16
Leçon n°5 : Les oscillateurs mécaniques PHR 004 1 N. Fourati_Ennouri Les oscillateurs mécaniques 1. L’oscillateur mécanique libre non amorti Les oscillations libres non amorties ont lieu quand le système susceptible d'osciller a été mis en mouvement puis ne subit aucune force d'excitation externe et n'a pas de frottement. masse ressort point fixe Figure 1 : Au repos un ressort est attaché à un point fixe et une masse m est placée à son autre extrémité. Cette masse peut glisser horizontalement sans frottement Dans ce qui suit, nous allons considérer le cas particulier extrêmement simple du "pendule élastique" constitué d'un ressort à boudin de masse négligeable, fixé en un point fixe à une de ses extrémités. Une masse ponctuelle m, pouvant se déplacer horizontalement, sans frottement est fixée à l'autre extrémité (Figure 1). 1.1. Mouvement de la masse liée au ressort On tire le ressort. L’augmentation de la longueur du ressort correspond à une variation de son élongation par rapport à sa longueur au repos. A l'instant t = 0 s on libère le ressort, la masse m à cet instant n'ayant pas de vitesse initiale. Première étape : bilan des forces appliquées à la masse : Quand on abandonne le mobile à lui-même, la force de rappel lui communique une accélération. Cette force est directement proportionnelle à l'élongation x r (comptée à partir de O sur la figure. 2) et opposée à x r d'où son expression : x k F - = Cette dernière relation typique d'une force élastique est aussi appelée loi de Hooke. La constante K est la raideur du ressort en N.m -1 . Outre la force de rappel, dans le bilan des forces qui s'appliquent sur la masse, il ne faut pas oublier le poids P et la réaction du support P - = R

Les oscillateurs mécaniquesww2.cnam.fr/physique/PHR004/01_L05_PHR004_2012.pdfLeçon n 5 : Les oscillateurs mécaniques PHR 004 3 N. Fourati_Ennouri L'équation caractéristique de

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Les oscillateurs mécaniquesww2.cnam.fr/physique/PHR004/01_L05_PHR004_2012.pdfLeçon n 5 : Les oscillateurs mécaniques PHR 004 3 N. Fourati_Ennouri L'équation caractéristique de

Leçon n°5 : Les oscillateurs mécaniques PHR 004

1 N. Fourati_Ennouri

Les oscillateurs mécaniques

1. L’oscillateur mécanique libre non amorti

Les oscillations libres non amorties ont lieu quand le système susceptible d'osciller a été mis

en mouvement puis ne subit aucune force d'excitation externe et n'a pas de frottement.

masseressort

point fixe

Figure 1 : Au repos un ressort est attaché à un point fixe et une masse m est placée à son

autre extrémité. Cette masse peut glisser horizontalement sans frottement

Dans ce qui suit, nous allons considérer le cas particulier extrêmement simple du "pendule

élastique" constitué d'un ressort à boudin de masse négligeable, fixé en un point fixe à une de

ses extrémités. Une masse ponctuelle m, pouvant se déplacer horizontalement, sans

frottement est fixée à l'autre extrémité (Figure 1).

1.1. Mouvement de la masse liée au ressort

On tire le ressort. L’augmentation de la longueur du ressort correspond à une variation de son

élongation par rapport à sa longueur au repos. A l'instant t = 0 s on libère le ressort, la masse

m à cet instant n'ayant pas de vitesse initiale.

Première étape : bilan des forces appliquées à la masse :

Quand on abandonne le mobile à lui-même, la force de rappel lui communique une

accélération. Cette force est directement proportionnelle à l'élongation xr

(comptée à partir de

O sur la figure. 2) et opposée à xr

d'où son expression : xkF −=

Cette dernière relation typique d'une force élastique est aussi appelée loi de Hooke. La

constante K est la raideur du ressort en N.m−1.

