107
Rapid carbon stock appraisal Kalahan, Nueva Vizcaya, Philippines Grace B. Villamor, Nelson Pampolina, Reginald Forcadilla, Nonoy Bugtong, Jerome Alano, Delbert Rice, Tina Omas, Reymar Castillo, Dennis Pulan

Kalahan, Nueva Vizcaya, Philippinesapps.worldagroforestry.org/downloads/Publications/PDFS/... · 2015. 3. 20. · LIMITED CIRCULATION Correct citation Villamor GB, Pampolina N, Forcadilla

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Rapid carbon stock appraisal

    Kalahan, Nueva Vizcaya, Philippines

    Grace B. Villamor, Nelson Pampolina, Reginald Forcadilla, Nonoy Bugtong, Jerome Alano, Delbert Rice, Tina Omas,

    Reymar Castillo, Dennis Pulan

  • Rapid carbon stock appraisal Kalahan, Nueva Vizcaya, Philippines

    Grace B. Villamor, Nelson Pampolina, Reginald Forcadilla, Nonoy Bugtong, Jerome Alano, Delbert Rice, Tina Omas, Reymar Castillo, Dennis Pulan

    Working paper 106

  • LIMITED CIRCULATION Correct citation Villamor GB, Pampolina N, Forcadilla R, Bugtong N, Alano J, Rice D, Omas T, Castillo R, Pulan D. 2010. Rapid Carbon Stock Appraisal: Kalahan, Nueva Vizcaya, Philippines. Working paper 106. Bogor, Indonesia: World Agroforestry Centre (ICRAF) Southeast Asia Program. 87p Titles in the Working Paper series disseminate interim results on agroforestry research and practices to stimulate feedback from the scientific community. Other publication series from the World Agroforestry Centre include agroforestry perspectives, technical manuals and occasional papers. Published by the World Agroforestry Centre (ICRAF) Southeast Asia Program PO Box 161, Bogor 16001, West Java, Indonesia Tel: +62 251 8625415 Fax: +62 251 8625416 Email: [email protected] http://www.worldagroforestrycentre.org/sea © World Agroforestry Centre 2010 Working Paper 106 The views expressed in this publication are those of the author(s) and not necessarily those of the World Agroforestry Centre. Articles appearing in this publication may be quoted or reproduced without charge, provided the source is acknowledged. All images remain the sole property of their source and may not be used for any purpose without written permission of the source.

  • - i -

    About the authors

    Grace Villamor Grace Villamor is currently a researcher at the Center for Development Research (ZEF) in Bonn, Germany, and a research fellow under the REDD ALERT project of the World Agroforestry Centre in Southeast Asia. Prior to that, she was involved in the Rewarding Upland Poor for Environmental Services they provide (RUPES phase 1) program in the Philippines where she was working together with the Kalahan Educational Foundation for developing rewards schemes for carbon sequestration and biodiversity conservation. Contact: [email protected] Nelson P. Pampolina Nelson P. Pampolina is an Associate Professor and Coordinator for Research Extension and Linkages in the College of Forestry and Natural Resources, University of the Philippines at Los Baños. Contact: [email protected] Reginald Forcadilla Reginald Forcadilla is a forester from the University of the Philippines at Los Baños. Contact: [email protected] Nonoy Bugtong Nonoy Bugtong is an Agroforester with the Kalahan Educational Foundation. Jerome Alano Jerome Alano is a GIS specialist at the ASEAN Biodiversity Centre. Contact: [email protected] Delbert Rice Delbert Rice is the Director for Research at the Kalahan Educational Foundation. Contact: [email protected]. Tina Omas Tina Omas is an Agroforester with the Kalahan Educational Foundation. Reymar Castillo Reymar Castillo is a Forester at the University of the Philippines at Los Baños. Contact: [email protected] Dennis Pulan Dennis Pulan is a Dendrologist at the University of the Philippines at Los Baños.

  • - ii -

    Abstract A research method called Rapid Carbon Stock Appraisal (RaCSA) was conducted in Kalahan Forest Reserve (KFR), in Nueva Vizcaya Province, Northern Luzon, Philippines from August 2009 to January 2010. The aim of this activity was to support communities, such as the Ikalahan people, to establish basic data needed in negotiating with carbon markets in a cost-effective and time-efficient manner. The appraisal involved a combination of methods and activities (for example, plot-level carbon measurement, spatial analysis of land-use cover, focus group discussions, key informant interviews and a review of the literature).

    There were several key results of the appraisal.

    • Land-use types and farming practices. The majority of Ikalahan are swidden farmers practising traditional farming (for example, pang-omis, which involves integrating tree seedlings of species such as Alnus in the swidden farms). Five major land-use and land-cover types were identified and assessed, that is, agriculture, agroforest, grassland, reforestation and secondary forests.

    • Plot-level carbon stocks. The estimated carbon stock of land-use systems in the KFR ranged 0.61–77.86 Mg/ha for aboveground carbon; and 21.8–67.4 Mg/ha for belowground. Total (above- and belowground) carbon stock was estimated to range 54.31–151.13 Mg/ha. These results are low compared to other carbon assessments conducted in the country.

    • Land-use and land-cover changes. Land-use and land-cover changes within KFR between 1981 and 2001 were assessed. A decrease in forest, pine and agriculture occurred while there was an increase in old pine and reforestation (for example, mahogany). Carbon values from monitoring plots in 1994 and 2003 were used to extrapolate the land-cover types of the 1981 and 2001 maps, respectively. Based on the results, total carbon stock was approximately 375.8 Gg in 1994 and 452.1 Gg in 2003, that is, a 21% increase in 12 years.

    • Carbon emissions. From the land-cover changes, we estimated that the KFR sequestered carbon annually at an average of 0.5 Gg and that 1.4 Gg of carbon was emitted each year over the period 1989 to 2001.

    • The Kalahan Educational Foundation is the major stakeholder in the KFR. It has established its own rules and regulations related to natural resources development and has supported traditional farming practices and management strategies (for example, their ‘forest improvement technology’) to enhance the carbon stock within the KFR. Currently, the Foundation is exploring the Clean Development Mechanism market. Future options and their implications for the KFR are included in the paper.

    Keywords

    carbon stock assessment, farming practices, Ikalahan Ancestral Domain, land-use change

  • - iii -

    Acknowledgements The RaCSA implementation was conducted by the Kalahan Educational Foundation in collaboration with the Forest Biological Sciences Department, College of Forestry and Natural Resources, University of the Philippines at Los Baños, Laguna, and the World Agroforestry Centre (ICRAF) Southeast Asia Program through the Trees in Multi-Use Landscapes in Southeast Asia project (funded by the German Federal Ministry for Economic Cooperation and Development (BMZ)) and the Rewards for, Use of, and Shared Investment in Pro-poor Environmental Services phase 2 program.

  • - v -

    Contents 1. Introduction ..................................................................................................................... 1

    2. Land Tenure and Ownership ......................................................................................... 3

    2.1 Carbon Stocks Assessment .......................................................................................... 3

    3. Objectives of the study and expected outputs ............................................................... 5

    3.1 Objectives: ................................................................................................................... 5

    3.2 Expected Output: ......................................................................................................... 5

    4. Methodology ..................................................................................................................... 7

    4.1 Site Orientation and Reconnaissance Survey .............................................................. 7

    4.2 Selection of Prospective Sites ..................................................................................... 7

    4.3 Site Preparation and Establishment of Sampling Transect .......................................... 7

    4.4 Sampling sites and major land uses ............................................................................. 8

    4.5 Primary and Secondary Data Collection and Processing .......................................... 10

    5. Results and Discussion .................................................................................................. 13

    5.1 Farming and Livelihood Conditions .......................................................................... 13

    5.2 Land Use Characteristics and Practices ..................................................................... 18

    5.3 Plant Diversity and Composition .............................................................................. 21

    5.4 Carbon Stocks ........................................................................................................... 23

    5.5 Land Use Change Dynamics in KFR ........................................................................ 29

    5.6 Carbon emissions by land use/cover change ............................................................. 35

    5.7 Carbon Offset Options............................................................................................... 39

    5.8 Scenario Building and Future options ....................................................................... 40

    6. Conclusion and recommendation ................................................................................. 43

    6.1 Conclusion ................................................................................................................. 43

    6.2 Recommendation ....................................................................................................... 43

    References .............................................................................................................................. 45

  • - vi -

    List of Tables

    Table 1. Major land-use types identified ................................................................................... 9 

    Table 2. Physical areas devoted to rice by production environment (in hectare), selected barangays, Sta. Fe, Nueva Vizcaya, 2000 ................................................................. 13 

    Table 3. Livelihoods of the people (percentage) ..................................................................... 14 

    Table 4. Summary of livelihoods’ assessment in the KFR ...................................................... 15 

    Table 5. Physical area devoted to fruits and vegetable production (in hectare), selected barangays, Sta. Fe, Nueva Vizcaya, 2000 ................................................................. 15 

    Table 6. Mean cropping, fallow periods and cycle lengths employed by selected farmers in the KFR ................................................................................................................. 17 

    Table 7. Characteristics of the different land uses and practices of local communities in the KEF mountain ecosystem ......................................................................................... 19 

    Table 8. Characteristics and activities of various key drivers of change in the Kalahan landscape ................................................................................................................... 20 

    Table 9. Percentage of trees with different diameter ranges from various land uses .............. 21 

    Table 10. Population density per plot in the canopy, intermediate and undergrowth layers in different land uses ................................................................................................. 22 

    Table 11. Plot-level aboveground biomass carbon stocks ....................................................... 23 

    Table 12. Mean aboveground carbon stocks in land uses sampled in the KFR ...................... 24 

    Table 13. Plot-level belowground biomass carbon-stock ........................................................ 24 

    Table 14. Mean belowground carbon stocks in land uses sampled in the KFR ...................... 25 

    Table 15. Soil carbon and carbon stock ................................................................................... 25 

    Table 16. Mean soil carbon-stock per land use ....................................................................... 26 

    Table 17. Plot-level mean carbon-stock of each land use ....................................................... 26 

    Table 18. Total carbon stock at plot-level in the KFR ............................................................ 26 

    Table 19. Land-cover classes in the KFR, 1989 ...................................................................... 29 

