. du 18 Janvier 2002, Circulaire CNRS N°030001 DRH du 13 Février 2003). Le temps de déplacement est inclus dans le temps d’intervention qui est considéré comme un temps de travail effectif.

2.4.3 Dispositions spécifiques Le responsable hiérarchique direct tient un registre des sujétions ou astreintes dans lequel sont précisément consignées, pour chaque agent, la situation des heures effectivement réalisées et le mode de compensation retenu. Les vacations ou indemnités liées aux activités accessoires, sujétions particulières et astreintes sont payées mensuellement après service fait.

Page 82: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

IPAG-REG-10000-1256 Règlement intérieur

Revision: 0.2 Page 9/11

3 Article 3 – Fonctionnement du Laboratoire

3.1 Accueil des nouveaux arrivants Tout membre de l’IPAG doit se conformer à la procédure définie par la Direction et disponible sur l’intranet pour accueillir un nouvel arrivant, notamment en ce qui concerne les règles de sécurité informatique et la signature obligatoire de la charte informatique (§ 3.6), ainsi que l'accès aux locaux techniques (§ 3.5). Un livret d’accueil et un livret hygiène et sécurité sont remis à chaque nouvel arrivant, ainsi qu’un badge d’accès aux bâtiments et lorsque nécessaire des clefs de bureau et/ou locaux techniques.

Déclaration des ressortissants étrangers hors U.E. Pour les laboratoires d’un niveau de sensibilité moindre, ce qui est le cas de l’IPAG, une déclaration mensuelle des séjours des ressortissants hors Union Européenne est à effectuer par la direction de l’unité. Ces informations font l’objet d’une transmission au Fonctionnaire de Sécurité de Défense au travers de l’application ASSET (Application de Suivi des Stagiaires ETrangers) permettant une déclaration en ligne. Par conséquent, il est indispensable de prévenir la responsable administrative habilitée par la direction à faire ces déclarations le plus tôt possible, et au plus tard un mois avant leur arrivée.

3.2 Départs de l’IPAG Toute personne quittant le Laboratoire de façon définitive doit dans les meilleurs délais :

- rendre badges et clefs en sa possession, - faire avant son départ la sauvegarde nécessaire avant que son compte informatique ne

soit fermé et rendre le matériel informatique mis à sa disposition (ordinateur portable…)

- vider complètement son bureau, - rendre les livres empruntés à la bibliothèque, - retirer du sous-sol tout véhicule et matériel lui appartenant (voiture, vélo, moto,

archives, etc.) Toute dérogation à ces règles ne pourra se faire qu'à titre exceptionnel et avec l'accord exprès de la Direction.

3.3 Contrats de recherche Les crédits des contrats sont affectés à leur réalisation. Leur utilisation est faite sous la responsabilité des signataires et du directeur. Une quote-part des montants alloués est réservée pour le fonctionnement général et la politique scientifique du laboratoire.

3.4 Diffusion des résultats scientifiques Les publications des membres du laboratoire doivent faire apparaître l'appartenance à l'Unité et le rattachement aux tutelles, sous la forme : UJF-Grenoble 1 / CNRS-INSU, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041, France Chacun est tenu de respecter la confidentialité des travaux qui lui sont confiés ainsi que ceux de ses collègues. En particulier, en cas de présentation à l’extérieur de travaux "sensibles" (c'est-à-dire pouvant faire l'objet d'un brevet, R&D, etc.), l’autorisation du directeur, ou du directeur technique ou du responsable scientifique de l’activité en question est obligatoire.

3.5 Hygiène et Sécurité S'il incombe au Directeur de veiller à la sécurité et à la protection des personnels et d'assurer la sauvegarde des biens de l’IPAG, chacun doit se préoccuper de sa propre sécurité et de celle

Page 83: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

IPAG-REG-10000-1256 Règlement intérieur

Revision: 0.2 Page 10/11

des autres. Il est rappelé que la responsabilité pénale de chacun peut être recherchée en cas de négligence ayant entraîné un accident, en particulier corporel. Au moins un Assistant de Prévention (ex ACMO - agent chargé de la mise en œuvre des règles d’hygiène et de sécurité) est nommé sur proposition du directeur de l’IPAG. Il doit être tenu informé de toute activité pouvant présenter un risque pour la sécurité des personnes et du matériel, et prendre les mesures nécessaires de prévention en concertation avec la Direction. L’IPAG est doté d’une commission Hygiène et Sécurité qui comprend de droit le Directeur et le ou les Assistants de Prévention, ainsi que des représentants des différentes activités du laboratoire. Les personnels peuvent faire part de leurs observations et suggestions relatives à la prévention des risques et à l’amélioration des conditions de travail en s’adressant à cette commission « [email protected] ». Les dispositions à prendre en cas d’accident et d’incendie font l’objet d’un document spécifique accessible sur l’intranet du laboratoire et d’un affichage approprié. Tous les locaux présentant un risque particulier (chimique, électrique, rayonnement, etc.) font l’objet d’une signalétique particulière. Ils sont listés dans l’annexe 1. Leur accès est réglementé (serrures à code, badges, clefs spécifiques), et ne peut se faire qu'après autorisation par le responsable du local concerné. L'accès à la coupole et au télescope est placé sous la responsabilité de l'Observatoire des Sciences de l’Univers de Grenoble (OSUG), et non de l’IPAG.

3.6 Formation permanente Un plan de formation est élaboré chaque année pour le CNRS et l'UJF. Chaque agent de l’IPAG est invité à y contribuer à tout moment en soumettant ses souhaits et suggestions de formation à la Direction et aux correspondants formation, et d'une façon plus générale, est encouragé à suivre des actions de formation susceptibles de le faire progresser professionnellement et dans l'intérêt du Laboratoire.

3.7 Utilisation des ressources communes

3.7.1 Informatique L’utilisation des moyens informatiques est soumise à des règles explicitées dans la charte informatique des tutelles de l’IPAG: UJF et CNRS (annexes 2 et 3). Une charte est avant tout un code de bonne conduite. Elle a pour objet de préciser la responsabilité des utilisateurs, en accord avec la législation, afin d’instaurer un usage correct des ressources informatiques et des services Internet, avec des règles minimales de courtoisie et de respect d’autrui. Elle doit être signée et mise en œuvre par chaque nouvel arrivant, ainsi que par les visiteurs et les collaborateurs extérieurs utilisant les moyens informatiques du Laboratoire.

3.7.2 Photocopieuses Il est recommandé aux personnes chargées d’enseignement de faire réaliser autant que possible leurs photocopies massives par les services de l’Université.

3.7.3 Salles de réunion La réservation préalable des salles de réunion et des vidéoprojecteurs est obligatoire pour éviter tout conflit entre utilisateurs. Elle se fait par l'intermédiaire d'un système dédié et sécurisé de réservation web de l'OSUG, accessible depuis l’intranet.

Page 84: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

IPAG-REG-10000-1256 Règlement intérieur

Revision: 0.2 Page 11/11

3.7.4 Véhicule de service La réservation préalable des véhicules de service de l’IPAG est obligatoire pour éviter tout conflit entre utilisateurs. Elle se fait par l’intermédiaire d’un système dédié et sécurisé de réservation web de l’OSUG, accessible depuis l’intranet. Les clés et les documents sont à récupérer auprès du responsable. Seules les personnes autorisées ont accès à ces véhicules. Chacun est responsable des infractions éventuelles du code de la route, et devra régler lui même ses contraventions.

3.7.5 Garage Le garage est réservé aux véhicules de service de l’IPAG, du LTHE et de l’Observatoire. De manière exceptionnelle en cas de mission ou de difficulté particulière et pour une période limitée dans le temps, il pourra être utilisé pour le stationnement de véhicules personnels après autorisation exprès du directeur.

3.7.6 Diffusion de l’information Les informations à caractère général sont disponibles sur panneaux d’affichage répertoriés (activités culturelles, syndicats, etc.) et sur l’intranet IPAG en ce qui concerne le fonctionnement et la vie du Laboratoire. L’IPAG dispose en outre d’un site web destiné à diffuser et promouvoir ses activités scientifiques et ses compétences techniques à l'extérieur par l'intermédiaire du réseau Internet. Selon les dispositions légales en vigueur, un tel site constitue une publication du Laboratoire dont le directeur est le responsable légal. En conséquence, tout affichage d'informations, notamment scientifiques (découvertes, faits marquants, etc.) doit se faire en accord avec lui. Toute modification du présent règlement devra faire l'objet d’un avenant signé par les tutelles. Règlement intérieur présenté au Conseil de Laboratoire le 19 janvier 2012. Fait à Saint Martin d’Hères, le 2012 Le Délégué Régional du CNRS Le Président de l’UJF

Page 85: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

ANNEXE 7 : IPAG 2016-2020

               

Page 86: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Edition Réf. Contrat Acronyme Nom du projet Financeur Progr. Equipe Resp. Scientifique Début Fin Durée Statut2 Montant Pôle Compet Coordinateur Montant total

2008 ANR-08-BLAN-0225-01 FORCOMS Formations de Molécules Organiques Complexes dans l'Espace GIP ANR Blanc Astromol C.Cecarelli 01/01/09 31/12/12 48 Fini 175 771,00 N IPAG 500 000,00

2011 11 0100915 01 CIBLE2011 La Chimie interstellaire de l'azote Région Rhône-Alpes Cible Astromol P.Hily-Blant 26/05/11 26/05/13 24 14 000,00 IPAG 14 000,00

2010 9058_BC104653 HERSCHEL Mission HERSCHEL CNES Astromol C.Cecarelli 30/11/10 30/06/11 Fini 114 902,50

2011 9058_BC115836 HERSCHEL Mission HERSCHEL CNES Astromol C.Cecarelli 25/07/11 14/10/11 Fini 15 375,00

2011 9058_BC115820 HERSCHEL Mission HERSCHEL CNES Astromol C.Cecarelli 25/07/11 31/05/12 Fini 29 212,50

2012 ANR-12-JS05-0005-01 ChemoDyn Evolution chemo-dynamique des cœurs pré- et protostellaires GIP ANR JCJC Astromol S.Maret 01/01/13 31/12/16 48 243 415,00 N IPAG 243 415,00

2012 ANR-12-BS05-0011-01 Hydrides Excitation et chimie des hydrures interstellaires GIP ANR Blanc Astromol A.Faure 01/01/13 31/12/16 48 163 238,00 N IPAG 639 757,00

2011 9058_BC127749 HERSCHEL Mission HERSCHEL CNES Astromol C.Cecarelli 25/07/11 31/05/12 50 225,00 N

2012 9058_BC128809 HERSCHEL Mission HERSCHEL CNES Astromol C.Cecarelli 18 388,50 N

2012 9058_BC130832 HERSCHEL Mission HERSCHEL CNES Astromol C.Cecarelli 7 175,00 N

2014 140069 HERSCHEL Mission HERSCHEL CNES Astromol C.Cecarelli 30 801,25 N

2008 FP7-INFRA-2008-1-226604 OPTICON II Optical Infared Coordination Network for Astronomy U.E SP4-Capacities/e-

InfrastructuresCRISTAL

P.FeautrierJL.Beuzit

P.Kern01/01/09 31/12/12 48 Fini 276 000,00 Univ. Of Cambridge 10 000 000,00

2009 F1005014U DROP Surveillance automatisée de pistes d'aterrissages OSEO Innovation CRISTAL P.Feautrier 08/03/10 31/12/13 45 325 000,00 N AEROMECANIC

2009 09 2 93 0415 RAPID Développement de détecteurs infrarouge matriciels de très haute sensibilité

Ministère de l'Economie, Industrie,…

CRISTAL P.Feautrier 01/05/09 30/04/14 60 845 157,94 O SOFRADIR 13 135 000,00

2009 ANR-09-JCJC-0107-01 RALIS Recombineurs Actifs en Niobate de Lithium pour l'Interférométrie Stellaire GIP ANR JCJC CRISTAL M.Guillermo 01/09/09 31/08/13 48 209 345,00 N IPAG 209 345,00

2009 ANR-09-BLAN-0162-04 CHAPERSOA Commande haute performance pour les systèmes d'optique adaptative GIP ANR Blanc CRISTAL J.Charton 01/10/09 31/03/14 54 68 851,00 N MENESR 483 579,00

2011 92532_U35 R&D11 Colloque R&T CNES CRISTAL P.Kern Soldé 3 075,00

2011 ANR 2011 EMMA 010 02 OCT-LLIFTS Intégration d'un OCT en optique intégrée à base de boucle LLIFTS GIP ANR EMMA CRISTAL E.Le Coarer 01/01/12 30/06/14 30 138 858,00 O UJF

19/05/2014

Pibaret Béatrice
Typewritten Text
ANNEXE 7 : IPAG 2016-2020 Liste des contrats publics de 2009 à 2014
Page 87: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Edition Réf. Contrat Acronyme Nom du projet Financeur Progr. Equipe Resp. Scientifique Début Fin Durée Statut2 Montant Pôle Compet Coordinateur Montant total

2011 ANR 2011 BS09 026 04 SMART_LASIRSMART Fabricationpar Lasers ultracourts des fonctions

optiques 3D dans les chalcogénures avec contrôle adaptatif spatio-temporel intelligent. Applications en spectroscopie

intégrée pour l'astrophysique IR

GIP ANR Blanc CRISTAL P.Kern 01/10/11 30/09/14 36 92 560,00 N LAHC 457 600,00

2010 ANR-10-BLAN-0511-03 POLCA Percées astrophysique grâce au traitement de données interférométriques polychromatiques GIP ANR Blanc CRISTAL F.Malbet 15/03/11 14/03/15 48 112 115,00 N CRAL 472 459,00

2011 92532_U37 NEATMission d'astrométrie ultra-précise pour la

recherche d'exoplanètes de type super-Terres dans le voisinage du soleil

CNES CRISTAL F.Malbet 29/06/11 31/08/11 Fini 6 150,00

2011 92532_U46 NEATMission d'astrométrie ultra-précise pour la

recherche d'exoplanètes de type super-Terres dans le voisinage du soleil

CNES CRISTAL F.Malbet 20/02/12 30/11/12 Fini 21 197,00

2011 116370_BC40236 NEAT Banc de validation NEAT CNES CRISTAL F.Malbet 18/01/12 15/11/12 Fini 130 072,50

2011 116370_BC39087 SWIFTS SWIFTS proche IR pour détection CO2 CNES CRISTAL E.Le Coarer 18/01/12 15/11/12 Fini 10 000,00

2012 FP7-INFRA-2012-1-312430 OPTICON III Optical Infared Coordination Network for Astronomy U.E FP7-Infrastructure CRISTAL JL.Beuzit 01/01/13 31/12/16 48 429 596,40 Univ. Of Cambridge 8 500 000,00

2012 92532_62 NEAT CNES CRISTAL F.Malbet 26/02/13 31/12/13 17 425,00

2012 ANR-11-LABX-0013-01 FOCUS FOCUS GIP ANR CRISTAL P.Kern 01/03/12 31/12/19 96 9 500 000,00 IPAG 9 502 480,00

2012 ANR-12-MONU-0022-03 COMPASS COMputilg Platform for Adaptive optics Systems GIP ANR Modèles Numériques

CRISTAL C.Verinaud 01/03/13 31/08/15 30 122 678,00 N LESIA 788 238,72

2013 116370_BC42927 NEAT Banc de validation NEAT CNES CRISTAL F.Malbet 60 372,50

2012 F1305072V ANAGRAM ANAlyseur RAMan nouvelle Génération OSEO Innovation CRISTAL E.Le Coarer 18/03/13 30/09/16 42 95 500,00 Résolution Spectra Systems

2009 PIEF-GA-2009-235955 TOUCHSTONESTowards Understanding the Launching of Protostellar Outflows : An Adaptive Optics Assisted Spectroscopic

Investigation of Classical T Tauri StarsU.E Marie-Curie FOST C.Dougados 01/07/09 30/06/11 24 Soldé 152 561,20 N IPAG 152 561,20

2007 ANR-07-BLAN-0221-01 Dusty Disks Structure and Evolution of Protoplanetary Disk a study of the first phases of planet formation" GIP ANR Blanc FOST F.Ménard 12/11/07 11/11/11 48 Fini 343 752,00 N LAOG

2007 ANR-07-BLAN-0224-03 MAPP Magnetic Protostars and Planet GIP ANR Blanc FOST J.Bouvier 12/11/07 11/11/11 48 Soldé 24 400,00 N LATT

2006 PERG03-GA-2009-256513 DiskEVOL (FP7) Formation & evolution of planetary systems U.ESP3-

People/Support for training & career

FOST JL.Monin 01/07/10 30/06/13 36 45 000,00 N IPAG 45 000,00

2009 PIEF-GA-2009-253896 Accretion/EjectionInterferometry in the near-infared : a very high

angular resolution insight into the accretion/ejection process in young stars

U.ESP3-

People/Support for training & career

FOST C.Dougados 01/12/11 30/11/13 24 158 945,60 IPAG 158 945,60

2010 ANR-10-JCJC-0504-01 DISKEVOL Formation et évolution des systèmes planétaires GIP ANR JCJC FOST C.Pinte 01/02/11 31/01/14 36 150 000,00 N IPAG 150 000,00

19/05/2014

Page 88: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Edition Réf. Contrat Acronyme Nom du projet Financeur Progr. Equipe Resp. Scientifique Début Fin Durée Statut2 Montant Pôle Compet Coordinateur Montant total

2010 ANR-10-JCJC-0501-01 DESC Evolution dynamique des amas stellaires jeunes GIP ANR JCJC FOST E.Moraux 15/12/10 14/12/14 48 300 000,00 N IPAG 300 000,00

2010 ANR-2010-BLAN-0505-01 EXOZODI De l'origine des poussières exozodiacales GIP ANR Blanc FOST JC.Augereau 20/12/10 18/12/14 48 256 797,00 N IPAG 460 001,00

2010 ANR-2010-BLAN-0504-01 GuEPARD Origine, Dynamique et Atmosphère des Exo-Planètes Géantes GIP ANR Blanc FOST G.Chauvin 20/12/10 19/08/15 56 235 082,00 N IPAG 563 879,00

2011 ANR 2011 Blanc SIMI 5-6 020 01 TOUPIES Vers une compréhension rotationnelle des étoiles GIP ANR Blanc FOST J.Bouvier 01/01/12 31/12/16 60 128 929,00 N IPAG 469 946,00

2011 FP7-SPACE-2011-1-284405 DiscAnalysis Analysis & modelling of Multi-wavelength Observational Data from Protoplanetary Discs U.E

SP1-Cooperation/Collaborative Project

FOST F.Ménard 01/01/12 28/02/16 51 247 860,00 N University court of the University of St Andrews

1 993 622,00

2011 ANR 2011 CHEX 007 01 SEED Croissance précoce de la poussière à l'origine de la formation planétaire GIP ANR CHEX FOST J.STEINACKER 01/02/12 31/05/14 28 374 391,00 N IPAG 374 391,00

2012 ANR-12-BS05-0012-02 Exo-Atmos Atmosphère et Evaporation des Exoplanètes GIP ANR Blanc FOST X.Bonfils 01/01/13 31/12/16 48 283 803,00 N IAP 454 246,00

2012 92532_U57 COROT/HST COROT/HST CNES FOST J.Bouvier 19/11/12 01/12/12 15 000,88 N

2012 12 010743 01 CIBLE2012 Formation et dynamique des systèmes planétaires dans les systèmes binaires et multiples Région Rhône-Alpes Cible FOST H.Beust 15/05/12 16/05/14 24 8 361,00 IPAG 8 361,00

2014 131425_45304 NEAT Recensement des exoplanètes dans le voisinage du soleil CNES FOST F.Malbet 25 297,00

2005 05/CNES/2131/00 ROSETTA CNES Planeto 10/06/05 30/06/15 296 019,51

2005 05/CNES/2131/00_30577 CONSERT CNES Planeto 10/06/05 30/06/15 49 302,50

2005 05/CNES/2131/00_37730 ROSETTA/CONSERT CNES Planeto 10/05/05 30/06/15 10 762,50

2005 05/CNES/2131/00_40105 ROSETTA/CONSERT CNES Planeto 10/06/05 30/06/15 82 717,50

2007 ANR-07-MCDO-013-01 VAHINE Visualisation et analyse d'image hyperspectrales multidimensionnelles en Astrophysique GIP ANR Blanc Planeto S.Doute 01/01/08 30/09/11 45 Soldé 150 944,00 LPG 377 338,00

2008 218816 SOTERIA SOLar - TERrestrial Investigations and Archives U.E Planeto J.Lilenstein 01/11/08 31/10/11 36 Fini 58 956,00 Katholieke Univ. LEUVEN

3 922 966,00

2010 2010-R08 POLARLIS 2 Polarisation de la raie rouge thermospérique à Svalbard IPEV Planeto J.Lilenstein 01/01/10 31/12/11 24 Soldé 14 632,10 IPAG 14 632,10

2008 PIRG03-GA-2008-231013 TACTIC Titan Atmospheric Composition : Tholins & Ionosphere Chemistry U.E FP7-People Planeto R.Thissen 01/09/09 31/08/12 36 Soldé 75 000,00 IPAG 75 000,00

19/05/2014

Page 89: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Edition Réf. Contrat Acronyme Nom du projet Financeur Progr. Equipe Resp. Scientifique Début Fin Durée Statut2 Montant Pôle Compet Coordinateur Montant total

2008 ANR-08-BLAN-0225-04 FORCOMS Formations de Molécules Organiques Complexes dans l'Espace GIP ANR Blanc Planeto E.Quirico 01/01/09 31/12/12 48 Fini 41 904,00 N IPAG 500 000,00

2008 FP7-INFRA-2008-239108 VAMDC Virtual Atomic & Mollecular Center U.E SP4-Capacities/e-Infrastructures

Planeto B.Schmitt 01/07/09 31/12/12 42 Soldé 138 856,00 LPMAA-CNRS 2 900 000,00

2008 FP7-INFRA-2008-228319 Europlanet RI Europlanet Research Infrastructure U.E SP4-Capacities/e-Infrastructures

Planeto B.Schmitt, J.Lilenstein et O.Dutuit 01/01/09 31/12/12 48 Fini 157 855,56 CNRS 6 000 000,00