Outre la force de rappel, dans le bilan des forces qui s'appliquent sur la masse, il ne faut pas

oublier le poidsP et la réaction du support P−=R

Page 2: Les oscillateurs mécaniquesww2.cnam.fr/physique/PHR004/01_L05_PHR004_2012.pdfLeçon n 5 : Les oscillateurs mécaniques PHR 004 3 N. Fourati_Ennouri L'équation caractéristique de

Leçon n°5 : Les oscillateurs mécaniques PHR 004

2 N. Fourati_Ennouri

P

xkF −= R

0 xO

Figure. 2 : Bilan des forces

Finalement, le principe fondamental de la dynamique appliquée à cette masse est résumé dans

l'égalité vectorielle :

amFRP =++

En projection sur cet axe l'égalité vectorielle devient l'égalité scalaire :

2

x 2dv d x

K x = m a = m = m dt dt

Ainsi l'application du principe fondamental de la dynamique nous conduit à résoudre

l'équation différentielle du second ordre à coefficient constant de la forme :

2

2d x K

+ x = 0mdt

[5.1]

On pose ensuite m

k=20ω

ωωωωo est la pulsation propre du système masse-ressort en rd . s−1

La fréquence propre fo (en Hz) et la période T (en s) de cet oscillateur harmonique sont

définies à partir des relations :

o o1 K m

f = et T = 22 m

ππ K

[5.2]

Page 3: Les oscillateurs mécaniquesww2.cnam.fr/physique/PHR004/01_L05_PHR004_2012.pdfLeçon n 5 : Les oscillateurs mécaniques PHR 004 3 N. Fourati_Ennouri L'équation caractéristique de

Leçon n°5 : Les oscillateurs mécaniques PHR 004

3 N. Fourati_Ennouri

L'équation caractéristique de tout oscillateur harmonique libre non amorti s’écrit donc sous le

forme de :

0202

2

=+ xtd

xd ω [5.3]

Sa solution est de la forme :

x(t) = A cos (ωot + ϕ) [5.4]

A est l'amplitude du mouvement et ϕ la phase. On détermine ces deux grandeurs à partir des

conditions initiales (CI).

Considérons les CI suivantes : à ot = 0 x = x et v = 0

( )

( )

+−=

+=

ρωω

ρω

ttd

xd

ttx

oo

o

sinA

cosA)(

A t = 0 :

o

o

o0 0

x(0) A cos xA x

d xA sin 0 0 0d t ≠ ≠

= ρ ==

⇒ = − ω ρ = ⇒ ρ = ρ =

Finalement la relation donnant l'évolution de la position de la masse en fonction du temps est :

x(t) = x0 cos ωo t [5.5]

1.2. Vitesse et accélération

Il est intéressant de tracer également l'évolution de la vitesse v(t) et de l'accélération a(t) de la

masse en fonction du temps :

0 0 0dx

v(t) = = x sin tdt

− ω ω

Ce que l'on peut écrire, en utilisant les propriétés des fonctions trigonométriques, sous la

forme de :

Page 4: Les oscillateurs mécaniquesww2.cnam.fr/physique/PHR004/01_L05_PHR004_2012.pdfLeçon n 5 : Les oscillateurs mécaniques PHR 004 3 N. Fourati_Ennouri L'équation caractéristique de

Leçon n°5 : Les oscillateurs mécaniques PHR 004

4 N. Fourati_Ennouri

0 0 0v(t) = x cos ( t + )2

πω ω [5.6]

La vitesse de la masse est donc "déphasée" de 2

π par rapport à l'élongation de la masse au

même instant et sa valeur maximale et égale à x0 ω0.

Pour l'accélération, on a :

20 0 0

dva(t) = = x cos t

dt − ω ω

ce que l'on peut écrire en utilisant les propriétés des fonctions trigonométriques :

20 0 0a(t) = x cos ( t + )ω ω π [5.7]

La figure 3 résume l'évolution de la position x, de la vitesse v et de l'accélération a de la masse

en fonction du temps.

