85
Avant-propos Théorie linéaire Sondhauss tube Effets Non linéaires Dynamique des TAO Forçage des TAO Conclusion Auto-oscillateurs thermoacoustiques : effets non linéaires et comportement dynamique Guillaume Penelet Laboratoire d’Acoustique de l’Université du Maine, UMR CNRS 6613 avenue Olivier Messiaen, 72085 Le Mans cedex 9, France [email protected]

Auto-oscillateurs thermoacoustiques : effets non linéaires et

Embed Size (px)

Citation preview

Page 1: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Auto-oscillateurs thermoacoustiques effets

non lineacuteaires et comportement dynamique

Guillaume Penelet

Laboratoire drsquoAcoustique de lrsquoUniversiteacute du Maine UMR CNRS 6613avenue Olivier Messiaen 72085 Le Mans cedex 9 France

guillaumepeneletuniv-lemansfr

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 2 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 3 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Quelle thermoacoustique

Thermoacoustique = interaction thermiqueacoustique

rArr de quelle thermoacoustique parle-t-on ici

Tomographie thermoacoustique

Haut-parleurs thermoacoustiques

Effet piston

Instabiliteacutes de combustion

Machines thermoacoustiques (pompes agrave chaleur et moteurs thermoacoustiques)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 4 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Tomographie Thermoacoustique

Tomographie thermoacoustiqueMeacutethode drsquoimagerie meacutedicale baseacutee sur la reacuteponse de certainstissus agrave une impulsion EM

chauffage =gt deacutetente thermoeacutelastique =gt onde acoustique

Scheacutema de principe de la tomographie TA

Haut-parleurs thermoacoustiques

Effet piston

Instabiliteacutes de combustion

Machines thermoacoustique

Image 3D drsquoun rein drsquoagneauobtenu par tomographie TA

(CD) compareacutee agrave celleobtenue par IRM Drsquoapregraves [1]

[1] Kruger RA et al Radiology 216 279-283 2000

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 5 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Haut-parleur TA

Tomographie thermoacoustique

Haut-parleurs thermoacoustiqueschauffage fluctuant drsquoune surface solide

=gt rayonnement acoustique

Haut-parleur thermoacoustique Drsquoapregraves [1]

Effet piston Instabiliteacutes de combustion Machines thermoacoustiques

Reacuteponse en freacutequence drsquoun HP TADrsquoapregraves [1]

Ecouteurs thermoacoustiques Drsquoapregraves [2]

[1] Nyskacen et al Appl Phys Let 95 163102 2009 [2] US Patent n 8625822 Tsinghua University (Beijing)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 6 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Effet piston

Tomographie thermoacoustique Haut-parleurs thermoacoustiques

Effet pistonUn 4e mode de transport de la chaleur

Autour du point critique χ rarr infin et κ rarr 0Increacutement de chauffage localrArr expansion abrupte de la CL (effet piston)rArr compression adiabatique de la cellule amp ondes TArArr T uarr avec un temps caracteacuteristique τPE ≪ τκ

Instabiliteacutes de combustion Machines thermoacoustiques

Mesure des ondes TA dans du CO2 aupoint critique1

Reacuteponse ∆ρρ agrave un pulse de chauffage1

∆ρ(x t) au cours du chauffage1

[1] Y Miura et al Phys Rev E 74 010101 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 7 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Instabiliteacutes de combustion

Tomographie thermoacoustique Haut-parleurs thermoacoustiques Effet piston

Instabiliteacutes de combustionGeacuteneacuteration spontaneacutee drsquooscillations acoustiques reacutesul-tant drsquoune interaction complexe drsquoune flamme et drsquouneacutecoulement dans une chambre de combustion

Machines thermoacoustiques

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 8 85

videoscombustion_instabilitymp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Machines thermoacoustiques

Tomographie thermoacoustique Haut-parleurs thermoacoustiques Effet piston Instabiliteacutes de combustion

Machines thermoacoustiqueMachine thermique cyclique faisant usage drsquoun travailmeacutecanique de nature acoustique

Congeacutelateur thermoacoustique reacutealiseacute agrave lrsquouniversiteacute de Penn

State pour le glacier ben amp Jerryrsquos1

Machine TA tritherme (moteur+frigo) reacutea-

liseacute au Los Alamos National Laboratory2

[1] httpwwwacspsueduthermoacousticsrefrigerationbenandjerryshtm [2] G W Swift J J WollanGasTIPS Volume 8 Number 4 pages 21-26 (Fall 2002)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 9 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Machines thermoacoustiques

Elementary sources of sound emission unsteady heat release

The linearized equations of motion for an inviscid and non-heat-conducting idealgas

parttρprime + ρ0divv = Q(r t) Q mass addition

time

pulsating sphere

ρ0parttv + gradp = f(r t) f force

time

oscillating sphere

ρ0Cpparttτ minus parttp = q(r t) q Heat release

time

sphere with oscillating temperature

The resulting inhomogeneous wave equation (using p = RT0ρprime + Rρ0τ) is

∆p minus1

c2

0

part2

ttp = minuspartt q

T0Cp

minus ρ0parttQ + divf

Contrarily to Q and f q is difficult to derive in realistic cases because The heat conductivity of the gas should be considered Generally q = q (p v) which may lead to self-sustained oscillations(eg Rijke tube etc )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 10 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The Rayleigh criterium

The Rayleigh criterium (int

pqdt gt 0)

ldquo at the phase of greatest condensation heat is receivedby the air and at the phase of greatest rarefaction heat isgiven up from it and thus there is a tendency to maintainthe vibrations rdquo JW Strutt (Lord Rayleigh) laquo The theory ofsound raquo Dover New York 2nd edition sect 322i p 231 1945)

pq

TA Laser Rijke tube

Q in

Wout

T(x)

Q in

WoutWout

V0

wire

q = f (dxT p vx stack ) q = f (Twire vx V0 )

⋆ not acoustically compact ⋆ acoustically compact(q asymp q(t)δ(x minus xwire ))

⋆ amplification of the first mode ⋆ amplification of the first mode R

pqdt gt 0 =gt dxT lt 0R

pqdt gt 0 =gt xw lt L2

Common features⋆ Autonomous oscillators driven by heat (which both fill the ldquoRayleigh criteriumrdquo)⋆ Simple in terms of geometry but complicated operation above threshold

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 11 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TA Laser a prototypical example

Heat input =gt sound output (self-sustained acoustic oscillations at the frequency of themost unstable mode(s))

Keywords heat engine (prime-movers and heat pumps) autonomous oscillator Paradigmatic of the challenges that need to be taken up to understand more deeply the

processes controlling the operation of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 12 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Auto-oscillateur thermo-acoustique contexte et probleacutematique

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

⋆ Application drsquoun nablaT le long drsquoun mateacuteriau poreux placeacute dans un reacuteseau de guidedrsquoonde rArr auto-oscillations agrave la freacutequence du mode le plus instable

⋆ Geacuteomeacutetrie plusmn simple mais fonctionnement complexe au delagrave du seuil (pompage θac ldquovent acoustiquerdquo perte de charge singuliegravere propa NL )

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 13 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 14 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic principles

The TA Laser a conceptual very simplified approach

⋆ Simplistic description =gt Lagrangian approach follow a gas parcel submitted to a standingwave through a channel with an axial temperature gradient dxT0

δκ

ρ1

x

Hot Heat eXchanger (HHX) Cold Heat eXchanger (CHX)

Q Qrsquo

2 411

33

v

21 3 4 1τp

p 2

13

4

ξ max2

1 ~ adiabatic compression2 ~ isobaric expansion3 ~ adiabatic relaxation4 ~ isobaric contraction

=gt Work production if |dxT |ξmax gt τmax and dxT lt 0

⋆ But actual processes are actually more complex (heat exchange occurs continuously)⋆ A key point need of an imperfect thermal contact

=gtldquoefficientrdquo gas parcels should be at about δκ from the wall where δκ =p

2κωis the (frequency-dependent) thermal boundary layer thickness

⋆ Threshold of thermoacoustic instability (for a given mode)

=gt Sound amplification must be larger than losses

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 15 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Plane wave propagation through a viscous and heat-conducting gas along a ductsubmitted to a temperature gradient

⋆ Both the production of acoustic work and the ldquobucket briga-derdquo heat transport by sound along the duct are then described bysecond-order quantities

the ldquobucket brigaderdquo

xR

y

z

r

C T (x)s ss sρ λ pC T (x)ρ λ (x) (x)

θ

Main assumptions⋆ Low amplitudes ⋆ Typical wavelength raquo R ⋆ No mean flow

P(x r t) = P0 + p(x r t) =gt planes waves ⋆ ideal gasρ(x r t) = ρ0(x) + ρprime(x r t) p(x r t) = p(x t) ⋆ ρsCs ≫ ρ0Cp

T (x r t) = T0(x) + τ (x r t) =gtldquoboundary layer approximationrdquo ⋆ λs ≫ λv(x r t) ≪ c0 |partrζ| ≫ |partxζ|