2010 104021/00 EJSM Etudes des instruments pour la mission EJSM CNES Planeto R.Thissen 10/09/10 30/06/12 Fini 102 800,00 LATMOS

2010 ANR-10-BLAN-0502-03 COSMISME Cosmomatériaux du Milieu interstellaire au Système Solaire : Multidiagnotics Expérimentaux GIP ANR Blanc Planeto E.Quirico 20/12/10 19/12/14 48 77 560,00 N IAS

2010 261947 ATMOP Advanced Thermosphere Modelling for Orbit Prediction U.E

SP1-Cooperation/Collaborative Project

Planeto C.Lathuillère 01/01/11 31/12/13 36 72 852,60 DEIMOS SPACE SOCIEDAD

1 563 980,36

2011 116454/00 ORBITRAPEtude d'un analyseur de masse à ultra haute résolution (ORBITRAP) pour un télescope à

poussièreCNES Planeto R.Thissen 07/12/11 31/12/13 Fini 19 000,00

2010 92532_U17 SWARM Etude Thermospériques avec SWARM CNES Planeto C.Lathuillère 27/07/10 30/11/11 Fini 4 971,25

2010 92532_U13 OMEGA Mars Express

Analyse des données OMEGA CNES Planeto B.Schmitt 23/06/10 30/11/11 Fini 19 987,50

2010 92532_U13 EJSM Etude de points dures pour préparer la réponse à l'AO pour la mission JGO CNES Planeto W.Kofman 23/06/10 30/11/11 Fini 12 997,00

2010 92532_U13 SHARAD Analyse et l'interprétation des du radar Sharad CNES Planeto W.Kofman 23/06/10 30/11/11 Fini 12 915,00

2010 92532_U13 SELENEAnalyse des observations du radar basse fréquence

de surface et de subsurface. L'interprétation géomorphomique et géologiques

CNES Planeto W.Kofman 23/06/10 30/11/11 Fini 8 610,00

2010 92532_U13 MARSIS Mars Express

Analyse des données Marsis CNES Planeto W.Kofman 23/06/10 30/11/11 Fini 9 993,75

2010 92532_U13 STARDUSTCaractériser la structure et la composition chimique

de la pase carbonnée présente dans des grains cométaires…

CNES Planeto E.Quirico 23/06/10 30/11/11 Fini 4 694,50

2010 92532_U13 VIRTIS ROSETTAPhases D/E : Préparation scientifique et analyse des

observations de 2 astéroïdes et une comète par VIRTIS ROSETTA

CNES Planeto B.Schmitt 23/06/10 30/11/11 Fini 28 474,50

2010 92532_U13 INMS CASSINI Orbitrap pour support mesure INMS sur CASSINI CNES Planeto R.Thissen 23/06/10 30/11/11 Fini 2 562,50

2010 92532_U21 OMEGA Mars Express

Analyse des données OMEGA CNES Planeto B.Schmitt 30/09/10 30/11/11 Fini 3 075,00

2010 92532_U21 OMEGA Mars Express

Analyse des données OMEGA CNES Planeto B.Schmitt 30/09/10 30/11/11 Fini 8 200,00

19/05/2014

Page 90: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Edition Réf. Contrat Acronyme Nom du projet Financeur Progr. Equipe Resp. Scientifique Début Fin Durée Statut2 Montant Pôle Compet Coordinateur Montant total

2010 92532_U21 ORBITRAP Doublement prototype Orbitrap Grenoble pour dust Telescope EJSM CNES Planeto R.Thissen 30/09/10 30/11/11 Fini 41 820,00

2010 92532_U27 VIRTIS ROSETTAPhases D/E : Préparation scientifique et analyse des

observations de 2 astéroïdes et une comète par VIRTIS ROSETTA

CNES Planeto B.Schmitt 10/02/11 30/11/11 Fini 22 929,25

2010 92532_U27 EJSM Etude de points dures pour préparer la réponse à l'AO pour la mission JGO CNES Planeto W.Kofman 10/02/11 30/11/11 Fini 9 409,50

2010 92532_U27 SELENEAnalyse des observations du radar basse fréquence

de surface et de subsurface. L'interprétation géomorphomique et géologiques

CNES Planeto W.Kofman 10/02/11 30/11/11 Fini 6 724,00

2010 92532_U27 SHARAD Analyse et l'interprétation des du radar Sharad CNES Planeto W.Kofman 10/02/11 30/11/11 Fini 9 512,00

2010 92532_U27 MARSIS Mars Express

Analyse des données Marsis CNES Planeto W.Kofman 10/02/11 30/11/11 Fini 8 056,50

2010 92532_U27 INMS CASSINI Orbitrap pour support mesure INMS sur CASSINI CNES Planeto R.Thissen 10/02/11 30/11/11 Fini 2 665,00

2010 92532_U27 Marsis Mars Express

Analyse des données Marsis CNES Planeto W.Kofman 10/02/11 30/11/11 Fini 18 398,75

2008 723129 VAHINE Visualisation et analyse d'image hyperspectrales multidimensionnelles en Astrophysique CNES Planeto S.Doute 01/10/08 30/09/11 36 Soldé 48 618,12

2009 FP7-PEOPLE-2009-IRSES-247509

DEPTH Deposition of Energy & Photochemistry for the generation of Titan's Haze U.E SP3-People Planeto V.Vuiton 01/02/10 31/01/14 48 46 350,00 IPAG 84 600,00

2010 ANR-10-JCJC-0505-01 SPRING Spectroscopie infraRouGe des matériaux planétaires hydratés GIP ANR JCJC Planeto P.Beck 14/03/11 13/09/15 54 150 000,00 N IPAG 150 000,00

2011 92532_U47 MARSIS Mars Express

Analyse des données Marsis CNES Planeto W.Kofman 21/02/12 30/11/12 Fini 11 992,50

2011 92532_U47 OMEGA Mars Express

Analyse des données Marsis CNES Planeto .B.Schmitt 21/02/12 30/11/12 Fini 25 010,00

2011 92532_U47 INMS CASSINI Orbitrap pour support mesure INMS sur CASSINI CNES Planeto R.Thissen 21/02/12 30/11/12 Fini 4 817,50

2011 92532_U47 VIRTIS ROSETTAPhases D/E : Préparation scientifique et analyse des

observations de 2 astéroïdes et une comète par VIRTIS ROSETTA

CNES Planeto B.Schmitt 21/02/12 30/11/12 Fini 29 827,50

2011 92532_U47 EJSM Etude de points dures pour préparer la réponse à l'AO pour la mission JGO CNES Planeto B.Schmitt 21/02/12 30/11/12 Fini 12 402,50

2011 92532_U47 SHARAD Analyse et l'interprétation des du radar Sharad CNES Planeto W.Kofman 21/02/12 30/11/12 Fini 11 377,50

2010 92532_U12 Observation du cornet polaire avec Cluster et Double Star CNES Planeto F.Pitout 19/05/10 30/11/11 Fini 16 638,83

19/05/2014

Page 91: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Edition Réf. Contrat Acronyme Nom du projet Financeur Progr. Equipe Resp. Scientifique Début Fin Durée Statut2 Montant Pôle Compet Coordinateur Montant total

2011 116116/00 CONSERT Next Generation

CNES Planeto A.Herique 09/11/11 01/12/12 Fini 40 000,00

2011 FP7-INFRA-283676 ESPAS Near-Earth Space Data Infrastructure for e-Science U.E FP7-Research Infrastructure

Planeto J.Lilensten 01/11/11 30/04/15 42 43 710,00 Science & Technology Facilities Council

4 799 964,00

2012 92532_U52 MarcoPolo-R - Assert

Support à proposition instrumentale dans le cadre de la mission Marco Polo R / CV2 CNES Planeto A.Herique 11/07/12 31/07/13 5 012,25 N

2012 ANR-12-IS05-0001-01 I2-MARS Interprétation et indexation d'images orbitales multi-modales de la planète Mars GIP ANR Blanc Planeto S.Doute 15/01/13 14/01/17 48 216 922,00 N IPAG 216 922,00

2012 92532_U63 MARSIS Mars Express

Analyse des données Marsis CNES Planeto W.Kofman 26/02/13 31/12/13 8 097,50

2012 92532_U63 OMEGA Mars Express

Post-traitement et Analyse des données OMEGA/Mars Express et CRISM CNES Planeto B.Schmitt 26/02/13 31/12/13 20 551,25

2012 92532_U63 INMS CASSINI Spectromètre de masse INMS à bord de Cassini CNES Planeto R.Thissen 26/02/13 31/12/13 4 704,75

2012 92532_U63 VIRTIS ROSETTAPhases E : Préparation scientifique et analyse des observations de 2 astéroïdes et une comète par

VIRTIS ROSETTACNES Planeto B.Schmitt 26/02/13 31/12/13 29 417,50

2012 92532_U63 RAPLPH - NEW HORIZONS

Phase E : Préparation scientifique et analyse des observations de Pluton, ses satellites et un/des KBO CNES Planeto B.Schmitt 26/02/13 31/12/13 5 125,00

2012 92532_U63 SHARAD Analyse et l'interprétation des du radar Sharad CNES Planeto W.Kofman 26/02/13 31/12/13 10 147,50

2012 FP7-PEOPLE-2012-IOF-332399

Gas Trapping in IceExperimental Study og gas strapping in amorphous

water ice and clathrate hydrate at temperature relevant for comets

U.ESP3-

People/Support for training & career

Planeto B.Schmitt 36 Annulé 280 254,30 IPAG 280 254,30

2012 92532_U64 INMS CASSINI Spectromètre de masse INMS à bord de Cassini CNES Planeto R.Thissen 19/03/13 30/11/13 20 568,80

2005 05/CNES/2131/ ROSETTA/CONSERT CNES Planeto W.Kofman 10/06/05 30/06/15 59 245,00

2011 116370_BC42734 CONSERT Next Generation

Conception & Validation logiciel CNES Planeto A.Herique 40 000,00

2012 Co-Financement Thèse M.Cardiet

Instrument Consert à bord de la mission spatiale Rosetta : Tomographie radar de la comète

Churyumov-GerasimenkoCNES Planeto S.Doute/W.Kofman/

A.Herique01/10/12 30/09/15 36 49 747,71

2012 92532_U63 VIRTIS ROSETTAPhases E : Préparation scientifique et analyse des observations de 2 astéroïdes et une comète par

VIRTIS ROSETTACNES Planeto B.Schmitt 26/02/13 31/12/13 4 100,00

2013 92532_U68 VIRTIS ROSETTAPhases E : Préparation scientifique et analyse des observations de 2 astéroïdes et une comète par

VIRTIS ROSETTACNES Planeto B.Schmitt 08/08/13 30/08/14 4 100,00

2014 VIRTIS ROSETTAPhases E : Préparation scientifique et analyse des observations de 2 astéroïdes et une comète par

VIRTIS ROSETTACNES Planeto B.Schmitt 30 955,00

19/05/2014

Page 92: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Edition Réf. Contrat Acronyme Nom du projet Financeur Progr. Equipe Resp. Scientifique Début Fin Durée Statut2 Montant Pôle Compet Coordinateur Montant total

2014 CRISM/MROPhase E : Post-traitement et Analyse des données

OMEGA/Mars Express et CRISM/Mars Reconnaissance Orbiter

CNES Planeto B.Schmitt 15 375,00

2014 RALPH-NEW HORIZON

Phases E : Préparation scientifique et analyse des observations de Pluton, ses satellites et un/des KBO

par RALPH NEW HORIZONCNES Planeto B.Schmitt 10 250,00

2014 INMS CASSINI Analysis of the observed variation of the ion densities with altitude and solar zenith angle CNES Planeto V.Vuiton 9 635,00

2014 RIME - JUICE Radar RIME - mission JUICE CNES Planeto W.Kofman 8 056,50

2014 MARSIS Mars Express

Mars Express -MARSIS CNES Planeto W.Kofman 2 050,00

2014 131425_45372 ROSETTA/CONSERT

Rosetta/Consert CNES Planeto W.Kofman 171 175,00

2008 200911 GAMMARAYBINARIES

Exploring the gamma-ray sky : binaries, microquasars and their impact on understanding particle acceleration,

relavistic winds & accretion/ejection phenomena in cosmic sources

U.E ERC Sherpas G.Dubus 01/07/08 30/06/13 60 Fini 794 752,00 N IPAG 794 752,00

2010 92532_U29 XMM Compréhension des processus haute énergie des objets compacts CNES Sherpas PO.Petrucci 10/02/11 30/11/11 Fini 7 113,50

2011 92532_U46 XMM Compréhension des processus haute énergie des objets compacts CNES Sherpas PO.Petrucci 20/02/12 30/11/12 Fini 11 992,50

2011 FP7-PEOPLE-2011-CIG-294110

HallDiscs Hall dominated turbulence in protoplanetary discs U.ESP3-

People/Support for training & career

Sherpas G.HenriG.LeSur

01/01/12 31/12/14 36 75 000,00 IPAG 75 000,00

2012 ANR-12-BS05-0009-01 CHAOS Caratérisation des processus d'accretion-ejection dans les systèmes binaires compacts GIP ANR Blanc Sherpas PO.Petrucci 01/01/13 31/12/16 48 166 670,00 N IPAG 487 187,00

2012 92532_U62 XMM Compréhension des processus haute énergie des objets compacts CNES Sherpas PO.Petrucci 26/02/13 31/12/13 16 092,50

2014 131425_45304 XMM Compréhension des processus haute énergie des objets compacts CNES Sherpas PO.Petrucci 16 502,50

19/05/2014

Page 93: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Réf. Contrat Acronyme Nom du projet Financeur Statut Equipe Resp. Scientifique Début Fin Durée Statut2 Montant

723302 GRANTECAN

Collaboration agreement for the fabrication of a CCD camera and spare to operate the E2V Technologies CCD220 detector for rhe Gran Telescopio Canarias

Adaptive Optics System

GRAN TELESCOPIO DE CANARIAS DA

Industriel CRISTAL P.Feautrier 08/12/09 14/12/12 36 Fini 46 801,70

723739/00Etude design et optimisation du système optique

d'un four à imageCYBERSTAR SA Privé CRISTAL P.Puget 23/01/12 22/03/12 2 13 000,00

59 801,70

19/05/2014

Pibaret Béatrice
Typewritten Text
Pibaret Béatrice
Typewritten Text
Pibaret Béatrice
Typewritten Text
Pibaret Béatrice
Typewritten Text
Pibaret Béatrice
Typewritten Text
ANNEXE 7: IPAG 2016-2020 Liste des contrats privés de 2009 à 2014
Page 94: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

ANNEXE 7 : IPAG 2016-2020

Liste des thèses depuis le 1er janvier 2009 (ou depuis la date de création de l'unité si celle-ci est postérieure) ET des doctorants présents dans l'unité au 30 juin 2014

ANTHONIOZ Fabien Sujet de thèse : « Etude de la structure des disques internes entourant les etoiles jeunes (PIONIER) » Directeur(s) : MENARD F. Début de Thèse :  10/1/2011   Soutenance :   APPERE Thomas Sujet de thèse : « Cycle actuel de l'eau sur Mars : Etude des condensations saisonnières Nord » Directeur(s) : SCHMITT B. Début de Thèse :  10/1/2008   Soutenance : 7/1/2012  ASTUDILLO Nicola Sujet de thèse : « Search for Earth like planets in the habitable zone of M dwarfs » Directeur(s) : DELFOSSE X. Début de Thèse :  10/1/2011   Soutenance :   BECKER Christophe Sujet de thèse : « Evolution dynamique des amas stellaires jeunes » Directeur(s) : BOUVIER J., MORAUX E. Début de Thèse :  10/1/2010   Soutenance : 12/1/2013  BERNARD David Sujet de thèse : « La Terre en tant qu'exoplanète » Directeur(s) : LILENSTEN J. Début de Thèse :  10/1/2011   Soutenance :   BERQUIN Yann Sujet de thèse : « Etude des performances et dimensionnement du radar sondeur pour la mission EJSM (Ganymède et Europe) » Directeur(s) : KOFMAN W., HERIQUE A. Début de Thèse :  10/1/2010   Soutenance : 2/1/2014 

Page 95: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

BLIND Nicolas Sujet de thèse : « Etude et validation d'un concept d'instrument cophaseur pour le VLTI. » Directeur(s) : CHELLI A., BERGER J.‐P. Début de Thèse :  10/1/2008   Soutenance : 11/1/2011  BONNET Jean‐Yves Sujet de thèse : « Thermodégradation de matières organiques d'intérêt planétaire » Directeur(s) : QUIRICO E. Début de Thèse :  10/1/2008   Soutenance : 1/1/2012  BORGNIET Simon Sujet de thèse : « Extrasolar planets : search for planets around massive and/or young stars. Study of the impact of stellar activity on telluric planets detection » Directeur(s) : LAGRANGE A.‐M. Début de Thèse :  10/1/2012   Soutenance :   CABRAL Nahuel Sujet de thèse : « Synthese planetaire dans les disques » Directeur(s) : Willy Benz  , Francois Menard Début de Thèse :  10/1/2009   Soutenance :   CABRERA Nicole Sujet de thèse : « A Multiwavelength RV Search for Planets Around Young Stars » Directeur(s) : DELFOSSE X. / WHITE R. (GSU) Début de Thèse :  10/1/2012   Soutenance :   CANTALLOUBE Faustine Sujet de thèse : « Méthode innovante de traitement d'images multispectrales à grand contraste et instruments de nouvelle génération » Directeur(s) : MOUILLET D. Début de Thèse :  10/1/2013   Soutenance :   CARDIET Mael Sujet de thèse : « Instrument Consert à bord de la mission spactiale Rosetta : tomographie radar de la comète Churyumov‐Gerasimenko. » Directeur(s) : DOUTE S., HERIQUE A. Début de Thèse :  10/1/2012   Soutenance :   CAVALIER Paul Sujet de thèse : « Echantillonnage direct d’interférences lumineuses à l’aide de nanodétecteurs supraconducteurs pour la réalisation d’un  micro‐spectromètre SWIFTS » Directeur(s) : FEAUTRIER P. Début de Thèse :  10/1/2008   Soutenance : 5/1/2011  CEAMANOS GARCIA Javier Sujet de thèse : « Evaluation des performances de l'analyse statistique et physique d'images hyperspectrales multidimensionnelles de Mars » Directeur(s) : DOUTE S. Début de Thèse :  10/1/2008   Soutenance : 10/1/2011 

Page 96: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

CESSATEUR Gael Sujet de thèse : « Variation de l'irradiance solaire dans le proche UV et le visible » Directeur(s) : LILENSTEN J., DUDOK de WIT T. Début de Thèse :  10/1/2008   Soutenance : 10/1/2011  CROUZIER Antoine Sujet de thèse : « NEAT (Nearby Earth Astrometric Telescope) » Directeur(s) : MALBET F. Début de Thèse :  10/1/2011   Soutenance :   DE GUIRAN Rémi Sujet de thèse : « Marées magnétiques dans les disques d'accretion » Directeur(s) : FERREIRA J. Début de Thèse :  10/1/2009   Soutenance : 3/1/2013  DE MENGIN Mickael Sujet de thèse : « Etude d'un spectrometre integre (SWIFTS) » Directeur(s) : LE COARER E. Début de Thèse :  10/1/2011   Soutenance :   DUMAS Delphine Sujet de thèse : « Développement de détecteurs infrarouge courbes » Directeur(s) : LE COARER E. Début de Thèse :  10/1/2009   Soutenance : 12/1/2011  El EDHARI Ali Sujet de thèse : « Synthèse chimique en phase gazeuse des molécules organiques complexes dans les régions de formation d'étoiles. » Directeur(s) : CECCARELLI C. Début de Thèse :  2/1/2012   Soutenance :   FARAMAZ Virginie Sujet de thèse : « Dynamique systemes binaires et modelisation dynamique des disques vus par Herschel » Directeur(s) : BEUST H. Début de Thèse :  10/1/2011   Soutenance :   FAURE Mathilde Sujet de thèse : « Glaces et composés organiques dans la comète P67/Churyumov‐Gerasimenko et à la surface de pluton » Directeur(s) : QUIRICO E., FAURE A. Début de Thèse :  10/1/2013   Soutenance :   GALLET Florian Sujet de thèse : « Evolution moment cinetique » Directeur(s) : BOUVIER J. Début de Thèse :  10/1/2011   Soutenance :  

Page 97: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

GARENNE Alexandre Sujet de thèse : « Hydration and carbonation on asteroids and Mars » Directeur(s) : BECK P. Début de Thèse :  10/1/2011   Soutenance :   GRIMA Cyril Sujet de thèse : « Etude de la surface et de la subsurface de Mars par sondage radar. » Directeur(s) : KOFMAN W., HERIQUE A. Début de Thèse :  10/1/2007   Soutenance : 1/1/2011  GRISOLLE Florence Sujet de thèse : « Glaces saisonnières de CO2 sur Mars » Directeur(s) : SCHMITT B;, BECK P. Début de Thèse :  10/1/2010   Soutenance : 12/1/2013  HEIDMAN Samuel Sujet de thèse : « Développement de recombineurs actifs en Niobate de Lithium pour l’inteféromètrie stellaire » Directeur(s) : MARTIN G. Début de Thèse :  10/1/2010   Soutenance : 12/1/2013  KLUSKA Jacques Sujet de thèse : « Imager l’environnement proche des étoiles jeunes par interférometrie optique » Directeur(s) : MABET F. Début de Thèse :  10/1/2011   Soutenance :   LAMBERTS Astrid Sujet de thèse : « Simulations numériques de collisions de vents dans les systèmes binaires » Directeur(s) : DUBUS G. Début de Thèse :  10/1/2009   Soutenance : 9/1/2012  LANNIER Justine Sujet de thèse : « Formation des planètes géantes autour des étoiles de faibles masses : contraintes observationnelles en imagerie (optique adaptative) » Directeur(s) : LAGRANGE A.‐M., DELORME P. Début de Thèse :  10/1/2013   Soutenance :   LE GAL Romane Sujet de thèse : « NItrogen chemistry in dark clouds » Directeur(s) : HILY‐BLANT P., Début de Thèse :  10/1/2011   Soutenance :   LEBRETON Jérémy Sujet de thèse : « Observations Herschel et modélisation des systèmes planétaires autour des étoiles proches » Directeur(s) : AUGEREAU J.C. Début de Thèse :  10/1/2009   Soutenance : 3/1/2013 