Remarque :

D'un point de vue expérimental il est plus facile de faire fonctionner cet oscillateur

harmonique à ressort verticalement. Il faut alors tenir compte de la pesanteur qui, à l'équilibre,

communique un allongement initial au ressort. La mise en équation est la même que celle du

ressort horizontal à condition de choisir pour origine le point d'équilibre atteint sous l'effet de

la force de pesanteur.

position

vitesse

accélération

temps

temps

temps 2To

2To

2To

To

To

To

+xo

−−−−xo

O

+ωωωωo xo

v

−ω−ω−ω−ωo xo

a 2o o x+ ω

2o o x− ω

O

O

Figure n°3 : Position, vitesse et accélération

Page 5: Les oscillateurs mécaniquesww2.cnam.fr/physique/PHR004/01_L05_PHR004_2012.pdfLeçon n 5 : Les oscillateurs mécaniques PHR 004 3 N. Fourati_Ennouri L'équation caractéristique de

Leçon n°5 : Les oscillateurs mécaniques PHR 004

5 N. Fourati_Ennouri

Application

Différents dispositifs de mesure et d'analyse comme les détecteurs infra-rouge ou les

microscopes à force atomique utilisent des petits leviers qui, à partir de leur vibration,

permettent de mesurer la masse, la quantité de chaleur ou la force entre les molécules.

2. Oscillations mécaniques forcées sur un système non amorti

Dans le paragraphe précédent, nous avons simplement étiré l'ensemble ressort-masse puis

laissé le système osciller librement. Il s'agissait d'une excitation "statique", si on peut dire, qui

déterminait les conditions initiales du mouvement.

Nous allons considérer que l'oscillateur constitué de l'ensemble masse-ressort subit une

excitation sinusoïdale liée à un dispositif extérieur comme, par exemple, celui représenté sur

la figure n°4 : on est dans le cas d'un oscillateur mécanique en vibrations forcées.

Ce phénomène d'oscillations forcées est d'une grande importance dans la pratique et intervient

sur tous les types d'oscillateurs : mécaniques, acoustiques, électriques, optiques, etc. Par

exemple, les ondes électromagnétiques captées par une antenne mettent en oscillation forcée

le circuit électronique de notre téléphone portable ou de notre récepteur de télévision.

2.1. Equation différentielle du mouvement

Le phénomène d'oscillations mécaniques forcées est représenté schématiquement sur la

Figure. 4. Il s’agit d’un ensemble masse-ressort horizontal ; la masse étant reliée à un

dispositif entretenu électriquement. Grâce à ce montage, on peut appliquer à la masse une

force Fr

horizontale d'amplitude oFuur

et de pulsation ω (rd . s−1). Cette force Fr

d'excitation

sinusoïdale a pour expression : ur uur

oF = F sin tω

ressortmasse

Diapasonen vibrationsentretenues

Fr

Rr

Tr

Pr

(ox)

ressortmasse

Diapasonen vibrationsentretenues

Fr

Rr

Tr

Pr

(ox)

Figure. 4: oscillations mécaniques forcées sur un système non amorti

Ainsi dans le bilan des forces appliquées à la masse m on a les forces suivantes :

− Le poids rP

− La réaction du support : rR

− La force de rappel du ressort : = −rr

T K x

Page 6: Les oscillateurs mécaniquesww2.cnam.fr/physique/PHR004/01_L05_PHR004_2012.pdfLeçon n 5 : Les oscillateurs mécaniques PHR 004 3 N. Fourati_Ennouri L'équation caractéristique de

Leçon n°5 : Les oscillateurs mécaniques PHR 004

6 N. Fourati_Ennouri

− La force d’excitation sinusoïdale :uur

oF sin tω

La seconde loi de Newton permet d'écrire la relation :

r r r r rT + F + P + R = m a

En faisant ensuite une la projection sur l'axe horizontal oxuur

, on obtient :

−2

o 2d x

Kx + F sin t = m dt

ω

Ceci est l'équation typique d'un mouvement oscillatoire "forcé". On peut la réécrire sous la

forme :

22 o02

Fd x + x = sin t

mdtω ω [5.8]

Avec :

o 0K

= 2 f = m

ω π

ω0 = 2 π f0 est la pulsation propre de l'oscillateur libre non amorti.