S(x r t) = S0(x) + s(x r t) (ζ = p ρprime τ v s)[1] N Rott Adv Appl Mech 1980 [2] GW Swift J Acoust Soc Am 1988

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 16 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Equations fondamentales lineacuteariseacutees

ρdtV = minusnablaP + micronabla2V + (η + micro3)nabla (nablaV) rArr ρ0iωvx = minusdx p + micro(1r)partr (rpartr vx )

parttρ + nabla (ρV) = 0 rArr iωρprime + ρ0partx vx + vxdxρ0 = 0

ρTdtS = λ∆T + O2(v) rArr ρ0T0 (iωs + vxpartxS0) = λ(1r)partr (rpartr τ )

dS = (CpT )dT minus (αρ)dP rArr T0 s = Cp τ minus pρ0

dρ = minusραdT + ρχtdP rArr ρprime = minus(ρ0T0)τ + (γc20 )p

⋆ Conditions aux limites (tuyau drsquoaxe x et de rayon R) rArr ~v(x r = R) = 0 τ(x r = R) = 0

vx (x r) = i(ωρ0)dx p [1 minus Fν (r)]

τ(x r) = p(ρ0Cp) [1 minus Fκ(r)] minus 1(ρ0ω2)dx pdxT0 [1 minus (PrFν (r) minus Fκ(r))(Pr minus 1)]

ρprime = 1ω2

[1 minus (PrFν minus Fκ)(Pr minus 1)+] dxT0T0dx p + 1c20 [1 + (γ minus 1)Fκ] p

s = minusp(ρ0T0)Fκ minus Cp(ρ0ω2)dx pdxT0T0 [1 minus (PrFν minus Fκ)(Pr minus 1)]

Fνκ(r) =J0(kνκr)J0(kνκR)

kνκ = 1minusiδνκ

δν =q

2νω δκ =

q2κω

fνκ = 〈Fνκ〉 = 2kνκR

J1(kνκR)J0(kνκR)

0 05 1 15 20

02

04

06

08

1

(1minusFν)(1minusfν)

rR

R=100δν

R=10δν

R=δν

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 17 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le point de vue thermodynamique

⋆ Onde plane stationnaire dans un tuyau ldquolargerdquo

p(x) = Pmax cos (k0x)

ρprime = 1ω2

h

1 minus PrFνminusFκPrminus1 +

idxT0T0

dx p + 1c20

[1 + (γ minus 1)Fκ] p

δκ

d

R=10

d = δκ3 d = δκ d = 3δκ

P

P

P

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

dxT0 = 0 dxT0 = 0 dxT0 = 0dxT0 = minus220Km dxT0 = minus220Km dxT0 = minus220Km

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 18 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Sound amplification

⋆ From the knowledge of the acoustic variables it is possible to calculate thetime-average second order acoustic power produced (or absorbed) per unit volume w2

([w2 ] = Wmminus3)

w2 = partx(p lt vx gt)

⋆ After some calculations3

w2 = wκ + wν + wsw + wtw

wκ =1

2

(γ minus 1)ω

ρ0c2

0

image (fκ) |p|2

wν =1

2ωρ0

image(fν)

|1 minus fν |2|〈vx〉|

2

wsw = minusimage(h)dxT0

T0

1

2image (p〈vlowast

x 〉)

wtw = real(h)dx T0

T0

1

2real (p〈vlowast

x 〉)

h =fκ minus fν

(1 minus Pr)(1 minus fν)0 02 04 06 08 1 12 14 16 18 2

minus14

minus12

minus10

minus8

minus6

minus4

minus2

δκRh

minus04

minus02

0

02

04

06

08

1

real (h)

image (fν)

|1minusfν|2

image (h)image (fκ)

[3] A Tominaga Cryogenics 1995

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 19 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Heat transport by sound

⋆ From the knowledge of the acoustic variables it is also possible to calculate thethermoacoustic heat flux q2 ([q2 ] = Wmminus2)

q2 = ρ0T0(〈svx 〉) s =CpT0

τ minus 1

ρ0T0p

⋆ After some calculations

q2 = qsw + qtw + λacdxT0

qsw = minusimage(g)1

2image`p〈vlowast

x 〉acute

qtw = real(g)1

2real`p〈vlowast

x 〉acute

λac =ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2

g =f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 20 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Amplification of a standing wave

w2 = wκ + wν| z

losses

+

propminusimage(h)z|wsw +

propreal(h)z|wtw

| z production

h = (fκ minus fν )[(1 minus Pr)(1 minus fν)]δκ

Q Qrsquo

411

33

2

x

x

yz

CYLINDER

2Rh

x

yz

2Rh

2Rh

SQUARE

2ri

hR

R = 3 rh i

PINminusARRAY

⋆ In case of a standing wave one need δκ le Rh (stack) and always have |image(h)| lt 1=gt intrinsic irreversibility4due to the need of an imperfect thermal contact⋆ But in case of a travelling wave phasing we have |image(h)| asymp 1 if δκ ge Rh=gt a travelling wave phasing combined with a regenerator (δκ ge Rh) should be better

[4] J C Wheatley et al J Acoust Soc Am 1983

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 21 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

How to build an intrinsically reversible Thermoacoustic engine

w2 = wκ + wν| z

losses

+

propminusimage(h)z|

wsw +

propreal(h)z|

wtw| z

production

δκ

Qrsquo Q

1

213

3

1

2 34

4

Stirling Cycle

ρ1

p

=gt use a regenerator(δκ ge Rh) and a travelling wave phasing between p and vx

⋆ [CeperleyJASA1979]

regenerator

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does not singbecause wtw lt wν

⋆ [Yazaki et al PRL 1998]

stack

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does sing but employs a stack

⋆ [Backhaus et al Nature1999]

regenerator

=gt acoustic feedback loopbull local TW phasingbull Z gtgt ρ0c0 locallybull f ltlt c0L=gt does sing quite well

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 22 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

A Standing wave engine [Swift JASA 1992]

bull fluiddagger 138 bar Heliumbull frequency 120 Hzbull drive ratio pP0 6bull TH 1000 Kbull Wload 630 Wbull QH 7 kWbull η = 009 (013ηc )

A thermoacoustic-Stirling engine [Backhaus amp Swift Nature 1999]

bull fluiddagger 30 bar Heliumbull frequency 80 Hzbull drive ratio pP0 6-10bull TH 1000 Kbull Wload 710 Wbull QH 24 kWbull η = 03 (042ηc )

dagger Need a large γ low Pr and high P0 (in 1-bar air at 120 dBSPL Wac asymp 10minus2Wmminus2 )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 23 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

Advantages of θac engines (and heat pumps)

⋆ Simple easy to build =gt potential reliability low cost⋆ Working gas = pressurized inert gas =gt harmless environmental friendly⋆ No or not much moving parts =gt resists wear⋆ Decent efficiencies(currently up to 32 in thermo-acoustic conversion for engines 5 )with potential improvements

Limitations of θac engines (and heat pumps)

⋆ Moderate output powers =gt up to a few kilowatts⋆ decent efficiencies =gt to be improved⋆ A development which remains limited to a few researchlaboratories and start-up companies

Potential applications of θac engines (and heat pumps)

⋆ Waste heat recovery micro-cogeneration⋆ Thermoacoustically driven pulse-tube refrigeration(cryogeny liquefaction of natural gas in methane tankers )⋆ Domestic refrigeration electronics cooling

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

Sketch of a thermo-acousto-electric

generator Such kind of engine has

been demonstrated to achieve a glo-

bal efficiency of 18 6

[5] Tijani et al J Appl Phys 2011 [6] Backhaus et al Appl Phys Lett 2004

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 24 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 2: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 2 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 3 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Quelle thermoacoustique

Thermoacoustique = interaction thermiqueacoustique

rArr de quelle thermoacoustique parle-t-on ici

Tomographie thermoacoustique

Haut-parleurs thermoacoustiques

Effet piston

Instabiliteacutes de combustion

Machines thermoacoustiques (pompes agrave chaleur et moteurs thermoacoustiques)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 4 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Tomographie Thermoacoustique

Tomographie thermoacoustiqueMeacutethode drsquoimagerie meacutedicale baseacutee sur la reacuteponse de certainstissus agrave une impulsion EM

chauffage =gt deacutetente thermoeacutelastique =gt onde acoustique

Scheacutema de principe de la tomographie TA

Haut-parleurs thermoacoustiques

Effet piston

Instabiliteacutes de combustion

Machines thermoacoustique

Image 3D drsquoun rein drsquoagneauobtenu par tomographie TA

(CD) compareacutee agrave celleobtenue par IRM Drsquoapregraves [1]

[1] Kruger RA et al Radiology 216 279-283 2000

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 5 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Haut-parleur TA

Tomographie thermoacoustique

Haut-parleurs thermoacoustiqueschauffage fluctuant drsquoune surface solide

=gt rayonnement acoustique

Haut-parleur thermoacoustique Drsquoapregraves [1]

Effet piston Instabiliteacutes de combustion Machines thermoacoustiques

Reacuteponse en freacutequence drsquoun HP TADrsquoapregraves [1]