Page 98: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

MAIGA MOUSSA Sujet de thèse : « Étude d’une comète par tomographie radar / calibration des données » Directeur(s) : DIOURTE B., HERIQUE A. Début de Thèse :  10/1/2011   Soutenance :   MARRERO Ruben Sujet de thèse : « Caractérisation topographisuqe et physique de la surface martienne en vue de la sélection des sites d'attérissage » Directeur(s) : DOUTE S. Début de Thèse :  10/1/2013   Soutenance :   MENAGER Hélène Sujet de thèse : « Emissions aurorales de Jupiter » Directeur(s) : LILENSTEN J. Début de Thèse :  10/1/2008   Soutenance : 7/1/2011  MILLI Julien Sujet de thèse : « SPHERE performances for debris disk characterization » Directeur(s) : MOUILLET D. Début de Thèse :  10/1/2011   Soutenance :   MORALES Ortiz Jorge L Sujet de thèse : « The ionization toward the high‐mass star‐forming region NGC 6334 » Directeur(s) : CECCARELLI C. Début de Thèse :  10/1/2011   Soutenance :   NEVES Vasco Sujet de thèse : « Paramètres stellaires pour les naines M: le lien vers les exoplanètes » Directeur(s) : DELFOSSE e/Nuno Santos/ Xavier Bonfils Début de Thèse :  10/1/2010   Soutenance : 12/10/2013  OLIVARES ROMERO Javier Sujet de thèse : «  » Directeur(s) : MORAUX E. Début de Thèse :  3/1/2014   Soutenance :   ORTHOUS‐DAUNAY François‐Régis Sujet de thèse : « Empreinte moléculaire des processus post‐accrétionnels dans la matière organique des chondrites carbonées » Directeur(s) : QUIRICO E. Début de Thèse :  10/1/2008   Soutenance : 4/1/2011  PACHECO Suzanna Sujet de thèse : « Chemical complexity in protostellar shocks: a detailed study of L1157‐B1. » Directeur(s) : CECCARELLI C.,LEFLOCH B. Début de Thèse :  10/1/2009   Soutenance : 12/1/2012 

Page 99: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

PETERS Philip Sujet de thèse : « Etude théorique de la réactivité de l’hydrogène avec CO, H2CO, H3COH à la surface des grains interstellaires » Directeur(s) : Laurent Wiesenfeld,  Céline Toubin, Denis Duflot Début de Thèse :  10/1/2009   Soutenance : 9/1/2012  PHILIPPE Sylvain Sujet de thèse : « Microphysique de l'évolution des glaces sur mars et Pluton : analyse d'observations, modélisations spectrales et thermodynamique et approche expérimentale. » Directeur(s) : SCHMITT B., BECK P. Début de Thèse :  10/1/2013   Soutenance :   PLOTNIKOV Illya Sujet de thèse : « Chocs relativistes: accelération des particules, génération de la turbulence et rayonnement » Directeur(s) : PELLETIER G., HENRI G. Début de Thèse :  10/1/2010   Soutenance : 10/1/2013  RAMEAU Julien Sujet de thèse : « Spectro‐imagerie Haut Contraste pour la Détection et la Caractérisation de Compagnons Planétaires et Substellaires avec NaCo et SPHERE au VLT. » Directeur(s) : LAGRANGE A.‐M. Début de Thèse :  10/1/2011   Soutenance :   RATAJCZAK Alexandre Sujet de thèse : « ECHANGES HYDROGÈNE/DEUTÉRIUM DANS LES GLACES INTERSTELLAIRES, une Origine de la Deutération Sélective? » Directeur(s) : FAURE A., QUIRICO E. Début de Thèse :  10/1/2008   Soutenance : 3/1/2012  TAQUET Vianney Sujet de thèse : « Grain surface chemistry in star‐forming regions » Directeur(s) : CECCARELLI C.,KAHANE C Début de Thèse :  9/1/2009   Soutenance : 9/1/2012  THOMAS Fabrice Sujet de thèse : « Etude s applicatives instrumentales basées sur la technologie SWIFTS. » Directeur(s) : LE COARER E. Début de Thèse :  10/1/2012   Soutenance :   URSINI Francesco Sujet de thèse : « Constraining the high energy emission sources in the environment of supermassive black holes » Directeur(s) : HENRI G., PETRUCCI P.‐O. Début de Thèse :  10/1/2013   Soutenance :   VANDEPORTAL Julien 

Page 100: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Sujet de thèse : « Modélisation de disques protoplanétaires autour d'étoiles jeunes » Directeur(s) : AUGEREAU J.C., BASTIEN P. (Canada) Début de Thèse :  10/1/2009   Soutenance :   VAUPRE Solenn Sujet de thèse : « Etude de l'interaction entre rayons cosmiques et nuages moléculaires. » Directeur(s) : CECCARELLI C. Début de Thèse :  10/1/2012   Soutenance :   VENUTI Laura Sujet de thèse : « Processus d'accretion et rotation differentielle des etoiles jeunes. » Directeur(s) : BOUVIER J. Début de Thèse :  10/1/2012   Soutenance :   VOJETTA Gautier Sujet de thèse : « Les photodiodes à avalanche à base de CdHgTe : de l'imagerie infra rouge au comptage dephotons » Directeur(s) : FEAUTRIER P., ROTHMAN (CEA) Début de Thèse :  10/1/2009   Soutenance : 11/1/2012  VUILLAUME Thomas Sujet de thèse : « Modélisation de l'émission des noyaux actifs de galaxie à l'ère Fermi. » Directeur(s) : HENRI G., Début de Thèse :  10/1/2012   Soutenance :   YGOUF Marie Sujet de thèse : « Calibration et traitement d'images 3D pour les systèmes d'imagerie à haut contraste » Directeur(s) : BEUZIT J.L, MOUILLET D, FUSCO T., MUNIER L. Début de Thèse :  10/1/2009   Soutenance : 12/1/2012   

Page 101: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

ANNEXE 8 : IPAG 2016-2020

               

Page 102: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Code du travail Articles L.230-2 III.(a) et R.230-1

Document des résultats de l’évaluation des risques

évaluation des risques professionnels - Document Unique -

Etablissement

Unité de travail (unité, laboratoire,

département, service, UFR, institut …)

Principales activités

Directeur

Effectifs

Sites géographiques et locaux

Description succincte de la méthode mise en œuvre

pour réaliser l’évaluation

Personnes associées à l’évaluation

Organisation de la sécurité au sein de

l’unité de travail

CNRS - UJF

Institut de Planétologie et d’Astrophysique de Grenoble IPAG UMR intitulé et code

Activités de recherche en Astrophysique et en Planétologie. Activités d’optique, de chimie, instrumentale (laser, mécanique, cryogénie, électronique)

Jean-Louis Monin

Enseignants ITA CDD et/ou chercheurs ou IATOSS

Etudiants Autres TOTAL

Nombres Surfaces de sites des locaux

Analyse des risques par lieu de travail, avec prise en compte du matériel et de l’activité.

Assistant de prévention et commission hygiène et sécurité/ utilisateurs des laboratoires

Présence d’un registre Santé et Sécurité oui/non

Existence d’un règlement intérieur oui/non

Mesure pour le travail isolé oui/non et/ou en horaires décalés

Existence d’une instance consultative (CSHS, SHS) oui/non

Si non, saisine du conseil de laboratoire, service, unité, département oui/non

Rédaction de plan de prévention lors d’intervention d’entreprises extérieures oui/non

UMR5274

62 38 20

29 4

2014 Année

3 5076 m2

Assistant de Prévention Nomination oui/non ou Formation initiale oui/non

correspondant de sécurité Formation continue oui/non

153

Page 103: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014
Page 104: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

locaux

dangers ou

facteurs de risques identifiés

description des risques

modalités d’exposition aux dangers

nom

bre

de

pers

onne

s ex

posé

es

moyens de prévention existants :

description

corr

ect

à am

élio

rer

à re

défin

ir ou

à m

ettr

e en

pla

ce

appréciations générales sur la maîtrise

des risques

IPAG

Travail sur post informatique

TMS Tous Adaptation du post de travail, information utilisateur,

mobilier adapté, formation X Bonne

Bât A, Labo IR

017

Laser Infrarouge

Exposition de l’œil à un faisceau de classe > 3A 10

Formation de l’utilisateur, arrêt d’urgence, témoins de fonctionnement, signalisation risque laser, capotage, EPI. Accès restreint X Pas toujours pris en compte, maitrise

partielle.

Bât A, Labo IR 017

Bidon d’azote liquide Anoxie, brûlures 6

Formation utilisateur, Détecteur d’oxygène, EPI, Accès restreint X Bonne

Bât A, Labo IR 017 Chimique Produit nocif, CMR, exposition peu

fréquente, 3 EPI X Risque pas toujours pris en compte

Bât A, Labo IR

017

Fibre Optique Blessure 3

Formation, poubelle de récupération des déchets, spécialiste dédié. Charte de sécurité.

X Bonne

Bât A, Salle blanche

Travailleur isolé

Problème en cas d’évacuation incendie, travailleur isolé 4

Charte et formation. X Ajouter un témoin indiquant la présence

d’une personne.

Bât A, Labo IR

017 Difficulté évacuation Salle noire en cas de coupure électrique,

signalisation lumineuse pas adaptée. 6 Fléchage phosphorescent

X Améliorer la signalisation lumineuse

Bât A, atelier mécanique.

Machine Outils et outils coupants

Blessures graves telles que l'entrainement d'un membre dans la

machine, coupures, projections et éclats 5

Formation et charte utilisateur, Carter machine, EPI, arrêt d’urgence, Accès restreint X Bonne

Bât A, atelier mécanique.

Produits chimiques Emanation et Brûlures, CMR 1

Charte, EPI, Accès restreint X Utiliser des EPI adaptés aux produits

CMR

Bât A, atelier mécanique.

Travailleur isolé

Machine coupante mécanisée, accès restreint avec aucune visée depuis

l’extérieur 1

Aucun

X Nulle

Bât A, atelier mécanique Bruit Bruit dû au machine outils 2 EPI X

Bât A, laboratoire 66 Laser Exposition de l’œil à un faisceau de

classe < 3A 3 Formation de l’utilisateur, Protection collective par des rideaux, Témoin lumineux lors de l’utilisation du laser, EPI

X

Bât A, hall d’intégration

Pont roulant Manutention de charge lourde avec élingues 10 Vérification annuelle, charte, habilitation utilisateur,

EPI. X

Page 105: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

locaux

dangers ou

facteurs de risques identifiés

description des risques

modalités d’exposition aux dangers

nom

bre

de

pers

onne

s ex

posé

es

moyens de prévention existants :

description

corr

ect

à am

élio

rer

à re

défin

ir ou

à m

ettr

e en

pla

ce

appréciations générales sur la maîtrise

des risques

Bât A, couloir

Armoire d’archivage papier + bibliothèque

Risque en cas d’incendie Tous

Diminution du volume d’archive ou documentation

X

Essayer de réduire les archives

Bât A, salle

turbo compresseur,

local quai.

Compresseur d’air, Cuve air comprimé,

Bouteille azote gazeux Explosion, projection d’éclat Sensibilisation, vérification périodique X Bonne

Bât A Salle onduleur Onduleurs Échauffement, incendie, électrique 1 Capteur fumée, salle fermée, Extracteur d’air X Bonne

Bât A 126 Salle info Baie serveur Renversement, écrasement, accès sur

empreinte digitale 5 Equerre stabilisatrice, formation personnel, restriction dans manipulation serveur X Bonne

Bât A 126 salle info

Electrisation Electrocution

Risque d’électrisation lors de la manipulation des canalis 5 Formation, habilitation électrique X Vérifier que toutes les personnes

manipulant les canalis sont habilitées Bât A WC femme 1er

Porte ouvrant sur le couloir

Collision avec personne passant dans le couloir à ce moment là >50 Aucun X

Bât A WC salle 20

Porte ouvrant sur le couloir

Collision avec personne passant dans le couloir à ce moment là >50 Aucun X

Bât A Toit terrasse salle

info

Risque de chute Hauteur et garde-corps incomplet 5

Aucun X

Ajouter un garde-corps complet ou condamner l’accès au toit terrasse

CERMO, Labo

Swifts

Source FIANIUM

LASER BLANC

3

Formation, capotage, EPI, affichage lumineux lorsque le laser est en fonctionnement, arrêt

d’urgence X

Bonne

CERMO,

Atelier Electronique

Montage électronique

Electrisation, électrocution

3

Sensibilisation, méthode de travail

X

Bonne

CERMO ,Labo EPICS Risque Laser Manipulation d’un laser IR clase 3B 3 Formation, capotage de la manipulation, EPI X

Page 106: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

locaux

dangers ou

facteurs de risques identifiés

description des risques

modalités d’exposition aux dangers

nom

bre

de

pers

onne

s ex

posé

es

moyens de prévention existants :

description

corr

ect

à am

élio

rer

à re

défin

ir ou

à m

ettr

e en

pla

ce

appréciations générales sur la maîtrise

des risques

Bât D, chambres froides 312 et

312 bis

Ambiance thermique

Risque en cas de malaises ou d’accidents graves

Exposition aux températures basses

5 Alarme sonore, téléphone portable

Accès réglementé Formation et information du personnel

X

Indicateur de présence dans la chambre

froide

Bât D, chambres froides 312 et

312 bis

Machines-outils (scie à ruban et broyeur à

glace)

Possibilité d’entraînement de projections et de coupures 1

Protection Utilisation réglementée

Formation et information du personnel X Correct.

Bât D, chambres froides 312 et

312 bis

Risque chimique dû à la présence de produits

chimiques type nanoparticules

Manipulation de produits nocifs ou irritants 4

Protection individuelle Procédure de manipulation

Formation et information du personnel

X X X

Correct

Bât D, chambres froides 312 et

312 bis Bouteille de gaz (CO2)

Manipulation de bouteille de gaz

Anoxie 3

Chainage de bouteille de gaz, manutention avec un charriot

Analyseur de CO2

X

Pas de détecteur d’atmosphère fixe dans les chambres froides

Bât D 313 Labo optique

Rayon laser classe 3A

Risque d’exposition de l’œil à un faisceau provenant d’un laser classe 3A (équipement totalement capoté)

10 Capot de protection

Lunettes Formation

X Correct

Bât D 313 Labo optique

Bouteille de gaz (CO2)

Manipulation de bouteille de gaz

Anoxie 10

Chainage de bouteille de gaz, manutention avec un charriot

VMC Détecteur de CO2

X Correct

Bât D 313 Labo optique

Manipulation d’azote liquide

Risque d’anoxie et de brûlures cryogéniques 10

Formation VMC

Protection individuelle : gants et lunettes X Correct

Bât D 314 Labo chimie

Risques chimiques dus à la présence de

produits chimiques

Manipulation de produits toxiques nocifs ou irritants 7

Protection collective : sorbonnes, armoire ventilée pour le stockage

Protection individuelle : blouse, gants, lunettes, masque à gaz

Formation Accès réglementé

X X

X

X

Port des protections individuelles pas toujours respecté

Contrôle des sorbonnes à réaliser : test

débit d’air ok mais pas de test de fumigène (UJF)

Bât D 314 Labo chimie

Risques incendie ou explosion dus à la

présence de produits chimiques

inflammables

Manipulation et stockage de produits inflammables Toute

armoire ventilée et résistante au feu pour le stockage Détecteur incendie/ extincteurs

Information et formation

X Correct

Bât D 314 Labo chimie

Risques incendie ou explosion dus à la

présence de produits chimiques comburants

Manipulation et stockage de produits comburants Toute

armoire ventilée et résistante au feu pour le stockage Détecteur incendie/ extincteurs

Information et formation

X Correct

Bât D 314 Labo chimie

Equipements sous pression Manipulation de bouteilles de gaz 7

Chainage des bouteilles, manutention avec un chariot

Formation X Correct

Page 107: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

locaux

dangers ou

facteurs de risques identifiés

description des risques

modalités d’exposition aux dangers

nom

bre

de

pers

onne

s ex

posé

es

moyens de prévention existants :

description

corr

ect

à am

élio

rer

à re

défin

ir ou

à m

ettr

e en

pla

ce

appréciations générales sur la maîtrise

des risques

Bât D 314 Labo chimie

Risque de coupures ou blessures

Manipulation de verrerie ou matériel coupant (scalpel) 7 Personnel qualifié X Correct

Bât D 314 Labo chimie

Risque de brûlures Utilisation de 2 fours haute température 7 Protection individuelle : gants X Correct

Bât D 314 Labo chimie

Risque de projection Utilisation d’une centrifugeuse 7

Protection individuelle : blouse, lunettes Vérification annuelle

Formation X Port des EPI pas toujours respecté

Bât D 315b Atelier

Machine outils Utilisation de machines coupantes

mécanisées, projection d’éclat. 2 Protection

Utilisation réglementée Personnel qualifié

X Correct

Bât D 316 Labo spectroscopie

Equipement sous pression Manipulation de bouteilles de Gaz 5

Chainage des bouteilles, manutention avec un chariot

Formation X Correct

Bât D 316 Labo spectroscopie

Risque incendie ou explosion

Manipulation de gaz et produits inflammables 5

Information Détecteur incendie

Formation maniement extincteur X Correct

Bât D 316 Labo spectroscopie

Liquide cryogénique ou gaz

Manipulation d’azote liquide risque anoxie et de brûlure cryogéniques 5

Equipement de protection individuel : lunettes, gants VMC

Formation X Correct

Bât D 316 Labo spectroscopie

Rayonnement non ionisant : lampe UV Exposition plus ou moins prolongée à O3 5 Extracteur d’air

Personnel qualifié X Signalisation

Bât D 316 Labo spectroscopie

Rayonnement non ionisant : lampe micro-

ondes

Risque de fuite de rayonnements non ionisants 5 Détecteur micro-ondes

Formation et information X Absence de grillage de protection. Signalisation

Bât D 316 Labo spectroscopie

Risque laser Risque d’exposition à un laser de classe

3B 5 Equipement de protection individuel : lunettes Formation X Capotage de la manipulation

Bât D 321 Labo MS

Risques chimiques dus

à la présence de produits chimiques

Manipulation de produits toxiques nocifs ou irritants 4

Protection collective hotte à flux laminaire Protection individuelle : blouse, gants, lunettes

Formation X

Pas de signalisation

Bât D 321 Labo MS

Risques incendie ou explosion

Manipulation et stockage de produits inflammables Toute Détecteur incendie

Information et formation X Correct

Bât D 321 Labo MS Risque de projection Utilisation d’une centrifugeuse 4

Protection individuelle : blouse, lunettes Vérification annuelle

Formation X Port des EPI pas toujours respecté

Bât D 321 Labo MS

Equipement sous pression Manipulation de bouteilles de Gaz 4

Chainage des bouteilles, manutention avec un chariot

Formation X correct

Bât D 321 Labo MS

Risque de coupures ou blessures

Manipulation de verrerie ou matériel coupant (scalpel) 4 Personnel qualifié X

Bât D 321 Labo MS

Risques l’électrisation ou d’électrocution

Equipement sous haute tensions, commerciale mise à la terre et capoté Formation maintenance des équipements X

Page 108: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

locaux

dangers ou

facteurs de risques identifiés

description des risques

modalités d’exposition aux dangers

nom

bre

de

pers

onne

s ex

posé

es

moyens de prévention existants :

description

corr

ect

à am

élio

rer

à re

défin

ir ou

à m

ettr

e en

pla

ce

appréciations générales sur la maîtrise

des risques

Bât D 327 Risque incendie Archivage documents papiers CONSERT Toute X X

Pièce encombrée Pas de détecteur d’incendie

Bât D 326 Laboratoire

d’électronique/CONSERT

électrisation, électrocution Montage électronique 4 Formation, méthode de travail X

Terrasse (toit) Equipement sous pression Compresseur air comprimé 2

Accès réglementé Vérification périodique

X Contrôle et inspections périodiques

Monte-charge Risque asphyxie Atmosphères en cas de panne du monte-charge Toute Formation/ signalisation X

Accès Bâtiment Risque de chute Chemin d’accès en mauvais état Toute X Tracé un nouveau chemin Local extérieur Stockage des gaz (Bât C)

Equipement sous pression Manipulation de bouteilles de Gaz 5

Chainage des bouteilles, manutention avec un chariot

Vérification périodique bouteilles de gaz

X

X Correct

Page 109: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Etablissement Directeur Unité de travail (Unité, laboratoire, Date de présentation au CSHS, SHS département, service, UFR, institut …) ou au conseil d’unité, de laboratoire, département, service

Dangers ou facteurs de risques identifiés

Mesures de prévention Techniques, Organisationnelles et Humaines

Ordre de priorité

Délais d’exécution

Estimation du coût

Personne chargée de la réalisation

Travailleur isolé

Mise en place d’une porte « hublot » pour l’accès à l’atelier mécanique. Liste de personnes autorisées. Contacter service technique UJF pour mise en place.

0 Plus tôt possible UJF, suivi mécanicien_ Dossier déjà en cours

Difficulté évacuation Labo IR

Actuellement fléchage phosphorescent. Réfléchir à la mise en place d’une signalisation d’évacuation lumineuse activée lors d’une coupure électrique.

