9
L’ARPENTEUR DU WEB MOUVEMENT DE PLANÈTES : LE CAS DE MARS GUY BOUYRIE 1 MOUVEMENT DE PLANÈTES : LE CAS DE MARS Enseigner de façon convaincante l’astronomie en sciences physiques tout en respectant les contraintes des programmes, est un défi que les professeurs ont bien du mal à relever : rien ne remplace l’observation directe du ciel et des astres ! Comprendre les « lois de l’Univers » selon une approche scientifique en l’occurrence le mouvement d’un corps dans un champ gravitationnel est un impératif annoncé de nos programmes, de la seconde à la terminale S : notions de trajectoire, de référentiel, relativité du mouvement, interaction gravitationnelle, mouvement d’un satellite, autant de « compétences » à acquérir ! INTERNET met à disposition de beaux outils pour faciliter l’étude de ces différents points : c’est ce que nous allons voir ici avec un « cas d’école », le mouvement de la planète MARS. 1. L’ORBITE DE MARS : DE PTOLÉMÉE À KEPLER Des « épicycles » de PTOLÉMÉE aux modèles de COPERNIC puis TYCHO-BRAHÉ, autant de tentatives pour comprendre le mouvement « erratique » de MARS dans notre ciel ! KEPLER a parfaitement assimilé les leçons du passé avant de s’atteler à la description de l’ orbite héliocentrique de Mars ; à l’issue d’un travail harassant, KEPLER publie en 1609 « Astronomia nova », un des sommets de son œuvre. Des extraits peuvent être consultés en ligne, notamment sur GALLICA : http://gallica.bnf.fr/ark:/12148/btv1b2600017k/f3.zoom.r=Kepler Malheureusement, il nous est difficile de bien comprendre la démarche de KEPLER qui manie avec une virtuosité sans égale les règles de la géométrie euclidienne ! Nous nous attacherons ici à illustrer : la trajectoire de Mars vue par un observateur lié à la Terre ; quelques caractéristiques de la trajectoire de Mars dans un référentiel héliocentrique ; des conséquences sur les lois du mouvement d’une planète. Figure 1 : orbite de MARS dans « Astronomia nova » de KEPLER http://gallica.bnf.fr/ark:/12148/btv1b2600017k/f3.zoom.r=Kepler

L’ARPENTEUR DU WEB MOUVEMENT DE …national.udppc.asso.fr/.../Arpenteur_du_web_Mvt_Plante__Mars.pdf · l’arpenteur du web mouvement de planÈtes: le cas de mars guy bouyrie 5

Embed Size (px)

Citation preview

Page 1: L’ARPENTEUR DU WEB MOUVEMENT DE …national.udppc.asso.fr/.../Arpenteur_du_web_Mvt_Plante__Mars.pdf · l’arpenteur du web mouvement de planÈtes: le cas de mars guy bouyrie 5

L’ARPENTEUR DU WEB

MOUVEMENT DE PLANÈTES : LE CAS DE MARS GUY BOUYRIE

1

MOUVEMENT DE PLANÈTES : LE CAS DE MARS

Enseigner de façon convaincante l’astronomie en sciences physiques tout en respectant les contraintes des

programmes, est un défi que les professeurs ont bien du mal à relever : rien ne remplace l’observation directe

du ciel et des astres ! Comprendre les « lois de l’Univers » selon une approche scientifique en l’occurrence

le mouvement d’un corps dans un champ gravitationnel est un impératif annoncé de nos programmes, de la

seconde à la terminale S : notions de trajectoire, de référentiel, relativité du mouvement, interaction

gravitationnelle, mouvement d’un satellite, autant de « compétences » à acquérir !

INTERNET met à disposition de beaux outils pour faciliter l’étude de ces différents points : c’est ce que nous

allons voir ici avec un « cas d’école », le mouvement de la planète MARS.

1. L’ORBITE DE MARS : DE PTOLÉMÉE À KEPLER

Des « épicycles » de PTOLÉMÉE aux modèles de COPERNIC puis TYCHO-BRAHÉ, autant de tentatives pour

comprendre le mouvement « erratique » de MARS dans notre ciel !