Ecouteurs thermoacoustiques Drsquoapregraves [2]

[1] Nyskacen et al Appl Phys Let 95 163102 2009 [2] US Patent n 8625822 Tsinghua University (Beijing)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 6 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Effet piston

Tomographie thermoacoustique Haut-parleurs thermoacoustiques

Effet pistonUn 4e mode de transport de la chaleur

Autour du point critique χ rarr infin et κ rarr 0Increacutement de chauffage localrArr expansion abrupte de la CL (effet piston)rArr compression adiabatique de la cellule amp ondes TArArr T uarr avec un temps caracteacuteristique τPE ≪ τκ

Instabiliteacutes de combustion Machines thermoacoustiques

Mesure des ondes TA dans du CO2 aupoint critique1

Reacuteponse ∆ρρ agrave un pulse de chauffage1

∆ρ(x t) au cours du chauffage1

[1] Y Miura et al Phys Rev E 74 010101 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 7 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Instabiliteacutes de combustion

Tomographie thermoacoustique Haut-parleurs thermoacoustiques Effet piston

Instabiliteacutes de combustionGeacuteneacuteration spontaneacutee drsquooscillations acoustiques reacutesul-tant drsquoune interaction complexe drsquoune flamme et drsquouneacutecoulement dans une chambre de combustion

Machines thermoacoustiques

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 8 85

videoscombustion_instabilitymp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Machines thermoacoustiques

Tomographie thermoacoustique Haut-parleurs thermoacoustiques Effet piston Instabiliteacutes de combustion

Machines thermoacoustiqueMachine thermique cyclique faisant usage drsquoun travailmeacutecanique de nature acoustique

Congeacutelateur thermoacoustique reacutealiseacute agrave lrsquouniversiteacute de Penn

State pour le glacier ben amp Jerryrsquos1

Machine TA tritherme (moteur+frigo) reacutea-

liseacute au Los Alamos National Laboratory2

[1] httpwwwacspsueduthermoacousticsrefrigerationbenandjerryshtm [2] G W Swift J J WollanGasTIPS Volume 8 Number 4 pages 21-26 (Fall 2002)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 9 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Machines thermoacoustiques

Elementary sources of sound emission unsteady heat release

The linearized equations of motion for an inviscid and non-heat-conducting idealgas

parttρprime + ρ0divv = Q(r t) Q mass addition

time

pulsating sphere

ρ0parttv + gradp = f(r t) f force

time

oscillating sphere

ρ0Cpparttτ minus parttp = q(r t) q Heat release

time

sphere with oscillating temperature

The resulting inhomogeneous wave equation (using p = RT0ρprime + Rρ0τ) is

∆p minus1

c2

0

part2

ttp = minuspartt q

T0Cp

minus ρ0parttQ + divf

Contrarily to Q and f q is difficult to derive in realistic cases because The heat conductivity of the gas should be considered Generally q = q (p v) which may lead to self-sustained oscillations(eg Rijke tube etc )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 10 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The Rayleigh criterium

The Rayleigh criterium (int

pqdt gt 0)

ldquo at the phase of greatest condensation heat is receivedby the air and at the phase of greatest rarefaction heat isgiven up from it and thus there is a tendency to maintainthe vibrations rdquo JW Strutt (Lord Rayleigh) laquo The theory ofsound raquo Dover New York 2nd edition sect 322i p 231 1945)

pq

TA Laser Rijke tube

Q in

Wout

T(x)

Q in

WoutWout

V0

wire

q = f (dxT p vx stack ) q = f (Twire vx V0 )

⋆ not acoustically compact ⋆ acoustically compact(q asymp q(t)δ(x minus xwire ))

⋆ amplification of the first mode ⋆ amplification of the first mode R

pqdt gt 0 =gt dxT lt 0R

pqdt gt 0 =gt xw lt L2

Common features⋆ Autonomous oscillators driven by heat (which both fill the ldquoRayleigh criteriumrdquo)⋆ Simple in terms of geometry but complicated operation above threshold

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 11 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TA Laser a prototypical example

Heat input =gt sound output (self-sustained acoustic oscillations at the frequency of themost unstable mode(s))

Keywords heat engine (prime-movers and heat pumps) autonomous oscillator Paradigmatic of the challenges that need to be taken up to understand more deeply the

processes controlling the operation of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 12 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Auto-oscillateur thermo-acoustique contexte et probleacutematique

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

⋆ Application drsquoun nablaT le long drsquoun mateacuteriau poreux placeacute dans un reacuteseau de guidedrsquoonde rArr auto-oscillations agrave la freacutequence du mode le plus instable

⋆ Geacuteomeacutetrie plusmn simple mais fonctionnement complexe au delagrave du seuil (pompage θac ldquovent acoustiquerdquo perte de charge singuliegravere propa NL )

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 13 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 14 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic principles

The TA Laser a conceptual very simplified approach

⋆ Simplistic description =gt Lagrangian approach follow a gas parcel submitted to a standingwave through a channel with an axial temperature gradient dxT0

δκ

ρ1

x

Hot Heat eXchanger (HHX) Cold Heat eXchanger (CHX)

Q Qrsquo

2 411

33

v

21 3 4 1τp

p 2

13

4

ξ max2

1 ~ adiabatic compression2 ~ isobaric expansion3 ~ adiabatic relaxation4 ~ isobaric contraction

=gt Work production if |dxT |ξmax gt τmax and dxT lt 0

⋆ But actual processes are actually more complex (heat exchange occurs continuously)⋆ A key point need of an imperfect thermal contact

=gtldquoefficientrdquo gas parcels should be at about δκ from the wall where δκ =p

2κωis the (frequency-dependent) thermal boundary layer thickness

⋆ Threshold of thermoacoustic instability (for a given mode)

=gt Sound amplification must be larger than losses

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 15 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Plane wave propagation through a viscous and heat-conducting gas along a ductsubmitted to a temperature gradient

⋆ Both the production of acoustic work and the ldquobucket briga-derdquo heat transport by sound along the duct are then described bysecond-order quantities

the ldquobucket brigaderdquo

xR

y

z

r

C T (x)s ss sρ λ pC T (x)ρ λ (x) (x)

θ

Main assumptions⋆ Low amplitudes ⋆ Typical wavelength raquo R ⋆ No mean flow

P(x r t) = P0 + p(x r t) =gt planes waves ⋆ ideal gasρ(x r t) = ρ0(x) + ρprime(x r t) p(x r t) = p(x t) ⋆ ρsCs ≫ ρ0Cp

T (x r t) = T0(x) + τ (x r t) =gtldquoboundary layer approximationrdquo ⋆ λs ≫ λv(x r t) ≪ c0 |partrζ| ≫ |partxζ|

S(x r t) = S0(x) + s(x r t) (ζ = p ρprime τ v s)[1] N Rott Adv Appl Mech 1980 [2] GW Swift J Acoust Soc Am 1988

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 16 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Equations fondamentales lineacuteariseacutees

ρdtV = minusnablaP + micronabla2V + (η + micro3)nabla (nablaV) rArr ρ0iωvx = minusdx p + micro(1r)partr (rpartr vx )

parttρ + nabla (ρV) = 0 rArr iωρprime + ρ0partx vx + vxdxρ0 = 0

ρTdtS = λ∆T + O2(v) rArr ρ0T0 (iωs + vxpartxS0) = λ(1r)partr (rpartr τ )

dS = (CpT )dT minus (αρ)dP rArr T0 s = Cp τ minus pρ0

dρ = minusραdT + ρχtdP rArr ρprime = minus(ρ0T0)τ + (γc20 )p

⋆ Conditions aux limites (tuyau drsquoaxe x et de rayon R) rArr ~v(x r = R) = 0 τ(x r = R) = 0

vx (x r) = i(ωρ0)dx p [1 minus Fν (r)]

τ(x r) = p(ρ0Cp) [1 minus Fκ(r)] minus 1(ρ0ω2)dx pdxT0 [1 minus (PrFν (r) minus Fκ(r))(Pr minus 1)]

ρprime = 1ω2

[1 minus (PrFν minus Fκ)(Pr minus 1)+] dxT0T0dx p + 1c20 [1 + (γ minus 1)Fκ] p

s = minusp(ρ0T0)Fκ minus Cp(ρ0ω2)dx pdxT0T0 [1 minus (PrFν minus Fκ)(Pr minus 1)]

Fνκ(r) =J0(kνκr)J0(kνκR)

kνκ = 1minusiδνκ

δν =q

2νω δκ =

q2κω

fνκ = 〈Fνκ〉 = 2kνκR

J1(kνκR)J0(kνκR)

0 05 1 15 20

02

04

06

08

1

(1minusFν)(1minusfν)

rR

R=100δν

R=10δν

R=δν

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 17 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le point de vue thermodynamique

⋆ Onde plane stationnaire dans un tuyau ldquolargerdquo

p(x) = Pmax cos (k0x)