0 6 mois UJF, suivi responsable labo IR

Risque Laser Bât A Mise à jour formation utilisateur, réflexion sur chaque banc optique, capotage, EPI

1 1 an Service instrumentation, AP

Risque Laser Bât D labo 316 Réfléchir pour capoter le faisceau laser situé sur le spectromètre IR 0 1 an Service instrumentation, AP

Risque Chimique Bât D 314 Formation et incitation au port des EPI 1 1 an Service instrumentation, AP

Risque Chimique bât A atelier mécanique et labo IR

Formation et sensibilisation aux risques liés à l’utilisation de produits chimiques 1 6 mois AP

Risque Chimique D 314 Contrôle périodique des Sorbonnes tests de fumigène 0 1 an UJF ou jouvence des sorbonnes (planeto) Risque Chimique D 321 Mise en place de signalétiques porte du laboratoire D321 2 6 mois AP

Travail en chambre froide Signalisation de présence dans la chambre froide/ installation d’un détecteur de CO2 1 6 mois Service instrumentation, AP

Risque de chute chemin d’accès Tracé d’un nouveau chemin d’accès entre les bâtiments 2 UJF

Bâtiment A archive/bibliothèque risque incendie Limiter et diminuer le stockage de support papier 2 1 an IPAG

Bâtiment D archive risque incendie Limiter et diminuer le stockage de support papier/ installation de détecteur de fumée 1 1 an IPAG/UJF

Bâtiment A toit terrasse salle info, risque de chute Compléter le garde-corps ou interdire l’accès au toit terrasse 0 6 mois Demande déjà réalisé par J-L Lacroix

IPAG

UMR 5274

03/04/2014

Jean-Louis MONIN 2014

Page 110: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

***

a resagence dévaluation de la recherche

et de lenseignement supérieur

ANNEXE 9: IPAG 2016-2020

Liste prévisionnelle des personnels de l’unité au 1er janvier 2016

classer par ordre alphabétique

Typed’emploi Nom Prénom Signature des personnels

(1)

Ch_tit ALECIAN Evelyne

AP_tit AREZKI Brahim

EC_tit AUGEREAU Jean-Charles

ECJit BACMANN Aurore

EC_tit BARTHELEMY Mathieu

ECJit BECK Pierre

ECJrt BENISTY Myriam

ECtit BEUST Hervé

Ch_tft BEUZIT Jean-Lue

EC_tit BONAL Lydie

Ch_tit BONFILS Xavier

Ch_tit BONNEFOY Mickael

AP_tit BOUCARD Fabienne

APJit BOURDON PIBARET Béatrice

Ch_tit BOUVIER Jérôme

AP_tit BRISSAUD Olivier

Page 111: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

-

Page 112: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

ECJ1t JONCOUR Isabelle

EC_tit KAHANE Claudine

_________________________________________________________

w

AP_tit KERN Pierre

Ch_aut KOFMAN Wlodek

AP_tit LAFRASSE Sylvain

Ch_tit LAGRANGE Anne-Marie

EC_tit LEBOUQUIN Jean-Baptiste

APJ1t LECOARER Etienne

Ch_tit LEFLOCH Bertrand

Ch_tit LESUR Geoffroy

Ch_tit LILENSTEN Jean

ChUt LONGAREHI Pierre-Yves

APJit MAGNARD Yves

APJ1t MAILLARD Bruno

Ch_tit MALBEf Fabien

Ch_tit MARET Sébastien

EC_tit MARTIN Guillermo

AP_tit MAUREL Didier

AP_tit MELLA Guillaume

EC_tit MEUNIER Nadège

AP_tit MICHAUD-DUPUIS Laurence

EC_tit MONIN Jean-Louis

ECJ1t MORAUX Estelle

ECJiI MOUILLET David

AP_tit MOULIN ThibauJ

APJit MQUREY Richard

EC_tit ORTHOUS-DAUNAY François-Régis

EC_aut PELLETIER Guy

Page 113: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014
Page 114: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

ANNEXE 10 : IPAG 2016-2020

Prospective instrumentale

ContexteUn groupe de travail s’est réuni au début de l’année 2014 pour analyser les différentes implications de l’IPAG dans la R&D et la réalisation instrumentale de l’IPAG nous permettant de proposer différentes pistes de réalisations pour les prochaines années à venir.

BilanIl apparaît que la force principale de l’IPAG réside dans la synergie d’un groupe technique avec les chercheurs et à la complémentarité de la R&D menée en amont des propositions d’instruments. Ceci permet à l’IPAG de devenir un acteur important dans les instruments installés dans les plus grandes infrastructures tant au sol que dans l’espace. L’équipe technique est riche de compétences et s’investit beaucoup. Elle est néanmoins en attente d’une vision claire de son investissement dans les futures instrumentations tout en étant inquiète de l’évolution des moyens qui sont affectés aux différentes réalisations.

Lesinstrumentsdanslesquelsl’IPAGsouhaites’investir Le groupe a mené auprès de ses équipes scientifiques un travail d’identification des activités actuelles (rouge) et des souhaits à moyen (jaune) et long terme (bleu) en ce qui concerne la R&D, la réalisation mais aussi l'implication scientifique dans des projets instrumentaux au sol et dans l'espace. Cette grille est à considérer avec une lecture plus large des priorités instrumentales nationales, des spécificités instrumentales et scientifiques prioritaires du laboratoire et de la gestion de ses personnels sur le court, moyene et long terme.

Page 115: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Tableau récapitulatif: techniques, instruments et groupe scientifique

Actuel (2014-2016) Moyen-terme (2016-2020) Long-terme (>2020)

Equipes Domaines /Techniques

R&D et Réalisation Groupe scientifique

Sol Espace Sol Espace

ASTROMOL FarIR, sub-mm & mm

NIKA2 - IRAM, ALMA, NOEMA NIKA2

CORE (PILOT) PLANCK SPICA?

SHERPAS Hautes énergies Telescopes Gamma, Tcherenkov

CTA - HESS, CTA XMM, ATHENA+, ASTROMEV

PLANETO UV/Visible/IR/mm Radar, Gognomètre et Spectro-imagerie

.Démineralisation matière organique

Rosetta, Mars Express, MSL, MRO ExoMars, Mars2020 JUICE

- Cassini, Rosetta, Mars Express, MSL, MRO, New Horizons, ExoMars, Mars2020, JUICE

FOST . UV/Visible/IR/mm . HRA, HR spectroscopie & Grands champs

SPHERE, PIONIER, GRAVITY, SPIROU, ExTrA, EELT/CAM+PCS

NEAT WHT, CFHT, ALMA VLT/VLTI, OHP, GRAVITY, SPHERE, MATISSE, SPIROU, ExTrA, NOEMA, EELT/CAM+PCS

NEAT, PLATO

CRISTAL . Visible/IR . Radar, HRA & Spectro-imagerie

SPHERE, PIONIER, FRIEND, PIONIER+, PFI, EELT/CAM+PCS

ExoMars, Mars2020, JUICE, . nano-satellite?. Nlle techno spatiale?

SPHERE, PIONIER, GRAVITY FRIEND, PIONIER+, PFI, EELT/CAM+PCS

-

Lesélémentspourdéterminerlesfutursinvestissements Identifier le volume de l’implication dans les différentes propositions. L’IPAG fait évoluer la cellule CAMPI (Cellule d’Aide au Montage des Projets de l’IPAG) vers une structure permettant à la direction de suivre la préparation et l’exécution des projets qui maintient une connaissance affinée de l’investissement humain et financier. L’IPAG souhaite rester disponible pour diriger le projet PCS (anciennement EPICS) de l’ELT compte tenu du savoir-faire acquis dans le projet SPHERE en le consolidant à travers la participation à un instrument de première lumière EELT. L’imagerie à haute dynamique par les techniques d’interférométrie et d’optique adaptative reste le cœur de métier du groupe technique de l’IPAG.

Page 116: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Trouver un équilibre entre la R&D, la réalisation et l’exploitation des instruments. La complémentarité de ces trois composantes est vitale pour l’IPAG pour autant qu’elle reste équilibrée. Cependant l’implication dans la R&D doit rester soutenue même si les phases de réalisation des gros projets sont amenées à mobiliser les ressources de façon irrégulière. L’investissement dans la préparation et l’exploitation des données liées aux instruments est plus régulier. Veiller aux conditions de contractualisation avec les grandes agences De façon à éviter de n’être que des sous-traitants Organisation du groupe technique L’évolution du cadre de travail de l’équipe technique doit pouvoir

- De faire adhérer les personnels au projet instrumental - Prévenir du risque de surchauffe et de burn-out - Permettre de recentrer les activités au lieu de les disséminer dans beaucoup de petits projets - Permettre au maximum de pouvoir travailler ensemble

Conclusion L’IPAG est devenu un gros laboratoire confronté à la multiplication des projets et des sollicitations éparpillée dues à la diversité des sources de financements. Il semble important de renforcer les prérogatives la cellule CAMPI réunissant les chercheurs et les ITA pour aider à sélectionner les investissements dans les futurs projets .

Page 117: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

ANNEXE 11 : IPAG 2016-2020

               

Page 118: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement etressources

Révision : 2.0

Date : 15/07/14

IPAG

PROJET FONCTIONNEMENT ET RESSOURCES DU LABORATOIRE

2016-2020

IPAG

Auteurs : membres du comité pour l'élaboration du projet fonctionnement et ressources du laboratoire

Institut : IPAG

Signature :

pour le comité

Date : 15/07/14

Vérifié par : Comité de Direction

Institut : IPAG

Signature :

Date : 08/07/14

Approuvé par :

Institut :

Signature :

Date :

Page 119: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

HISTORIQUE DES CHANGEMENTS

REVISION DATE AUTEUR PARAGRAPHES/PAGES MODIFIES

REMARQUES1.0 21/03/2014 S. Douté pour le

comité de prospective.

Rédaction de la section 2 à partir des contributions des rapports augmentées des remarques faites en séances.

Ceci est un document de travail susceptible d'être modifié avant sa livraison officielle début juin 2014.

2.0 27/06/2014 S. Douté pour le comité de prospective.

Modification de la section d présentation, ajout de la synthèse, prise en compte de quelques éléments issus des Journées du laboratoire tenues fin mars 2014.

Version finale.

Revision: 0.1 Page 2/30

Page 120: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

TABLE DES MATIÈRES

1 Présentation ......................................................................................................................................... 4

1.1 Contexte ......................................................................................................................................... 4

1.2 Services impliqués par le projet fonctionnement et ressources du laboratoire ...................... 4

1.3 Mission du comité chargé de l'élaboration du projet ................................................................ 4

1.4 Composition du comité ................................................................................................................ 4

1.5 Méthodes ...................................................................................................................................... 5

1.6 Calendrier ..................................................................................................................................... 5

2 Synthèse ............................................................................................................................................... 6

2.1 Gestion des ressources humaines ................................................................................................ 6

2.2 Stratégie et gestion financières .................................................................................................... 6

2.3 Systèmes et réseaux ...................................................................................................................... 6

2.4 Hygiène et sécurité ........................................................................................................................ 7

2.5 Traitement et diffusion de l’information .................................................................................... 7

2.6 Démarche qualité .......................................................................................................................... 7

3 Contexte, argumentation et propositions d’action ............................................................................. 9

3.1 Administration .............................................................................................................................. 9 3.1.1 Gestion des Ressources Humaines ......................................................................................................... 9 3.1.2 Stratégie financière ................................................................................................................................. 9 3.1.3 Gestion Financière ................................................................................................................................ 11

3.2 Système et Réseaux ..................................................................................................................... 12 3.2.1 Bilan ...................................................................................................................................................... 12 3.2.2 Le service face aux évolutions de l'IPAG ............................................................................................. 13 3.2.3 Le service face aux évolutions des tutelles ........................................................................................... 14 3.2.4 Propositions .......................................................................................................................................... 15

3.3 Hygiène et Sécurité – Conditions de travail ............................................................................. 16 3.3.1 Bilan : .................................................................................................................................................... 16 3.3.2 Propositions .......................................................................................................................................... 16

3.4 Traitement et diffusion de l’information .................................................................................. 17 3.4.1 Bilan ...................................................................................................................................................... 17 3.4.2 Propositions .......................................................................................................................................... 18

3.5 La démarche qualité ................................................................................................................... 18 3.5.1 Bilan ..................................................................................................................................................... 18 3.5.2 Propositions .......................................................................................................................................... 20

3.6 Patrimoine et équipement .......................................................................................................... 21

4 Annexes .............................................................................................................................................. 23

4.1 Activités en matière de Ressources Humaines ......................................................................... 23

4.2 Etat des lieux du traitement et de la diffusion de l’information ............................................ 24

4.3 Hygiène et Sécurité – Conditions de travail ............................................................................. 28

5 Glossaire : .......................................................................................................................................... 30

Revision: 0.1 Page 3/30

Page 121: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

1 Présentation

1.1 Contexte Nous vivons actuellement dans nos laboratoires une profonde évolution que certains qualifieraient

de révolution. En effet le système de recherche français est en route vers le "modèle international". Ce système se caractérise principalement par :

– une recherche largement structurée par projets – une autonomie accrue pour le financement des activités – une diversification des sources de financement – le recours massif aux CDD.

De plus cette évolution se conjugue avec un contexte budgétaire très difficile pour l’Etat et donc pour les organismes de recherche et les Universités. En conséquence nous assistons à une évolution majeure des modes de fonctionnement de nos tutelles qui se traduit par une forte volonté de mutualisation, de centralisation et de dématérialisation. Ceci s’accompagne d’une technicité croissante de la gestion financière des laboratoires. Face à ces changements il s’agit pour le laboratoire de se poser les bonnes questions :

– Quel modèle de fonctionnement général voulons-nous ? – Quelles nouvelles stratégies de captage et de gestion des ressources pouvons nous mettre en

place ? – Quelle doit être la part de la démarche commune ? – Quelles sont les activités que doivent ou pourront endosser les services du laboratoire suite aux

reformes de la recherche (LRU, RGPP) ? – Face aux évolutions en matière d’externalisation et de mutualisation, comment adapter au

mieux les services ? Grâce à ses travaux, le comité pour l’élaboration du projet fonctionnement et ressources du laboratoire prétend fournir quelques éléments de réponse. A la section 2 nous proposons d'abord une synthèse de nos principales recommandations. Elles sont remises dans leur contexte et argumentées dans la section 3. Les annexes du document fournissent des précisions.

1.2 Services impliqués par le projet fonctionnement et ressources du laboratoire

• administration, • groupe technique (notamment Administration Systèmes et Réseaux).

1.3 Mission du comité chargé de l'élaboration du projet La mission du comité est de rédiger de façon collégiale un livre blanc sur le fonctionnement et ressources du laboratoire pour la période 2016-2020. Le livre blanc contient un ensemble argumenté de propositions d’action préfigurant ou devant inspirer le projet final de fonctionnement et ressources du laboratoire proposé par la future Direction.

1.4 Composition du comité Le comité est un groupe de travail composé de rapporteurs nommés par le Directeur. Ces personnes sont choisies par rapport à leur fonction, leur représentativité et leur motivation au sein des services impliqués.

Le comité est animé par l'actuel Directeur Adjoint aux Ressources Sylvain Douté.

Revision: 0.1 Page 4/30

Page 122: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

Rapporteurs : Etienne Le Coarer (Directeur technique), Béatrice Pibaret (Responsable administrative), Frédéric Roussel (Système et Reseaux), Bruno Maillard (Budget - Finances), Stéphane DiChiaro (Gestionnaire), Pierre Hily-Blant (Chercheur), Laurène Flandinet (Assistant de Prévention, AP) et Laurence Michaud (Assistante de projets).

1.5 Méthodes Les rapporteurs, en relation avec l'animateur du comité, examinent chacun une ou plusieurs problématiques. De ce point de vue les outils envisageables sont : entretiens, documents de suivi des JdL 2012, feuille de doléances, etc... Lors de deux ou trois réunions d'étape, les résultats sont mis en commun, discutés, synthétisés et mis en forme dans un document de référence qui évolue progressivement vers le livre blanc à livrer.

Pour chaque problématique le rapporteur en particulier et le comité doivent examiner :

• pertinence (faut-il redéfinir la problématique ? Poser le problème différemment?), • méthodes de travail, de gestion et d'organisation. Procédures et outils,• acteurs et agents, • verrous et difficultés (par exemple réglementaire) ,• évolutions,• proposition d'actions.

1.6 Calendrier

• 27 novembre 2013 : constitution du comité; réunion de démarrage pour discuter de la méthode et des objectifs. Les missions sont confiées aux rapporteurs;

• janvier 2014 1ère réunion de discussion/synthèse• février 2014 2ème réunion de discussion/synthèse• mars 2014 réunions de concertation avec le comité instrumentation et la DAS-REX• avril 2014 : Journées du laboratoire; présentation de la démarche et des principales lignes du

livre blanc; prise en compte des réactions et des suggestions• juin 2014 : livraison du livre blanc

Revision: 0.1 Page 5/30

Page 123: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

2 SynthèseNous structurons notre synthèse par grandes thématiques : gestion des ressources humaines, stratégie et gestion financières, systèmes et réseaux, hygiène-sécurité, traitement-diffusion de l’information et démarche qualité.

2.1 Gestion des ressources humaines L’activité RH du service administratif va croissante à cause de la multiplication des dossiers de CDD, à cause de la délégation de gestion des personnels permanents universitaires et à cause de l’émergence de nouvelles activités RH induites par les réglementations récentes.

Il convient que la future Direction : 1. fasse reconnaître cette activité auprès des tutelles 2. engage une restructuration du service administratif 3. renforce éventuellement le personnel

pour que ces missions en croissance puissent être effectuées dans de bonnes conditions.

2.2 Stratégie et gestion financières Les subventions d’état ne représentent plus que 5% du budget total du laboratoire. Elles permettent à peine de faire face aux dépenses communes obligatoires. Il y a donc nécessité de prélèver une quote-part sur les financements dévolus aux projets. Les conséquences en matière de gestion sont lourdes : morcellement des sommes dédiées au fonctionnement général (FG) sur différentes origines de crédits, justification délicate des dépenses et disponibilité des crédits au fur et à mesure des mises en place sur les projets. C’est une vraie ingénierie financière très chronophage que doit mettre en œuvre le service administratif. Cela entraine une déperdition de compétences et d’énergie sans que le budget commun du laboratoire soit très confortable pour autant. Par conséquent il convient au niveau de la gestion financière :

1. d'anticiper les modalités de justification des achats laboratoire dès le montage des projets 2. d'élargir l'assiette de la quote-part en incluant les dépenses de personnel dans les prélèvements.

D'autre part trouver d'autres sources de financement est vital pour le laboratoire. Nous proposons donc de consolider et d'étendre notre démarche qualité en matière de captage de financements. Cette démarche se déclinerait en plusieurs points :

3. réaliser une carte du paysage de financement comme instrument de stratégie4. impulser un esprit collectif pour la réponse aux appels d’offre afin que notre force commune

nous permette d’obtenir plus de financements5. être plus entreprenant au niveau international, notamment au niveau européen où nous

pourrions envisager d’obtenir de gros financements ERC pour les équipes.Les points 1, 2 et 4 sont déjà considérés dans les expériences pilotes qui ont été menées par la cellule CAMPI (Cellule d'Aide au Montage de Projet à l'IPAG).

La gestion du versant financier des projets et des finances du laboratoire en général va être impactée par l’évolution pilotée par les tutelles. En effet nous pouvons citer le contrôle de la dépense pour un nombre croissant de sources de financement, l’externalisation de la facturation mise en place par le CNRS et l’Université et l’abandon de « La Délégation Globale de Gestion ». Même si au début il faut s’attendre à de la perte en ligne entre le laboratoire et les services centralisés de gestion, nous devrions gagner à terme du temps de travail. Il est impératif d’anticiper cette situation en faisant évoluer les missions et donc les métiers des agents pour soutenir les activités en croissance comme la stratégie financière et les RH.

2.3 Systèmes et réseaux En matière de systèmes et réseaux, pour pallier à la raréfaction des moyens et pour rationnaliser cette fonction support il y a deux mouvements qui se conjuguent : externalisation et mutualisation. L’externalisation se décline principalement au travers des offres de services aux unités assurées par des prestataires extérieurs offres qui sont le plus souvent payantes. La mutualisation s'applique sur les

Revision: 0.1 Page 6/30

Page 124: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

achats, les personnels, les moyens techniques et les ressources. Des services mutualisés ont vu le jour récemment tant au niveau de l’Observatoire que de l’Université. Dans ce paysage en transformation le laboratoire se doit de maintenir un service ASR en qualité et en quantité. Le comité recommande :

1. de déterminer les services critiques ou importants pour l’entité (cœur de métier), avec possibilité d’externalisation des services qui sont sans valeur ajoutée si organisés en interne

2. de mettre en place une stratégie de positionnement des personnels du laboratoire dans les comités de pilotage des services mutualisés

3. de faire des choix sur les modalités de financement (3 modèles sont brièvement proposés par la suite) accompagnés par une politique des achats efficaces et cohérente

4. et de faire évoluer le périmètre d’action des agents. En ce qui concerne ce dernier point, nous recommandons une plus grande implication du service informatique dans les projets scientifiques et instrumentaux grâce à l’externalisation/mutualisation de certaines tâches ASR.

2.4 Hygiène et sécurité La pratique « Hygiène et sécurité » est assez récente au laboratoire et il convient de la consolider. Cette action s’appuiera sur l’excellente implication de nos assistants de prévention (AP) mais aussi sur la définition de moyens et aussi sur une communication repensée.

Le comité propose que : 1. la Direction réalise avec l’aide des AP et des personnels concernés (administration, responsable

de laboratoire...) un état des lieux afin de décider d’une politique claire mise en œuvre notamment grâce à la ligne budgétaire H&S. Cela va de pair avec la définition d’une politique d’approvisionnement de cette ligne de crédit pour acheter du matériel ou faire face aux couts de l'évacuation des déchets chimiques par exemple.