KEPLER a parfaitement assimilé les leçons du passé avant de s’atteler à la description de l’orbite

héliocentrique de Mars ; à l’issue d’un travail harassant, KEPLER publie en 1609 « Astronomia nova », un des

sommets de son œuvre.

Des extraits peuvent être consultés en ligne, notamment sur GALLICA : http://gallica.bnf.fr/ark:/12148/btv1b2600017k/f3.zoom.r=Kepler

Malheureusement, il nous est difficile de bien comprendre la démarche de KEPLER qui manie avec une

virtuosité sans égale les règles de la géométrie euclidienne ! Nous nous attacherons ici à illustrer :

la trajectoire de Mars vue par un observateur lié à la Terre ;

quelques caractéristiques de la trajectoire de Mars dans un référentiel héliocentrique ;

des conséquences sur les lois du mouvement d’une planète.

Figure 1 : orbite de MARS dans « Astronomia nova » de KEPLER http://gallica.bnf.fr/ark:/12148/btv1b2600017k/f3.zoom.r=Kepler

Page 2: L’ARPENTEUR DU WEB MOUVEMENT DE …national.udppc.asso.fr/.../Arpenteur_du_web_Mvt_Plante__Mars.pdf · l’arpenteur du web mouvement de planÈtes: le cas de mars guy bouyrie 5

L’ARPENTEUR DU WEB

MOUVEMENT DE PLANÈTES : LE CAS DE MARS GUY BOUYRIE

2

Si l’on tient à assimiler le travail de KEPLER, on ne manquera pas de consulter cet excellent site américain,

réalisé par un étudiant, qui illustre de façon très convaincante certains des arguments développés dans

« Astronomia nova », en s’appuyant sur le texte même (traduit ici du latin à l’anglais). http://www.keplersdiscovery.com/AstronomiaNova.html

On pourra consulter également les documents suivants :

http://www-obs.univ-lyon1.fr/labo/fc/Ateliers_archives/ateliers_2009-10/keplomars/keplomars.pdf où le

travail est effectué avec un des logiciels favoris des professeurs de mathématiques en lycée,

Geogebra.

http://www.sens-neuchatel.ch/bulletin/no36/art3-36.pdf : une lecture très intéressante « d’Astronomia

nova ».

Figure 2 : les prémices du travail de KEPLER selon le site http://www.keplersdiscovery.com/Hypotheses.html

Page 3: L’ARPENTEUR DU WEB MOUVEMENT DE …national.udppc.asso.fr/.../Arpenteur_du_web_Mvt_Plante__Mars.pdf · l’arpenteur du web mouvement de planÈtes: le cas de mars guy bouyrie 5

L’ARPENTEUR DU WEB

MOUVEMENT DE PLANÈTES : LE CAS DE MARS GUY BOUYRIE

3

2. TRAJECTOIRE DE MARS OBSERVÉE DEPUIS LA TERRE : BOUCLE DE RÉTROGRADATION

C’est l’exemple par excellence qui permet d’illustrer la notion de relativité d’un mouvement, par rapport à un

observateur donné, en astronomie. Nous nous proposons de construire cette boucle de rétrogradation. Pour

cela, parmi toutes les ressources disponibles au sein du WEB, nous retiendrons tout particulièrement le

serveur de l’Institut de mécanique céleste et de calcul des éphémérides ou IMCCE. http://www.imcce.fr/fr/ephemerides/formulaire/form_ephepos.php

La richesse de ce serveur d’éphémérides est telle que l’on peut y étudier pratiquement toutes les planètes,

satellites, comètes du système solaire !

Nous avons donné par le passé de

nombreux exemples de traitements

possibles dans le BUP, consultables dans

la base de données BUPDOC : http://www.udppc.asso.fr/bupdoc/consultati

on/selections.php 1

Retenons que pour traiter sur tableur les

données du serveur des éphémérides, il

faut opérer quelques calculs parfois

pénibles (dans la conversion

sexagésimale – décimale notamment) :

dans ce but et à notre demande, l’auteur

de Regressi, JM MILLET a développé un

précieux utilitaire gratuit appelé

« Éphémérides » qui rend les données

traitées immédiatement compatibles

avec la plupart des tableurs et

notamment REGRESSI : http://jean-michel.millet.pagesperso-orange.fr/regressi.html.