    Table 20. Land-cover classes in the KFR, 2001 ...................................................................... 30 

    Table 21. Land-cover changes between 1989 and 2001 (area in ha) ....................................... 32 

    Table 22. Mean biomass in 1994 and 2003 and the blocks and plots sampled ....................... 33 

    Table 23. Carbon densities based on biomass-monitoring plots in the KFR ........................... 33 

    Table 24. Plots with very high estimated carbon densities ...................................................... 35 

    Table 25. Land-cover types and carbon densities used ........................................................... 35 

  • - vii -

    Table 26. Mean carbon emissions from land-use changes, 1994–2003 .................................. 37 

    Table 27. Mean carbon emissions per year, 1994–2003 ......................................................... 38 

    Table 28. Future options and their implications for the KFR .................................................. 40 

    List of Figures

    Figure 1. Location of Kalahan Forest Reserve .......................................................................... 4 

    Figure 2. Sampling sites where five major land uses were observed ........................................ 8 

    Figure 3. Nested plot design for sampling various carbon stocks ............................................. 9 

    Figure 4. Percentage of species’ composition in three structural layers in various land uses . 23 

    Figure 5. Total (above- and belowground) carbon stocks and their relative composition in the KFR (Upper panel: absolute values in Mg/ha. Lower panel: as percentage) ..... 27 

    Figure 6. Distribution of land-cover-derived carbon density in the KFR, based on a carbon-stock estimate (2009) ............................................................................................... 28 

    Figure 7. Land-cover classes in the KFR, 1989 ...................................................................... 29 

    Figure 8. Land-cover map of the KFR, 1989 .......................................................................... 30 

    Figure 9. Land-cover classes in the KFR, 2001 ...................................................................... 30 

    Figure 10. Land-cover map of the KFR, 2001 ........................................................................ 31 

    Figure 11. Overall land-cover change within the KFR............................................................ 31 

    Figure 12. Distribution of land-cover-derived carbon density in the KFR in 1989 (upper panel) and 2001 (lower panel) .............................................................................. 34 

    Figure 13. Target sites for CDM project (red dots) ................................................................. 39 

  • - 1 -

    1. Introduction

    The Ikalahans are the indigenous people of the province of Nueva Vizcaya, northeastern Philippines. They belong to the Kalanguya-Ikalahan tribe and inhabit the Ikalahan Ancestral Domain. They are largely swiddeners who plant sweet potato, ginger, gabi, cassava and vegetables and build terraces to grow upland rice.

    Encompassing a total of 38 000 ha, the Ikalahan Ancestral Domain, of which the Kalahan Forest Reserve comprises 14 730 ha, lies in the Cordillera and Caraballo mountains and is overlooked by Mt Akbob (1658 m) in the northwest and Mt Talabing (1717 m) in the southwest (KEF 1993). Dividing the watershed between the two peaks and determining the water flow lies a ridge known as Bantay Lakay. Elevation varies 600–1717 m above sea level, with average annual rainfall recorded at over 4000 mm and temperatures ranging 8–24 ˚C (RUPES website1). The majority of the forests are secondary and for the most part tree species found in this entirely mountainous region are endemic dipterocarps. There are also areas where the coverage is predominantly pine or oak on the western and apex zones of the ridge respectively. The study covered approximately 10 000 ha, excluding the grasslands and sanctuary regions.

    In 1973, the Kalahan Educational Foundation (KEF) was established by the Ikalahan tribal elders to protect their communities from possible eviction because the Government at that time was unable to defend their rights. The Foundation’s mission is to promote the education of the Ikalahan people and protect the environment of their ancestral domain. Among its aims is to provide sustainable, forest-based livelihoods, improved watersheds and biodiversity (KEF 1993). From its inception, KEF has been recognised as a community-based organization. It legally represents the Ikalahans in their community-based forest management agreement, in which they are the pioneers in the Philippines.

    1 http://rupes.worldagroforestry.org/researchsite_kalahan/2 

  • - 3 -

    2. Land tenure and ownership

    The Indigenous Peoples’ Rights Act of 1997 (RA 8371) strengthens the rights of the Ikalahan to their ancestral land and led to the approval in 1999 of their ancestral domain claims that cover 58 000 ha.

    Other laws such as the Wildlife Resources Conservation and Protection Act of 2001 (RA 9147) and the National Integrated Protected Areas System of 1992 (RA 7586) are legal mandates to establish and protect critical habitats and species.

    Further, the Memorandum of Agreement No. 1 of 1973 is an agreement between the KEF and the Bureau of Forest Development that recognizes the rights of the Ikalahans to manage their ancestral land and ‘utilize the area to the exclusion of all other parties not already “subsisting” within the area at the time of signing’. The agreement specifically allocated 14 730 ha of land to be managed directly by the Ikalahan through the KEF for a period of 25 years, renewable for another 25 years.

    2.1 Carbon-stock appraisal

    The KEF is currently developing a 900 ha Clean Development Mechanism (CDM) project inside the ancestral domain. The results of a Rapid Carbon Stock Appraisal (RaCSA) were intended to provide essential baseline information for the negotiation of carbon credits with potential carbon buyers. The appraisal would also help provide experience and insight into reducing the transaction cost of such projects.

    RaCSA is part of a ‘negotiation support toolbox’ for rapid appraisal of landscapes developed by the World Agroforestry Centre (ICRAF) Southeast Asia Program through the Trees in Multi-Use Landscapes in Southeast Asia project. The project had several aims.

    1) Bridge the gaps between local, public/policy and scientific modellers’ knowledge.

    2) Increase recognition and respect for these multiple knowledge systems.

    3) Provide quantification of trade-offs between economic and environmental impacts at landscape scale.

    4) Enable joint analysis of plausible scenarios based on available data and information.

  • - 4 -

    Figure 1. Location of Kalahan Forest Reserve.

  • - 5 -

    3. Objectives of the study and expected outputs

    3.1 Objectives

    1. To identify the different land-use practices at the site and the key drivers of change in the landscape.

    2. To estimate the carbon stocks of the main land uses at plot and landscape levels.

    3. To assess the opportunity to use or adjust policy frameworks to enhance or maintain the carbon stocks in the area.

    4. To complete the modelling of land-use and carbon dynamics of the Kalahan using GIS and/or remote sensing.

    3.2 Expected outputs

    1. Carbon stock per land-cover and land-use assessed and calculated.

    2. Land-use practices that enhance or maintain carbon stocks identified and documented.

    3. Results from the carbon-stock appraisal used as the baseline for the CDM project (initial stage of development of the project design document).

    4. Scenarios featuring different drivers of change in the landscape (using remote sensing) presented and assessed.

  • - 7 -

    4. Methodology

    4.1 Site orientation and reconnaissance

    The research team was oriented by community representatives regarding the purpose of the carbon-stock study and the coverage of the project site (Figure 1). Available maps (for example, topographic and vegetation) were useful in identifying the various land uses within the 48 000 ha ancestral domain. A three-dimensional model of the area was instrumental in gaining appreciation of the whole site and approximating logistics and costings prior to fieldwork (Figure 2). Reconnaissance was conducted in September 2009 to finalise the carbon-stock study sites.

    4.2 Selection of sites

    The major land uses in the study area were first identified using the vegetation maps and the results of the reconnaissance with farmers and through secondary data. The sites were selected by locating areas that had high conservation values in the context of the appraisal. This step involved identifying areas with one or more features such as a high richness of species; featured ‘flagship’ species; enjoyed a unique habitat; or were experiencing rapid resource or habitat degradation. These features were considered against the various land uses and local human populations. The secondary data available from the KEF were used as baseline information. Participatory mapping was conducted involving the community and other stakeholders, forming part of the capacity-building strategy of the project. A total of five land uses from fifteen barangays (smallest government unit in the Philippines) within the KEF were identified. All sites were classified as secondary forest, agroforest farm, agricultural area, grassland or reforestation (Table 1). The corresponding land uses were situated in two or more sites.

    4.3 Site preparation and establishment of sampling transects

    The sampling sites and transects were prepared by measuring and pegging 20 m x 100 m plots in the various land uses (Figure 3). Two sampling transects were established for each land use to estimate carbon stock above- and belowground. We used a metre tape to measure distance and GPS Garmin to locate the coordinates. Each sampling transect was demarcated to obtain the following.

    • Tree species, with diameter at breast height of 5.0 cm and above within the whole transect.

    • Plants in the intermediate layer, with diameter below 5.0 cm and height of above 1 m sampled in a 3 m x 3 m sub-plot within the transect plot.

    • Undergrowth vegetation, with height below 1 m sampled within four smaller sub-plots measuring 1 m x 1 m each.

  • - 8 -

    • Necromass or litter fall, collected from one plot in the intermediate layer and four plots in the undergrowth, with each plot measuring 0.25 m x 0.25 m.

    • Soil, sampled using a trowel (5 cm diameter and 30 cm length), at depths of 0–20 and 20–30 cm.

    For each of the land-use samples, the team used a slightly modified protocol from the ASB Lecture Note 4b (Hairiah et al. 2001).

    4.4 Sampling sites and major land uses

    Figure 2. Sampling sites where five major land uses were observed.

  • - 9 -

    Table 1. Major land-use types identified

    No.  Identified land uses  Subsets  Barangay  Plot Code 1.    Secondary forest  • Pine‐dominated 

    • Dipterocarp‐dominated • Myrtaceous oak‐

    dominated 

    Sta. Rosa Baracbac Malico 

    S1T1 S4T1 S2T1 

    2.    Agroforest  • Tree‐crop/fruit‐crop  Sta. Rosa  Baracbac Bacneng 

    S1T2 S4T2 S5T1 

    3.    Agriculture  • Garden/vegetable • Swidden/fallow 

    Bacneng Tactac Atbu 

    S5T2 S6T2 S7T1 

    4.    Grassland  • Abandoned • Pasture • Pure grassland 

    Atbu Sta. Rosa Malico 

    S7T2 S2T4 S2T3 

    5.    Reforestation  • Old rehabilitated • Pine‐ and Alnus‐

    dominated 

    Bacneng Imugan 

    S5T1 S8T3 S8T1 

    Figure 3. Nested plot design for sampling various carbon stocks.