2. le comité d’hygiène, de sécurité et des conditions de travail (CHSCT) soit beaucoup plus actif pour les années à venir. Les réunions du CHSCT semble le lieu le plus adapté pour discuter des problématiques en matière H&S et de faire remonter auprès des AP ou de la direction les remarques ou problèmes

3. soit renforcée la communication entre les acteurs de la sécurité et l’ensemble des personnels du laboratoire. Par exemple il s’agirait d’organiser 1/2 voir une journée de parcours pour l’accueil des nouveaux entrants une fois par trimestre notamment lors des grands flux d’arrivée (doctorants/ stagiaires). Le parcours serait jalonné de briefings et chaque étape serait validée sur une feuille de parcours individuel

4. les différents services travaillent davantage en commun afin d’améliorer la sécurité.

2.5 Traitement et diffusion de l’information Le système d’information de l’IPAG se décline par une panoplie d’outils et de pratiques au spectre large : intranet, twiki, bases de données, écrans d’affichage, temps hebdomadaire réservé à l’échange, ...etc...

Cependant force est de constater que la majeure partie de ces outils est sous utilisée, soit utilisée d’une façon qui n’est pas satisfaisante. Une analyse de la situation montre que la plupart des outils pourraient effectivement répondre à des besoins réels mais ne rencontrent pas forcément l’adhésion de leur utilisateurs. Une exception notable est l’intranet fruit d’une vraie démarche qualité.

Notre proposition principale est de nommer un responsable qui ait une vision globale et un pouvoir de décision sur le système d’information du laboratoire. Il aurait comme mission principale de réformer ce système en suivant la feuille de route que nous suggérons par la suite.

2.6 Démarche qualité La démarche qualité est un état d’esprit et une pratique qui peuvent s’appliquer à de nombreuses activités du laboratoire. Notre expérience passée démontre clairement que l’investissement en temps dans une telle démarche produit des retours très bénéfiques comme, par exemple, plus d’excellence scientifique, une gestion améliorée des ressources et une meilleur adéquation entre les besoins des

Revision: 0.1 Page 7/30

Page 125: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

utilisateurs et les outils mis à leur disposition. Les recommandations du comité s’articulent principalement autour de deux objectifs :

1. trouver les moyens de réactiver la cellule Assurance Qualité pour faire progresser nos pratiques et nos outils. Une première cible est une réforme de notre système d’information

2. élargir notre réflexion sur la démarche qualité interne au laboratoire en matière de recherche notamment pour le montage des demandes de moyens auprès des agences ou des tutelles. De ce point de vue nous devons construire une stratégie coordonnée de captage des financements.

Les deux dernières recommandations visent à compléter les missions de la cellule CAMPI pour le montage, l’insertion, et le suivi de projet au sein du laboratoire.

Revision: 0.1 Page 8/30

Page 126: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

3 Contexte, argumentation et propositions d’action

3.1 Administration Face à l’impact de la raréfaction des ressources, de la dynamique organisationnelle de la recherche que donne l’UE et d’une réglementation changeante au gré des réformes, les parties prenantes de la recherche, notamment les services administratifs des laboratoires, n’ont d’autres choix que de s’adapter au pied levé aux changements.

Une seule question :

Quelles sont les activités que doivent où pourront garder les services RH et financiers des laboratoires suite aux reformes de la recherche (LRU, RGPP) qui se traduisent par une forte volonté de mutualisation de centralisation et de dématérialisation ? D'autre part nous assistons à une prolifération des bases de gestion (Labintel, SIRHUS, AGATE, ASSETS, Harpège, BIPER, SAFIA)

3.1.1 Gestion des Ressources HumainesContexte :Le lecteur trouvera une liste des activités en matière de gestion de ressources humaines à la section 4.

Notons que ces activités sont réparties sur plusieurs services et menées en lien avec les tutelles. Pendant des années le travail des administratifs de laboratoire dans ce domaine n’était pas reconnu. Il se limitait au recrutement des personnels sur contrat à durée déterminée et à la gestion des dossiers de carrières des ITA et BIATSS. Depuis 2011 la gestion des ressources humaines représente une grosse part de l’activité du service. En effet les b esoins en personnels sont comblés par des personnels temporaires faute de recrutement de permanents ITA et BIATSS. Il y a donc une augmentation du nombre de dossiers de recrutements et une intensification des activités de suivi. La diversité des statuts des personnels ne facilite pas ces taches. D'autre part les laboratoires sont de plus en plus sollicités pour la gestion des personnels permanents universitaires à cause du manque de moyens au niveau de l'administration centrale de l'UJF. Enfin nous notons l'apparition de nouvelles activités RH liées aux réglementations récentes ministérielles et tutélaires comme la maitrise de la masse salariale (GVT) et la gratification obligatoire des stages.

Propositions:Face aux évolutions précédentes nous préconisons que les tutelles :

• reconnaissent cette activité dans le suivi de carrière des personnels permanents impliqués (montée en compétences, évaluation, etc.)

• harmonisent les procédures• mettent en commun des outils de gestion.

Nous souhaitons donc que la future Direction relaie notre message auprès des tutelles. De plus nous devons engager une restructuration du service administratif avec éventuellement renforcement du personnel pour que les missions RH en croissance puissent être effectuées dans de bonnes conditions. Le plan de formation de l'unité a pour finalité le renouvellement des pratiques ou l'acquisition de nouvelles compétences par le personnel. C'est une nécessité notamment dans le cadre des gros projets de développement instrumental. Cependant l'expérience montre que l'on ne prend pas le temps de gérer ce point correctement. A l'issu du projet le gain en compétences n'est pas à la hauteur de ce qu'il pourrait être. La planification des gros projets de développement doit donc contenir un volet formation dès le départ. C'est un aspect de management qui manque au laboratoire.

3.1.2 Stratégie financièreContexte :Les subventions d'état représentent moins de 5% du budget global du laboratoire. Elles sont insuffisantes pour couvrir les dépenses communes de fonctionnement général (FG) qui représentent actuellement 10% du budget global, dont plus de la moitié est obligatoire.

Revision: 0.1 Page 9/30

Page 127: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

Les fonds manquants sont obtenus par le prélèvement d’une quote-part de 10% sur les contrats pour lesquels nous fournissons les justifications financières des dépenses. Le problème est que les chercheurs n'ont pas toujours une vision claire de la répartition de leurs crédits entre les différentes sources de financements et donc peuvent avoir du mal eux mêmes à indiquer sur quels crédits justifier une dépense laboratoire. Une autre nécessité découlant du désengagement partiel des tutelles peut être satisfaite par une stratégie financière adéquate au sein du laboratoire. Celle d'être en partie autonome financièrement afin d'assurer le maintien et l'amélioration de l'outil de recherche, en premier lieu nos dispositifs de développement instrumental et nos matériels expérimentaux.

Contraintes• veiller à l’éligibilité des dépenses en prévision de la justification financière• respecter les masses budgétaires (Fonctionnement, Équipement, Salariale)• respecter les consignes d’engagement des tutelles sur les crédits volatiles sur l’exercice

comptable en cours• se plier au contrôle accru des dépenses par les tutelles.

Conséquences :• morcellement des sommes dédiées au FG sur différentes origines de crédits • disponibilité des crédits au fur et à mesure des mises en place sur le projet• gâchis de compétences et d’énergie • budget pour le FG à minima• frustration de la Direction.

Les outilsGeslab , SIFAC, SIGFIC, SIGAPPEC, TEMPO, Tableurs excel,exemples d’éligibilité :

Missions Equipement Recrutement Gratif Cde FourntureEU, FP7, ERC, H20

Oui, si FDA

Oui Oui Non Non

ANR Oui Oui Oui Oui Non

Propositions:A la future Direction :

• comme on ne peut pas promettre une vie de laboratoire sans ressources, soit élargir l'assiette de la quote-part en incluant les dépenses de personnel dans les prélèvements, soit augmenter le pourcentage prélevé.

• consolider et généraliser la mise en place d'une démarche qualité en matière de recherche de financements et de gestion. C'est stratégique. (voir section 3.5 cellule CAMPI)

• exercer une pression auprès des tutelles à l’instar du salaire minimum pour augmenter les subventions de base

• étudier avec l'administration la possibilité de constituer un fond de réserve et de mettre en place des mécanismes d'investissements et d'amortissement au sein du laboratoire.

Aux responsables scientifiques :• accepter le prélèvement sans jouer au marchand de tapis. Faire confiance à l'équipe de

direction. Anticiper les modalités de justification des achats laboratoire dès le montage des projets. Cela fait partie d'une bonne démarche qualité en matière de gestion (voir section 3.5).

• prélever autant que faire se peut la quote-part sur contrats sur d'autres sources de financement non soumises à justification (par exemple prendre la quote-part sur les programmes nationaux (PN) à la place d'une ponction sur l'ANR quand c'est possible. Avantage pour le porteur : mieux gérer les contraintes de calendrier sur la réalisation des dépenses. Ceci implique une action de coordination au niveau de l'équipe pour ce type de gestion fine des crédits.

Revision: 0.1 Page 10/30

Page 128: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

3.1.3 Gestion FinancièreContexteRappelons les fonctions principales de cette gestion.

• Budget : élaboration de la structure budgétaire, instauration d'un système de gestion analytique, Analyse des besoins et demandes de moyens, élaboration et répartition du budget, réalisation, bilan,

• Dépenses : achats, marchés publics (élaboration et suivi des appels d’offres, gestion des contrats,…) remboursement des frais engagés à l’occasion de missions

• Projets et contrats de recherche : Négociation, gestion, justifications des dépenses, Suivi des crédits, encaissements, clôture des contrats,

• Recettes : Prévisions, Facturation• Immobilisations : Enregistrement, inventaire physique, suivi,• Information : Veille réglementaire, diffusion, classement documentaire,• Audit : Auto contrôle, Audit interne, Audit externe.

Rappelons aussi que nous ne sommes pas une entreprise privée. Nous n'avons pas la même autonomie. On ne voit pas la masse salariale. On ne voit que l'aspect fonctionnement du laboratoire. On ne fonctionne pas en couts réels mais en couts forfaitaires. On ne fait pas de la comptabilité mais de la gestion. Pour l'instant il n'y a pas de comptabilité analytique possible au laboratoire. Ce sont les tutelles qui peuvent avoir une vision sur les couts complets et encore assez partiellement. Il n'y a que l'Europe qui demande des couts complets par rapport aux feuilles de temps mais ce sont les tutelles qui font le calcul. Des outils commencent à se mettre en place pour gérer plus systématiquement l'élaboration de ces feuilles de temps.

ContraintesActuellement une évolution voulue et pilotée par nos tutelles se dessine clairement

• abandon de la DGG (« La Délégation Globale de Gestion ») qui ne s'est pas concrétisée• contrôle de la dépense pour un nombre croissant de sources de financements (le CNES par

exemple passerait dans ce mode)• externalisation de la facturation.

ConséquencesCertaines difficultés de fonctionnement sont vécues par les gestionnaires et les chercheurs.La perspective d'une externalisation cause des inquiétudes chez les gestionnaires tant sa mise en place se fait sans visibilité et sans grande organisation. Quels p ré-requis techniques et/ou organisationnels pour rejoindre l’externalisation, quelles modalités, logiciels, formation, etc?.. Ce type de dispositif doit en théorie simplifier le quotidien des unités en les déchargeant des tâches et contraintes liées aux opérations de facturation. Mais les gestionnaires pensent que la perte d'un support de proximité et sur-mesure risque d'introduire des lourdeurs de fonctionnement qui leur seront préjudiciables dans le sens où ils joueront le rôle d'intermédiaire, de fusible. De plus les directives techniques de gestion seront vraisemblablement plus coercitives qu'incitatives. A noter que le service ASR se trouve face à une situation très comparable.

Propositions

• Un nouveau projet de service administratifL'évolution de la gestion financière est nécessaire tant pour répondre aux changements de notre environnement qu'à la réorganisation des équipes (activité du laboratoire en général). Face à l'externalisation il convient de faire évoluer les missions et donc les métiers du service, ce qui va bien au-delà de la gestion. Le temps théoriquement gagné en facturation pourrait être utilisé pour soutenir les activités en croissance comme la stratégie financière et la RH. Ceci implique (i) une étude approfondie des évolutions (ii) la consultation des personnes extérieures au service (panel d'utilisateurs, sondages, etc..), (iii) l'élaboration d'un nouveau projet de service en association étroite avec un plan RH (montée en compétences des agents, évolutions de certains métiers, etc...).

Revision: 0.1 Page 11/30

Page 129: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

• Mettre en place une culture du cout completUne première motivation qui devrait pousser le laboratoire à mettre en place une culture du cout complet, c'est le fait que les agences de financement (ANR, Europe, etc...) nous demandent d'avoir cette vision. Cela implique entre autres que les feuilles de temps, cahiers d'utilisation du matériel, inventaire soient bien remplis par les porteurs de projets. Une deuxième motivation c'est la possibilité de quantifier et de facturer les services que procure l'IPAG à des entreprises (mise de disposition de banc expérimentaux, de matériel, etc.). En effet c'est le seul moyen d'estimer correctement les coûts et de faire payer ces entreprises le juste prix. Pour cela il est nécessaire de mettre en place systématiquement, avec implication de l'administration le plus en amont possible, d'une convention entre l'IPAG et ses partenaires extérieurs (autres laboratoires ou entreprises) dès qu'il y a un niveau significatif de service rendu.

• Améliorer nos pratiques au quotidienPour pallier aux difficultés rencontrées, il convient d'instaurer une rencontre régulière entre les responsables du service administratif et chaque équipe à tour de rôle comme cela se fait pour l'informatique. D'autre part les chercheurs et les ingénieurs devraient s'efforcer à :

• comprendre le rôle du gestionnaire • connaître un minimum la réglementation• connaître les devoirs et obligations de l’agent missionnaire • utiliser les outils « intranet » qui permettent de se renseigner sur les points ci-dessus• s'impliquer dans la « logistique » liée à chaque demande (mission, achat, carte achat).

3.2 Système et Réseaux

3.2.1 BilanLe Service Informatique du Laboratoire est un maillon essentiel de la production scientifique.

Son objectif principal concerne l'évolution et le développement du système d'information du laboratoireLes grands axes d'évolution du Système d'Information de l'entité sont présentés et validés par le Comité de Direction et par le Conseil de Laboratoire, Pour chaque étude, Le service informatique établit un cahier des charges rigoureux (Cahier des Clauses Techniques Particulières) reprenant les spécifications techniques et les besoins des utilisateurs formalisés lors de groupes de travail thématiques Accompagné d'un plan d'investissement qui tient compte des contraintes budgétaires et des ressources humaines nécessaires au déploiement et à l’exploitation. Nous préparons les dossiers de demande de support financier. Nous conduisons, s’il y a lieu, la procédure d'appel d'offre selon les règles en vigueur dans les marchés publiques et nous étudions les différentes possibilités techniques. Enfin, le Service informatique met en œuvre le déploiement de la solution retenue.Parmi les dossiers que le Service Informatique a menés à bien, nous pouvons notamment citer :

• la conception et le déploiement d'un système de sauvegarde et d'archivage mutualisé au niveau de l'OSUG

• la mise en conformité des liaisons Voix-Donnée-Image (réseau information) en terme de débit et nombre/utilisateur dans le batiment A

• la migration du système de messagerie vers plate-forme mutualisée de l’Université• l'installation et mise en production d'une plateforme de virtualisation (cluster 2 nœuds)• la mise en place d'un service centralisé de sauvegarde des postes de travail• la mutualisation du service d'annuaire au sein de l'OSUG.

La deuxième mission du Service Informatique consiste à soutenir la production scientifique du laboratoire en garantissant la disponibilité des systèmes informatiques.Pour ce faire, nous assurons le bon fonctionnement des serveurs et des éléments actifs du réseau grâce aux outils de supervision. Nous relevons tout type d'incident en minimisant le temps d'interruption de service et en communiquant avec les utilisateurs. Nous automatisons et contrôlons les mises à niveau logicielles des serveurs. Nous centralisons les journaux système sur un serveur et analysons les traces

Revision: 0.1 Page 12/30

Page 130: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

laissées par les différents services. Nous gérons la volumétrie et les autorisations d'accès aux ressources. Enfin, nous recherchons les axes d'amélioration qui permettent d'optimiser le fonctionnement des services critiques en analysant les dysfonctionnements et les demandes de support faites par les utilisateurs (tableau de bord).Sur cette mission, nous pouvons notamment citer les dossier suivants :

• le chiffrement systématique de toutes les nouvelles stations de travail• la refonte d'une partie de la documentation utilisateur – mise à disposition de tutoriels vidéo• l'installation et utilisation d'un logiciel dédié aux demandes de support des utilisateurs• la mise en place d'un système d'impression en milieu hétérogène accompagné d'une

harmonisation du parc des périphériques d'impression.Pour toutes ces activités, le service produit et met à jour la documentation technique à destination des utilisateurs en respectant un plan de gestion documentaire qui définit les méthodes, procédures et responsabilités liées à la gestion des documents (enregistrement, approbation, diffusion et archivage des documents).

Le service informatique est le garant de la Sécurité du Système d'Information du Laboratoire

Nous adaptons et mettons en œuvre la Politique de Sécurité des Systèmes d'Information (PSSI) des tutelles en privilégiant le confort de l'utilisateur et en conciliant simplicité d’utilisation de l'outil informatique et contraintes sécuritaires. Pour ce faire, nous contrôlons les accès aux ressources internes en cloisonnant les segments réseaux et en gérant les pare-feux sur les serveurs. Nous installons les services à vocation publique (web, FTP, messagerie, etc. ) dans une zone semi-ouverte (DeMilitarized Zone) et mettons en œuvre les techniques liées au nomadisme (déploiement du VPN en partenariat avec l'Université, installation d'un bastion SSH). Nous garantissons la confidentialité, la disponibilité et l'intégrité des données grâce à un système de stockage réseau fiable et à une politique claire et détaillée de sauvegarde et d'archivage des données critiques. Nous déployons sur les serveurs les plus exposés des outils de vérification et de contrôle. Nous exploitons les avis de sécurité des organismes de prévention (CERT-RENATER et CERT-A). Nous mettons en place des procédures de reprise sur incident. Nous gérons l'infrastructure technique (énergie, climatisation) et les autorisations d'accès des salles informatiques. Nous déployons au sein de l'unité l'Infrastructure de Gestion des Clefs du CNRS.

En dernier lieu, le service informatique de l'IPAG gère les moyens et les ressources qui lui sont affectés

Nous faisons en sorte que l'activité du service soit consultable par tous en produisant un tableau de bord des demandes de soutien devant le Conseil de Laboratoire, en archivant dans la base documentaire les comptes-rendus de réunion ou les relevés de conclusion produits par les groupes de travail thématiques. Nous gérons le budget informatique (80 k€ pour l'année 2014). Chaque année, le Service informatique justifie le bilan financier de l’année précédente et propose, un budget prévisionnel et un plan d’investissement tenant compte des projets d'évolution, de la jouvence des matériels et de la gestion des personnels (CDD, stagiaire). Le budget prévisionnel est validé par le Comité de Direction en début d’exercice, et un bilan est effectué à mi-parcours avec une révision des moyens en fonction des projets en cours ou de nouvelles contraintes budgétaires. Nous assurons un suivi du budget tout au long de l’année pour garantir la maîtrise des dépenses.

3.2.2 Le service face aux évolutions de l'IPAGL'impact des nouveaux projets scientifiques et instrumentaux sur l’activité des services doit être mesuré le plus tôt possible. En effet les ressources nécessaires doivent être planifiées. De ce point de vue l'application d'une démarche qualité rigoureuse telle que celle que nous préconisons pour l'accompagnement des projets (section 3.5) sera d'une grande aide. Il convient aussi de faire évoluer le périmètre d'action des agents en les faisant participer de manière accrue aux projets scientifiques et instrumentaux et en complétant leurs formations afin de répondre aux nouveaux besoins.

Revision: 0.1 Page 13/30

Page 131: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

3.2.3 Le service face aux évolutions des tutellesA l'heure actuelle, cette problématique ne peut être examinée sans considérer les questions d’externalisation (sous-traitance), de mutualisation et de modalités de financement. En effet le service informatique fait face aux évolutions des tutelles. Le soutien de base est en baisse constante. Il n'y a plus de poste pour les fonctions de support de proximité au CNRS, très peu à l'Université. Il s'agit aussi de rationaliser la consommation des ressources.

ExternalisationDepuis 2 ans les tutelles s'engagent clairement dans la voie de l'externalisation avec peut-être des velléités de pilotage au niveau des unités. En tout cas il s'agit probablement de rationaliser et de pallier au manque de moyens. Le CNRS annonce des Offres de Services (ODS) aux unités avec pour objectif de simplifier et sécuriser le quotidien des laboratoires. Le défi : la grande variété des situations (laboratoires et personnes). Les services sont assurés par des systèmes extérieurs (prestataires Bull, Microsoft, etc) dans l'esprit semble-t-il de ne pas remettre en cause le rôle des ASR. Les services sont payants dans la plupart des cas mais un forfait de base est proposé gratuitement. Les petits laboratoires se voient proposer une aide.Les services sont basés sur un « cloud » privatif implémenté par l'intégrateur BULL (à travers Renater) et non d'une société privée localisée à l'étranger :

• énergie informatique à la demande et sur mesure (serveurs virtuels)• hébergement sécurisé de sites web• stockage brut de données• sauvegarde nationale pour micro-ordinateurs• messagerie unifiée• web conferencing• portail collaboratif.

A noter que de son côté l'UJF propose une offre de service équivalente nommée Zimbra.Le tableau suivant résume les avantages et les inconvénients pour le laboratoire à se plier au mouvement d'externalisation.