1 BUP n° 840 « Astronomie et Internet », BUP N° 877 – 878 « traitement de données en MPI ».

Figure 3 : portail d’entrée du serveur d’éphémérides de l’IMCCE

Figure 4 : logiciel ÉPHÉMÉRIDES après rapatriement des données

de l’IMCCE

Page 4: L’ARPENTEUR DU WEB MOUVEMENT DE …national.udppc.asso.fr/.../Arpenteur_du_web_Mvt_Plante__Mars.pdf · l’arpenteur du web mouvement de planÈtes: le cas de mars guy bouyrie 5

L’ARPENTEUR DU WEB

MOUVEMENT DE PLANÈTES : LE CAS DE MARS GUY BOUYRIE

4

Le formulaire de l’IMCCE (dont on a un aperçu sur la figure 3) permet à l’utilisateur :

de choisir l’objet étudié (planète, satellite, comète, etc.) ;

de préciser le type de référentiel considéré (héliocentrique, géocentrique, local) ainsi que le plan de

référence (écliptique, équatorial) ;

de sélectionner le type de coordonnées compatibles avec le référentiel choisi le référentiel choisi

(coordonnées cartésiennes, sphériques, locales, etc.) ;

de saisir la date de référence pour lancer les calculs ainsi que le nombre de points de calcul et le pas

considéré (un excellent travail pour les élèves !).

La prochaine boucle de rétrogradation de Mars débutera en Avril 2014.

Ici, on a considéré l’observatoire de Bordeaux-Floirac (latitude 44° 50’ 7’’ N et longitude 0° 31’ 39’’ W ;

altitude : 4 m). Cet observatoire a un code, qu’il faut saisir : code 999.

Le centre du repère est dit topocentrique, c’est-à-dire lié au lieu d’observation.

Le plan de référence est : équateur ; type de coordonnées : sphériques.

Figure 5 : trajectoire géocentrique (centrée sur Bordeaux) de Mars en 2014 - 2015

RA/°185 190 195 200 205 210

Dec/°

-10

-8

-6

-4

-2

0

24 déc. 2013

21 janv. 2014

18 févr. 201418 mars 2014

15 avr. 2014

13 mai 2014

10 juin 2014

08 juil. 2014

Figure 6 : coordonnées (ascension droite, déclinaison) de Mars dans le ciel de Bordeaux-Floirac lors de

sa boucle de rétrogradation en 2014

Page 5: L’ARPENTEUR DU WEB MOUVEMENT DE …national.udppc.asso.fr/.../Arpenteur_du_web_Mvt_Plante__Mars.pdf · l’arpenteur du web mouvement de planÈtes: le cas de mars guy bouyrie 5

L’ARPENTEUR DU WEB

MOUVEMENT DE PLANÈTES : LE CAS DE MARS GUY BOUYRIE

5

3. RÉTROGRADATION DE MARS : SIMULATEURS ET FILMS

CELESTIA et STELLARIUM sont deux fameux logiciels libres qui permettent de bien mettre en évidence la

rétrogradation de Mars. http://celestia.fr/ et http://www.stellarium.org/fr/ Il existe de nombreux « tutoriels » en ligne pour y parvenir, tel celui-ci : http://www.youtube.com/watch?v=Rs94Ltso58I

Simulateur de l’Université du Nebraska : http://astro.unl.edu/animationsLinks.html

Cette université met en ligne un grand nombre de simulations utiles pour un cours d’astronomie et en

particulier pour illustrer ce propos.

Films

Quelques astronomes amateurs ont photographié régulièrement les positions de Mars dans le ciel vues depuis

le même lieu : la superposition des images obtenues met en évidence de façon remarquable le mouvement de

rétrogradation de cette planète. Nous contacter pour obtenir une telle animation.

Figure 7 : simulateur des trajectoires comparées de Mars et de la Terre http://astro.unl.edu/classaction/animations/renaissance/configurationssimulator.html

Figure 8 : boucle de rétrogradation de Mars

observée de Juin à Novembre 2003

Page 6: L’ARPENTEUR DU WEB MOUVEMENT DE …national.udppc.asso.fr/.../Arpenteur_du_web_Mvt_Plante__Mars.pdf · l’arpenteur du web mouvement de planÈtes: le cas de mars guy bouyrie 5

L’ARPENTEUR DU WEB

MOUVEMENT DE PLANÈTES : LE CAS DE MARS GUY BOUYRIE

6

4. TRAJECTOIRE HÉLIOCENTRIQUE DE MARS : DU CERCLE À L’ELLIPSE

C’est l’œuvre de KEPLER que d’avoir pu établir la trajectoire héliocentrique de Mars à partir des tables de

TYCHO-BRAHÉ : un travail harassant, basé sur des méthodes géométriques que nous maîtrisons avec peine

aujourd’hui !