  • - 10 -

    4.5 Primary and secondary data collection and processing

    4.5.1 Taxonomic characterisation

    All vascular plants within the established transect were identified using local names and were verified using morphological characteristics from the field and herbarium collection at the KEF and the University of the Philippines at Los Baños museum. The identity of plants was further verified from references. Unknown plants were kept for future verification and their codes were used in the computation of parameters. Sterile samples of known and unknown species were collected for herbarium purposes and were preserved at the KEF and the university. The taxonomic list was prepared showing local, scientific and family names and plant habitat.

    4.5.2 Measurement of biometrics and biomass

    The height and diameter of trees at breast height (DBH) in the canopy and intermediate layers within the transect plot were estimated in metres and measured with a diameter tape, respectively, for proper encoding in an MS Excel spreadsheet (Figure 4).

    Plant density, or the number of individuals in each layer, and transect plots were counted using the formula:

    Plant Density (N) = Density of each plant species Unit Area of Sampling Plot

    The biomass of each plant in the canopy, intermediate and undergrowth layers, together with leaf litter, was computed using the following:

    a. Allometric regression for aboveground biomass of all trees greater than 5.0 cm DBH using the equation prepared by Ketterings et al. (2001):

    y = 0.11 p D 2.62

    where y = aboveground tree biomass

    p = average wood density equivalent to 0.9035 gram.cc-1 (Pulhin 2008)

    D = tree DBH

    b. Estimated belowground biomass in trees and intermediate layers was equivalent to 15% of the aboveground tree biomass as proposed by Delany (1999).

    c. Destructive harvesting of randomly sampled above- and belowground biomass of undergrowth plants represented by mean values of 5–10 samples of either wildling indigenous tree and agroforestry species, agricultural crops, grass, shrubs, vines, ferns or palms.

    d. Actual samplings of litter fall to represent necromass from all structural layers.

  • - 11 -

    e. Soil samples were placed in labelled plastic bags, air dried and taken to the Soils Laboratory of the Soil Science Department of the College of Agriculture, University of the Philippines at Los Baños for analysis. The method used for the analysis was the Walkey-Black method (PCARR 1981). The mean bulk density of the 2006 soil carbon calculation in the KFR was used (Appendix 2). The dry weight of the soil and the equivalent carbon stock was determined using the following formula:

    Soil mass at specified depth (Mg) = Bulk density at specified depth (Mg/m3) x 10 000 m2 x depth (m)

    Soil carbon at specified depth (Mg) = Soil mass at specified depth (Mg) x % organic carbon at specified depth/100

    4.5.3 Carbon-stock estimations at plot and landscape levels

    With the values of biomass computed from plants and litter fall obtained from five different land uses, the amount of carbon stock at plot and landscape levels was estimated. This was achieved by using the mean carbon value from plant tissues obtained by Dixon et al. (1993) from similar sites and ecosystem, together with the 45% generic carbon value commonly used in much of the literature as a carbon estimate for plant cells (Raven et al. 1999). On average, the percentage of carbon in agricultural farm and grassland ecosystems was 40% while in agroforest, reforestation and secondary forest it was 45%.

    At the landscape level, the method used for estimation of carbon stock was extrapolation based on a land-cover map. Two ‘snapshots’ over time for each of the landscapes’ carbon stocks were made by re-attributing the land-cover map of the particular year with corresponding plot-level carbon stock. The output was a carbon-stock estimation based on aboveground biomass calculations from land cover in 1994 and 2003.

  • - 13 -

    5. Results and discussion

    5.1 Farming and livelihoods’ conditions2

    5.1.1 Land access

    The average size of landholding per household was 3 ha, one-third of which was cultivated while the rest was forested. Water was the determining factor in whether or not to cultivate the land, especially for rice production (tables 2 and 5). Community access was allowed in production forests and prohibited in the watersheds and sanctuaries. Land tenure was based on the ancestral domain claim, which was approved in 1999.

    Table 2. Physical areas devoted to rice by production environment (in hectare), selected barangays, Sta. Fe, Nueva Vizcaya, 2000

    No.  Barangay  Irrigated  Rainfed  Upland  Total 1.  Bacneng   10  0  7  17 2.  Baracbac  20  0  10  30 3.  Imugan  15  0  2  17 4.  Malico  0  0  10  10 5.  Sta. Rosa  25  6  2  33 6.  Unib  20  0  3  23 

    Total  90  6  34  130 Source: Department of Agriculture, Sta. Fe, Nueva Vizcaya 

    5.1.2 Livelihood options

    The majority of the people in the study area were farmers (Table 3). They were indigenous swiddeners with camote (sweet potato) and upland rice as their staple crops. Off-farm activities consisted of forest-fruit processing and soft-broom production (from tiger grass). Others were employed as professionals in the local government offices, Kalahan Academy and the KEF.

    A livelihoods’ assessment was conducted through the KEF’s involvement with the Non-Timber Forest Products Exchange Program3. Table 3 shows that more than 50% of farmers in Bacneng, Baracbac, Imugan and Unib were more engaged with off-farm activities compared to the other barangays. Table 4 shows the barangays that are most concentrated on broom making. Table 5 shows the areas devoted to fruit and vegetable production.

    2 Most of the information provided in this section was taken from Villamor and Pindog (2008). 3 A regional non-governmental organization. 

  • - 14 -

    Table 3. Livelihoods of the people (percentage)

    Major Occupation 

    Barangays/Villages Imugan  Malico  Sta. Rosa  Unib  Bacneng  Baracbac  Tactac 

    Farmers  70  90  94  100  90  96  80 Professionals *  25  5  1  0  6  2  10 Business/ Traders 

    5  5  5  0  4  2  10 

      100  100  100  100  100  100  100 * For example, teachers, government bureaucrats, soldiers, health workers and police 

    Source: Stakeholder analysis conducted in 2009 

     

     

  • - 15 -

    Table 4. Summary of livelihoods’ assessment in the KFR

     Barangays 

    Bacneng  Baracbac  Imugan  Unib  Malico  Sta. Rosa Number of households  250  115  149  40  67  57 Crafts population  70%: broom making  90%: broom making  29%: broom making;  

    23%: basket weaving 50%: broom making   15%: broom making  18%: broom making 

    Geographical accessibility (distance from town) 

    5 km  3 km  7 km  ~15 km  ~15 km  ~20 km 

    Sources of income  Broom making Swidden Farming  

    Broom making Swidden Farming  

    Supplier of tiger grass (as raw material) Broom making Farming 

    Supplier of tiger grass (as raw material)  Broom making Farming 

    Supplier of tiger grass (as raw material) Broom making Farming 

    Supplier of tiger grass (as raw material)  Broom making Farming 

    Market (current)  Local traders Solano* Baguio 

    Local traders Solano 

    Local traders Consolidators 

    Local traders Consolidators 

    Local traders Consolidators 

    Local traders Consolidators 

    Craft products  Brooms, baskets  Brooms  Brooms, baskets, quilts  Brooms, baskets  Brooms, baskets  Brooms, baskets 

    * Neighbouring town or city 

    Source: Non‐timber forest product (NTFP) project  2009, unpublished 

    Table 5. Physical area devoted to fruits and vegetable production (in hectare), selected barangays, Sta. Fe, Nueva Vizcaya, 2000

     Total Area 

    (ha) 

    Vegetables Root Crops 

    Permanent Crops  Temporary Crops 

    Upland  Lowland  Mango  Citrus  Coffee  Guava Other fruits 

    Papaya  Banana 

    Bacneng  229.08  45.0  10.25  85.25  70.0  1.07  5.03  6.8  5.0  0.14  0.54 Baracbac  105.73  37.5  27.1  35.0  0.47  0.43  0.20  3.36  0.10  ‐  1.17 Imugan  51.57  13.75  12.50  20.60  0.04  0.44  0.40  2.29  1.24  ‐  0.31 Malico  37.51  17.75  7.0  11.50  0.13  0.06  0.20  0.67  0.08  ‐  0.12 Sta. Rosa  25.40  11.00  1.50  12.00  0.09  0.05  0.16  0.50  ‐  0.01  0.09 Unib  30.09  8.75  4.00  2.50  0.23  0.30  0.80  2.26  0.89  ‐  0.36 Total                       

    (‐) no data 

    Source: Department of Agriculture, Sta. Fe, 2000  

  • - 16 -

    5.1.3 Farming practices

    The Ikalahan are known for their indigenous knowledge practice systems that are environmentally sustainable. These include:

    • Day-og and gengen are composting techniques on level and sloping land respectively.

    • Balkah is a contour line of deep-rooted plants, which trap eroded topsoil at the belt line (Rice 2000).

    • Pang-omis is a method of expediting the fallow. It was invented by one of the tribal elders after attending an ecology seminar. Farmers intercrop tree seedlings, for example, Alnus nepalensis, in their swidden farms along with sweet potato.

    A study of the farming systems and fallow management of households within the KFR (Banaticla et al. 2008) indicated that families use a much smaller area of land (around 2.93 ha) than the limit imposed by the community (10 ha) for farming and other purposes. The inherent physical limitations in the amount of land suitable for farming, declining population densities (except in villages nearest to the urban centre) and current cropping and fallow cycles (Table 6) also indicated the tendency towards sedentarization of agriculture. Former swidden fields were under long fallow and these were further protected by direct interventions of the community through regulation of forest clearing and other forest protection and rehabilitation activities (Appendix 4).