Avantages InconvénientsSimplifier le quotidien des unités en les déchargeant des tâches et contraintes liées à l’installation et à la maintenance d’infrastructures informatiques et d’applicatifs de gestion

Directives techniques de gestion du SI labo (cryptage des portables, etc) plus incitatives et coercitives (ingérence)

Renforcer la sécurisation des infrastructures et des données

Pré-requis technique et/ou organisationnel pour rejoindre l’externalisation/mutualisation

Optimiser les investissements matériels, les coûts d’exploitation et l’empreinte environnementale

Perte du support (proximité) sur-mesure dont l’environnement recherche a besoin

Garantir une haute disponibilité, en 24/7 Réaction réfractaire + repli sur-soi de la communauté informatique

Bénéficier de tarifs attractifs grâce à la mutualisation des moyens (économie d’échelle)

Outils multiples, parfois redondants et incompatibles, proposés (imposés) par le CNRS et l'Université (voir plus haut par ex.)

Faciliter le travail en réseau au sein de la recherche et de l'enseignement supérieur grâce à l’utilisation d’outils communs dédiés. (sérialisation)

Pour l'instant, les offres de services CNRS qui ont étaient testées ne répondent pas aux besoins exprimés par les utilisateurs.

Revision: 0.1 Page 14/30

Page 132: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

MutualisationL'Agence de Mutualisation des Universités et Etablissements (AMUE) d'enseignement supérieur et de recherche est un GIP (Groupement d'Interet Public) qui organise la coopération entre ses membres et sert de support à leurs actions communes en vue d’améliorer la qualité de leur gestion. Notamment l'AMUE met en œuvre d'une politique d'achat cohérente et mutualisée pour les différents grands organismes de recherche. Dans ce contexte, il existe un accord cadre relatif à l’acquisition de matériels informatique et de prestations associées qui se nomme MATINFO3. Cet accord cadre permet :

• de réaliser des économies grâce à une procédure simplifiée tenant en une seule consultation, conforme aux règles de l’achat public et intégrant des critères environnementaux et sociaux.

• d'obtenir une offre de qualité comprenant des actualisations réguliéres, des configurations personnalisables et un service de garantie de haut niveau.L'objectif est de réaliser des économies d'échelle.

Tous les services de support sont aussi potentiellement mutualisables (informatique - secrétariat - mécanique - etc …). Dans ce cas la mutualisation s'applique sur les personnels, les moyens techniques et les ressources. La mutualisation des personnels est souvent perçue comme invasive et violente par les personnes concernées, imposée dans le cadre de fusion de laboratoires. La mutualisation des moyens techniques nécessite une harmonisation des pratiques et des outils et permet la rationalisation des ressources.L'Observatoire des Sciences de l'Univers de Grenoble met depuis longtemps à disposition des Laboratoires des moyens communs informatiques (machines virtuelles, calcul intensif, logiciels etc ). Il est à noter que les laboratoires s'impliquent de plus en plus pour faire évoluer cette offre vers un ensemble de services mutualisés. Ainsi plusieurs chantiers d'envergure regroupant les différentes composantes de l'OSUG sont en cours (annuaire d'authentification, centre de données, etc). L'IPAG s'inscrit pleinement dans la démarche. Face à l’explosion de la consommation électrique liée à l'hébergement d'une multitude de serveurs et d’espace de stockage dans les laboratoires, l’Université Joseph Fourier met en place de son côté une offre de mutualisation en matière de stockage (SUMMER), projet porté au niveau local par l'UJF et les composantes de recherche .

Modalités de financementSur la question des modalités de financement des services, le support informatique fournit à l'heure actuelle les moyens techniques et les ressources humaines : c'est un service de type « providence ». Avec la baisse du soutien de base et des embauches de personnel ITA ou IATOSS se pose déjà la question du maintien du service en qualité et en quantité. L'externalisation et la mutualisation des moyens techniques et des services devrait en théorie nous permettre de faire des économies malgré le fait que l'externalisation, telle que proposée par le CNRS, va se révéler en grande partie payante. La question technique qui se pose est donc celle de la facturation des ressources informatiques ? Faudra-t-il reporter une partie des couts sur les utilisateurs ? Les équipes ? Au moins de manière indirecte puisque, in fine, une fraction croissante du budget commun va être alimenté par la quote-part prélevée sur le budget des projets de recherche. Notons qu'il existe un paradoxe entre les processus de financement fractionné (type ANR,ERC, …) et la nécessité de mutualiser les moyens techniques exemple 10 ANR, ERC -> 10 serveurs dédiés dans la salle serveur.

3.2.4 PropositionsPour que les services puissent s’adapter au mieux à l’évolution des pratiques et usages personnels au sein de l'IPAG, nous préconisons :

• une plus grande implication du service informatique dans les projets scientifiques et instrumentaux.

• le développement d'une FAQ (Foire Aux Questions ) et de sites collaboratifs• l'identification de référents logiciel qui devront ensuite être répertoriés sur le système

d'information du laboratoire.Face aux évolutions en matière d’externalisation, de mutualisation et de modalités de financement , voici nos propositions d'adaptation :

• déterminer les services critiques ou importants pour l’entité (cœur de métier), avec possibilité d'externalisation des services qui sont sans valeur ajoutée si organisés en interne.

Revision: 0.1 Page 15/30

Page 133: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

• choisir ses projets d’externalisation/mutualisation selon nos propres critères (degré de valeur ajoutée d'un mode interne d'organisation, le localisation géographique, sécurité, adéquation avec le besoin)

• mettre en place des comités d’utilisateurs qui aident à la validation et à la gestion des outils/services

• positionner stratégiquement des personnels dans les comités de pilotage des services mutualisés-> maitrise du projet

• exercer une pression (de quelle nature?) sur les tutelles pour une meilleure adéquation des outils/services (ODS) proposés avec les besoins

• faire des choix sur les modalités de financement.

En ce qui concerne le dernier point plusieurs modèles sont possibles : (i) partage intégral des coûts via les prélèvements obligatoires (qui doivent être d'un niveau suffisant), (ii) partage des coûts induits par un service dit de base et facturation aux projets/utilisateurs dépassant un certain niveau de consommation ou requérant des services particuliers, (iii) report intégral des coûts (hors service support minimum) sur les utilisateurs en fonction de leur consommation.

3.3 Hygiène et Sécurité – Conditions de travail La pratique de l'hygiène et sécurité (H&S) est assez récente au laboratoire mais n'est pas encore complètement rentrée dans les mœurs malgré son importance. Nous synthétisons ici les principales constatations, questions et propositions.

3.3.1 Bilan :Aujourd’hui, beaucoup d’outils H&S ont été mis à jour ou mis en place :

le document unique d’évaluation des risques les registres de santé et de sécurité le registre de suivi des déchets chimiques « kioùkoi » et habilitation mis à jour sur l’intranet message H&S sur le Flux d’information IPAG (télévision du laboratoire) une ligne de crédit H&S a été créée pour les achats liés à l’Hygiène et la Sécurité.

De plus une visite, durant l’année 2013, des ingénieurs sécurité de l’université et de la délégation Alpes du CNRS a permis de poser un bilan sur nos installations et les risques associés. Ainsi, plusieurs actions ont été menées pour diminuer ou éliminer ces risques:

affichage de pictogramme de sécurité sur les portes des laboratoires fermeture des portes coupe-feu dans le bâtiment OSUG A demande d’installation d’un hublot sur la porte de l’atelier mécanique... demande de mise en sécurité des chambres froides du bâtiment D (détecteur de CO 2,

alarme incendie audible depuis la chambre froide).

3.3.2 PropositionsMoyens

Il n’existe actuellement aucune politique claire qui définit l’utilisation de la ligne de crédit H&S.Ainsi, il semble important que la direction définisse avec l’aide des AP et des personnels concernés (administration, responsable de laboratoire…) un état des lieux des produits, travaux, ou vérifications périodiques liés à l’Hygiène et la Sécurité et pouvant prétendre à être financés sur la ligne de crédit H&S. Une attention toute particulière doit s'exercer par rapport aux activités de recherche récurrentes du laboratoire qui ne s'inscrivent pas dans un projet visible à durée déterminée. Or c'est ce type de recherche qui produit le plus de déchets dangereux dont le traitement a un coût non négligeable.La direction doit ensuite définir une politique d’approvisionnement de cette ligne de crédit. Un soutien de base du laboratoire via les 10% prélevé sur le financement « projet » peut être une solution. On peut également réfléchir à une « taxe » pour les dépenses spécifiques qui serait prélevée aux équipes ou projets particulièrement couteux. Exemple de l’évacuation des produits chimiques.

Revision: 0.1 Page 16/30

Page 134: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

Communication

Il est nécessaire de maintenir et d’améliorer la communication entre les acteurs de la sécurité et l’ensemble des personnels du laboratoire. Les réunions du comité Hygiène Sécurité et Condition de Travail (CHSCT) semble le lieu le plus adapté pour discuter des problématiques en matière de H&S et de faire remonter auprès des AP ou de la direction les remarques ou problèmes.Ainsi pour les années à venir il est important que le CHSCT soit beaucoup plus actif :

organisation d’une à deux réunions par an annonce à l’avance d’un ordre du jour participation des membres de la commission sur certaines problématiques participation des ingénieurs de sécurité et des médecins de prévention aux réunions compte-rendu annuel des travaux du CHSCT présenté devant le conseil de laboratoire.

Amélioration de la communication et travail commun entre différents services afin d’améliorer la H&S :Il est important que différents services travaillent davantage en commun afin d’améliorer la sécurité. Par exemple :

AP - service administratif-direction-ASR :o organisation d’une journée (1/2 journée) pour l'accueil des nouveaux entrants une fois

par trimestre notamment lors des grands flux d’arrivée (doctorants/ stagiaires)o utilisation de feuilles de parcours (étapes admin, AP, ASR et Direction visées par les

responsables).o rédaction d’un livret d’accueil

AP- service info : mise à jour intranet. Notamment l' onglet sécurité est à refaire et les chartes doivent être mises à jour.

AP - Référents formation : o Organisation ou proposition de formation sécuritéo Renouvellement d’habilitation

Privilégier la mise à disposition des documents via la base documentaire.

ActeursImpliquer davantage de personne dans la gestion de la sécurité :Exemple : pour la sécurité « laboratoire » il serait intéressant d’identifier clairement des « référents- responsables » laboratoire dont la mission serait :

D’aider à rédiger une charte de sécurité du laboratoireo Veiller à la formation des nouveaux entrants et à leur compréhension de cette charte o Aider à la rédaction du document unique.

3.4 Traitement et diffusion de l’information Le lecteur trouvera dans l'annexe 4.1 un état des lieux détaillé en ce qui concerne ce thème. Nous synthétisons ici les principales constatations, questions et propositions.

3.4.1 BilanLa panoplie d'outils disponibles actuellement est très large, reflet des nombreuses idées qui ont fleuri au laboratoire pour le traitement et la diffusion de l'information. Cependant force est de constater que la majeure partie de ces outils est sous utilisée, soit utilisée d'une façon qui n'est pas satisfaisante. Un problème chronique est la sous-alimentation de la base documentaire et des calendriers. Dans le même temps des documents administratifs de référence s'accumulent dans un système de répertoires peu documentés qui sert à la fois d'espace de travail et d'espace de dépôt laissés aux soins du service administratif. Il est vrai que l’utilisation de la base documentaire sous-entend une adhésion des utilisateurs et un respect du mode de classement et de référencement proposé. L'avantage est la garantie de la pérennité et de l'accessibilité des documents. Une analyse de la situation montre que la plupart des outils pourraient effectivement répondre à des besoins réels mais ne rencontrent pas forcément l'adhésion de leurs utilisateurs. Nous pensons que le

Revision: 0.1 Page 17/30

Page 135: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

problème est originel car les brillantes idées, à l'exception notable de l'intranet, n'ont pas été forcément suivies par une procédure rigoureuse de mise en place. Cette dernière implique une discussion avec un panel d'utilisateurs et d'agents des services représentatifs, la rédaction d'un cahier des charges, un développement itératif entre utilisateurs et développeurs. Ceci procède d'une démarche qualité qui, quand elle a été suivie sous l'impulsion de la cellule du même nom, a donné les outils qui fonctionnent le mieux actuellement comme les formulaires permettant de gérer l'arrivée des nouveaux arrivants. Les membres du laboratoire ne se sont pas appropriés les outils. Ils ont par conséquent une attitude souvent passive et critique - sans pour autant que la critique soit le plus souvent constructive – car des outils répondant à des besoins communs ne peuvent pas être adaptés à chaque individu. Des problèmes supplémentaires viennent se greffer sur cette situation. L'administration du wiki, de l'intranet et des écrans est complexe, le logiciel SPIP utilisé pour le site internet du laboratoire est assez contraignant à l'usage. Cela nécessite la mobilisation de personnels – notamment des services - qui ne peuvent intervenir qu'au cas par cas à cause de leurs autres obligations. Par conséquent le suivi des outils n'est pas optimal et il y a un flou sur l'identité des personnes ayant en charge la maintenance et l'évolution des outils. N'oublions pas que l'outil ne fait pas tout dans la mesure où il faut bien des acteurs pour traiter l'information en amont ou en aval du système d'information. Enfin il manque actuellement un responsable qui ait une vision globale et un pouvoir de décision sur le système d'information du laboratoire.

3.4.2 PropositionsNotre proposition principale est de trouver et nommer ce responsable avec les missions suivantes :

1. organiser auprès des utilisateurs une enquête sur l'utilisation des outils mis à leur disposition et sur l'évolution de leurs besoins.

2. placer sur une échelle de criticité pour le bon fonctionnement du laboratoire les outils existants et ceux qui pourraient advenir

3. réaliser une veille technique auprès des ODS proposés par les tutelles et auprès de l'industrie de service. Sélectionner, évaluer le rapport satisfaction des besoins/couts.

4. mettre les efforts de modernisation et de développement sur les quelques outils les plus pertinents avec un souci de simplification.

5. articuler ces efforts avec les ressources humaines disponibles.

3.5 La démarche qualité

3.5.1 Bilan Il est nécessaire de souligner les deux orientations principales de la démarche qualité au niveau du laboratoire : - d’un côté une démarche organisationnelle interne, pour essayer de faire en sorte d’harmoniser les pratiques de chacun en réponse aux exigences des services administratifs et informatiques ainsi que des tutelles.- de l’autre côté la mise en place de techniques efficaces de gestion de projet.La première orientation de la démarche qualité a bénéficié initialement du travail d'une cellule Assurance Qualité (Laog : Pascal Puget, Karine Perraut, Gérard Zins, Laurent Jocou, Laurence Gluck, Laurence Michaud) et, indépendamment, de la contribution d'un référent qualité. Cela a permis de mettre en place :

un système de gestion documentaire http://ipag.osug.fr/twiki/bin/view/Ipag/Intranet/Documents

des procédures administrativeso accueil du Nouvel arrivant livret d’accueil en place du temps du Laog. Pas de

mise à jour IPAG où la responsabilité a été transmise au service administratif.o achat formulaires de demande d’achat

livres matériel informatique

o mission formulaire de demande mission un système de suivi des tickets pour les problèmes bâtiments.

Revision: 0.1 Page 18/30

Page 136: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

des modèles de document un intranet. un agenda avec mention des absences sur le twiki …

Cependant le référent qualité Lahcen Tazi a quitté par la suite le laboratoire et la cellule "qualité" originelle est actuellement dormante.

Pour assurer les progrès de la démarche qualité selon la deuxième orientation a été mise en place CAMPI : la Cellule d'Aide au Montage de Projet à l'IPAG.Cette cellule est actuellement constituée de Jean-Luc Beuzit (Chargé de mission Astronomie – astrophysique INSU), Jérôme Bouvier (Directeur Adjoint Scientifique), Sylvain Douté (l'animateur en tant que Directeur Adjoint des Ressources), Etienne Lecoarer (Directeur technique), Bruno Maillard (responsable budget), Jean-Louis Monin (Directeur de l'IPAG), Béatrice Pibaret (responsable administratif) et Frédéric Roussel (responsable ASR).

Le rôle de cette cellule est de mettre en œuvre une démarche qualité pour le montage, l'insertion, et le suivi de projet au sein du laboratoire. Elle a deux missions principales :

Premièrement, en cas de réponse à un appel d'offre (ANR, ERC, FUI, etc.), la cellule CAMPI aide les porteurs à optimiser une demande (ressources, budget, prélèvements, aide technique etc.) avant la soumission. Dans ce cas les porteurs de projets doivent prendre contact avec CAMPI au moins 2 semaines avant la date de soumission de la demande.

Deuxièmement la cellule CAMPI, sous mandat de la Direction et après consultation du CDL, se dote d'un outil pour accompagner les ambitions scientifiques et techniques des membres du laboratoire : la revue de pré-projet.Ce rendez-vous entre un projet et le laboratoire concerne les personnes qui souhaitent monter un projet nécessitant un soutien technique substantiel de la part de l'IPAG. Elle constitue une étape importante pour l'insertion du futur projet au laboratoire. Elle est adaptée aux dimensions du projet et à sa phase d'avancement.

En ce qui concerne la première mission, la cellule est actuellement peu sollicitée ou sollicitée trop tard par les porteurs de projets. Par conséquent nombre de projets sont encore déposés sans que la cellule CAMPI soit intervenue. Cela pose ensuite des problèmes, par exemple du point de vue de la justification de la quote-part prélevée par le laboratoire ou pour l'apparition de besoins supplémentaires non pourvu par la subvention (financements partiels) pour lesquels le laboratoire est sollicité. L'aide que la cellule peut apporter - en particulier l'aide au montage du budget - peut faire doublon avec le support apporté par le service "partenariat et valorisation" de la DR11. La transmission des documents décrivant les montages financiers ou RH se fait mal notamment en direction du service administratif qui est souvent pris au dépourvu. Les acteurs de la cellule lui reprochent un périmètre trop restreint et une existence trop dématérialisée avec un fonctionnement essentiellement par courriel. Cela ne suffit pas pour appréhender bien en amont les besoins des projets afin d'assurer réactivité, mutualisation, et vision cohérente de la part des services.En ce qui concerne la deuxième mission une nouvelle démarche CAMPI plus rationnelle a été mise en place après consultation du laboratoire. Un document complet a été édité sur l'intranet pour présenter en détail la procédure globale dans laquelle s'insère la revue de pré-projet. Un schéma directeur est aussi disponible. Voici la liste des projets (par ordre chronologique) ayant bénéficié à ce jour d'une revue de pré-projet :

• ExTra• Gravity• Spirou• SWIFT spatial

Les revues de pré-projets ont déjà montré leur capacité à faire progresser la qualité technique d'un dossier afin de maximiser les chances de sa réalisation et de son succès : obtention des financements, réalisation du programme prévu, respects des engagements contractuels, etc. De plus elles permettent

Revision: 0.1 Page 19/30

Page 137: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

de planifier au mieux le programme futur du groupe technique afin que l’intensité de son activité ne subisse trop de fluctuations ou reste à un niveau élevé trop longtemps (périodes de surchauffe chroniques). Enfin impliquer systématiquement le groupe technique dans un processus de décision collégial est une pratique qui a été vécu très positivement au laboratoire. Deux bémols cependant. Il n'existe pas actuellement un système d'information permettant de réaliser le prévisionnel de la charge de travail du services technique à divers niveaux de granularités que cela soit selon l'axe manpower (service, pools métiers, projets, individus) ou selon l'axe temporel (années, mois, semaines). En conséquence il est quelquefois difficile de se prononcer avec précision sur la faisabilité d'un projet ou pas. Ce flou entraine une tendance au sur-investissement des capacités du laboratoire. Les projets nécessitant un soutien important au niveau infrastructure n'ont pas été considérés jusque-là ce qui a pu poser problème. Dorénavant ils ne devraient pas faire exception.

3.5.2 PropositionsEn matière d'organisation interne, l'expérience passée, bien que limitée, a montré tout son intérêt. Il s'agit donc de trouver les moyens pour réactiver la démarche, une première cible étant la remise à plat de notre système d'information (voir section 3.4).En matière de gestion de projet, les deux missions de la cellule CAMPI telles qu'elles ont été définies jusqu'à présent nous paraissent encore pertinentes. C'est la façon dont elles sont assurées qui doit changer. Nous proposons de renverser notre rapport aux porteurs de projet. Au lieu d'attendre que ces derniers se manifestent auprès de CAMPI, l'animateur de la cellule, avec l'aide de la Direction scientifique et des responsables d'équipe, identifie les porteurs potentiels et les contacte bien avant les dates limites de remise de dossier. Comme pour la deuxième mission de la cellule le chemin est balisé et clairement indiqué aux personnes sous la forme d'un manuel qui leur est adressé ou qu'ils peuvent trouver sur internet. Au vu du projet détaillé en construction, l'animateur propose alors aux porteurs de suivre un parcours semi-personnalisé. Le porteur rencontre, à l'occasion de (d'un) rendez-vous, différents représentants de la cellule – éventuellement des extérieurs dans certains cas - pour l'aider à faire l'analyse de son projet notamment par rapport aux points suivants répartis en deux catégories. Pour chaque point sont cités entre parenthèses les représentants de la cellule CAMPI qui peuvent apporter leur concours.

Parcours commun• insertion dans l'environnement scientifique du laboratoire, participation à son rayonnement

(Jean-Louis Monin, Jérôme Bouvier) • analyse de risques scientifiques et techniques (Jean-Luc Beuzit, Jérôme Bouvier, Etienne

Lecoarer, Jean-Louis Monin, Sylvain Douté)• adéquation projet scientifique - aide financière demandée (Sylvain Douté, Jérôme Bouvier)• montage financier (Bruno Maillard)• recrutement docs, post-docs et ingénieurs (Jérôme Bouvier, Béatrice Pibaret). Prévision des

financements nécessaires pour payer les stagiaires. En ce qui concerne les post-docs identification des compétences nouvelles qu'on veut apporter au laboratoire en embauchant le post-doc.

• analyse de risques financiers (par ex financement incomplet) et RH (Bruno Maillard, Béatrice Pibaret)

• rappel du réglement laboratoire en ce qui concerne les prélèvements obligatoires (Sylvain Douté).