Au prix d’un travail de mathématicien à la rigueur exceptionnelle, KEPLER a montré qu’il fallait renoncer

aux « orbes circulaires » des planètes, contre GALILÉE lui-même qui pensait que le mouvement circulaire et

uniforme était LE mouvement naturel « parfait » voulu par le créateur.

On peut à ce propos consulter le texte original bien sûr mais aussi cette page des sites référencés au § 1.:

http://www.keplersdiscovery.com/NotaCircle.html , où l’on rappelle combien KEPLER était exigeant, pour ne pas

se satisfaire d’une orbite circulaire, malgré un écart infime avec les valeurs relevées par TYCHO-BRAHÉ. Ironie de l’histoire, certains des jésuites qui ont jugé plus tard GALILÉE avaient des arguments d’astronome

pour relever que l’hypothèse d’orbites parfaitement circulaires était erronée : ils n’étaient pas aussi naïfs et

butés que la tradition le laisse croire. Toujours est-il que GALILÉE n’a jamais répondu à la lettre de KEPLER

de 1610 qui faisait part de ses découvertes sur l’ellipticité de l’orbite de Mars !

Aujourd’hui, grâce au serveur des éphémérides de L’IMCCE, on peut obtenir la trajectoire héliocentrique

de Mars en quelques secondes !

Voyons comment procéder, en reprenant ce qui a été dit au § 2. :

Lancer le logiciel EPHEMERIDES. Le bouton B.d.L permet de se connecter au serveur de l’Institut de

Mécanique Céleste et d’accéder directement au serveur des Éphémérides.

Remarquer la présence de la deuxième icône en partant de la gauche qui permet de coller des données.

Cocher Mars. Dérouler cette page puis saisir les dates de calcul, à savoir ici :

la date courante ; un pas de calcul de 34 jours ; un nombre de dates égal à 20.

Dérouler puis cocher : CENTRE DU REPÈRE : héliocentre ; PLAN DE RÉFÉRENCE : écliptique ; TYPE DE

COORDONNÉES : sphérique.

Lancer le CALCUL. On obtient un fichier qu’il faut convertir au format A.S.C.I.I. (cliquer sur le lien qui

apparaît pour opérer cette conversion : Results file in ascii format).

Sélectionner les données de ce fichier A.S.C.I.I. par ctrl + A. Les copier par ctrl + C.

Les coller dans le logiciel EPHEMERIDES en cliquant sur l’icône prévue à cet effet.

Les transférer dans REGRESSI : on observe alors immédiatement dans ce logiciel la trajectoire calculée !

Dans REGRESSI, par le menu graphique, supprimer les dates et mettre à la place des croix des points en forme

de disque. Les distances r sont données en U.A. ou unités astronomiques.

On obtient ainsi la trajectoire de Mars projetée dans le plan de l’écliptique : les coordonnées utiles sont

analogues à des coordonnées polaires où l’angle polaire est analogue à une « longitude ».

On peut affirmer que la trajectoire ainsi dessinée est celle de Mars car son plan orbital est très peu incliné

par rapport au plan de l’écliptique (1° environ !).

Quelques résultats :

On remarque immédiatement la position excentrée du Soleil qui, pour KEPLER, doit jouer un rôle essentiel

dans le mouvement de Mars. Avec un compas, on place le périhélie P et l’aphélie A.

Il est facile de modéliser la trajectoire avec REGRESSI selon l’équation polaire r = p

1 + e cos (Long + .

On obtient ainsi l’excentricité de l’orbite e = 0,0935 qui est très faible : c’est dire l’exploit de KEPLER qui,

rappelons-le, a rejeté le modèle d’orbite circulaire du fait d’un écart infime entre les calculs

correspondants et les données astronomiques de TYCHO-BRAHÉ !