  • - 17 -

    Table 6. Mean cropping, fallow periods and cycle lengths employed by selected farmers in the KFR

    Res‐pondent 

    No. Age 

    Residence (barangay) 

    Time span reported (years)* 

    No. of swiddens opened through 

    time 

    No. of swiddens with more than one cropping cycle 

    Mean cropping period (years) 

    Mean fallow period (years) 

    Mean crop:fallow 

    ratio 

    Mean crop‐fallow cycle length 

    (years) 

    1.  59  Baracbac  1974–2008 (34)  9  1 7.00 

    (1–14) 15.13 (1–29) 

    0.46  22.13 

    2.  62  Baracbac  1960–2008 (48)  3  0 9.33 

    (3–16) 7.33 

    (0–22) 1.27  16.66 

    3.  70  Unib  1959–2008 (49)  5  2 13.17 (4–26) 

    17.00 (1–45) 

    0.77  30.17 

    4.  75  Baracbac  1951–2008 (57)  3  3 8.25 

    (3–16) 5.30 

    (1.5–14) 1.56  13.55 

    5.  48  Imugan  1978–2008 (30)  3  2 8.40 

    (1–13) 16.50 

    (16–17) 0.51  24.90 

    6.  60  Malico  1984–2008 (24)  2  0 8.50 

    (4–16) 8.50 

    (6–11) 1.00  17.00 

    7.  75  Unib  1950–2008 (58)  2  1 13.25 (4–39) 

    14.33 (5–23) 

    0.92  27.58 

    8.  70  Malico  1986–2008 (22)  4  0 3.50 (2–5) 

    16.50 (10–23) 

    0.21  20.00 

    9.  45  Unib  1985–2008 (23)  2  0 8.5 

    (3–14) 11.00 (2–20) 

    0.77  19.50 

                       Mean            8.88  12.40  0.83  21.28 

    * An initial list of 20 respondents were chosen but was narrowed down to 9 because of the difficulty of obtaining complete histories from each respondent. All nine respondents, except one, were female, residents of the KFR from birth, had no formal education or reached only the primary level, married or widowed, with farming as primary occupation up to the time of interview Source: Banaticla et al. 2008

  • - 18 -

    5.2 Land-use characteristics and practices

    The major land uses in the Kalahan mountain ecosystem were classified into five, based on the dominant vegetation and community activities, as shown in Table 1 and described below.

    5.2.1 Agriculture

    The agricultural areas were represented in barangays Bacneng, Tactac and Atbu. The agriculture at these sites was generally situated in an open condition located on relatively flat-to-sloping terrain. Structurally, the vegetation was more undergrowth with few trees and an intermediate layer on the perimeter of farms, represented by a mix of crops (camote, cassava, beans, rice, corn, taro, okra, ginger) planted in patches, grown using a combination of traditional swidden farming and non-traditional systems that used inputs to increase production.

    5.2.2 Agroforest

    This land use in barangays Sta. Rosa, Baracbac and Unib was dominated by a mixture of agricultural fruit crops (avocado, mango, guava, citrus, papaya) planted in-between forest trees (for example, mahogany, Gmelina, narra) and was, hence, classified as agroforest. The land use was basically situated on moderate slopes with a semi-open canopy created by fruit and large trees, with little intermediate growth but abundant undergrowth layers. Minimal practices were applied, such as brush-cutting to clear some land for favoured crops and no tilling of the soil.

    5.2.3 Grassland

    The grassland at two sites in barangay Malico and another area in barangay Atbu were usually abundantly stocked in open areas on moderate-to-steep terrain. The areas were dominated by Imperata cylindrica, with several species of ferns, shrubs and a few patches of small trees. The main land-use practice was pasturing, although other areas were already abandoned, inviting fires.

    5.2.4 Reforestation

    This land use was established about 10–15 years ago in barangay Imugan using either Alnus or Gmelina and in barangay Bacneng with Benguet pine combined with mahogany. Reforestation sites were situated on moderate-to-steep slopes with a semi-open canopy with little intermediate growth but abundant undergrowth layers. There was some intercropping of coffee in reforested areas planted with Alnus and agricultural farming adjacent to the Gmelina plots but pure planting of mixed trees in other areas.

  • - 19 -

    5.2.5 Secondary forest

    This land use was dominated by either dipterocarp pine or myrtaceous oak forest ecosystems. Areas in barangay Baracbac, Sta. Rosa and Malico that featured this type of land use were covered with large diameter trees ranging 20–70 cm DBH. The forests were located on middle-to-higher elevated land with semi-closed canopy and fewer understorey layers. The dipterocarp forest was dominated by palosapis (Anisoptera thurifera), white lauan (Shorea contorta), bagtikan (Parashorea malaanonan) and guijo (Shorea guiso). Non-dipterocarp species included Benguet pine (Pinus kesiya), Philippine oak (Lithocarpus ovalis), legume (Pterocarpus indicus) and myrtaceae (Syzygium sp.). There were no practices recorded for this land use.

    Table 7. Characteristics of the different land uses and practices of local communities in the KEF mountain ecosystem

    Land use Community (GPS reading) 

    Physical features  Dominant species Land‐use practices 

    Agriculture  Bacneng N16°11'57.6'';  E 120°56'19.6''  Tactac N16°08'42.1'' E 120°56'32.4''  Atbu N16°08'26.4' E 120°56'345.0''  

    Generally in an open condition located on relatively flat‐to‐sloping terrain structurally showing more undergrowth and few trees and with an intermediate layer on the perimeter of farms 

    Mixed agricultural crops (camote, cassava, beans, rice, corn, taro, okra, ginger) planted in patches 

    Agricultural farming using combined traditional swidden farming and non‐traditional systems 

    Agroforest  Sta Rosa N 16°10'50.7'' E120°51'36.0''  Baracbac N 16°11'08.2'' E120°55'32.6''  Unib N 16°09'26.2'' E120°55'32.6'' 

    Largely situated on moderate slopes with a semi‐open canopy with little intermediate but abundant undergrowth layers  

    Fruit‐bearing (avocado, mango, guava, citrus, papaya) and tree (mahogany, Gmelina, narra) crops 

    Intercropping with mostly fruit‐bearing and tree crops 

    Grassland  Malico 1 N16°08'118.2' E 120°56'58.3''  Malico 2 N 16°10'10.9' E 120°51'24.4''  Atbu N 16°10'27.9'' E 120°52'09.7'' 

    Usually abundant in open areas along moderate‐to‐steep terrain. Structurally, undergrowth layer dominated with abundance of grasses with very few patches of small trees 

    Mostly Imperata cylindrica and Themed triandra but with some species of ferns, shrubs and other grasses 

    Commonly used as pasture though some areas were left abandoned making them prone to grassfire 

    Reforestation  Bacneng N 16°08'56.7'' E 120°56'11.5''  Imugan1 N 16°09'18.6'' E 120°54'25.7''  

    On steep‐to‐very steep slopes with slightly open canopy with dominant trees and intermediate and undergrowth layers 

    Dominance of 10–15 year‐old plantation of either Alnus, Benguet pine or Gmelina  

    Intercropping of coffee in reforested areas planted with Alnus and agricultural farming adjacent to Gmelina areas 

  • - 20 -

    Land use Community (GPS reading) 

    Physical features  Dominant species Land‐use practices 

    Imugan2 N 16°09'08.0'' E 120°54'11.8''  

    but pure planting of mixed trees in other areas  

    Secondary forest  Baracbac N 16°10'14.6'' E 120°51'55.4''  Sta Rosa N 16°10'37.4'' E 120°51'07.2''  Malico N 16°09'26.2' E 120°55'32.6'' 

    Located on middle‐to‐higher elevated areas with a semi‐closed canopy and fewer understorey layers 

    Dominance of dipterocarps (palosapis, white lauan, guijo) and non‐dipterocarp (pine, Philippine oak, legume, Syzygium) trees 

    Absence of any land‐use practices within, except for tree planting in pine forest 

    5.2.6 Key drivers of change

    The key players that could contribute to changes (either positive or negative) in the landscape were households, the KEF organization, local political leaders and conservationists (Table 8). ‘Households’ includes all family members residing in the ancestral domain. ‘The KEF’ refers to the foundation that manages the mountain ecosystem, together with key barangay leaders that oversee the political existence of the community. ‘Conservationists’ includes bird watchers, academics, researchers and ecotourists.

    The changes that influence the landscape of the mountainous ecosystem were categorized as socio-economic and political, biophysical and chemical, anthropogenic, and indirectly natural. The implementation of laws related to the environment—such as those pertaining to clean air, solid waste management, chemical application, protected area management, bio-invasion and threatened species—falls under socioeconomic and political activities.

    Table 8. Characteristics and activities of various key drivers of change in the Kalahan landscape

    Stakeholders  Composition  Function  Activities that drive change in landscape Households  Members of the 

    family Provides basic family role 

    Intermarriage of local to foreigners Introduction of verified or unverified upland farming technologies 

    KEF  Board and members 

    Manage mountain ecosystem 

    Implementation of KEF policies regarding the overall use and management of natural resources in the area (Appendix 4) 

    Local political leaders  Barangay captains and youth leaders  

    Oversee the political needs of the community as legal owners of the ancestral domain 

    Making decisions with regards to political activities that affect or are related to land ownership, use of farm land and natural resources, entry of outsiders to the area, and implementation of environmental laws ( clean air, solid waste management, chemical application, protected area management, bio‐invasion, threatened species etc)  

    Conservationists  Bird watchers, ecotourists, researchers, academics  

    Conduct conservation research 

    Frequency of visits to the different areas by conservationists; activities that could be against bio‐prospecting, solid waste management and other environmental laws 

  • - 21 -

    5.3 Plant diversity and composition

    The diversity and composition of plants—particularly those in the canopy, intermediate and undergrowth layers that capture carbon physiologically during photosynthetic activities—varied depending on location, plot and land use, as presented below and in Table 7 above. Table 9 shows the percentage of trees with various diameters. Figure 4 shows the proportion of species’ composition in three structural layers in various land uses. Table 10 presents the percentage of population density of plants in the different structural layers.

    Table 9. Percentage of trees with different diameter ranges from various land uses

    Type of land use 

     30 cm 

    Agriculture  14.81  81.48  3.70 

    Agroforest  20.16  74.31  5.53 

    Grassland  43.24  51.35  5.41 

    Reforestation  44.70  48.84  6.46 

    Secondary forest  16.49  72.68  10.82 

     

    5.3.1 Agriculture

    In agricultural areas, stocks of carbon were pooled in common cultivated crops like upland and hybrid rice (Oryza sativa), beans (Vigna sesquipedalis), corn (Zea mays), taro (Colocasia esculentum), luya (Zingiber officinale), saging (Musa sapientum) and okra (Abelmoschus esculentus). Although classified as agricultural, there were, however, trees with diameters ranging 5–30 cm, representing about 81.5% of all trees, such as mango (Mangifera indica), suha (Citrus maxima) and hamak. All other trees in this category that had less than 5 cm and greater than 30 cm comprised 14.8 and 3.7%, respectively.