2.2. Expression de l’élongation x(t)

Nous pouvons résoudre l’équation [5.8] par des techniques classiques mais intuitivement, il

est assez naturel d'imaginer que la masse va être obligée d'osciller à la pulsation ω de la

force appliquée, c'est pourquoi nous allons essayer, comme solution l'expression :

( )x t = A sin ( t + )ω ϕ [5.9]

Dans ca cas : −2

22

d x = A sin ( t + )

d tω ω ϕ

En remplaçant les expressions de x(t) et 2

2d x

d t dans l'équation différentielle [5.8], on obtient :

Page 7: Les oscillateurs mécaniquesww2.cnam.fr/physique/PHR004/01_L05_PHR004_2012.pdfLeçon n 5 : Les oscillateurs mécaniques PHR 004 3 N. Fourati_Ennouri L'équation caractéristique de

Leçon n°5 : Les oscillateurs mécaniques PHR 004

7 N. Fourati_Ennouri

−2 2 oo

FA ( ) sin ( t + ) = sin t

mω ω ω ϕ ω [5.10]

En utilisant ensuite l'identité trigonométrique :

sin ( t + ) = (sin t) . cos + (cos t) . sin ω ϕ ω ϕ ω ϕ

on obtient :

− −2 2 2 2 oo o

FA ( ) (cos ) sin t + A( )(sin ) cos t = sin t

mω ω ϕ ω ω ω ϕ ω ω

Cette égalité doit être vérifiée à tout instant t si on identifie de chaque coté de l'égalité les

coefficients de sin ωt et cos ωt :

[ ]

[ ]

5 11

5 12

2 2o

2 2 oo

A( ) sin = 0 .

FA( ) cos = .

m

ω ω ϕ

ω ω ϕ

A partir de l’équation [5.11], et compte tenu du fait que o ω ≠ ω et A ≠ 0 on a :

sin ϕ = 0 ϕ = 0

En intégrant ses résultats dans l’équation [5.10], nous avons :

( )2 −0

2o

FA =

m ω ω

Par conséquent :

( ) ( )2−o

2o

Fx t = sin t

m ω

ω ω [5.13]

La figure 5 représente la variation de l'amplitude en fonction de ω. On note que cette

amplitude présente un comportement asymptotique vers une valeur très grande autour de la

fréquence ωo.

Page 8: Les oscillateurs mécaniquesww2.cnam.fr/physique/PHR004/01_L05_PHR004_2012.pdfLeçon n 5 : Les oscillateurs mécaniques PHR 004 3 N. Fourati_Ennouri L'équation caractéristique de

Leçon n°5 : Les oscillateurs mécaniques PHR 004

8 N. Fourati_Ennouri

ωωωω

amplitude

pulsation ωωωωοοοο o

o2o

F

m ω

( )o

2 2o

F

m ω - ω

Figure 5 : Allure de la variation de l'amplitude d'un oscillateur amorti en oscillation forcée

en fonction de la pulsation de la force sinusoïdale appliquée.

Lorsque la fréquence ω de la force appliquée par l'excitateur (ici le diapason électriquement

entretenu) est égale à la fréquence propre ωo de l'oscillateur, on dit qu'il y a une résonance

d'amplitude.

C'est l'accord que l'on réalise inconsciemment lorsque l'on pousse quelqu'un sur une

balançoire. Dans ce cas, l'oscillateur est constitué de la corde, du siège et de la personne assise

sur le siège, "l'excitateur" est la personne qui pousse. On est dans le cas d'oscillations forcées.

L'amplitude prise par la balançoire est maximale quand la fréquence avec laquelle la personne

qui pousse est égale à la fréquence propre de l'ensemble corde-siège-personne assise, dans ce

cas on a le phénomène de mise en résonance de l'oscillateur.