ρprime = 1ω2

h

1 minus PrFνminusFκPrminus1 +

idxT0T0

dx p + 1c20

[1 + (γ minus 1)Fκ] p

δκ

d

R=10

d = δκ3 d = δκ d = 3δκ

P

P

P

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

dxT0 = 0 dxT0 = 0 dxT0 = 0dxT0 = minus220Km dxT0 = minus220Km dxT0 = minus220Km

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 18 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Sound amplification

⋆ From the knowledge of the acoustic variables it is possible to calculate thetime-average second order acoustic power produced (or absorbed) per unit volume w2

([w2 ] = Wmminus3)

w2 = partx(p lt vx gt)

⋆ After some calculations3

w2 = wκ + wν + wsw + wtw

wκ =1

2

(γ minus 1)ω

ρ0c2

0

image (fκ) |p|2

wν =1

2ωρ0

image(fν)

|1 minus fν |2|〈vx〉|

2

wsw = minusimage(h)dxT0

T0

1

2image (p〈vlowast

x 〉)

wtw = real(h)dx T0

T0

1

2real (p〈vlowast

x 〉)

h =fκ minus fν

(1 minus Pr)(1 minus fν)0 02 04 06 08 1 12 14 16 18 2

minus14

minus12

minus10

minus8

minus6

minus4

minus2

δκRh

minus04

minus02

0

02

04

06

08

1

real (h)

image (fν)

|1minusfν|2

image (h)image (fκ)

[3] A Tominaga Cryogenics 1995

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 19 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Heat transport by sound

⋆ From the knowledge of the acoustic variables it is also possible to calculate thethermoacoustic heat flux q2 ([q2 ] = Wmminus2)

q2 = ρ0T0(〈svx 〉) s =CpT0

τ minus 1

ρ0T0p

⋆ After some calculations

q2 = qsw + qtw + λacdxT0

qsw = minusimage(g)1

2image`p〈vlowast

x 〉acute

qtw = real(g)1

2real`p〈vlowast

x 〉acute

λac =ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2

g =f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 20 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Amplification of a standing wave

w2 = wκ + wν| z

losses

+

propminusimage(h)z|wsw +

propreal(h)z|wtw

| z production

h = (fκ minus fν )[(1 minus Pr)(1 minus fν)]δκ

Q Qrsquo

411

33

2

x

x

yz

CYLINDER

2Rh

x

yz

2Rh

2Rh

SQUARE

2ri

hR

R = 3 rh i

PINminusARRAY

⋆ In case of a standing wave one need δκ le Rh (stack) and always have |image(h)| lt 1=gt intrinsic irreversibility4due to the need of an imperfect thermal contact⋆ But in case of a travelling wave phasing we have |image(h)| asymp 1 if δκ ge Rh=gt a travelling wave phasing combined with a regenerator (δκ ge Rh) should be better

[4] J C Wheatley et al J Acoust Soc Am 1983

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 21 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

How to build an intrinsically reversible Thermoacoustic engine

w2 = wκ + wν| z

losses

+

propminusimage(h)z|

wsw +

propreal(h)z|

wtw| z

production

δκ

Qrsquo Q

1

213

3

1

2 34

4

Stirling Cycle

ρ1

p

=gt use a regenerator(δκ ge Rh) and a travelling wave phasing between p and vx

⋆ [CeperleyJASA1979]

regenerator

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does not singbecause wtw lt wν

⋆ [Yazaki et al PRL 1998]

stack

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does sing but employs a stack

⋆ [Backhaus et al Nature1999]

regenerator

=gt acoustic feedback loopbull local TW phasingbull Z gtgt ρ0c0 locallybull f ltlt c0L=gt does sing quite well

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 22 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

A Standing wave engine [Swift JASA 1992]

bull fluiddagger 138 bar Heliumbull frequency 120 Hzbull drive ratio pP0 6bull TH 1000 Kbull Wload 630 Wbull QH 7 kWbull η = 009 (013ηc )

A thermoacoustic-Stirling engine [Backhaus amp Swift Nature 1999]

bull fluiddagger 30 bar Heliumbull frequency 80 Hzbull drive ratio pP0 6-10bull TH 1000 Kbull Wload 710 Wbull QH 24 kWbull η = 03 (042ηc )

dagger Need a large γ low Pr and high P0 (in 1-bar air at 120 dBSPL Wac asymp 10minus2Wmminus2 )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 23 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

Advantages of θac engines (and heat pumps)

⋆ Simple easy to build =gt potential reliability low cost⋆ Working gas = pressurized inert gas =gt harmless environmental friendly⋆ No or not much moving parts =gt resists wear⋆ Decent efficiencies(currently up to 32 in thermo-acoustic conversion for engines 5 )with potential improvements

Limitations of θac engines (and heat pumps)

⋆ Moderate output powers =gt up to a few kilowatts⋆ decent efficiencies =gt to be improved⋆ A development which remains limited to a few researchlaboratories and start-up companies

Potential applications of θac engines (and heat pumps)

⋆ Waste heat recovery micro-cogeneration⋆ Thermoacoustically driven pulse-tube refrigeration(cryogeny liquefaction of natural gas in methane tankers )⋆ Domestic refrigeration electronics cooling

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

Sketch of a thermo-acousto-electric

generator Such kind of engine has

been demonstrated to achieve a glo-

bal efficiency of 18 6

[5] Tijani et al J Appl Phys 2011 [6] Backhaus et al Appl Phys Lett 2004

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 24 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 3: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 3 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Quelle thermoacoustique

Thermoacoustique = interaction thermiqueacoustique

rArr de quelle thermoacoustique parle-t-on ici

Tomographie thermoacoustique

Haut-parleurs thermoacoustiques

Effet piston

Instabiliteacutes de combustion

Machines thermoacoustiques (pompes agrave chaleur et moteurs thermoacoustiques)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 4 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Tomographie Thermoacoustique

Tomographie thermoacoustiqueMeacutethode drsquoimagerie meacutedicale baseacutee sur la reacuteponse de certainstissus agrave une impulsion EM

chauffage =gt deacutetente thermoeacutelastique =gt onde acoustique

Scheacutema de principe de la tomographie TA

Haut-parleurs thermoacoustiques

Effet piston

Instabiliteacutes de combustion

Machines thermoacoustique

Image 3D drsquoun rein drsquoagneauobtenu par tomographie TA

(CD) compareacutee agrave celleobtenue par IRM Drsquoapregraves [1]

[1] Kruger RA et al Radiology 216 279-283 2000

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 5 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Haut-parleur TA

Tomographie thermoacoustique

Haut-parleurs thermoacoustiqueschauffage fluctuant drsquoune surface solide

=gt rayonnement acoustique

Haut-parleur thermoacoustique Drsquoapregraves [1]

Effet piston Instabiliteacutes de combustion Machines thermoacoustiques

Reacuteponse en freacutequence drsquoun HP TADrsquoapregraves [1]

Ecouteurs thermoacoustiques Drsquoapregraves [2]

[1] Nyskacen et al Appl Phys Let 95 163102 2009 [2] US Patent n 8625822 Tsinghua University (Beijing)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 6 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Effet piston

Tomographie thermoacoustique Haut-parleurs thermoacoustiques

Effet pistonUn 4e mode de transport de la chaleur

Autour du point critique χ rarr infin et κ rarr 0Increacutement de chauffage localrArr expansion abrupte de la CL (effet piston)rArr compression adiabatique de la cellule amp ondes TArArr T uarr avec un temps caracteacuteristique τPE ≪ τκ

Instabiliteacutes de combustion Machines thermoacoustiques

Mesure des ondes TA dans du CO2 aupoint critique1

Reacuteponse ∆ρρ agrave un pulse de chauffage1

∆ρ(x t) au cours du chauffage1

[1] Y Miura et al Phys Rev E 74 010101 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 7 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Instabiliteacutes de combustion

Tomographie thermoacoustique Haut-parleurs thermoacoustiques Effet piston

Instabiliteacutes de combustionGeacuteneacuteration spontaneacutee drsquooscillations acoustiques reacutesul-tant drsquoune interaction complexe drsquoune flamme et drsquouneacutecoulement dans une chambre de combustion

Machines thermoacoustiques

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 8 85

videoscombustion_instabilitymp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Machines thermoacoustiques

Tomographie thermoacoustique Haut-parleurs thermoacoustiques Effet piston Instabiliteacutes de combustion

Machines thermoacoustiqueMachine thermique cyclique faisant usage drsquoun travailmeacutecanique de nature acoustique

Congeacutelateur thermoacoustique reacutealiseacute agrave lrsquouniversiteacute de Penn

State pour le glacier ben amp Jerryrsquos1

Machine TA tritherme (moteur+frigo) reacutea-

liseacute au Los Alamos National Laboratory2

[1] httpwwwacspsueduthermoacousticsrefrigerationbenandjerryshtm [2] G W Swift J J WollanGasTIPS Volume 8 Number 4 pages 21-26 (Fall 2002)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 9 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Machines thermoacoustiques