    5.3.2 Agroforest

    Carbon stocks in plants in agroforestry systems were represented by fruit (Citrus sp., Psidium guajava, Mangifera indica) and tree crops (Ficus nota, Alnus nepalensis, Eriobotrya japonica, Leucaena lueocephala, Pinus kesiya and Ficus septica). Among these, the most dominant was Citrus sp. (29.51%), followed by Ficus nota (5.33%) and Alnus nepalensis (4.92 %). The diameters of trees varied: 20.2% were at less than 5 cm DBH; 74.3% had DBH of 5–30 cm; while only 5.5% were greater than 30 cm DBH.

    5.3.3 Grassland

    The grassland ecosystem was characterised as ‘purely grassland’ or ‘abandoned pastureland’. The former was dominated by Paspalum conjugatum, Crassocephallum crepidioides and a local grass named tab-an. The latter ecosystem had an abundance of Pennisetum alopecuroides, Oleandra pistillaris and Imperata cylindrica. Sparsely interspersed through

  • - 22 -

    the ecosystem were patches of trees (Ficus septica, Boehmeria densiflora, Ficus nota, Saurauia latibractea, Persea americana and Mangifera indica). There were also species of moss (Portulaca grandiflora), busikad (Cyperus kyllingia), kilob (Dicranopteris linearis), cogon (Cyperus kyllingia), landrina (Borreria ocymoides), pal-ot (Miscanthus sinensis), dilang baka (Elephantopus tomentosus), kawad-kawad (Polytrias amaura) and two unknown local plants (buyot and galakgak). The percentages of trees with respect to DBH was 43.2% (> 5 cm), 51.4% (5–30 cm) and 5.4% (> 50 cm).

    5.3.4 Reforestation

    In reforestation areas, the species used were Benguet pine (Pinus kesiya), citrus (Citrus sp.), coffee (Coffea arabica), Alnus (Alnus nepalensis), narra (Pterocarpus indicus), guava (Psidium guajava), mahogany (Swietenia macrophylla) and amuwag (Clethra sp.). The dominant species for the whole land use were coffee (Coffea arabica), amuwag (Clethra sp.) and Alnus (Alnus nepalensis), composing 21.45%, 13.30% and 11.18% of the total of observed tree species, respectively.

    5.3.5 Secondary forest

    In secondary forest, the dominant species were Benguet pine (Pinus kesiya), is-is (Ficus ulmofolia) and white lauan (Shorea contorta) with values of 15.54%, 13.47% and 12.44%, respectively. Large trees in the sampled plots of secondary forest—exemplified by Pinus kesiya, Shorea contorta and Anisoptera thurifera–had greater percentages of individuals with DBH of small (44.7%) and medium (48.8%) than those with large DBH, that is, greater than 50 cm (6.4%).

    Table 10. Population density per plot in the canopy, intermediate and undergrowth layers in different land uses

    Type of land use  Trees   Intermediate  Undergrowth 

    Agriculture  24  279  1296 

    Agroforest  244  299  864 

    Grassland  39  286  1593 

    Reforestation  564  112  1075 

    Secondary forest  193  80  366 

    Note: Plot size for canopy, intermediate and undergrowth layers were 2000 m2, 9 m2 and 1 m2, respectively. 

  • - 23 -

    Figure 4. Percentage of species’ composition in three structural layers in various land uses.

    5.4 Carbon stocks

    5.4.1 Aboveground

    Aboveground carbon stock in land-use systems in the KFR were estimated to range 0.61–77.86 Mg/ha (Table 11). The highest value recorded was in the reforestation area, with 32% of trees contributing to total aboveground carbon stock (Figure 4).

    Table 11. Plot-level aboveground biomass carbon stocks

    Land use Sample plot 

    code 

    Tree  Intermediate  Understorey  Total 

    Mg/ha  Mg/ha  Mg/ha  Mg/ha 

    Agriculture 

    S5T2  10.042  0.207  0.025  10.274 

    S6T2  0.000  0.577  0.037  0.614 

    S7T1  0.754  0.663  0.014  1.430 

    Agroforest  

    S1T2  1.682  0.310  0.002  1.994 

    S3T1  30.588  0.093  0.073  30.753 

    S4T2  19.025  0.547  0.028  19.599 

    Grassland 

    S2T3  0.000  0.604  0.095  0.699 

    S2T4  9.807  0.575  0.031  10.412 

    S7T2  0.760  0.556  0.026  1.342 

    Reforestation 

    S5T1  77.479  0.324  0.055  77.857 

    S8T1  25.890  0.119  0.030  26.039 

    S8T3  62.293  0.149  0.037  62.479 

    Secondary forest 

    S1T1  37.054  0.409  0.038  37.502 

    S2T1  4.541  0.028  0.041  4.611 

    S4T1  44.652  0.035  0.037  44.723 

    81.0561.41

    83.0661.39 57.28

    17.45

    21.25

    14.91

    6.40 12.52

    1.5017.34

    2.03

    32.21 30.20

    Agriculture Agroforest Grassland Reforestation Secondary forest

    Undergrowth Intermediate Trees

  • - 24 -

    Table 12. Mean aboveground carbon stocks in land uses sampled in the KFR

    Land use Tree  Intermediate  Understorey  Total 

    Mg/ha  Mg/ha  Mg/ha  Mg/ha 

    Agriculture  3.599  0.482  0.025  4.106 

    Agroforest  17.098  17.098  0.034  34.230 

    Grassland  3.522  0.578  0.050  4.151 

    Reforestation  55.220  0.197  0.041  55.458 

    Secondary Forest  28.749  0.157  0.039  28.945 

     The mean aboveground carbon stock for each land use ranges 4.11–55.46 Mg/ha (Table 12). Land uses such as reforestation, agroforest and secondary forest have higher carbon content where trees are a higher proportion compared to other plant forms (Figure 4).

    The carbon-stock values generated are far smaller compared to the values of similar land cover. Lasco and Pulhin (2003) recorded average carbon densities of 207.9 Mg/ha for secondary forest, 45.4 Mg/ha for agroforest, 12.1 Mg/ha for grassland and 59.0 Mg/ha for tree plantations. This observation could be attributed to the tree composition of the sampled plots. For example, large trees in the sampled plots of secondary forest—exemplified by Pinus kesiya, Shorea contorta and Anisoptera thurifera–had greater percentages of individuals with DBH of small (44.7%) and medium (48.8%) than those with large DBH, that is, greater than 50 cm (6.4%).

    5.4.2 Belowground

    Delany (1999) proposed belowground biomass of trees and intermediate layers equivalent to 15% of the aboveground tree biomass. The carbon content is presented in Table 13, while the mean land-use carbon stock is shown in Table 14.

    Table 13. Plot-level belowground biomass carbon-stock

    Land use Sample plot code 

    Stump & roots Mg/ha 

    Intermediate Mg/ha 

    Understorey Litter Mg/ha 

    Total Mg/ha 

    Agriculture S5T2  3.766  0.078  0.035  3.879 S6T2  0.000  0.216  0.035  0.251 S7T1  0.283  0.248  0.025  0.557 

    Agroforest S1T2  5.606  1.035  0.028  6.668 S3T1  10.196  0.031  0.040  10.266 S4T2  6.342  0.182  0.027  6.551 

    Grassland S2T3  0.000  0.201  0.049  0.250 S2T4  3.677  0.216  0.025  3.918 S7T2  0.285  0.209  0.030  0.523 

    Reforestation S5T1  25.826  0.108  0.017  25.951 S8T1  8.630  0.040  0.012  8.682 S8T3  20.764  0.050  0.016  20.830 

    Secondary forest S1T1  12.351  0.136  0.021  12.509 S2T1  1.514  0.009  0.032  1.555 S4T1  14.884  0.012  0.018  14.913 

     

  • - 25 -

    Table 14. Mean belowground carbon stocks in land uses sampled in the KFR

    Land use Stump & roots Mg/ha 

    Intermediate Mg/ha 

    Understorey Mg/ha 

    Total Mg/ha 

    Agriculture  1.349  0.181  0.032  1.562 

    Agroforest  7.381  0.416  0.032  7.829 

    Grassland  1.321  0.208  0.034  1.564 

    Reforestation  18.407  0.066  0.015  18.488 

    Secondary Forest  9.583  0.052  0.024  9.659 

    5.4.3 Soil Carbon

    The organic soil carbon of the various land uses is presented in Table 15. The estimated belowground carbon stocks are between 21.8 and 67.4 Mg/ha. Reforestation has the highest soil carbon stock in the area. In 2006, the soil carbon density values of grassland ranged from 35.36–47.22 Mg/ha (Pulhin et al. 2006). The current value (39.09 Mg/ha) of grassland falls in the middle of that range.

    Table 15. Soil carbon and carbon stock

    Sample plot code 

    Land uses  OM%  OC% Carbon stock Mg/ha 

    S6T2 

    Agriculture 

    4.74  2.76  49.87 

    S5T2  4.53  2.63  47.52 

    S7T1  3.15  1.83  33.07 

    S3T1 

    Agroforest 

    4.54  2.64  47.70 

    S4T2  4.00  2.33  42.10 

    S1T2  4.93  2.87  51.86 

    S2T4 

    Grassland 

    2.59  1.51  27.29 

    S2T3  4.52  2.63  47.52 

    S7T2  4.05  2.35  42.46 

    S5T1 

    Reforestation 

    4.82  2.8  50.60 

    S8T3  6.39  3.71  67.40 

    S8T1  5.80  3.37  60.90 

    S2T1 

    Secondary forest 

    3.56  2.07  48.79 

    S1T1  2.08  1.21  21.86 

    S4T1  3.37  1.96  35.42 

    The mean soil carbon of the KFR (Table 16) was lower compared to other studies conducted in Leyte and Tanay, Rizal, which were 52.70 Mg/ha and 55 Mg/ha, respectively (Lasco et al. 1999).

  • - 26 -

    Table 16. Mean soil carbon-stock per land use

    Land use Mean total Mg/ha 

    Agriculture  43.49 

    Agroforest  47.22 

    Grassland  39.09 

    Reforestation  59.63 

    Secondary Forest  35.36 

    Mean total  44.96 

    5.4.4 Total carbon stock

    The estimated total (above- and belowground) carbon stock of different land-use systems in the KFR ranged 54.31–151.13 Mg/ha (Table 17). The results were low compared to assessments conducted in other areas of the country.