• modalités de justification des dépenses IPAG communes (Bruno Maillard, Frédéric Roussel)Parcours optionnel en fonction de la nature du projet

• interdisciplinarité et international (Sylvain Douté)• prestation de service auprès d'autres organismes de recherche ou de sociétés extérieures de

droit privé (Bruno Maillard, Béatrice Pibaret)• mutualisation ou ouverture vers l'extérieur possible d'équipements acquis dans le cadre du

projet (Etienne Lecoarer, Jean-Louis Monin)• besoins en infrastructure, notamment informatique (Frédéric Roussel, Etienne Lecoarer).

Revision: 0.1 Page 20/30

Page 138: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

• impact potentiel sur le laboratoire (par ex achat de mobilier, déchets) et prise en charge des coûts correspondant (Etienne Lecoarer)

Le dispositif est pensé pour atteindre les objectifs suivant pour le laboratoire :• maximiser le taux de sélection de nos projets• anticiper le plus en amont possible la gestion des apports mais aussi des charges inhérentes à

un projet• assurer les futurs revenus du laboratoire.

Par exemple les informations recueillies dans le cadre du dialogue avec les porteurs vont permettre d'avoir une prévision plus fine des sommes qui arrivent en cours d'année au laboratoire. Les bénéfices attendus nécessitent au préalable un investissement en temps de la part des personnes impliquées. Comme cette ressource est très limitée, il conviendra de tester le dispositif sur les projets présélectionnés par l'ANR avant de le généraliser par la suite sur un certain nombre d'appels d'offre clef.De plus il serait opportun d'élargir notre réflexion sur la démarche qualité interne au laboratoire en matière de recherche. Les pistes de réflexion pourraient être les suivantes :

1. encourager l'émergence de projets à haut potentiel scientifique dans le respect des objectifs et moyens du laboratoire,

2. maximiser le soutien que peuvent apporter tutelles et agences de financements à nos projets,3. améliorer le suivi des projets en veillant à ce qu'ils soient rentabilisés le mieux possible du

point de vue publications, brevets, logiciels, etc...

3.6 Patrimoine et équipement Dans l'idée d'identifier les besoins «immobiliers» de l'IPAG au sens large, nous présentons sous forme d'un tableau (ci-dessous) une liste d'items. Pour chaque item, des pistes d'actions sont suggérées, à titre indicatif. Ces items couvrent un large éventail, lieu de travail, lieu de vie commune, etc. Notons qu'une attention toute particulière devrait être apportée à l'aménagement du Bat CERMO qui est pour l'instant loin d'être satisfaisant (par exemple Kfet pas vraiment opérationnelle). Chez les collègues qui y travaillent cela se traduit par de la lassitude, des comportements de fuite, pas de sentiment collectif.

Revision: 0.1 Page 21/30

Page 139: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

Revision: 0.1 Page 22/30

Item Suggestions d'ouvrage

Salle de conférence M. Forestini

• Agrandir (capacité 150 pl.)• Surrélever (type amphithéâtre)• Sonorisation/projection• Chauffage

Salles de réunions • Accès internet ?• Accès aux imprimantes ?• Remplacement mobilier ?• En faut-il plus ?• Ajouter/remplacer tableaux blancs• Outils de projection• Equiper au moins une salle avec un dispositif pour les mal-

entendants.

Salle de cours • À discuter dans le nouveau contexte UJF

Bureaux de travail • Nouveaux bureaux ?• Évaluer les besoins

Salles visiteurs • Équipement à revoir/compléter ?• Plus de salles ? Combien ?

Toilettes • Revoir l'équipement (robinetterie, miroirs, etc)

Espaces de vie • Cafétéria : agrandir, réequiper• Terrasse extérieure

Bibliothèque • Supprimer les revues dans la salle Vercors ?

Lien entre Bât. D/B • Chemin goudronné• Aménagé ? e.g. nouveau sentier planétaire

Hall d'entrée Bât. B • Comment l'utiliser ?• Images ? Écrans ? Maquettes d'instruments (par ex.

SPHERE, PIONEER, etc) ?• Expérience(s) de physique à demeure ?

Espaces imprimantes • Les réorganiser ?

Isolation du bâtiment • Améliorer l'isolation du bâtiment• Géothermie

Page 140: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

4 Annexes

4.1 Activités en matière de Ressources Humaines La gestion RH comporte les huit activités suivantes:

Formation : métiers, outils, réglementation, Plan de formation d’unité et suivi, Gestion des emplois : recrutement permanent, recrutement non permanent, Gestion prévisionnelle des emplois et compétences : analyse des besoins, prospective emplois, Gestion des carrières : fiches de poste, entretien annuel, promotions, primes, distinctions,

soutien aux concours, Gestion des effectifs : entrées / sorties, catégories, pyramide âge, retraite, autres types de

personnels : stagiaires, formation par la recherche, scientifiques étrangers, Gestion des absences : congés, maladie, …, Management : Organigramme, gestion de conflit, gestion de crise, motivation,

accompagnement du changement, Information : veille réglementaire, diffusion, classement, archivage.

Auxquelles s’ajoutent des activités connexes : Suivi et actualisation des indicateurs sous toutes ses formes (Annuaires, Trombinoscope,

Tableurs,….) Logistique : Accueil, Bureau, Téléphone, Badge,…… Médecine du travail Action sociale (logement, écoute, crèche, etc.)

Revision: 0.1 Page 23/30

Page 141: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

4.2 Etat des lieux du traitement et de la diffusion de l’information

Revision: 0.1 Page 24/30

Quelle inform

ation ?Q

uels outils ?Pour quel traitem

ent ?Personnels im

pliquésInform

ation scientifiqueBD

D publis

Mise à disposition des publis du laboratoire

LM, G

uillaume M

., Geoffroy L.

Information interne

Mailing liste, TV,

intranet, agenda, …M

ise à disposition, diffusion, pérennisationLM

, support info, Raphael

+ Direction pour le contenu

éditorialInform

ations des tutellesM

ailIntranet

Mise à disposition

PérennisationD

irection, administration

LMInform

ation techniqueBD

D docum

entairePérennisation des docum

ents, suivi de versionG

érard, LM, R

aphael,Inform

ation équipes, services, direction

Mailing liste, tw

ikiD

iffusion au sein du groupe de travailSupport info

Table 1 : le paysage

Page 142: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

Revision: 0.1 Page 25/30

Quels

outils ?Les +

Les -Q

uestions soulevées

Mailing list

•Info ciblée par groupe d’intérêt

•U

tilisation approximative due

à la multiplicité des listes ou à

l’ignorance …

Intranet •

Espace dédié à la diffusion de

l’information

et à la

mise

à disposition de docum

ents internes au laboratoire et aux personnels.

•R

éflexion

poussée

sur

la structuration

et

la

m

ise

à disposition des doc.

•Inutilisé …

En tout cas très largem

ent sous-utilisé.•

Système : w

iki

éviter de dém

ultiplier les outils•

Moteur

de

recherche

inopérant

Accès : aujourd’hui l’accès

est très lim

ité (LM, support info, PO

P pour

stages).D

emande vers plus d’autonom

ie des

utilisateurs

(H&

S,

doctorants)

im

possible de garantir l’homogénéité de

l’outil à partir du

mom

ent ou les

intervenants sont multiples.

logique

de

navigation

et

d’organisation

Pas la souplesse d’autres outils web

(limitation de l’interactivité)

Twiki

•Espace

de

travail

et

de

mutualisation.

•Travail

en

équipe,

m

ise

à disposition

de l’inform

ation au

niveau d’un groupe (qu’il s’agisse d’un service ou d’une équipe)

•Sim

plicité d’utilisation•

Permet

la

participation

de

collaborateurs externes•

Palette d’outils à dispositionR

estriction d’accès simple

•« U

sine à gaz » d’un point de vue

administration

système.

Trop d’intervenants

depuis que G

érard Zins n’est plus

aussi

disponible

pour l’organisation

générale

du

laboratoire

Site Web

•O

uverture sur l’extérieur•

Difficultés à utiliser SPIP

Faut-il envisager un autre logiciel pour gérer notre site w

eb?Traduction U

Km

ise à contribution des équipes

Page 143: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

Revision: 0.1 Page 26/30

TV•

Décentralisation de l'affichage

•D

iversité des médias pouvant être

transmis

•Im

age de marque du laboratoire

•réactivité

•C

onsomm

ation énergétique•

Trop lent•

Pas

assez

personnalisé « IPA

G »

en raison

de la

diffusion m

assive des nasa

pictures …•

Pas de

réflexion éditoriale

globale

Implém

entation progressiveIdentification d'un référent technique et d'un référent éditorial

BIP

-

Bulletin

d'Informatio

n de l'IPAG

•Inform

ation

qui

émane

directement de la D

irection•

Infos en vrac et liées à un

conseil de labo donné.Q

uel contenu, quelle articulation avec le com

pte-rendu

du

conseil

de laboratoire ?

Calendrier

du laboratoire (ical)

•Planning des C

L, soutenances et dates lim

ites concernant le labo•

Doit être

renseigné par la

direction …C

omm

ent assurer une alimentation plus

régulière?

Calendrier

par

équipe (ical)

•Planning

des réunions et autres colloques par équipe

•D

oit être renseigné par les chefs d’équipe …

C

’est un outil à disposition, libre aux gens de s’en servir ou pas …

Cellule

Com

municat

ion

et C

ulture

•O

uverture sur l’extérieur : établir un

circuit

de

diffusion

de

l’information au sein de l’IPA

G et

IPAG

/OSU

G

et

accroître

la visibilité de l'IPA

G à l'extérieur

•M

ise

en

place

d'actions spécifiques en fonction d'objectifs validés par la direction de l'IPA

G

et le conseil de laboratoire

Mode operatoire ?

Rendu d'inform

ation ?

BDD

doc•

Espace dédié à l’enregistrement et

à la pérennisation des documents

internes

au

laboratoire. Essentiellem

ent

documents

techniques. Mais peut concerner

n’importe quel type de docum

ent.•

Suivi de version

•Inutilisée sauf par un ou deux C

P …

En tout cas très très largem

ent sous-utilisée …

Formalism

e des documents enregistrés

(modèle

à

utiliser,

procédure

de

demande

de référence

à respecter,

procédure de relecture et de validation du docum

ent…)

Com

plexité du système dès que l’accès

à un

document doit être

restreint, puisqu’actuellem

ent,

les

restrictions d’accès

sont couplées aux

groupes d’utilisateurs

twiki …

besoin d’un

ingénieur informatique pour restreindre

l’accès à un document …

Page 144: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

Revision: 0.1 Page 27/30

BDD

publis•

Autom

atisation des

tâches de

saisie liées aux publications.•

Listings par chercheur

•N

écessité

d’un

nettoyage m

anuel

(homonym

ie, doublons).

•Im

plication

de

personnel hautem

ent qualifié pour la

maintenance

(IR inform

atique)B

DD

B

ibliothèque•

Recense

les ouvrages

(livres) censém

ent présents au laboratoireSous utilisation …

L’absence de local adapté et la politique qui veut que

chacun conserve

les ouvrages com

mandés dans son bureau

rend la localisation compliquée …

. A

u m

oins peut-on

s’adresser à la

personne en question pour prêt du livre …

Là, c’est tout le système qui est à

revoir.B

DD

utilisateurs inform

atiques

•Trom

binoscope automatisé

•Im

plication

de

personnel hautem

ent qualifié pour la

maintenance

(IR inform

atique)A

utres m

oyens ?Espace com

mun S:

•Lien adm

inistration et direction•

Facilité d’utilisation et d’accès au serveur (B

runo & B

éatrice)

•pas docum

enté (arborescence pas écrite)

•pas de structuration

claire , pas de

hiérarchie entre

les dossiers

•confusion entre un espace de travail et un espace de dépôt

Existence de la base doc inutilisée dans ce cas

« Journées * »

•Journées dédiées

Difficulté

d'exploiter

les

échanges, de réaliser un suivi, de m

ettre au point un

plan d'action.

Exception faite

des JD

L 2012

d’ailleurs des choses ont progressé …Q

uid du suivi des JdL 2014 ?

JDL

JDT

LSDJournée TechniqueA

G ITA

AG

du Labo

Page 145: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

4.3 Hygiène et Sécurité – Conditions de travail

Revision: 0.1 Page 28/30

Problématique

Les + actuellem

entLes - actuellem

entQ

uestions soulevées ou idées de solutions

Les acteurs de la sécurité

Des acteurs bien définis :

Direction

AP

Chargés d’évacuation

mise à jour en 2013

Les secouristes du travail

Com

munication pas très bonne entre les acteurs

Rendre la C

HSC

T plus active

2 réunions par an, annonce à l’avance d’un ordre du jour,

participation des mem

bres de la com

mission sur certaines

problématiques

participation des ingénieurs de sécurité et des m

édecins de prévention

Am

éliorer la comm

unication et encourager le travail entre les services/ acteurs

service administratif-A

P-direction :o

1ère priorité organisation d’une

journée accueil des nouveaux entrants

orédaction d’un livret d’accueil

AP- service info : m

ise à jour intranet

Référents form

ation /AP :

Organisation ou proposition de

formation sécurité

Renouvellem

ent d’habilitation

Identifier de nouveaux acteurs de la sécurité

Référents-

responsables laboratoire

dont la

mission serait :

« Gestion » d’un laboratoire

aider à rédiger une charte de sécurité du laboratoire

Veiller à la formation des nouveaux

entrants et à leur compréhension de

cette charte

Aider à la rédaction

du document

unique

Page 146: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

Revision: 0.1 Page 29/30

Problématique

Les + actuellem

entLes - actuellem

entQ

uestions soulevées ou idées de solutions

Budget H&

SU

ne ligne de crédit H&

S existe

Listing des besoins en H&

S uniquem

ent réalisé par les A

P

Les limites de la ligne de

crédits pas clairement

définies

Com

ment alim

enter la ligne de crédit ?

insérer les notions de de H

&S lors de

l’élaboration de projet (cellule CA

MPI) pour

évaluer les besoins en H&

S

Etats des lieux des besoins et discussion en C

HSC

T des post de budget solvables sur la ligne de crédit H

&S

Outils /m

éthode de travail

Plusieurs outils de travail

les registres

Affichage m

ural

Intranet

Mail sur la liste de diffusion

CH

SCT ou IPA

G

Message TV

Tickets bât.

peu utilisésPas à jour et dem

ande beaucoup de travail

Pas toujours utilisé

pas de tockets spécifiques pour l'instant

Page 147: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Prospective fonctionnement et ressources

5 Glossaire :AMUE : L'Agence de mutualisation des universités et établissements d'enseignement supérieur et de recherche est un Groupement d'Intérêt Public (GIP) qui organise la coopération entre ses membres et sert de support à leurs actions communes en vue d’améliorer la qualité de leur gestion.

AP : Assistant de Prévention

ASR : Administration Systèmes et Réseaux

CCTP : Cahier des Clauses Techniques Particulières

CAMPI : Cellule d'Aide au Montage de Projet à l'IPAG

DGG :Délégation Globale de Gestion

CHSCT : comité d’hygiène, de sécurité et des conditions de travail

GVT glissement vieillissement technicité

LRU : loi relative aux libertés et responsabilités des universités

ODS : Offres De Service

RGPP : révision générale des politiques publiques

Revision: 0.1 Page 30/30

Page 148: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

ANNEXE 12 : IPAG 2016-2020

Communiqués de presse de l’IPAG entre le 1ier janvier 2011 et le 30 juin 2014

Titre du Communiqué de Presse Year/Month/Day

Le prix de collaboration franco-espagnole 2014 de la SF2A décerné à un chercheur de l’IPAG

2014.05.27

Le chasseur d’exoplanètes SPHERE livre ses premières images 2014.06.05

Une galaxie active offre un regard nouveau sur l’environnement d’un trou noir supermassif

2014.06.20

Pierre Hily-Blant nommé à l’Institut Universitaire de France 2014.01.27

Première carte météo d’une naine brune 2014.02.05

Réveil de la sonde Rosetta 2014.01.21

Une proto-étoile révèle un nouveau scénario pour la formation des planètes

2014.02.18

VLT : le puissant spectrographe MUSE reçoit sa toute première lumière et ouvre ses yeux sur l’Univers

2014.03.05

L’imageur d’exoplanètes SPHERE, conçu par un consortium européen piloté par l’IPAG, vient d’être expédié au Chili

2014.02.24

Le satellite Planck dévoile l’empreinte magnétique de notre Galaxie

2014.05.08

Billard planétaire autour de Beta Pictoris 2014.03.07

Michel Mayor distingué par l’Université Joseph Fourier 2013.12.13

Réseau Alma : observation d’un moment-clé de la naissance des planètes géantes

2013.01.14

De la formamide, une molécule clé dans l’apparition de la vie, détectée au voisinage d’un soleil en formation

2013.01.25

Inauguration officielle de l’observatoire ALMA 2013.03.12

Page 149: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

L’héritage chimique du Système Solaire : zoom sur l’azote 2013.04.10

Planck dévoile une nouvelle image du Big Bang 2013.03.21

Première image d’une étoile en fin de vie comprenant un système planétaire et un disque de débris

2013.04.10

Des micrométéorites provenant du système solaire externe 2013.04.10

SPIRou : un nouvel instrument pour découvrir des exoTerres et étudier la naissance des étoiles et des planètes

2013.11.05

Première image d’un compagnon planétaire très massif autour d’une étoile double

2013.05.03

La plus légère des exoplanètes jamais photographiée ? 2013.06.03

L’Objet de mes recherches : Cecilia Ceccarelli 2013.10.22

Anne-Marie Lagrange (IPAG) élue membre de l’Académie des Sciences

2013.12.13

De la poussière à proximité de la zone habitable des étoiles 2013.07.08

Les ingrédients de la vie dans l’atmosphère de Titan ? Nouveau paradigme pour l’origine de la vie.

2012.09.24

L’océan polaire martien confirmé par MARSIS 2012.01.24

Fin de mission pour HFI, l’instrument haute fréquence du satellite Planck

2012.01.24

Une Chaire d’excellence financée par l’ANR à l’IPAG 2012.02.15

Le projet FOCUS mené à l’IPAG lauréat de l’appel à projet "Laboratoires d’Excellence"

2012.02.15

Découverte d’îlots de gaz froid dans notre Galaxie 2012.02.20

Des milliards de planètes rocheuses dans la « zone habitable » autour de naines rouges dans la Voie Lactée

2012.03.28

Le télescope Herschel traque l’eau dans notre univers proche 2012.04.16

Aurores polaires… sur Uranus Premières images depuis la Terre 2012.04.27

Hubble to Use Moon as Mirror to See Venus Transit 2012.05.07

Signature de convention entre l’Institut de RadioAstronomie Millimétrique (IRAM) et l’Université Joseph Fourier

2012.06.19

Tempête dans l’atmosphère d’une exoplanète 2012.06.29

Jean Lilensten reçoit le prix "Le goût des sciences" dans la catégorie "les scientifiques communiquent"

212.10.18

Perdue dans l’espace : une planète solitaire repérée 2012.11.14

Page 150: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

En route vers la comète : dernière manœuvre orbitale pour Rosetta 2011.03.24

Une première mondiale en astrophysique grâce à l’instrument grenoblois PIONIER

2011.05.05

L’équipe Supermassive B en apesanteur ! 2011.05.15

Une détermination quantique du taux de conversion entre les formes ortho et para de la molécule d’hydrogène.