Elementary sources of sound emission unsteady heat release

The linearized equations of motion for an inviscid and non-heat-conducting idealgas

parttρprime + ρ0divv = Q(r t) Q mass addition

time

pulsating sphere

ρ0parttv + gradp = f(r t) f force

time

oscillating sphere

ρ0Cpparttτ minus parttp = q(r t) q Heat release

time

sphere with oscillating temperature

The resulting inhomogeneous wave equation (using p = RT0ρprime + Rρ0τ) is

∆p minus1

c2

0

part2

ttp = minuspartt q

T0Cp

minus ρ0parttQ + divf

Contrarily to Q and f q is difficult to derive in realistic cases because The heat conductivity of the gas should be considered Generally q = q (p v) which may lead to self-sustained oscillations(eg Rijke tube etc )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 10 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The Rayleigh criterium

The Rayleigh criterium (int

pqdt gt 0)

ldquo at the phase of greatest condensation heat is receivedby the air and at the phase of greatest rarefaction heat isgiven up from it and thus there is a tendency to maintainthe vibrations rdquo JW Strutt (Lord Rayleigh) laquo The theory ofsound raquo Dover New York 2nd edition sect 322i p 231 1945)

pq

TA Laser Rijke tube

Q in

Wout

T(x)

Q in

WoutWout

V0

wire

q = f (dxT p vx stack ) q = f (Twire vx V0 )

⋆ not acoustically compact ⋆ acoustically compact(q asymp q(t)δ(x minus xwire ))

⋆ amplification of the first mode ⋆ amplification of the first mode R

pqdt gt 0 =gt dxT lt 0R

pqdt gt 0 =gt xw lt L2

Common features⋆ Autonomous oscillators driven by heat (which both fill the ldquoRayleigh criteriumrdquo)⋆ Simple in terms of geometry but complicated operation above threshold

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 11 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TA Laser a prototypical example

Heat input =gt sound output (self-sustained acoustic oscillations at the frequency of themost unstable mode(s))

Keywords heat engine (prime-movers and heat pumps) autonomous oscillator Paradigmatic of the challenges that need to be taken up to understand more deeply the

processes controlling the operation of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 12 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Auto-oscillateur thermo-acoustique contexte et probleacutematique

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

⋆ Application drsquoun nablaT le long drsquoun mateacuteriau poreux placeacute dans un reacuteseau de guidedrsquoonde rArr auto-oscillations agrave la freacutequence du mode le plus instable

⋆ Geacuteomeacutetrie plusmn simple mais fonctionnement complexe au delagrave du seuil (pompage θac ldquovent acoustiquerdquo perte de charge singuliegravere propa NL )

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 13 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 14 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic principles

The TA Laser a conceptual very simplified approach

⋆ Simplistic description =gt Lagrangian approach follow a gas parcel submitted to a standingwave through a channel with an axial temperature gradient dxT0

δκ

ρ1

x

Hot Heat eXchanger (HHX) Cold Heat eXchanger (CHX)

Q Qrsquo

2 411

33

v

21 3 4 1τp

p 2

13

4

ξ max2

1 ~ adiabatic compression2 ~ isobaric expansion3 ~ adiabatic relaxation4 ~ isobaric contraction

=gt Work production if |dxT |ξmax gt τmax and dxT lt 0

⋆ But actual processes are actually more complex (heat exchange occurs continuously)⋆ A key point need of an imperfect thermal contact

=gtldquoefficientrdquo gas parcels should be at about δκ from the wall where δκ =p

2κωis the (frequency-dependent) thermal boundary layer thickness

⋆ Threshold of thermoacoustic instability (for a given mode)

=gt Sound amplification must be larger than losses

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 15 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Plane wave propagation through a viscous and heat-conducting gas along a ductsubmitted to a temperature gradient

⋆ Both the production of acoustic work and the ldquobucket briga-derdquo heat transport by sound along the duct are then described bysecond-order quantities

the ldquobucket brigaderdquo

xR

y

z

r

C T (x)s ss sρ λ pC T (x)ρ λ (x) (x)

θ

Main assumptions⋆ Low amplitudes ⋆ Typical wavelength raquo R ⋆ No mean flow

P(x r t) = P0 + p(x r t) =gt planes waves ⋆ ideal gasρ(x r t) = ρ0(x) + ρprime(x r t) p(x r t) = p(x t) ⋆ ρsCs ≫ ρ0Cp

T (x r t) = T0(x) + τ (x r t) =gtldquoboundary layer approximationrdquo ⋆ λs ≫ λv(x r t) ≪ c0 |partrζ| ≫ |partxζ|

S(x r t) = S0(x) + s(x r t) (ζ = p ρprime τ v s)[1] N Rott Adv Appl Mech 1980 [2] GW Swift J Acoust Soc Am 1988

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 16 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Equations fondamentales lineacuteariseacutees

ρdtV = minusnablaP + micronabla2V + (η + micro3)nabla (nablaV) rArr ρ0iωvx = minusdx p + micro(1r)partr (rpartr vx )

parttρ + nabla (ρV) = 0 rArr iωρprime + ρ0partx vx + vxdxρ0 = 0

ρTdtS = λ∆T + O2(v) rArr ρ0T0 (iωs + vxpartxS0) = λ(1r)partr (rpartr τ )

dS = (CpT )dT minus (αρ)dP rArr T0 s = Cp τ minus pρ0

dρ = minusραdT + ρχtdP rArr ρprime = minus(ρ0T0)τ + (γc20 )p

⋆ Conditions aux limites (tuyau drsquoaxe x et de rayon R) rArr ~v(x r = R) = 0 τ(x r = R) = 0

vx (x r) = i(ωρ0)dx p [1 minus Fν (r)]

τ(x r) = p(ρ0Cp) [1 minus Fκ(r)] minus 1(ρ0ω2)dx pdxT0 [1 minus (PrFν (r) minus Fκ(r))(Pr minus 1)]

ρprime = 1ω2

[1 minus (PrFν minus Fκ)(Pr minus 1)+] dxT0T0dx p + 1c20 [1 + (γ minus 1)Fκ] p

s = minusp(ρ0T0)Fκ minus Cp(ρ0ω2)dx pdxT0T0 [1 minus (PrFν minus Fκ)(Pr minus 1)]

Fνκ(r) =J0(kνκr)J0(kνκR)

kνκ = 1minusiδνκ

δν =q

2νω δκ =

q2κω

fνκ = 〈Fνκ〉 = 2kνκR

J1(kνκR)J0(kνκR)

0 05 1 15 20

02

04

06

08

1

(1minusFν)(1minusfν)

rR

R=100δν

R=10δν

R=δν

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 17 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le point de vue thermodynamique

⋆ Onde plane stationnaire dans un tuyau ldquolargerdquo

p(x) = Pmax cos (k0x)

ρprime = 1ω2

h

1 minus PrFνminusFκPrminus1 +

idxT0T0

dx p + 1c20

[1 + (γ minus 1)Fκ] p

δκ

d

R=10

d = δκ3 d = δκ d = 3δκ

P

P

P

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

dxT0 = 0 dxT0 = 0 dxT0 = 0dxT0 = minus220Km dxT0 = minus220Km dxT0 = minus220Km

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 18 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Sound amplification

⋆ From the knowledge of the acoustic variables it is possible to calculate thetime-average second order acoustic power produced (or absorbed) per unit volume w2

([w2 ] = Wmminus3)

w2 = partx(p lt vx gt)

⋆ After some calculations3

w2 = wκ + wν + wsw + wtw

wκ =1

2

(γ minus 1)ω

ρ0c2

0

image (fκ) |p|2

wν =1

2ωρ0

image(fν)

|1 minus fν |2|〈vx〉|

2

wsw = minusimage(h)dxT0

T0

1

2image (p〈vlowast

x 〉)

wtw = real(h)dx T0

T0

1

2real (p〈vlowast

x 〉)

h =fκ minus fν

(1 minus Pr)(1 minus fν)0 02 04 06 08 1 12 14 16 18 2

minus14

minus12

minus10

minus8

minus6

minus4

minus2

δκRh

minus04

minus02

0

02

04

06

08

1

real (h)

image (fν)

|1minusfν|2

image (h)image (fκ)

[3] A Tominaga Cryogenics 1995

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 19 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Heat transport by sound

⋆ From the knowledge of the acoustic variables it is also possible to calculate thethermoacoustic heat flux q2 ([q2 ] = Wmminus2)

q2 = ρ0T0(〈svx 〉) s =CpT0

τ minus 1

ρ0T0p

⋆ After some calculations

q2 = qsw + qtw + λacdxT0

qsw = minusimage(g)1

2image`p〈vlowast

x 〉acute

qtw = real(g)1

2real`p〈vlowast

x 〉acute

λac =ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2

g =f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 20 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Amplification of a standing wave

w2 = wκ + wν| z

losses

+

propminusimage(h)z|wsw +

propreal(h)z|wtw

| z production

h = (fκ minus fν )[(1 minus Pr)(1 minus fν)]δκ

Q Qrsquo

411

33

2

x

x

yz

CYLINDER

2Rh

x

yz

2Rh

2Rh

SQUARE

2ri

hR

R = 3 rh i

PINminusARRAY

⋆ In case of a standing wave one need δκ le Rh (stack) and always have |image(h)| lt 1=gt intrinsic irreversibility4due to the need of an imperfect thermal contact⋆ But in case of a travelling wave phasing we have |image(h)| asymp 1 if δκ ge Rh=gt a travelling wave phasing combined with a regenerator (δκ ge Rh) should be better