    Table 17. Plot-level mean carbon-stock of each land use

    Land use   

    Tree Mg/ha 

    Intermediate Mg/ha 

    Understorey Mg/ha 

    Litter Mg/ha 

    Soil & litter Mg/ha 

    Total Mg/ha 

    Agriculture  3.60  0.48  0.03  5.15  45.05  54.31 

    Agroforest  17.10  0.32  0.03  6.06  55.05  78.56 

    Grassland  3.52  0.58  0.05  10.06  40.65  54.87 

    Reforestation  55.22  0.20  0.04  17.67  78.00  151.13 

    Secondary forest  28.75  0.16  0.04  20.59  45.02  94.55 

     

    Table 18. Total carbon stock at plot-level in the KFR

     Land use 

    Sample plot code 

    Aboveground Below‐ ground   

    Total Mg/ha Tree 

    Mg/ha Intermediate Mg/ha 

    Understorey Mg/ha 

    Litter Mg/ha 

    Soil & litter Mg/ha 

    Agriculture     

    S5T2  10.04  0.21  0.03  5.61  51.40  67.29 

    S6T2  0.00  0.58  0.04  3.01  50.12  53.74 

    S7T1  0.75  0.66  0.01  6.84  33.63  41.90 

    Agroforest     

    S1T2  1.68  0.31  0.00  0.55  58.53  61.07 

    S3T1  30.59  0.09  0.07  14.82  57.97  103.54 

    S4T2  19.03  0.55  0.03  2.82  48.65  71.07 

    Grassland     

    S2T3  0.00  0.60  0.10  6.59  47.77  55.06 

    S2T4  9.81  0.57  0.03  19.23  31.21  60.85 

    S7T2  0.76  0.56  0.03  4.37  42.98  48.70 

    Reforestation     

    S5T1  77.48  0.32  0.05  23.39  76.55  177.80 

    S8T1  25.89  0.12  0.03  18.17  69.58  113.79 

    S8T3  62.29  0.15  0.04  11.45  87.87  161.80 

  • - 27 -

     Land use 

    Sample plot code 

    Aboveground Below‐ ground   

    Total Mg/ha Tree 

    Mg/ha Intermediate Mg/ha 

    Understorey Mg/ha 

    Litter Mg/ha 

    Soil & litter Mg/ha 

    Secondary forest   

    S1T1  37.05  0.41  0.04  7.49  34.37  79.36 

    S2T1  4.54  0.03  0.04  30.15  50.34  85.11 

    S4T1  44.65  0.03  0.04  24.12  50.33  119.18 

     

     

     

                 Figure 5. Total (above- and belowground) carbon stocks and their relative composition in the KFR

    (Upper panel: absolute values in Mg/ha. Lower panel: as percentage).  

    C st

    ock,

    Mg/

    ha

    0.0

    20.0

    40.0

    60.0

    80.0

    100.0

    120.0

    140.0

    160.0

    intermediate

    understorey

    tree

    litter

    Soil &litter

    0

    20

    40

    60

    80

    100

    120

    intermediate

    understorey

    tree

    litter

    soil&litter

    C st

    ock

    com

    posi

    tion

    (%)

  • - 28 -

    Carbon stocks from soil and litter contribute about 50–80 percent of the total carbon (Figure 5). The reforestation area has the highest total carbon stock both from soil and tree components.

    5.4.5 Landscape carbon-stock estimation

    The estimated mean carbon stocks (Table 17) of the major land-use types was plotted in the land cover map of 20014 to view the distribution of carbon density (Figure 6).

    Figure 6. Distribution of land-cover-derived carbon density in the KFR, based on a carbon-stock estimate (2009).

    4 At the time of writing, the latest satellite image of this area awaits processing 

  • - 29 -

    5.5 Land-use change dynamics in the KFR

    Landscape-level carbon-stocks were estimated from land-cover types. By integrating the changes in vegetation cover with carbon-stock measurements at plot level, changes in carbon stock in the landscape can be estimated. Land-cover maps of 1989 and 2001 that were processed by Ekadinata and Nugroho (in preparation) were used for this estimation. There were seven major land-cover classes identified.

    1) Forest: characterised by more or less dense and extensive natural tree cover. 2) Secondary forest: re-grown woodland area. 3) Mahogany: areas dominated by Swietenia mahogany with ages of 10–30 years. 4) Pine:– areas dominated by Pinus kesiya (Benguet pine). 5) Agricultural land: areas with less trees and cultivated by sweet potato, ginger, potato,

    banana and corn. 6) Rice fields: both irrigated and non-irrigated, cultivated with hybrid and native rice

    varieties. 7) Fallow: areas that are left idle to regain soil productivity and planted with Alnus

    nepalensis.

    5.5.1 Land cover in 1989

    About 39% (8500 ha) of the area was classified as agricultural land. Natural and secondary forest covered 20% (4300 ha) and 3% (670 ha) of the area, respectively (Table 19). About 27% (5800 ha) of the study area was covered by pine forest. Figure 8 shows the land cover map of 1989.

    Table 19. Land-cover classes in the KFR, 1989

    Classes  Area (ha)  % 

    Forest   4162.6  19 Secondary forest  670.9  3 

    Old pine  1513.3  7 

    Pine  4256.0  20 

    Mahogany  321.4  1 

    Agriculture  8473.9  39 

    Fallow  359.5  2 

    Rice field  976.4  4 

    Settlement  458.1  2 

    Grassland  28.1  0.1 

    Cloud  401.3  2 

    Shadow  172.7  1 

    Total  21794.0  100.0 

    Figure 7. Land-cover classes in the KFR, 1989.

  • FiguSourc

    5.5.

    AboAgriold p

    Tabl

    For

    Sec

    Old

    Pine

    Ma

    Agr

    Fall

    Rice

    Sett

    Gra

    Clo

    Sha

    Tot

    ure 8. Land-coce: ICRAF

    .2 Land cov

    out 15.6 % (3iculture areapine increase

    le 20. Land-co2001

    Classes 

    est  

    ondary forest 

     pine 

    hogany 

    riculture 

    ow 

    e field 

    tlement 

    assland 

    ud 

    adow 

    al 

    over map of th

    ver in 2001

    3400 ha) of aa covered aroed 7% to 10%

    over classes in

    Area (ha)

    3394.1 

    373.6 

    2125.1 

    3978.8 

    529.9 

    8154.8 

    340.9 

    1516.4 

    514.4 

    35.9 

    601.7 

    228.4 

    21 794.0 

    he KFR, 1989

    1

    area was clasound 8150 ha%. Figure 10

    n the KFR,

    )  % 

    15.6 

    1.7 

    9.8 

    18.3 

    2.4 

    37.4 

    1.6 

    7.0 

    2.4 

    0.2 

    2.8 

    1.0 

    100.0 

    - 30 -

    .

    ssified as natua, a decrease 0 shows the la

    Figure 9.

    ural forest, afrom 39% toand-cover m

    Land-cover cl

    a 3.5% decreao 37% of the

    map of 2001.

    lasses in the K

    ase from 198e total area, w

    KFR, 2001.

    89. while

  • - 31 -

    Figure 10. Land-cover map of the KFR, 2001. Source: ICRAF

    5.5.3 Land-cover change matrix

    A land-cover change matrix is presented in Table 21. There was a considerable decrease of mature forest, secondary forest, pine forest and agriculture areas. On the other hand, there was an increase in old pine forest, mahogany plantation, rice field, grassland and settlement areas.

    Figure 11. Overall land-cover change within the KFR.

    Are

    a (h

    a)

    Legend 

    2001 Land Cover

  • - 32 -

    Table 21. Land-cover changes between 1989 and 2001 (area in ha)

        2001

      Land use  Forest Secondary forest 

    Old pine  Pine  Mahogany  Agriculture  Fallow Rice field 

    Settle‐ment 

    Grassland 

    Cloud  Shadow  Total 

    1989 

    Forest  3145.23        308.88  8.64  209.43  20.7  187.11  1.62  9.27  271.71     4162.6 

    Secondary forest 

       370.08     126.63  6.03  47.52  0.81  37.71  0.09  1.8  52.56  27.63  670.9 

    Old pine        1134.9     28.8  257.4  5.94  61.02  0.9  1.17  10.53  12.6  1513.3 

    Pine        945.18  1897.2  87.57  784.44  74.61  279.45  17.37  8.91  107.64  53.64  4256.0 

    Mahogany              302.22  8.91  0.09  6.3    0.18  2.97  0.72  321.4 

    Agriculture           1362.42  90.18  6257.97  149.85  421.56  69.3  9.72  67.23  45.63  8473.9 

    Fallow           56.34  4.77  185.4  73.8  33.3  0.09  0.54  4.5  0.72  359.5 

    Rice field           166.77     317.97  5.13  432.45  9.18  2.07  14.76  28.08  976.4 

    Settlement                          415.08     29.34  13.68  458.1 

    Grassland           10.8     7.38  6.75  1.71  0.18  0.18  0.63  0.45  28.1 

    Cloud  165.51  1.98  23.13  34.02  0.54  62.91  3.24  45.36  0.54  1.98  26.19  35.91  401.3 

    Shadow  83.34  1.53  21.87  15.75  1.17  15.48     10.44    0.09  13.68  9.36  172.7 

       Total  3394.1  373.6  2125.1  3978.8  529.9  8154.8  340.9  1516.4  514.4  35.9  601.7  228.4   

    Source: ICRAF 

  • - 33 -

    5.5.4 Carbon monitoring plots

    KEF’s agroforestry program monitored plant biomass in 106 plots within the KFR between 1994 and 2003 (Figure 11). Table 22 shows the biomass generated.