Nous avons donc montré que sous certaines conditions, l’amplitude des oscillations peut

devenir très importante ; et les conséquences peuvent être graves. On peut citer deux

exemples connus :

- La 18 avril 1850 à Angers, un régiment traversant au pas cadencé un pont suspendu

enjambant la Maine provoqua sa destruction ;

- Le 7 novembre 1940, six mois après son inauguration, le pont suspendu de Tacoma

(USA) était détruit par les effets de rafales de vent qui sans être particulièrement

violentes (60 km/h) étaient régulières.

Et nos ponts dans tout ça ? Le pont suspendu joue le rôle du système mécanique pouvant

vibrer. Les rafales de vent ou le pas cadencé jouent le rôle du système extérieur imposant sa

fréquence de vibration au pont. Dans les deux exemples (Angers et Tacoma) il y a eu

résonance, c'est-à-dire accord parfait entre la fréquence de vibration du vent ou du pas

Page 9: Les oscillateurs mécaniquesww2.cnam.fr/physique/PHR004/01_L05_PHR004_2012.pdfLeçon n 5 : Les oscillateurs mécaniques PHR 004 3 N. Fourati_Ennouri L'équation caractéristique de

Leçon n°5 : Les oscillateurs mécaniques PHR 004

9 N. Fourati_Ennouri

cadencé et la fréquence propre du pont. Les vibrations engendrées ont été suffisamment fortes

pour détruire les deux ponts. Mais heureusement plus d’inquiétude à se faire sur un pont car

depuis lors, les codes militaires du monde entier interdisent à une troupe de marcher au pas

cadencé pour franchir les ponts – même non suspendus !!

Par ailleurs, et lors de la construction d’un pont (c’est aussi valable pour les gratte-ciel), les

constructeurs tiennent compte dans leurs études de la fréquence naturelle de l’ouvrage en lui

donnant une valeur qui ne puisse pas correspondre à celle de rafales de vent.

Jusque-là nous avons traité le cas d’un oscillateur qui se trouvait libre d’évoluer, dans les

paragraphes à venir nous tiendrons compte des amortissements.

3. Oscillations mécaniques libres sur un système amorti par frottement visqueux

L’étude de l’oscillateur amorti se fait de la même façon que l’oscillateur libre en ajoutant une

force de type frottement fluide (avec un coefficient de frottement visqueux α) de la forme :

f = -α x&

L’équation différentielle du mouvement devient :

− − =& &&K x x m xα

ou encore :

0 0K

m x x K x x x xm m

αα+ + = ⇒ + + =&& & && &

On pose ensuite : 20 2= =K

etm m

αω λ

ω0 est la pulsation propre de l’oscillateur ; elle correspond à la pulsation avec laquelle il

oscillerait de façon sinusoïdale si les frottements étaient négligeables. On a donc :

202 0+ + =&& &x x xλ ω [5.14]

Il s’agit d’une équation différentielle de second ordre avec second membre nul

on passe à l’équation caractéristique : 2 202 0+ + =r rλ ω

On calcule ensuite le discriminent ∆ :

2 204 4∆ = −λ ω

Page 10: Les oscillateurs mécaniquesww2.cnam.fr/physique/PHR004/01_L05_PHR004_2012.pdfLeçon n 5 : Les oscillateurs mécaniques PHR 004 3 N. Fourati_Ennouri L'équation caractéristique de

Leçon n°5 : Les oscillateurs mécaniques PHR 004

10 N. Fourati_Ennouri

La forme de la solution dépend du signe du discriminent :

1) Si λ > ω0 (cas où le coefficient de frottement est grand) ∆ > 0 Deux racines

réelles L’amortissement est fort.

2) Si λ < ω0 (cas où le coefficient de frottement est petit) ∆ < 0 Deux racines

complexes L’amortissement est faible.

3) Si λ = ω0 ∆ = 0 Une racine double réelle L’amortissement est intermédiaire

aux deux amortissements précédents. On parle d’amortissement critique.