[4] J C Wheatley et al J Acoust Soc Am 1983

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 21 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

How to build an intrinsically reversible Thermoacoustic engine

w2 = wκ + wν| z

losses

+

propminusimage(h)z|

wsw +

propreal(h)z|

wtw| z

production

δκ

Qrsquo Q

1

213

3

1

2 34

4

Stirling Cycle

ρ1

p

=gt use a regenerator(δκ ge Rh) and a travelling wave phasing between p and vx

⋆ [CeperleyJASA1979]

regenerator

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does not singbecause wtw lt wν

⋆ [Yazaki et al PRL 1998]

stack

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does sing but employs a stack

⋆ [Backhaus et al Nature1999]

regenerator

=gt acoustic feedback loopbull local TW phasingbull Z gtgt ρ0c0 locallybull f ltlt c0L=gt does sing quite well

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 22 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

A Standing wave engine [Swift JASA 1992]

bull fluiddagger 138 bar Heliumbull frequency 120 Hzbull drive ratio pP0 6bull TH 1000 Kbull Wload 630 Wbull QH 7 kWbull η = 009 (013ηc )

A thermoacoustic-Stirling engine [Backhaus amp Swift Nature 1999]

bull fluiddagger 30 bar Heliumbull frequency 80 Hzbull drive ratio pP0 6-10bull TH 1000 Kbull Wload 710 Wbull QH 24 kWbull η = 03 (042ηc )

dagger Need a large γ low Pr and high P0 (in 1-bar air at 120 dBSPL Wac asymp 10minus2Wmminus2 )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 23 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

Advantages of θac engines (and heat pumps)

⋆ Simple easy to build =gt potential reliability low cost⋆ Working gas = pressurized inert gas =gt harmless environmental friendly⋆ No or not much moving parts =gt resists wear⋆ Decent efficiencies(currently up to 32 in thermo-acoustic conversion for engines 5 )with potential improvements

Limitations of θac engines (and heat pumps)

⋆ Moderate output powers =gt up to a few kilowatts⋆ decent efficiencies =gt to be improved⋆ A development which remains limited to a few researchlaboratories and start-up companies

Potential applications of θac engines (and heat pumps)

⋆ Waste heat recovery micro-cogeneration⋆ Thermoacoustically driven pulse-tube refrigeration(cryogeny liquefaction of natural gas in methane tankers )⋆ Domestic refrigeration electronics cooling

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

Sketch of a thermo-acousto-electric

generator Such kind of engine has

been demonstrated to achieve a glo-

bal efficiency of 18 6

[5] Tijani et al J Appl Phys 2011 [6] Backhaus et al Appl Phys Lett 2004

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 24 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 4: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Quelle thermoacoustique

Thermoacoustique = interaction thermiqueacoustique

rArr de quelle thermoacoustique parle-t-on ici

Tomographie thermoacoustique

Haut-parleurs thermoacoustiques

Effet piston

Instabiliteacutes de combustion

Machines thermoacoustiques (pompes agrave chaleur et moteurs thermoacoustiques)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 4 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Tomographie Thermoacoustique

Tomographie thermoacoustiqueMeacutethode drsquoimagerie meacutedicale baseacutee sur la reacuteponse de certainstissus agrave une impulsion EM

chauffage =gt deacutetente thermoeacutelastique =gt onde acoustique

Scheacutema de principe de la tomographie TA

Haut-parleurs thermoacoustiques

Effet piston

Instabiliteacutes de combustion

Machines thermoacoustique

Image 3D drsquoun rein drsquoagneauobtenu par tomographie TA

(CD) compareacutee agrave celleobtenue par IRM Drsquoapregraves [1]

[1] Kruger RA et al Radiology 216 279-283 2000

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 5 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Haut-parleur TA

Tomographie thermoacoustique

Haut-parleurs thermoacoustiqueschauffage fluctuant drsquoune surface solide

=gt rayonnement acoustique

Haut-parleur thermoacoustique Drsquoapregraves [1]

Effet piston Instabiliteacutes de combustion Machines thermoacoustiques

Reacuteponse en freacutequence drsquoun HP TADrsquoapregraves [1]

Ecouteurs thermoacoustiques Drsquoapregraves [2]

[1] Nyskacen et al Appl Phys Let 95 163102 2009 [2] US Patent n 8625822 Tsinghua University (Beijing)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 6 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Effet piston

Tomographie thermoacoustique Haut-parleurs thermoacoustiques

Effet pistonUn 4e mode de transport de la chaleur

Autour du point critique χ rarr infin et κ rarr 0Increacutement de chauffage localrArr expansion abrupte de la CL (effet piston)rArr compression adiabatique de la cellule amp ondes TArArr T uarr avec un temps caracteacuteristique τPE ≪ τκ

Instabiliteacutes de combustion Machines thermoacoustiques

Mesure des ondes TA dans du CO2 aupoint critique1

Reacuteponse ∆ρρ agrave un pulse de chauffage1

∆ρ(x t) au cours du chauffage1

[1] Y Miura et al Phys Rev E 74 010101 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 7 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Instabiliteacutes de combustion

Tomographie thermoacoustique Haut-parleurs thermoacoustiques Effet piston

Instabiliteacutes de combustionGeacuteneacuteration spontaneacutee drsquooscillations acoustiques reacutesul-tant drsquoune interaction complexe drsquoune flamme et drsquouneacutecoulement dans une chambre de combustion

Machines thermoacoustiques

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 8 85

videoscombustion_instabilitymp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Machines thermoacoustiques

Tomographie thermoacoustique Haut-parleurs thermoacoustiques Effet piston Instabiliteacutes de combustion

Machines thermoacoustiqueMachine thermique cyclique faisant usage drsquoun travailmeacutecanique de nature acoustique

Congeacutelateur thermoacoustique reacutealiseacute agrave lrsquouniversiteacute de Penn

State pour le glacier ben amp Jerryrsquos1

Machine TA tritherme (moteur+frigo) reacutea-

liseacute au Los Alamos National Laboratory2

[1] httpwwwacspsueduthermoacousticsrefrigerationbenandjerryshtm [2] G W Swift J J WollanGasTIPS Volume 8 Number 4 pages 21-26 (Fall 2002)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 9 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Machines thermoacoustiques

Elementary sources of sound emission unsteady heat release

The linearized equations of motion for an inviscid and non-heat-conducting idealgas

parttρprime + ρ0divv = Q(r t) Q mass addition

time

pulsating sphere

ρ0parttv + gradp = f(r t) f force

time

oscillating sphere

ρ0Cpparttτ minus parttp = q(r t) q Heat release

time

sphere with oscillating temperature

The resulting inhomogeneous wave equation (using p = RT0ρprime + Rρ0τ) is

∆p minus1

c2

0

part2

ttp = minuspartt q

T0Cp

minus ρ0parttQ + divf

Contrarily to Q and f q is difficult to derive in realistic cases because The heat conductivity of the gas should be considered Generally q = q (p v) which may lead to self-sustained oscillations(eg Rijke tube etc )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 10 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The Rayleigh criterium

The Rayleigh criterium (int

pqdt gt 0)

ldquo at the phase of greatest condensation heat is receivedby the air and at the phase of greatest rarefaction heat isgiven up from it and thus there is a tendency to maintainthe vibrations rdquo JW Strutt (Lord Rayleigh) laquo The theory ofsound raquo Dover New York 2nd edition sect 322i p 231 1945)

pq

TA Laser Rijke tube

Q in

Wout

T(x)

Q in

WoutWout

V0

wire

q = f (dxT p vx stack ) q = f (Twire vx V0 )

⋆ not acoustically compact ⋆ acoustically compact(q asymp q(t)δ(x minus xwire ))

⋆ amplification of the first mode ⋆ amplification of the first mode R

pqdt gt 0 =gt dxT lt 0R

pqdt gt 0 =gt xw lt L2

Common features⋆ Autonomous oscillators driven by heat (which both fill the ldquoRayleigh criteriumrdquo)⋆ Simple in terms of geometry but complicated operation above threshold

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 11 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TA Laser a prototypical example

Heat input =gt sound output (self-sustained acoustic oscillations at the frequency of themost unstable mode(s))

Keywords heat engine (prime-movers and heat pumps) autonomous oscillator Paradigmatic of the challenges that need to be taken up to understand more deeply the

processes controlling the operation of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 12 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Auto-oscillateur thermo-acoustique contexte et probleacutematique

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

⋆ Application drsquoun nablaT le long drsquoun mateacuteriau poreux placeacute dans un reacuteseau de guidedrsquoonde rArr auto-oscillations agrave la freacutequence du mode le plus instable

⋆ Geacuteomeacutetrie plusmn simple mais fonctionnement complexe au delagrave du seuil (pompage θac ldquovent acoustiquerdquo perte de charge singuliegravere propa NL )

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 13 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 14 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic principles