    Table 22. Mean biomass in 1994 and 2003 and the blocks and plots sampled

    Land use No. of blocks 

    No. of plots 

    1994 Mean biomass (Mg/ha) 

    2003 Mean biomass (Mg/ha) 

    Agriculture  13  30  32.73  47.55 Forest   7  20  20.76  28.65 Secondary forest  3  8  39.89  56.71 Old pine  13  19  28.00  40.71 Pine   16  23  30.35  41.48 Rice field  4  5  17.14  23.73 Mahogany*  1  1  30.79  53.50 Total  57  106     

    *Only one mahogany plot appeared after the plot’s coordinates were intersected on the 1989 and 2001 land‐cover maps  The carbon densities for 1994 and 2003 were obtained from these plots (Table 23). The total carbon budget estimated from the land cover was obtained from the total area of each land-cover type (excluding the areas under cloud and shadow). Figure 10 shows the land-cover density maps that indicate increases of carbon stock over the period 1994–2003. Table 23. Carbon densities based on biomass-monitoring plots in the KFR

    Land use 

    1994 

    Carbon density (Mg/ha) 

    2003

    Carbon density (Mg/ha) 

    Agriculture  14.73  21.40 Forest   9.34  12.89 Secondary forest  17.95  25.52 Old pine  13.66  19.87 Pine   14.81  19.91 Rice field  6.86  9.49 Mahogany  13.86  21.07 

    It was estimated that the total carbon stock was approximately 375.8 Gg5 in 1994 and 452.1 Gg in 2003 or a 21% increase in 9 years. This may be due to the increase of old pine and reforestation and the decrease of agricultural areas.

    5 1 Gg (Gigagram) = 1000 Mg (Megagram) 

  • - 34 -

    Figure 12. Distribution of land-cover-derived carbon density in the KFR in 1989 (upper panel) and 2001 (lower panel).

    It is also interesting to note that there were a few plots with much higher carbon densities than the average (Appendix 3), as shown in Table 24. From a statistical point of view, these are outliers that affect the average values. These plots were not used in the extrapolation. We suggest they should be validated on the ground.

    Carbon (Mg/ha)

    Carbon (Mg/ha) 

  • - 35 -

    Table 24. Plots with very high estimated carbon densities

    No.  Land use 

    1994 2003

    Biomass (Kg/ha) 

    Biomass (Mg/ha) 

    Carbon density (Mg/ha) 

    Biomass (Kg/ha) 

    Biomass (Mg/ha) 

    Carbon density (Mg/ha) 

    1.  Old pine  48336.30  193.35  87.01  59124.61  236.50  106.42 

    2.  Pine  62915.89  251.66  113.25  72941.69  291.77  131.30 

    3.  Forest  50376.52  201.51  90.68  62108.81  248.44  111.80 

    4.  Forest  61598.65  246.39  110.88  72842.67  291.37  131.12 

    5.  Forest  30341.68  121.37  54.62  38550.60  154.20  69.39 

    6.  Agriculture  27768.31  111.07  49.98  39703.36  158.81  71.47 

     

    From these monitoring plots, one noticeable carbon value was observed in the agriculture category. In 2003, monitoring plots in agriculture areas had an average of 21.4 Mg/ha, which was more than that of forest and pines. This suggests that farmers planted more high-carbon trees outside the forest or it could be due to the sedentarisation of agriculture, which was noted by Banaticla et al. (2008) (see page 13).

    5.6 Carbon emissions by land-use and land-cover change

    Carbon emissions from land-use and land-cover changes between 1989 and 2001 were calculated using the derived carbon densities from this study (with addition from another study of land-cover types not sampled locally), as shown in Table 25.

    Table 25. Land-cover types and carbon densities used

    Land‐cover type from image classification 

    Mean carbon densities (aboveground) Mg/ha 

    Sources 

    Agricultural land  17.61  KEF monitoring plots* 

    Dipterocarp/mahogany  45.0  Recent data 

    Fallow (swidden‐fallow)  19.7  Recent data 

    Forest (mature)  28.9  Recent data 

    Grassland  4.1  Recent data 

    Pasture land  10.4  Recent data 

    Pine  17.53  KEF monitoring plots* 

    Old pine   16.76  KEF monitoring plots* 

    Rice field  8.17  KEF monitoring plots* 

    Secondary forest  21.74  KEF monitoring plots* 

    Settlement  4.1  ICRAF (Kalimantan data) 

    *Average of the 1994 and 2001 carbon densities (Appendix 3) 

  • - 36 -

    Based on our calculations (Table 26), the KFR sequestered an average of 0.30 Mg/ha of carbon less than what was emitted (average 0.82 Mg/ha) from its land-cover changes between 1989 and 2001. The carbon emission potential was 0.5 Mg/ha. Table 26 shows the estimated yearly average carbon emissions. From this, it is estimated that per year the KFR is emitting 1.4 Gg of carbon while sequestering 0.5 Gg.

  • - 37 -

    Table 26. Mean carbon emissions from land-use changes, 1994–2003

      Forest Secondary forest 

    Old Pine  Pine  Mahogany  Agriculture  Fallow  Rice field  Settlement  Grass  Total    

    Forest   0  0  0  0.177159  ‐0.00595  0.123002  0.009783  0.187419  0.001925  0.011016  0.504357     Secondary Forest  0  0  0  0.024403  ‐0.00645  0.009812  7.43E‐05  0.023411  7.27E‐05  0.001454  0.05278     

    Old Pine  0  0  0  0  ‐0.03732  ‐0.0052  ‐0.0008  0.024051  0.000523  0.00068  ‐0.01806     

    Pine  0  0  0.03209287  0  ‐0.1105  0.010798  ‐0.00753  0.119632  0.01068  0.005478  0.060653     

    Mahogany  0  0  0  0  0  0.011365  0.000104  0.010646  0  0.000338  0.022454     

    Agriculture  0  0  0  ‐0.01875  ‐0.11503  0  ‐0.01719  0.174666  0.041655  0.005843  0.071189     

    Fallow  0  0  0  0.005687  ‐0.00554  0.021267  0  0.017617  6.44E‐05  0.000387  0.039485     

    Rice field  0  0  0  ‐0.07139  0  ‐0.13175  ‐0.00271  0  0.001714  0.000387  ‐0.20375     

    Settlement  0  0  0  0  0  0  0  0  0  0  0     

    Grass  0  0  0  ‐0.00664  0  ‐0.00444  ‐0.00483  ‐0.00032  0  0  ‐0.01623     

    Total  0  0  0.03209287  0.110461  ‐0.28078  0.034866  ‐0.02311  0.557123  0.056634  0.025581  0.512875 Mg/ha emission 

                          0.815232 Mg/ha emitted 

                          0.302356 Mg/ha sequestered 

  • - 38 -

    Table 27. Mean carbon emissions per year, 1994–2003

      Forest Secondary forest 

    Old Pine  Pine  Mahogany  Agriculture  Fallow  Rice field  Settlement  Grass  Total    

    Forest   0  0  0  0.014763  ‐0.0005  0.01025  0.000815  0.015618  0.00016  0.000918  0.04203     Secondary Forest  0  0  0  0.002034  ‐0.00054  0.000818  6.19E‐06  0.001951  6.06E‐06  0.000121  0.004398     

    Old Pine  0  0  0  0  ‐0.00311  ‐0.00043  ‐6.7E‐05  0.002004  4.36E‐05  5.66E‐05  ‐0.00151     

    Pine  0  0  0.00267441  0  ‐0.00921  0.0009  ‐0.00063  0.009969  0.00089  0.000457  0.005054     

    Mahogany  0  0  0  0  0  0.000947  8.71E‐06  0.000887  0  2.81E‐05  0.001871     

    Agriculture  0  0  0  ‐0.00156  ‐0.00959  0  ‐0.00143  0.014556  0.003471  0.000487  0.005932     

    Fallow  0  0  0  0.000474  ‐0.00046  0.001772  0  0.001468  5.37E‐06  3.22E‐05  0.00329     

    Rice field  0  0  0  ‐0.00595  0  ‐0.01098  ‐0.00023  0  0.000143  3.22E‐05  ‐0.01698     

    Settlement  0  0  0  0  0  0  0  0  0  0  0     

    Grass  0  0  0  ‐0.00055  0  ‐0.00037  ‐0.0004  ‐2.7E‐05  0  0  ‐0.00135     

    Total  0  0  0.00267441  0.009205  ‐0.0234  0.002905  ‐0.00193  0.046427  0.00472  0.002132  0.04274 Mg/ha emission 

                          0.067936 Mg/ha emitted 

                          0.025196 Mg/ha sequestered 

     

  • - 39 -

    5.7 Carbon-offset6 options

    1) CDM Market: The KEF is negotiating a CDM project. Potential sites for this project are abandoned agricultural and grassland areas. A list of participants is being prepared together with their planting strategies for the proposed CDM sites (Figure 13).

    Figure 13. Target sites for CDM project (red dots).

    Plant species that local farmers preferred to plant (some already have planted) were tuai (Biscofia javanica), Alnus (Alnus nepalensis) and rain tree (Albizia saman). Among the proposed planting schemes were reforestation with mixed tree species. Others propose to implement nurse tree to integrate climax species (for example, Benguet pine and dipterocarps). However, a possible problem under this target market is meeting the CDM requirements of forest definition, baseline, leakage and additionality7. Thus, the voluntary carbon market is likely to be the best for the KFR owing to its increasing carbon stock.

    2) Voluntary market: The data and information generated from this study will be used to find voluntary carbon markets. However, the baseline should be well established. The forest improvement technology developed by the KEF could potentially enhance the carbon stock of the standing forests (Appendix 5) at the same time as maintaining the

    6 A reduction in carbon dioxide emission by a third party purchased by a heavy carbon dioxide producer as part of carbon emissions trading. 7 CDM projects must result in ‘reduction in emissions that are additional to any that would occur in the absence of the certified project activity’. 

  • - 40 -

    biodiversity within. The KEF is optimistic that this could be used as a management strategy to tap ‘reducing emissions from deforestation and degradation’ (REDD) markets.

    5.8 Scenario building and future options

    This section presents the results of Forest, Agroforest, Low-value Landscape Or Wasteland (FALLOW) model application in the KFR that was conducted by Suyamto et al. (2011)8 under the Rewarding Upland Poor for the Environmental Services they provide (RUPES) project (phase 1). The FALLOW model simulates landscape dynamics and the consequences of the application of different drivers in various scenarios.

    5.8.1 Baseline

    Using population growth (at a rate of 1.78%) as the driver, the model predicted that within the next three decades (2001–2030), the landscape would experience a decrease in forest area of about 85 ha/yr and an increase of agricultural/grassland area of about 85 ha/yr. Depletion of biodiversity, carbon stock and sediment-filtering capacity would occur at the rate of 0.4 species/yr, 53 Gg/yr and 117 Gg/yr, respectively. Secondary expenses of the people would increase at a relatively low rate of about PHP 110 per capita per year.