Le mouvement n’est pas uniforme : pour s’en convaincre ici, il suffit de prendre un compas et de

comparer les espaces parcourus en des durées égales (en assimilant la corde à l’arc) ; la vitesse au

périhélie est un peu plus grande qu’à l’aphélie.

Si KEPLER se trompe en estimant à tort que la vitesse orbitale de Mars varie en raison inverse de la

distance r au centre attracteur, cette relation est cependant vraie au périhélie et à l’aphélie.

Page 7: L’ARPENTEUR DU WEB MOUVEMENT DE …national.udppc.asso.fr/.../Arpenteur_du_web_Mvt_Plante__Mars.pdf · l’arpenteur du web mouvement de planÈtes: le cas de mars guy bouyrie 5

L’ARPENTEUR DU WEB

MOUVEMENT DE PLANÈTES : LE CAS DE MARS GUY BOUYRIE

7

Figure 9 : trajectoire héliocentrique de Mars

0,5 1 1,5 2

r/ua

30 oct. 2013

03 déc. 2013

06 janv. 2014

09 févr. 2014

15 mars 2014

18 avr. 2014

22 mai 2014

25 juin 2014

29 juil. 2014

05 oct. 2014

08 nov. 2014

12 déc. 2014

15 janv. 2015

18 févr. 2015

24 mars 2015

27 avr. 2015

31 mai 2015 07 août 2015

A

A

A

P

Page 8: L’ARPENTEUR DU WEB MOUVEMENT DE …national.udppc.asso.fr/.../Arpenteur_du_web_Mvt_Plante__Mars.pdf · l’arpenteur du web mouvement de planÈtes: le cas de mars guy bouyrie 5

L’ARPENTEUR DU WEB

MOUVEMENT DE PLANÈTES : LE CAS DE MARS GUY BOUYRIE

8

4. TRAJECTOIRE HÉLIOCENTRIQUE DE MARS : VERS NEWTON

KEPLER a intuitivement compris que le Soleil jouait un rôle essentiel dans le mouvement des planètes.

« Je définis la gravité comme une force d’attraction mutuelle, semblable à l’attraction magnétique. Cette

attraction est plus forte dans les corps rapprochés les uns des autres que dans les corps éloignés… »,

écrivait KEPLER. Mais il revient à NEWTON d’avoir associé à la variation de la vitesse (l’accélération),

grandeur mesurable à partir des données obtenues, la « force gravitationnelle » qui provoque ce mouvement,

sans chercher à se prononcer sur la « nature » de l’attraction gravitationnelle.

En terminale S, il est possible, sur la trajectoire obtenue précédemment, de porter des vecteurs colinéaires

à l’accélération a

en un point de la trajectoire.

Pour cela, on adopte l’algorithme à 3 points :

en un point donné de la trajectoire, par exemple en M i de date t i , le vecteur vitesse moyenne v

m est donné

par la relation : v

m (i) = 1

2 M i 1 M i + 1

;

le vecteur accélération moyenne est donnée, en ce même point, par la relation : a

m (i) = 1

2 (v i + 1

v i 1

),

où est le « pas » de calcul, soit une durée t = 34 jours ici.

Il suffit de tracer soigneusement, à l’aide d’un compas, à une date donnée (par exemple le 6 Janvier 2014), le

vecteur A

= M i M i + 2

M i 2 M i

.

Ce vecteur A

est colinéaire au vecteur « accélération moyenne a

m (i) » de sorte que a

m (i) = 1

4 A

.

Cette construction a été opérée ici pour deux dates distinctes. Quelques résultats :

On remarque que l’accélération est centrale : elle pointe vers le centre attracteur. Elle n’est pas centripète,

c’est-à-dire ne pointe pas vers le centre de courbure du cercle qui, localement, s’appuierait sur l’arc de la

trajectoire passant par les 3 points successifs considérés.

On peut estimer graphiquement sa norme : ainsi, le 6 Janvier 2014, la longueur de A

correspond à une

distance de 0,5 U.A. ou 7,5 10 10

m. Or 42 = 4 (34 86 400)

2 3,5 10

13 s

2.

On a donc à cette date : || a

|| 2,1 10 3

m s 2

; la valeur de cette accélération est très faible,

comparativement à g (9,8 m s 2

), notre “étalon” d’accélération, ce qui surprend toujours les élèves.