The TA Laser a conceptual very simplified approach

⋆ Simplistic description =gt Lagrangian approach follow a gas parcel submitted to a standingwave through a channel with an axial temperature gradient dxT0

δκ

ρ1

x

Hot Heat eXchanger (HHX) Cold Heat eXchanger (CHX)

Q Qrsquo

2 411

33

v

21 3 4 1τp

p 2

13

4

ξ max2

1 ~ adiabatic compression2 ~ isobaric expansion3 ~ adiabatic relaxation4 ~ isobaric contraction

=gt Work production if |dxT |ξmax gt τmax and dxT lt 0

⋆ But actual processes are actually more complex (heat exchange occurs continuously)⋆ A key point need of an imperfect thermal contact

=gtldquoefficientrdquo gas parcels should be at about δκ from the wall where δκ =p

2κωis the (frequency-dependent) thermal boundary layer thickness

⋆ Threshold of thermoacoustic instability (for a given mode)

=gt Sound amplification must be larger than losses

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 15 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Plane wave propagation through a viscous and heat-conducting gas along a ductsubmitted to a temperature gradient

⋆ Both the production of acoustic work and the ldquobucket briga-derdquo heat transport by sound along the duct are then described bysecond-order quantities

the ldquobucket brigaderdquo

xR

y

z

r

C T (x)s ss sρ λ pC T (x)ρ λ (x) (x)

θ

Main assumptions⋆ Low amplitudes ⋆ Typical wavelength raquo R ⋆ No mean flow

P(x r t) = P0 + p(x r t) =gt planes waves ⋆ ideal gasρ(x r t) = ρ0(x) + ρprime(x r t) p(x r t) = p(x t) ⋆ ρsCs ≫ ρ0Cp

T (x r t) = T0(x) + τ (x r t) =gtldquoboundary layer approximationrdquo ⋆ λs ≫ λv(x r t) ≪ c0 |partrζ| ≫ |partxζ|

S(x r t) = S0(x) + s(x r t) (ζ = p ρprime τ v s)[1] N Rott Adv Appl Mech 1980 [2] GW Swift J Acoust Soc Am 1988

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 16 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Equations fondamentales lineacuteariseacutees

ρdtV = minusnablaP + micronabla2V + (η + micro3)nabla (nablaV) rArr ρ0iωvx = minusdx p + micro(1r)partr (rpartr vx )

parttρ + nabla (ρV) = 0 rArr iωρprime + ρ0partx vx + vxdxρ0 = 0

ρTdtS = λ∆T + O2(v) rArr ρ0T0 (iωs + vxpartxS0) = λ(1r)partr (rpartr τ )

dS = (CpT )dT minus (αρ)dP rArr T0 s = Cp τ minus pρ0

dρ = minusραdT + ρχtdP rArr ρprime = minus(ρ0T0)τ + (γc20 )p

⋆ Conditions aux limites (tuyau drsquoaxe x et de rayon R) rArr ~v(x r = R) = 0 τ(x r = R) = 0

vx (x r) = i(ωρ0)dx p [1 minus Fν (r)]

τ(x r) = p(ρ0Cp) [1 minus Fκ(r)] minus 1(ρ0ω2)dx pdxT0 [1 minus (PrFν (r) minus Fκ(r))(Pr minus 1)]

ρprime = 1ω2

[1 minus (PrFν minus Fκ)(Pr minus 1)+] dxT0T0dx p + 1c20 [1 + (γ minus 1)Fκ] p

s = minusp(ρ0T0)Fκ minus Cp(ρ0ω2)dx pdxT0T0 [1 minus (PrFν minus Fκ)(Pr minus 1)]

Fνκ(r) =J0(kνκr)J0(kνκR)

kνκ = 1minusiδνκ

δν =q

2νω δκ =

q2κω

fνκ = 〈Fνκ〉 = 2kνκR

J1(kνκR)J0(kνκR)

0 05 1 15 20

02

04

06

08

1

(1minusFν)(1minusfν)

rR

R=100δν

R=10δν

R=δν

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 17 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le point de vue thermodynamique

⋆ Onde plane stationnaire dans un tuyau ldquolargerdquo

p(x) = Pmax cos (k0x)

ρprime = 1ω2

h

1 minus PrFνminusFκPrminus1 +

idxT0T0

dx p + 1c20

[1 + (γ minus 1)Fκ] p

δκ

d

R=10

d = δκ3 d = δκ d = 3δκ

P

P

P

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

dxT0 = 0 dxT0 = 0 dxT0 = 0dxT0 = minus220Km dxT0 = minus220Km dxT0 = minus220Km

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 18 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Sound amplification

⋆ From the knowledge of the acoustic variables it is possible to calculate thetime-average second order acoustic power produced (or absorbed) per unit volume w2

([w2 ] = Wmminus3)

w2 = partx(p lt vx gt)

⋆ After some calculations3

w2 = wκ + wν + wsw + wtw

wκ =1

2

(γ minus 1)ω

ρ0c2

0

image (fκ) |p|2

wν =1

2ωρ0

image(fν)

|1 minus fν |2|〈vx〉|

2

wsw = minusimage(h)dxT0

T0

1

2image (p〈vlowast

x 〉)

wtw = real(h)dx T0

T0

1

2real (p〈vlowast

x 〉)

h =fκ minus fν

(1 minus Pr)(1 minus fν)0 02 04 06 08 1 12 14 16 18 2

minus14

minus12

minus10

minus8

minus6

minus4

minus2

δκRh

minus04

minus02

0

02

04

06

08

1

real (h)

image (fν)

|1minusfν|2

image (h)image (fκ)

[3] A Tominaga Cryogenics 1995

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 19 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Heat transport by sound

⋆ From the knowledge of the acoustic variables it is also possible to calculate thethermoacoustic heat flux q2 ([q2 ] = Wmminus2)

q2 = ρ0T0(〈svx 〉) s =CpT0

τ minus 1

ρ0T0p

⋆ After some calculations

q2 = qsw + qtw + λacdxT0

qsw = minusimage(g)1

2image`p〈vlowast

x 〉acute

qtw = real(g)1

2real`p〈vlowast

x 〉acute

λac =ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2

g =f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 20 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Amplification of a standing wave

w2 = wκ + wν| z

losses

+

propminusimage(h)z|wsw +

propreal(h)z|wtw

| z production

h = (fκ minus fν )[(1 minus Pr)(1 minus fν)]δκ

Q Qrsquo

411

33

2

x

x

yz

CYLINDER

2Rh

x

yz

2Rh

2Rh

SQUARE

2ri

hR

R = 3 rh i

PINminusARRAY

⋆ In case of a standing wave one need δκ le Rh (stack) and always have |image(h)| lt 1=gt intrinsic irreversibility4due to the need of an imperfect thermal contact⋆ But in case of a travelling wave phasing we have |image(h)| asymp 1 if δκ ge Rh=gt a travelling wave phasing combined with a regenerator (δκ ge Rh) should be better

[4] J C Wheatley et al J Acoust Soc Am 1983

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 21 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

How to build an intrinsically reversible Thermoacoustic engine

w2 = wκ + wν| z

losses

+

propminusimage(h)z|

wsw +

propreal(h)z|

wtw| z

production

δκ

Qrsquo Q

1

213

3

1

2 34

4

Stirling Cycle

ρ1

p

=gt use a regenerator(δκ ge Rh) and a travelling wave phasing between p and vx

⋆ [CeperleyJASA1979]

regenerator

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does not singbecause wtw lt wν

⋆ [Yazaki et al PRL 1998]

stack

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does sing but employs a stack

⋆ [Backhaus et al Nature1999]

regenerator

=gt acoustic feedback loopbull local TW phasingbull Z gtgt ρ0c0 locallybull f ltlt c0L=gt does sing quite well

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 22 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

A Standing wave engine [Swift JASA 1992]

bull fluiddagger 138 bar Heliumbull frequency 120 Hzbull drive ratio pP0 6bull TH 1000 Kbull Wload 630 Wbull QH 7 kWbull η = 009 (013ηc )

A thermoacoustic-Stirling engine [Backhaus amp Swift Nature 1999]

bull fluiddagger 30 bar Heliumbull frequency 80 Hzbull drive ratio pP0 6-10bull TH 1000 Kbull Wload 710 Wbull QH 24 kWbull η = 03 (042ηc )

dagger Need a large γ low Pr and high P0 (in 1-bar air at 120 dBSPL Wac asymp 10minus2Wmminus2 )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 23 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

Advantages of θac engines (and heat pumps)

⋆ Simple easy to build =gt potential reliability low cost⋆ Working gas = pressurized inert gas =gt harmless environmental friendly⋆ No or not much moving parts =gt resists wear⋆ Decent efficiencies(currently up to 32 in thermo-acoustic conversion for engines 5 )with potential improvements

Limitations of θac engines (and heat pumps)

⋆ Moderate output powers =gt up to a few kilowatts⋆ decent efficiencies =gt to be improved⋆ A development which remains limited to a few researchlaboratories and start-up companies

Potential applications of θac engines (and heat pumps)