3.1. Oscillateur à frottement faible

3.1.1. Expression de l’élongation x(t)

C’est le cas où les frottements ne sont pas très importants et où le discriminent de l’équation

caractéristique est négatif. On a dans ce cas :

λ < ω0 22

KK m

m m

α α⇒ < ⇒ <

En introduisant l’imaginaire pur i tel que i2 = -1, le discriminent peut s’écrire sous la forme

de :

( ) ( ) ( )22 2 2 2 2 2 2 2 2

0 0 0 04 4 4 4 2i iλ ω ω λ ω λ ω λ∆ = − = − − = − = −

Les solutions de l’équation caractéristique sont :

2 20 2 2

1 0

2 20 2 2

2 0

2 2

2

2 2

2

ir i

ir i

λ ω λλ ω λ

λ ω λλ ω λ

− − − = = − − −

− + −= = − + −

Posons 2 20Ω = −ω λ (avec λ = α/2m)

On a donc : 1

2

r i

r i

λλ

= − Ω = − + Ω

Page 11: Les oscillateurs mécaniquesww2.cnam.fr/physique/PHR004/01_L05_PHR004_2012.pdfLeçon n 5 : Les oscillateurs mécaniques PHR 004 3 N. Fourati_Ennouri L'équation caractéristique de

Leçon n°5 : Les oscillateurs mécaniques PHR 004

11 N. Fourati_Ennouri

La solution générale de l’équation est :

x(t) = e-λt [A cosΩt + B sin Ωt]

A et B sont deux constantes qui peuvent être déterminées à partir des conditions initiales.

Exemple de calcul pour la détermination des constantes :

Supposons qu’à t = 0 : ( 0) ( 0) 0= = = =&Mx t X et x t

Nous avons : -( ) [ cos sin ] = Ω + Ωtx t e A t B tλ

- -

- -

( ) - [ cos sin ] [- sin cos ]

( ) [- ] cos - [ ] sin

⇒ = Ω + Ω + Ω Ω + Ω Ω

⇒ = + Ω Ω + Ω Ω

&

&

t t

t t

x t e A t B t e A t B t

x t e A B t e B A t

λ λ

λ λ

λ

λ λ

En remplaçant t par 0 dans les deux équations, nous obtenons :

MM

MM

A = Xx(0) = A = X

X- X + B =0 B =

⇒ Ω Ω

λλ

Par conséquent :

- tM

x(t) = X e [cos t + sin t]Ω Ω

Ωλ λ

[5.15]

3.1.2. Le régime pseudo périodique

Dans le cas de faible amortissement, l’équation [5.15] peut aussi s’écrire sous la forme de :

( )- tMx(t) = X e cos t +Ωλ ϕ [5.16]

La figure 6 représente l’allure de la variation de x(t) en fonction du temps.

Page 12: Les oscillateurs mécaniquesww2.cnam.fr/physique/PHR004/01_L05_PHR004_2012.pdfLeçon n 5 : Les oscillateurs mécaniques PHR 004 3 N. Fourati_Ennouri L'équation caractéristique de

Leçon n°5 : Les oscillateurs mécaniques PHR 004

12 N. Fourati_Ennouri

Figure 6 : Mouvement d’un oscillateur amorti par frottement fluide dans le cas d’un amortissement

faible. L’amplitude des oscillations décroit de façon exponentielle (traits pointillés). Le régime est

pseudo périodique, T représente la pseudo période.

La fonction cosinus varie entre -1 et +1, l’oscillation va donc être comprise entre

x(t) = XM e-λt et x(t) = - XM e-λt. Ces deux exponentielles représentent l’enveloppe du

mouvement de l’oscillateur, c’est à dire les positions extrémales prises par x au cours du

temps.

La décroissance de la fonction exponentielle est guidée par le coefficient λ = α/ 2m qui

traduit l’amortissement plus ou moins prononcé du mouvement.

Si α = 0, le mouvement est non amorti et on retrouve le cas de l’oscillateur

harmonique libre.