    5.8.2 Future options

    Three options were identified based on existing livelihoods (1 and 2) and alternative land-uses (3) within the KFR, with possible future implications.

    Table 28. Future options and their implications for the KFR

    Options  Implications Option 1: Improve non‐timber forest products’ (NTFP) productivity and markets (by increasing productivity and price 2x, 6x and 10x from the baseline) 

    By increasing NTFP productivity and price up to 10x from the baseline, agricultural land expansion can only be reduced at an average of about 233 ha or 8% per year 

    Option 2: Provide better off‐farm jobs (increase incomes from off‐farms jobs 2x, 6x and 10x from the baseline)  

    • By increasing income from off‐farm jobs 2x from the baseline, agricultural land expansion could decrease at an average of 289 ha or 10% per year 

    • By increasing income 6x, agricultural land expansion could decrease at an average of 551 ha or 17% per year and forests could increase at an average of 229 ha or 2% per year 

    • By increasing income 10x, agricultural land expansion could decrease at an average of 1005 ha or 31% per year and forests could increase at an average of 834 ha or 8% per year 

    8 Detailed information on data inputs of the model and some assumptions can be found in this working paper. 

  • - 41 -

    Options  Implications  

    Option 3: Promote tree‐based systems (for example, cacao and coffee) through extension, subsidy and market improvements   

    Among the tree‐based systems scenarios, coffee could be adopted at the fastest rate, followed by cacao and mahogany. This assumes that economically, smallholder tree‐based systems are more profitable than pasture and, biophysically, pasture can be converted into tree‐based systems. These efforts would replace grasslands with more valuable systems 

    Source: Suyanto et al. (2011) (draft working paper) 

    Appendix 6 shows the additionality from each scenario on biodiversity (that is, species numbers in four functional groups: pioneer, early succession, medium succession and late succession), carbon stocks, watershed functions (that is, sediment-filtering capacity) and people’s welfare (that is, non-food expenses per capita).

  • - 43 -

    6. Conclusion and recommendations

    6.1 Conclusion

    The matrix below summarises the findings of the appraisal.

    Value:   • Major land‐use and land‐cover types—

    agriculture, agroforest, grassland, secondary forest and reforestation—were assessed and their carbon stocks were calculated 

    • KFR has its own farming practices that enhance carbon stocks in the area, such as pang‐omis, in which Alnus species are integrated into swidden farming 

     

    Opportunity:  • KEF has long‐term biomass monitoring plots 

    to support carbon‐offset trading and already has skills to monitor carbon stocks within KFR (to reduce transaction cost) 

    • KEF’s own farming practices and  technology can be used as a strategy to explore voluntary markets 

     Trust: 

     • KEF’s rules and regulations on natural 

    resources control the cutting of trees inside KRF. It also initiates the active participation of each village in tree‐planting activities 

       

     Threat: 

     • Encroachment of outsiders owing to 

    intermarriages (concern over changing farming practices) 

    • Limited livelihoods’ options (certificate of ancestral domain title holders might seek to sell their land) 

    6.2 Recommendations

    For the voluntary carbon market, further research is required to assess the potential of the KEF’s forest improvement technology for REDD.

    More ground-truthing activities are need to validate the landscape-level carbon estimations.

    Process the recent satellite image of the area and use it for analysis of land-use and land-cover changes and carbon dynamics.

  • - 45 -

    References

    Banaticla MRN, Palijon AM, Takeuchi K. 2008. Assessing local variation in shifting cultivation and fallow management among households in the Kalahan Forest Reserve, Northern Luzon, Philippines. Journal of Nature Studies 7(2):129–143.

    Delany M. 1999. Field test of carbon monitoring methods for agroforestry in the Philippines, In: Field Test of Carbon Monitoring Methods in Forestry Projects. Forest Carbon Monitoring Program. Arlington, USA: Winrock International.

    Dixon RK, Andrasko KJ, Sussman FG, Lavinson MA, Trexler MC, Vinzon TS. 1993. The forest sector carbon offset projects: near term opportunities to mitigate greenhouse gas emission. Water, Air and Soil Pollution 70:561–577.

    Ekadinata A, Nugroho DK. In preparation. Geospatial data processing in Kalahan forest reserve, Philippines: World Agroforestry Centre (ICRAF) Southeast Asia Program.

    Hairiah K, Sitompul SM, van Noordwijk M, Palm C. 2001. Methods for sampling carbon stocks above and below ground. ASB Lecture Note 4B. Nairobi: World Agroforestry Centre.

    Hairiah K, Dewi S, Agus F, van Noordwijk M, Rahayu S. 2009. Measuring carbon stocks across land-use systems: a manual. Bogor, Indonesia: World Agroforestry Centre (ICRAF) Southeast Asia Program; Malang, Indonesia: Brawijaya University; Indonesian Centre for Agricultural Land Resources Research and Development.

    [KEF] Kalahan Educational Foundation. 1993. Kalahan Educational Training Centre information leaflet. Imugan Santa Fe, Philippines: Kalahan Educational Foundation.

    Ketterings QM, Coe R, van Noordwijk M, Ambagau Y, Palm C. 2001. Reducing uncertainty in the use of allometric biomass equations for predicting aboveground tree biomass in mixed secondary forests. Forest Ecology and Management 146:199–209.

    Lasco RD, Pulhin FB. 2003. Philippine forest ecosystems and climate change: carbon stocks, rate of sequestration and Kyoto protocol. Annals of Tropical Research 25(2):37–51.

    Lasco RD, Sales JS, Arnuevo MT, Guillermo IQ. 1999. Carbon dioxide absorption and sequestration in the PNOC-Leyte Geothermal Reservation. Final Report. Environmental Forestry Programme. Los Baños, Philippines: College of Forestry and Natural Resources, University of the Philippines at Los Baños.

    [PCARR] Philippine Council for Agriculture and Resources Research. 1980. Standard methods of analysis for soil, plant, tissue, water and fertilizer. Los Baños, Philippines. Philippine Council for Agriculture and Resources Research.

    Pulhin FB, Lasco RD, Gesvana DT. 2006. Rehabilitation of degraded lands through a carbon sink project: the case of Mirant Philippines. 2006 FORESPI Symposium on Forest Landscape Restoration and Rehabilitation: Poster. College Laguna, Philippines. 15p. www.agris.fao.org

  • - 46 -

    Pulhin F. 2008. Carbon storage assessment of the grassland areas of Ikalahans Ancestral Domain, Nueva Vizcaya, the Philippines. Working Paper 74. Bogor, Indonesia: World Agroforestry (ICRAF) Southeast Asia Program.

    Raven PH, Evert RF, Eichhorn SE. 1999. Biology of Plants. 6th ed. New York: WH Freeman.

    Rice D. 2000. The Ikalahan: towards sustainable forest use. ILEIA Newsletter (September). 21p.

    Suyamto DA, van Noordwijk M, Lusiana B, Villamor GB, Ekadinata A, Nugroho DK. 2011. Prospecting peoples’ welfare and ecosystem services in Kalahan landscape (the Philippines) using the FALLOW model. Draft Working Paper. Bogor, Indonesia: World Agroforestry Centre (ICRAF) Southeast Asia Program.

    Villamor GB, Pindog M. 2008. Participatory poverty and livelihood assessment report, Kalahan, Nueva Vizcaya, the Philippines. Bogor, Indonesia: World Agroforestry Centre (ICRAF) Southeast Asia Program.

  • - 47 -

     

     

     

     

     

     

     

     

     

    Appendix 1: List of plant species and its biomass per land use

  • - 48 -

    Appendix 1: Reforestation – list of plant species and biomass

    No. Local name biomass Kg/m2 No. Local name biomass

    Kg/m2 No. Local name biomass

    Kg/m2 No. Local name biomass

    Kg/m2

    1 Alagai 268.00 32 Alnus 301.62 63 Alnus 637.24 94 Amuwag 20.50

    2 Alnus 6.04 33 Alnus 301.62 64 Alnus 648.34 95 Amuwag 20.50

    3 Alnus 15.59 34 Alnus 312.19 65 Alnus 659.57 96 Amuwag 20.50

    4 Alnus 20.50 35 Alnus 319.36 66 Alnus 665.22 97 Amuwag 24.00

    5 Alnus 21.18 36 Alnus 330.30 67 Alnus 682.37 98 Amuwag 24.00

    6 Alnus 27.85 37 Alnus 330.30 68 Alnus 778.40 99 Amuwag 27.85

    7 Alnus 41.58 38 Alnus 349.05 69 Alnus 835.88 100 Amuwag 27.85

    8 Alnus 114.46 39 Alnus 364.51 70 Alnus 951.40 101 Amuwag 27.85

    9 Alnus 124.31 40 Alnus 368.44 71 Alnus 958.49 102 Amuwag 27.85

    10 Alnus 242.83 41 Alnus 396.67 72 Alnus 6.04 103 Amuwag 27.85

    11 Alnus 46.93 42 Alnus 396.67 73 Alnus 9.70 104 Amuwag 27.85

    12 Alnus 58.84 43 Alnus 396.67 74 Alnus 20.50 105 Amuwag 27.85

    13 Alnus 87.85 44 Alnus 396.67 75 Alnus 46.93 106 Amuwag 27.85

    14 Alnus 87.85 45 Alnus 421.90 76 Amuwag 14.49 107 Amuwag 27.85

    15 Alnus 87.85 46 Alnus 430.53 77 Amuwag 14.49 108 Amuwag 27.85

    16 Alnus 168.85 47 Alnus 439.26 78 Amuwag 14.49 109 Amuwag 27.85

    17 Alnus 168.85 48 Alnus 439.26 79 Amuwag 14.49 110 Amuwag 27.85

    18 Alnus 194.33 49 Alnus 448.10 80 Amuwag 14.49 111 Amuwag 27.85

    19 Alnus 194.33 50 Alnus 484.54 81 Amuwag 14.49 112 Amuwag 27.85

    20 Alnus 205.15 51 Alnus 484.54 82 Amuwag 14.49 113 Amuwag 27.85