La deuxième loi de Newton conduit à : || a

|| = G M

r 2 , où G est la constante de la gravitation et M la masse

du soleil. En prenant, à la date du 6 Janvier, r 1,7 U.A., on obtient aussi : || a

|| 2,1 10 3

m s 2

, en

accord avec la détermination graphique.

5. TRAJECTOIRE HÉLIOCENTRIQUE DE MARS ET DEUXIÈME LOI DE KEPLER

Si le mouvement de Mars n’est pas uniforme, l’aire balayée par le « rayon vecteur » en des durées égales

est conservée : c’est la deuxième loi de Kepler qui fut publiée en même temps que la première loi (orbites

elliptiques autour du soleil).

Avec l’enregistrement précédent, il est possible :

de déterminer des aires successives avec un logiciel de traitement d’image (REGRESSI permet d’exporter les

graphiques obtenus sous différents formats et un logiciel libre tel que MESURIM : http://artic.ac-

besancon.fr/svt/tice/mesurim/ est parfaitement adapté à cette tâche) ;

d’imprimer le graphique sur un bristol suffisamment épais, de découper les secteurs et de les peser ;

d’estimer les aires successives en les approximant par celles de triangles dont deux des sommets

correspondent à des positions successives de Mars selon une durée donnée et le troisième avec le centre

attracteur S, par mesure à la règle de la hauteur menée depuis S et de la base du triangle).

De nombreuses animations sont disponibles sur le WEB : Sur le site « Keplerdiscovery » déjà cité : http://www.keplersdiscovery.com/AreaTime.html

Simulateur de l’Université du Nebraska : http://astro.unl.edu/animationsLinks.html

Le « planetary orbit simulator » de la rubrique « Renaissance astronomy » est entièrement paramétrable ici

pour définir les caractéristiques orbitales de Mars.

Page 9: L’ARPENTEUR DU WEB MOUVEMENT DE …national.udppc.asso.fr/.../Arpenteur_du_web_Mvt_Plante__Mars.pdf · l’arpenteur du web mouvement de planÈtes: le cas de mars guy bouyrie 5

L’ARPENTEUR DU WEB

MOUVEMENT DE PLANÈTES : LE CAS DE MARS GUY BOUYRIE

9

6. EN CONCLUSION

Nous nous sommes limités ici à l’étude de la planète Mars, en hommage à Kepler : la mise en perspective

d’un contexte historique, tel qu’il a été présenté

ici, a toujours reçu beaucoup d’échos très

favorables de la part des élèves (et rien de plus

beau que de lire – dans une traduction française

bien sûr quelques lettres de Kepler à ses

contemporains). Tous les outils informatiques

présentés ici permettent l’étude du mouvement

des autres planètes du système solaire et même

des comètes et satellites naturels en ce qui

concerne le serveur de l’IMCCE. Une exploitation

plus fine des données est envisageable en classe préparatoire ou licence universitaire, ce qui rend

incontestablement l’enseignement à ces niveaux bien moins dogmatique qu’il ne l’est actuellement encore.

Courte bibliographie sur Kepler :

Henriette CHARDAK, « KEPLER, le chien des étoiles » (Ed. Seguier).

Philippe DEPONDT et Guillemette de VÉRICOURT, « Kepler : l’orbe tourmenté d’un astronome » (Ed. du

Rouergue).

Jean-Pierre VERDET, « Astronomie & astrophysique », Textes essentiels (Ed. Larousse).

Les cahiers de sciences & vie n° 21, « KEPLER » (numéro remarquable que l’on peut trouver en occasion).

Observer Mars dans le ciel : où et quand ?

http://www.astrosurf.com/ephemerides/

http://www2.saf-lastronomie.com/cielactu.htm

http://www.imcce.fr/fr/ephemerides/phenomenes_celestes.php

http://in-the-sky.org/ephemeris.php

Figure 10 : deuxième loi de Kepler appliquée à Mars selon le simulateur http://astro.unl.edu/classaction/animations/renaissance/kepler.html

Figure 11 : signature autographe de Kepler http://www.museedeslettres.fr/public/detail_oeuvre.php?id=115&PHPS

ESSID=5645c451f6781f99bc141ce5c3f7a3f1