Le terme cos(Ωt + φ) traduit la périodicité du mouvement s’il n’y avait pas

d’amortissement.

Le mouvement n’est plus périodique puisqu’au bout d’un temps T l’élongation de

l’oscillateur ne reprend plus la même valeur : x(t) ≠ x(t + T) : l’amplitude des oscillations

diminue avec le temps. On parle de mouvement pseudo périodique.

La grandeur Ω s’appelle la pseudo pulsation et elle est inférieure à la pulsation propre ω0.

En effet : 2

2 20 0 02

0

1Ω = − = − <λω λ ω ωω

Page 13: Les oscillateurs mécaniquesww2.cnam.fr/physique/PHR004/01_L05_PHR004_2012.pdfLeçon n 5 : Les oscillateurs mécaniques PHR 004 3 N. Fourati_Ennouri L'équation caractéristique de

Leçon n°5 : Les oscillateurs mécaniques PHR 004

13 N. Fourati_Ennouri

La pseudo période T correspond à l’intervalle de temps qui sépare deux passages

successifs par la position x = 0 ou deux maximas consécutifs. Elle est donnée par la

relation :

2 20

2 2= =Ω −

Tπ π

ω λ avec λ = α / 2m

La pseudo période peut s’exprimer en fonction de la période propre T0 de l’oscillateur

harmonique (absence de frottement) :

0 0

2 2 2 20

2 20 0

22 2

1 1

= = = =Ω − − −

TT

π ωπ πω λ λ λ

ω ω

La pseudo période est supérieure à la période propre. En effet, à cause des frottements, la

masse m met un peu plus de temps pour faire un aller et retour et l’amplitude de son

mouvement diminue.

Dans le cas où l’oscillateur est très faiblement amorti (λ << ω0) il est possible de donner une

expression approchée de la pseudo-pulsation et de la pseudo-période. En faisant

l’approximation : (λ << ω0) on a :

12 22

0 02 20 0

11 1

2

Ω = = − ≈ − ×

λ λω ωω ω

Et la pseudo période T devient :

12 22

0 02 20 0

11 1

2

= − ≈ + ×

T T Tλ λω ω

3.2. Oscillateur à frottement fort

3.2.1. Expression de l’élongation x(t)

C’est le cas où les frottements sont plus importants, c'est-à-dire lorsque le coefficient

d’amortissement vérifie la condition :

λ > ω0 22

⇒ > ⇒ >KK m

m m

α α

Le discriminent ∆ est positif et il existe alors deux solutions réelles pour l’équation

caractéristique. On a :

( ) ( )2

22 2 2 20 04 4 2 2∆ = − = − =λ ω λ ω β

Page 14: Les oscillateurs mécaniquesww2.cnam.fr/physique/PHR004/01_L05_PHR004_2012.pdfLeçon n 5 : Les oscillateurs mécaniques PHR 004 3 N. Fourati_Ennouri L'équation caractéristique de

Leçon n°5 : Les oscillateurs mécaniques PHR 004

14 N. Fourati_Ennouri

Les solutions seront donc :

( )

( )

12 2

0

2

2 20

22 2 2

02

− − = = − + < = − = − + = = − − <

ravec et

mr

λ β λ β αβ λ ω λλ β λ β

La solution générale de l’équation différentielle est :

( ) ( )− − − ++t tx(t) = Ae C eλ β λ β

Reprenons les conditions initiales les plus souvent utilisées pour déterminer les valeurs des

constantes A et C : ( 0) ( 0) 0= = = =&Mx t X et x t

( ) ( ) ( ) ( ) ( ) ( )− − − + − − − ++ ⇒ − − − +&t t t tx(t) = Ae C e x(t) = A e C eλ β λ β λ β λ βλ β λ β

( ) ( )( 0) A C

( 0) 0 A C 0

12

12

= = ⇒ + = = = ⇒ − − − + =

= +

⇒ = −

&

M M

M

M

x t X X

x t

XA

XC

λ β λ β

λβλβ

Finalement l’élongation x(t) s’écrit sous la forme de :

( ) ( )1 12

− − − + + + −

t tMXx(t) = e eλ β λ βλ λ

β β [5.17]

3.2.2. Le régime apériodique

La Figure 7 donne l’allure de la fonction x(t) pour un amortissement fort avec les conditions

initiales du paragraphe précédent. Il n’y a pas plus d’oscillations : l’oscillateur retourne vers

sa position d’équilibre sans osciller. L’élongation x(t) garde toujours le même signe. Le

régime est dit apériodique = absence de période.