2011.08.25

L’environnement d’un trou noir supermassif révélé 2011.11.30

Gael Chauvin (IPAG) recoit le Prix SF2A 2011.06.22

Jérome Bouvier (IPAG) reçoit la médaille d’argent du CNRS. 2011.07.04

Le microspectromètre SWIFTS inventé à l’IPAG lauréat du Photon d’Or

2011.11.29

Anne-Marie Lagrange (IPAG) est lauréate du prix Irène Joliot-Curie, catégorie « Femme scientifique de l’année »

2011.11.17

David Ehrenreich (IPAG) reçoit le Prix Pierre et Cyril Grivet, Grand prix de l’académie des Sciences

2011.11.22

Dix ans d’optique adaptative sur le Very Large Telescope 2011.11.25

Premières images d’une étoile cannibale 2011.12.12

   

Page 151: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

ANNEXE 13 : IPAG 2016-2020

Séminaires IPAG-IRAM (2011 – 2014)

Equipe séminaire: G. Chauvin, S. Maret, G. Dubus, T. Van der Laan

- Séminaires 2011 Jeudi 27 Janvier 2011 Asymmetric explosion of core-collapse supernovae, theory and experiment Thierry Foglizzo, CEA, Saclay Jeudi 3 Février 2011 The complex inner environments of Herbig AeBe stars Myriam Benisty, MPIA, Heidelberg Jeudi 10 Février 2011 On the origin of the initial mass function Patrick Hennebelle, LERMA, Paris Jeudi 17 Février 2011 The hunt for the escaping atmosphere of a hot neptune David Ehrenreich, IPAG Jeudi 24 Février 2011 Une possible origine déterministe et astrophysique pour l’asymétrie biomoléculaire à la surface de la Terre primitive Louis d’Hendecourt, IAS, Orsay Jeudi 3 Mars 2011 Galactic VHE gamma-ray astrophysics : Recent discoveries and future plans Ryan C.G. Chaves, MPIK, Heidelberg Jeudi 17 Mars 2011 What regulates star-formation in galaxies ? Nicolas Bouche; University of California, Santa Barbara Jeudi 24 Mars 2011 Magnetic fields at the surface of Red Giants Michel Aurière ; IRAP, Toulouse Jeudi 31 Mars 2011 Tests with a Carlina-type hypertelescope Prototype II - Primary mirrors coherencing using a supercontinum laser source Hervé le Coroller, OAMP, Marseille Jeudi 7 Avril 2011 The dynamics of planets and planetesimals in turbulent protoplanetary discs Richard Nelson, Queen Mary, University of London Jeudi 14 Avril 2011 Turbulence in the (Cold) Interstellar Medium Pierre Hily-Blant, IPAG

Page 152: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Jeudi 21 Avril 2011 The search for Gravitational Waves with Virgo and the other detectors Benoît Mours, LAPP, Annecy-le-Vieux Jeudi 19 Mai 2011 ALMA early science Frédéric Gueth, IRAM Jeudi 26 Mai 2011 Galaxy "breathing" and the lack of metallicity evolution through the cosmic epochs Robert Maiolino, OAR, Roma Jeudi 9 Juin 2011 Strongly lensed high redshift galaxies identified in Herschel wide surveys. Prospects for IRAM and ALMA observations Alain Omont, IAP, Paris Séminaire du Jeudi 16 Juin 2011 Towards the definition of a data model for generic radio-telescopes François Viallefond, LERMA, Paris Séminaire du Jeudi 1er Septembre 2011 Detection and caractérisation of nearby planetary systems by astrometry - The NEAT mission proposed to ESA Fabien Malbet, IPAG Séminaire du Jeudi 22 Septembre 2011 Accretion disks : viscous or turbulent ? Sébastien Fromang, CEA Séminaire du Jeudi 29 Septembre 2011 L’assurance qualité à l’IPAG Lahcen Tazi, IPAG Séminaire du Jeudi 6 Octobre 2011 Formation d’étoile dans les galaxies chimiquement jeunes du Groupe Local Pierre Gratier, IRAM Séminaire du Jeudi 13 Octobre 2011 The origin of noble gases in the insoluble organic compounds of meteorites Yves Marrocchi (CRPG, Nancy) Séminaire du Jeudi 20 Octobre 2011 Cosmic Telescopes Jean-Paul Kneib, LAM (Marseille) Séminaire du Jeudi 3 Novembre 2011 Cosmic-ray ionisation of molecular clouds Marco Padovani, CSIC-IEEC, Barcelona Séminaire du Jeudi 10 Novembre 2011 La mission spatiale Rosetta de l’ESA : ses objectifs scientifiques et sa charge utile Wlodek Kofman, IPAG Séminaire du Jeudi 17 Novembre 2011 Et la lumière fut (détectée ) : Ainsi soit SWIFTS Etienne le Coarer, IPAG Séminaire du Jeudi 24 Novembre 2011 AGN radio observations at the Fermi era Eduardo Ros (University of Valencia) Séminaire du Jeudi 1er Décembre 2011 Polarization of the sky in the millimetric and submillimetric range : status and forecast Nicolas Ponthieu (IAS) Séminaire du Jeudi 8 Décembre 2011 A deep insight into the structure and environment of stars with phase closure nulling Alain Chelli (IPAG)

Page 153: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Séminaire du Jeudi 15 Décembre 2011 From Herschel to ALMA : new insights into the physics of Class 0 protostars Anaëlle Maury (ALMA fellow, ESO, Garching)

- Séminaires 2012 Séminaire du Jeudi 5 Janvier 2012 Molecular gas structure on GMCs scales in the nearby galaxy M51 Gaëlle Dumas (IRAM) Séminaire du Jeudi 12 Janvier 2012 Journées IPAG 2012 : pour qui, pour quoi ? Jérôme Bouvier (IPAG) Séminaire du Jeudi 19 Janvier 2012 The debris disk — terrestrial planet connection Sean Raymond (Obs. de Bordeaux) Séminaire du Jeudi 26 Janvier 2012 Early phases of star formation : study of prestellar core collapse using radiation-magneto-hydrodynamic calculations Benoît Commerçon (LERMA) Séminaire du Jeudi 9 Février 2012 Unraveling the chemical space of natural and chondritic organic matter Philippe Kopplin (Helmholtz Zentrum München) Séminaire du Jeudi 23 Février 2012 Characteristics and physico-chemical evolution of cometary nuclei : modeling and experimental study - implications and objectives for the Rosetta mission Ulysse Marboeuf (IPAG) Séminaire du Jeudi 1er Mars 2012 Cosmic rays, from accelerators to galactic populations - A selected tour of the gamma-ray sky Pierrick Martin (IPAG) Séminaire du Jeudi 8 Mars 2012 SEED@IPAG - Grain Growth from Cores to Early Disks and CHEX Research Opportunities Juergen Steinecker (IPAG) Séminaire du Jeudi 15 Mars 2012 Constraining the physical processes in protoplanetary disks with radiative transfer codes Gijs Mulders (U. of Amsterdam) Séminaire du Jeudi 29 Mars 2012 Gamma-ray pulsars : searching for the emission site Ioanna Arka (IPAG) Séminaire du Jeudi 5 Avril 2012 Astronomical Constraints on Theories of Planet Formation : Understanding the When, Where, and How Michael Meyer (ETH Zurich) Séminaire du Jeudi 26 Avril 2012 Turbulent convection in stellar interiors : a numerical approach using time-implicit simulations Maxime Viallet (U. of Exeter) Séminaire du Jeudi 3 Mai 2012 Accretion processes in the early solar system viewed from short-lived radioactive nuclides Marc Chaussidon (CRPG, Nancy) Séminaire du Jeudi 10 Mai 2012 Imaging the Surfaces of Stars John Monnier (U. of Michigan) Séminaire du Mercredi 23 Mai 2012 The Dynamics of Newborn Triple Systems : Orphaned Protostars, Brown Dwarf Binaries, and Freefloating Planets Bo Reipurth (U. of Hawaii)

Page 154: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Séminaire du Jeudi 31 Mai 2012 2015 : The Exploration of the Pluto System by New Horizons Alan Stern (Southwest Research Institute, San Antonio, Texas) Séminaire du Jeudi 14 Juin 2012 Molecular Oxygen in the Interstellar Medium Paul F. Goldsmith (JPL, Caltech) Séminaire du Jeudi 21 Juin 2012 Stellar winds of boring stars... Aline Vidotto (U. of St Andrews) Séminaire du Jeudi 28 Juin 2012 Fragmentation of Molecular clouds and Initial Mass Function (IMF) Tanuka Chattopadhyay (Calcutta University) Séminaire du Jeudi 6 Septembre 2012 Last news from Curiosity Eric Lewin (ISTerre) Cours/Séminaire du Lundi 10 septembre 2012 Le boson de Higgs Guy Pelletier (IPAG) Séminaire du Jeudi 13 Septembre 2012 Cosmic rays in our galaxy Alexandre Marcowith (LUPM, Montpellier) Séminaire du Jeudi 20 Septembre 2012 Gamma-ray flares in the Crab Nebula : Magnetic reconnection at work ? Benoît Cerutti (University of Colorado) Séminaire du Jeudi 27 Septembre 2012 New Telescopes, New Expectations, Puzzling Results Eric Herbst (U. of Virginia) Séminaire du Jeudi 4 Octobre 2012 Interactions plasma étoiles-(exo)planètes et émissions radio associées Philippe Zarka (Obs. de Meudon) Séminaire du Jeudi 11 Octobre 2012 Planet disk interaction and orbital evolution Willy Kley (University of Tubingen) Séminaire du Jeudi 18 Octobre 2012 Supermassive Black Hole growth and AGN feedbacks through the cosmic times Fabrizio Fiore (Osservatorio Astronomico di Roma) Séminaire du Jeudi 25 Octobre 2012 The molecular emission from Supernova Remnants Antoine Gusdorf (LRA-ENS, Paris) Séminaire du Jeudi 8 Novembre 2012 Molecular growth in planetary atmospheres : Recent developments from Titan and extrasolar giant planets Panayotis Lavvas (U. Reims) Séminaire du Jeudi 15 Novembre 2012 Convection of Venus and Enceladus, two regimes, one model Antoine Rozel (Univ. Roma) Séminaire du Jeudi 22 Novembre 2012 New predictions for X-ray binaries as Galactic gamma-ray, cosmic-ray and neutrino sources Samia Drappeau (U. of Amsterdam) Séminaire du Jeudi 29 Novembre 2012 Observational studies of intermediate-mass protostars with PdBI, 30m, and Herschel Asunción Fuente (OAN, Madrid)

Page 155: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Séminaire du Jeudi 6 Décembre 2012 The Herschel Key Programme CHESS : The case of the intermediate-mass protocluster OMC-2 FIR 4 Ana Sepulcre (IPAG) Séminaire du Jeudi 13 Décembre 2012 Effect of the stellar spin history on the tidal evolution of close-in planets Emeline Bomont (Obs. de Bordeaux) Séminaire du Jeudi 20 Décembre 2012 The study of comets in millimetre interferometry Jérémie Boissier (ESO/INAF-Istituto di Radioastronomia)

- Séminaires 2013 Séminaire du Jeudi 10 Janvier 2013 Moving groups and the non-axisymmetries of the Galactic disk Benoit Famaey (Obs. de Strasbourg) Séminaire du Jeudi 17 Janvier 2013 Addressing the mystery of exozodiacal dust Amy Bonsor & Steve Ertel (IPAG) Séminaire du Jeudi 24 Janvier 2013 Massive molecular outflows in nearby ULIRG/AGN Chiara Feruglio (IRAM) Séminaire du Jeudi 31 Janvier 2013 Integrated micro-spectrographs in the era of Extremely Large Telescopes Nicolas Blind (MPE) Séminaire du Jeudi 7 Février 2013 Satellite formation from planetary rings : the fascinating case of Saturn, and beyond. Aurélien Crida (OCA) Séminaire du Jeudi 14 Février 2013 European Space Agency, past and future scientific missions Cecilia Ceccarelli (IPAG) Séminaire du Jeudi 21 Février 2013 Direct imaging and characterization of low mass companions to young early-type stars Mickael Bonnefoy (MPIA) Séminaire du Jeudi 7 Mars 2013 Planetary formation in transition and debris disks Johan Olofsson (MPIA) Séminaire du Jeudi 14 Mars 2013 Genealogy of the solar system Matthieu Gounelle (MNHN) Séminaire du Jeudi 21 Mars 2013 Looking for planets around M dwarfs with adaptive optics direct imaging Philippe Delorme (IPAG) Séminaire du Jeudi 28 Mars 2013 Galaxy constraints on dark matter Françoise Combes (IAP) Séminaire du Jeudi 4 Avril 2013 From Chemistry to Natural History : Is there a driving force ? Robert Pascal (Université Montpellier) Jeudi 4 Avril - 11 h 00 Salle Manuel Forestini - IPAG Séminaire du Jeudi 11 Avril 2013 Fundamental constants, gravity & cosmology Jean-Philippe Uzan (IAP) Jeudi 11 Avril - 11 h 00 Salle Manuel Forestini - IPAG

Page 156: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Séminaire du Jeudi 18 Avril 2013 Observations radar de Titan : lacs, cryo volcans et dunes Pierre Encrenaz (Obs. Paris) Jeudi 18 Avril - 11 h 00 Salle Manuel Forestini - IPAG Séminaire du Jeudi 16 Mai 2013 Archaeology of Extrasolar Terrestrial Planetary Systems Jay Fahiri (Cambridge) Jeudi 16 Mai - 11 h 00 Salle Manuel Forestini - IPAG Séminaire du Jeudi 23 Mai 2013 Stellar and substellar mass function. Formation of stars and brown dwarfs. Gilles Chabrier (CRAL) Jeudi 23 Mai - 11 h 00 Salle Manuel Forestini - IPAG Séminaire du Jeudi 30 Mai 2013 Interstellar and interplanetary solids in Lab Emmanuel Dartois (IAP) Jeudi 30 Mai - 11 h 00 Salle Manuel Forestini - IPAG Séminaire du Jeudi 6 Juin 2013 Imaging stars and their environments at high angular resolution with CHARA/MIRC Fabien Baron (Georgia State University) Jeudi 6 Juin - 11 h 00 Salle Manuel Forestini - IPAG Séminaire du Jeudi 13 Juin 2013 The large-scale structure measured by Planck and implications for star formation Guilaine Lagache (IAS) Jeudi 13 Juin - 11 h 00 Salle Manuel Forestini - IPAG Séminaire du Jeudi 20 Juin 2013 Martian Geological record from orbital data Cathy Quantin-Nataf (Univ. Lyon 1) Jeudi 20 Juin - 11 h 00 Salle Manuel Forestini - IPAG Séminaire du Vendredi 28 Juin 2013 (Exceptionnel !) The large-scale structure measured by Planck and implications for star formation Guilaine Lagache (IAS) Vendredi 28 Juin - 11 h 00 Salle Manuel Forestini - IPAG Séminaire du Jeudi 11 Juillet 2013 Extrasolar Storms : Exploring Cloud Cover and Atmospheric Dynamics in Brown Dwarfs and Exoplanets Daniel Apai (Univ. of Arizona) Jeudi 11 Juillet - 11 h 00 Salle Manuel Forestini - IPAG Séminaire du Jeudi 5 Septembre 2013 Do planets form inside vortices ? Heloise Meheut (CEA/DSM/IRFU) Thursday September 5th - 11am Manuel Forestini Seminar Room - IPAG Séminaire du Jeudi 12 Septembre 2013 Constraints on planetesimal formation from asteroid compositions Pierre Vernaza (LAM) Thursday September 12th - 11am Manuel Forestini Seminar Room - IPAG Séminaire du Jeudi 19 Septembre 2013 Design and operation of ACTPol, a millimeter-wavelength, polarization-sensitive receiver for the Atacama Cosmology Telescope Benjamin Schmitt (University of Pennsylvania) Thursday September 19th - 11am Manuel Forestini Seminar Room - IPAG Séminaire du Jeudi 26 Septembre 2013 Science with SKA and its precursors : a revolution in astronomy Stéphane Corbel (CEA) Thursday September 26th - 11am Manuel Forestini Seminar Room - IPAG Séminaire du Jeudi 3 Octobre 2013 Atmospheric Studies of Small, Cool, Low-Mass Planets Ian Crossfield (MPIA/Heidelberg) Thursday October 3rd - 11am Manuel Forestini Seminar Room - IPAG Séminaire du Jeudi 10 Octobre 2013 Ultrahigh energy cosmic rays, pulsars, and supernovae Kumiko Kotera (IAP) Thursday October 10th - 11am Manuel Forestini Seminar Room - IPAG Séminaire du Jeudi 17 Octobre 2013 Hot DOGS and compact CONs - Physical conditions and chemistry of Molecular gas in galactic centers Suzanne Aalto (Chalmers) Thursday October 17th - 11am Manuel Forestini Seminar Room - IPAG Séminaire du Jeudi 7 Novembre 2013 The quest for large carbonaceous molecules in space Olivier Berné (IRAP) Thursday November 7th - 11am Seminar Room - IRAM

Page 157: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Séminaire du Jeudi 14 Novembre 2013 Challenging Exoplanet Formation Models with Direct Imaging and Coronagraphy : Fomalhaut and HD 100546 Matthew Kenworthy (Leiden Obs.) Thursday November 14th - 11am Manuel Forestini Seminar Room - IPAG Séminaire du Jeudi 21 Novembre 2013 The Local Group dwarf galaxies as a cosmological probe : searches, new discoveries, and comprehensive analysis Nicolas Martin (Strasbourg Obs.) Thursday November 21th - 11am IPAG Seminar Room - IPAG Séminaire du Jeudi 28 Novembre 2013 Bridging planetary and stellar dynamos : can we learn something about the magnetism of M dwarfs ? Thomas Gastine (MPIS) Thursday November 28th - 11am Manuel Forestini Seminar Room - IPAG Séminaire du Jeudi 5 Decembre 2013 The CASTOFFS Survey : Pursuit of Young M Dwarfs Adrift in the Solar Neighborhood Joshua Schlieder (MPIA) Thursday December 5th - 11am Manuel Forestini Seminar Room - IPAG Séminaire du Jeudi 12 Decembre 2013 Interstellar Medium and Star Formation in Nearby Galaxies Andreas Schruba (IRAM) Thursday December 12th - 11am Manuel Forestini Seminar Room - IPAG Séminaire du Vendredi 20 Decembre 2013 Towards a more comprehensive understanding of exo-planetary worlds with direct imaging (Update) Laurent Pueyo (STScI) Friday December 20th - 10:30am Vercors Seminar Room - IPAG

- Séminaires 2014 Séminaire du Jeudi 9 Janvier 2014 Dusting for the Fingerprints of Planet Formation Tiel Birnstiel (CfA, Harvard) Thursday January 9th - 11am Manuel Forestini Seminar Room - IPAG Séminaire du Jeudi 16 Janvier 2014 Astrochemistry from a chemist’s perspective Nadia Baluccani (Perugia University) Thursday January 16th - 11am Manuel Forestini Seminar Room - IPAG Séminaire du Jeudi 23 Janvier 2014 Observing outer Solar System planetary atmospheres with Herschel, ALMA and JUICE/SWI - Results and challenges Thibault Cavalie (Bordeaux Obs.) Thursday January 23rd - 11am Manuel Forestini Seminar Room - IPAG Séminaire du Jeudi 30 Janvier 2014 Inverse problem approaches for hyperspectral data : toward a better exploitation of integral field spectrographs and polychromatic interferometers. Ferreol Soulez (CRAL) Thursday January 30th - 11am Manuel Forestini Seminar Room - IPAG Séminaire du Jeudi 6 Février 2014 Spectroscopic observations of hot-Jupiters with Hubble Space Telescope NICMOS and WFC3 Nicolas Crouzet (STScI) Thursday February 6th - 11am Manuel Forestini Seminar Room - IPAG Séminaire du Jeudi 13 Février 2014 Chemical properties and variation of the ice rich surfaces of the biggest TNOs and satellites. Frederic Merlin (Université Paris 7 (Denis Diderot)) Thursday February 13th - 11am Manuel Forestini Seminar Room - IPAG Séminaire du Jeudi 20 Février 2014 Exoplanet science with astrometry from ground and space Johannes Sahlmann (ESA) Thursday February 20h - 11am Manuel Forestini Seminar Room - IPAG Séminaire du Jeudi 27 Février 2014 An Introduction to the SOFIA Airborne Observatory Hans Zinnecker (Sofia Obs.) Thursday February 27h - 11am Manuel Forestini Seminar Room - IPAG Séminaire du Jeudi 13 Mars 2014 Distinguishing radiation flare models at the Galactic center with the GRAVITY instrument Frederic Vincent (Centre Astronomique Copernic, Warsaw) ; Thursday March 13th - 11am ; Manuel Forestini Seminar Room - IPAG Séminaire du Jeudi 3 Avril 2014 The Fast Track to Finding an Inhabited Exoplanet David Charbonneau (Harvard) ; Thursday April 3rd - 11am ; Manuel Forestini Seminar Room - IPAG ;

Page 158: Contrat Quinquennal 2016‐2020ipag.osug.fr/doc/public/IPAG-GEN-10000-1384.pdf · Section des unités de recherche Contrat Quinquennal 2016‐2020 Dossier d’évaluation 19/09/2014

Séminaire du Jeudi 10 Avril 2014 Molecules in Protoplanetary disks Edwige Chapillon (IRAM) ; Thursday April 10th - 11am ; Manuel Forestini Seminar Room - IPAG ; Séminaire excepitonnel du Mardi 15 Avril 2014 Highlights from the Multi Unit Spectroscopic Explorer (MUSE), a 2nd generation VLT instrument for the VLT. Rolabd Bacon (CRAL) & Gérard Zins (IPAG) ; Tuesday April 15th - 10:30am ; Manuel Forestini Seminar Room - IPAG ; Séminaire du Jeudi 20 Mars 2014 Dust : in the heart of planet formation Guillaume Laibe (University of St Andrews) ; Thursday March 20th - 11am ; Manuel Forestini Seminar Room - IPAG ; Séminaire du Jeudi 24 Avril 2014 The Local Group dwarf galaxies as a cosmological probe : searches, new discoveries, and comprehensive analysis Nicolas Martin (Strasbourg Obs.) Thursday April 24th - 11am IPAG Seminar Room - IPAG Séminaire du Mardi 29 Avril 2014 The CHARA Array - An Introduction to the Facility, some Science, and our Data Archive Dr. T.A. ten Brummelaar Associate Director of CHARA Tuesday April 29th - 11am IPAG Seminar Room - IPAG Séminaire du Jeudi 15 Mai 2014 The WFIRST-AFTA coronagraphic imager : the first high-contrast, small inner working angle instrument in space Alexis Carlotti (IPAG) Thursday May 15th - 11am IPAG Seminar Room - IPAG Séminaire du Jeudi 22 Mai 2014 What can stellar magnetic field tell us about exoplanetary systems ? Rim Fares (St Andrews) Thursday May 22th - 11am IPAG Seminar Room - IPAG Séminaire du Jeudi 27 Mai 2014 Marauding giant planets, meteorites and the origin of the Earth’s volatiles Conel Alexander (Department of Terrestrial Magnetism - Carnegie Institution of Washington DC) Tuesday May 27th - 11am IPAG Seminar Room - IPAG Séminaire du Jeudi 5 Juin 2014 Construction and characterization of CO and tSZ maps from Planck data Guillaume Hurier (IAS) Thursday June 5th - 11am IPAG Seminar Room - IPAG Séminaire du Jeudi 12 Juin 2014 WEAVE : The next-generation Northern Hemisphere Spectroscopic Survey Facility Scott Traeger (Kapteyn Astro. Institute) Thursday June 12th - 11am IPAG Seminar Room - IPAG Séminaire du Jeudi 19 Juin 2014 Exoplanetary Atmospheres : Theory and Simulation Kevin Heng (University of Bern) Thursday June 19th - 11am IPAG Seminar Room - IPAG Séminaire du Jeudi 26 Juin 2014 Intensive X-ray and Radio Monitoring of the Sgr A*/G2 Interaction Daryl Haggard (CIERA Fellow, Northwestern University) Thursday June 26th - 11am IPAG Seminar Room - IPAG Séminaire du Jeudi 3 Juillet 2014 Planetary Science from the Top-Down : the Exoplanet Opportunity Nick cowan (Northwestern University) Thursday July 3rd - 11am IPAG Seminar Room - IPAG