Page 15: Les oscillateurs mécaniquesww2.cnam.fr/physique/PHR004/01_L05_PHR004_2012.pdfLeçon n 5 : Les oscillateurs mécaniques PHR 004 3 N. Fourati_Ennouri L'équation caractéristique de

Leçon n°5 : Les oscillateurs mécaniques PHR 004

15 N. Fourati_Ennouri

Figure 7 : Cas d’un amortissement fort (pointillé) et critique (trait plein)

La décroissance d’une exponentielle − r te est caractérisée par le temps 1=r

τ au bout duquel

l'exponentielle est divisée par « e ». Après une durée de l’ordre de 4 à 5 τ, l’exponentielle est

pratiquement nulle.

Le temps caractéristique ou temps de relaxation de l’oscillateur en régime apériodique va être

déterminé par l'évolution de l'exponentielle la plus lente parmi les deux exponentielles

décroissantes qui interviennent dans l'expression de x(t).

Comme :r1 = (λ - β) et r2 = (λ + β) on a donc : :r1 < r2 τ1 > τ2

C’est le plus grand qui correspondra au temps de relaxation de l’oscillateur c'est-à-dire τ1.

3.3. Cas limite de l'amortissement critique

3.3.1. Expression de l'élongation x(t)

C'est le cas très particulier où le coefficient d'amortissement prend une valeur qui annule le

discriminant de l'équation caractéristique :

22

= ⇒ =KK m

m m

α α

Dans ce cas, on va avoir une racine double réelle pour l'équation caractéristique.

2 20 0

24 4 0

2∆ = − = ⇒ = − = − = −r

λλ ω λ ω

Page 16: Les oscillateurs mécaniquesww2.cnam.fr/physique/PHR004/01_L05_PHR004_2012.pdfLeçon n 5 : Les oscillateurs mécaniques PHR 004 3 N. Fourati_Ennouri L'équation caractéristique de

Leçon n°5 : Les oscillateurs mécaniques PHR 004

16 N. Fourati_Ennouri

La solution générale de l'équation différentielle du mouvement de l'oscillateur est alors :

( ) ( ) 0−= + tx t At B eω

Avec les constantes A et B dépendantes des conditions initiales.

( ) ( ) ( ) ( )0 00

− − = + ⇒ = − + &t tx t At B e x t A At B eω ωω

Si à t = 0 : 0

( 0) ( 0) 0=

= = = = ⇒ =&

MM

M

B Xx t X et x t

A Xω

L’élongation x(t) s’écrit alors sous la forme de :

( ) ( ) 00 1 −= + t

Mx t X t e ωω [5.18]

3.3.2. Le régime critique

La variation de l’élongation x(t), dans le cas particulier du régime critique, est représentée sur

la Figure. 7. Là encore, il y a retour à la position d’équilibre sans aucune oscillation

(l’amplitude garde le même signe). Il faut noter que ce retour se fait plus rapidement que le

régime apériodique.

Le temps de relaxation pour le régime critique est 0

1=cτω

.

Compte tenu des valeurs numériques de la Figure 10, on obtient : 0 5=c . sτ . Au bout

d’environ 2.5 à 3 s l’oscillateur revient à sa position d’équilibre.

De façon générale le temps de relaxation pour le régime apériodique est toujours plus

important que celui du régime critique. Si on désire un retour rapide à l’équilibre (pour les

amortisseurs d’une voiture par exemple) on a un intérêt de se rapprocher le plus possible du

régime critique.