⋆ Waste heat recovery micro-cogeneration⋆ Thermoacoustically driven pulse-tube refrigeration(cryogeny liquefaction of natural gas in methane tankers )⋆ Domestic refrigeration electronics cooling

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

Sketch of a thermo-acousto-electric

generator Such kind of engine has

been demonstrated to achieve a glo-

bal efficiency of 18 6

[5] Tijani et al J Appl Phys 2011 [6] Backhaus et al Appl Phys Lett 2004

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 24 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 5: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Tomographie Thermoacoustique

Tomographie thermoacoustiqueMeacutethode drsquoimagerie meacutedicale baseacutee sur la reacuteponse de certainstissus agrave une impulsion EM

chauffage =gt deacutetente thermoeacutelastique =gt onde acoustique

Scheacutema de principe de la tomographie TA

Haut-parleurs thermoacoustiques

Effet piston

Instabiliteacutes de combustion

Machines thermoacoustique

Image 3D drsquoun rein drsquoagneauobtenu par tomographie TA

(CD) compareacutee agrave celleobtenue par IRM Drsquoapregraves [1]

[1] Kruger RA et al Radiology 216 279-283 2000

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 5 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Haut-parleur TA

Tomographie thermoacoustique

Haut-parleurs thermoacoustiqueschauffage fluctuant drsquoune surface solide

=gt rayonnement acoustique

Haut-parleur thermoacoustique Drsquoapregraves [1]

Effet piston Instabiliteacutes de combustion Machines thermoacoustiques

Reacuteponse en freacutequence drsquoun HP TADrsquoapregraves [1]

Ecouteurs thermoacoustiques Drsquoapregraves [2]

[1] Nyskacen et al Appl Phys Let 95 163102 2009 [2] US Patent n 8625822 Tsinghua University (Beijing)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 6 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Effet piston

Tomographie thermoacoustique Haut-parleurs thermoacoustiques

Effet pistonUn 4e mode de transport de la chaleur

Autour du point critique χ rarr infin et κ rarr 0Increacutement de chauffage localrArr expansion abrupte de la CL (effet piston)rArr compression adiabatique de la cellule amp ondes TArArr T uarr avec un temps caracteacuteristique τPE ≪ τκ

Instabiliteacutes de combustion Machines thermoacoustiques

Mesure des ondes TA dans du CO2 aupoint critique1

Reacuteponse ∆ρρ agrave un pulse de chauffage1

∆ρ(x t) au cours du chauffage1

[1] Y Miura et al Phys Rev E 74 010101 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 7 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Instabiliteacutes de combustion

Tomographie thermoacoustique Haut-parleurs thermoacoustiques Effet piston

Instabiliteacutes de combustionGeacuteneacuteration spontaneacutee drsquooscillations acoustiques reacutesul-tant drsquoune interaction complexe drsquoune flamme et drsquouneacutecoulement dans une chambre de combustion

Machines thermoacoustiques

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 8 85

videoscombustion_instabilitymp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Machines thermoacoustiques

Tomographie thermoacoustique Haut-parleurs thermoacoustiques Effet piston Instabiliteacutes de combustion

Machines thermoacoustiqueMachine thermique cyclique faisant usage drsquoun travailmeacutecanique de nature acoustique

Congeacutelateur thermoacoustique reacutealiseacute agrave lrsquouniversiteacute de Penn

State pour le glacier ben amp Jerryrsquos1

Machine TA tritherme (moteur+frigo) reacutea-

liseacute au Los Alamos National Laboratory2

[1] httpwwwacspsueduthermoacousticsrefrigerationbenandjerryshtm [2] G W Swift J J WollanGasTIPS Volume 8 Number 4 pages 21-26 (Fall 2002)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 9 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Machines thermoacoustiques

Elementary sources of sound emission unsteady heat release

The linearized equations of motion for an inviscid and non-heat-conducting idealgas

parttρprime + ρ0divv = Q(r t) Q mass addition

time

pulsating sphere

ρ0parttv + gradp = f(r t) f force

time

oscillating sphere

ρ0Cpparttτ minus parttp = q(r t) q Heat release

time

sphere with oscillating temperature

The resulting inhomogeneous wave equation (using p = RT0ρprime + Rρ0τ) is

∆p minus1

c2

0

part2

ttp = minuspartt q

T0Cp

minus ρ0parttQ + divf

Contrarily to Q and f q is difficult to derive in realistic cases because The heat conductivity of the gas should be considered Generally q = q (p v) which may lead to self-sustained oscillations(eg Rijke tube etc )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 10 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The Rayleigh criterium

The Rayleigh criterium (int

pqdt gt 0)

ldquo at the phase of greatest condensation heat is receivedby the air and at the phase of greatest rarefaction heat isgiven up from it and thus there is a tendency to maintainthe vibrations rdquo JW Strutt (Lord Rayleigh) laquo The theory ofsound raquo Dover New York 2nd edition sect 322i p 231 1945)

pq

TA Laser Rijke tube

Q in

Wout

T(x)

Q in

WoutWout

V0

wire

q = f (dxT p vx stack ) q = f (Twire vx V0 )

⋆ not acoustically compact ⋆ acoustically compact(q asymp q(t)δ(x minus xwire ))

⋆ amplification of the first mode ⋆ amplification of the first mode R

pqdt gt 0 =gt dxT lt 0R

pqdt gt 0 =gt xw lt L2

Common features⋆ Autonomous oscillators driven by heat (which both fill the ldquoRayleigh criteriumrdquo)⋆ Simple in terms of geometry but complicated operation above threshold

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 11 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TA Laser a prototypical example

Heat input =gt sound output (self-sustained acoustic oscillations at the frequency of themost unstable mode(s))

Keywords heat engine (prime-movers and heat pumps) autonomous oscillator Paradigmatic of the challenges that need to be taken up to understand more deeply the

processes controlling the operation of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 12 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Auto-oscillateur thermo-acoustique contexte et probleacutematique

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

⋆ Application drsquoun nablaT le long drsquoun mateacuteriau poreux placeacute dans un reacuteseau de guidedrsquoonde rArr auto-oscillations agrave la freacutequence du mode le plus instable

⋆ Geacuteomeacutetrie plusmn simple mais fonctionnement complexe au delagrave du seuil (pompage θac ldquovent acoustiquerdquo perte de charge singuliegravere propa NL )

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 13 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 14 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic principles

The TA Laser a conceptual very simplified approach

⋆ Simplistic description =gt Lagrangian approach follow a gas parcel submitted to a standingwave through a channel with an axial temperature gradient dxT0

δκ

ρ1

x

Hot Heat eXchanger (HHX) Cold Heat eXchanger (CHX)

Q Qrsquo

2 411

33

v

21 3 4 1τp

p 2

13

4

ξ max2

1 ~ adiabatic compression2 ~ isobaric expansion3 ~ adiabatic relaxation4 ~ isobaric contraction

=gt Work production if |dxT |ξmax gt τmax and dxT lt 0

⋆ But actual processes are actually more complex (heat exchange occurs continuously)⋆ A key point need of an imperfect thermal contact

=gtldquoefficientrdquo gas parcels should be at about δκ from the wall where δκ =p

2κωis the (frequency-dependent) thermal boundary layer thickness

⋆ Threshold of thermoacoustic instability (for a given mode)

=gt Sound amplification must be larger than losses

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 15 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Plane wave propagation through a viscous and heat-conducting gas along a ductsubmitted to a temperature gradient

⋆ Both the production of acoustic work and the ldquobucket briga-derdquo heat transport by sound along the duct are then described bysecond-order quantities

the ldquobucket brigaderdquo

xR

y

z

r

C T (x)s ss sρ λ pC T (x)ρ λ (x) (x)

θ

Main assumptions⋆ Low amplitudes ⋆ Typical wavelength raquo R ⋆ No mean flow

P(x r t) = P0 + p(x r t) =gt planes waves ⋆ ideal gasρ(x r t) = ρ0(x) + ρprime(x r t) p(x r t) = p(x t) ⋆ ρsCs ≫ ρ0Cp

T (x r t) = T0(x) + τ (x r t) =gtldquoboundary layer approximationrdquo ⋆ λs ≫ λv(x r t) ≪ c0 |partrζ| ≫ |partxζ|

S(x r t) = S0(x) + s(x r t) (ζ = p ρprime τ v s)[1] N Rott Adv Appl Mech 1980 [2] GW Swift J Acoust Soc Am 1988

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 16 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Equations fondamentales lineacuteariseacutees

ρdtV = minusnablaP + micronabla2V + (η + micro3)nabla (nablaV) rArr ρ0iωvx = minusdx p + micro(1r)partr (rpartr vx )

parttρ + nabla (ρV) = 0 rArr iωρprime + ρ0partx vx + vxdxρ0 = 0

ρTdtS = λ∆T + O2(v) rArr ρ0T0 (iωs + vxpartxS0) = λ(1r)partr (rpartr τ )

dS = (CpT )dT minus (αρ)dP rArr T0 s = Cp τ minus pρ0

dρ = minusραdT + ρχtdP rArr ρprime = minus(ρ0T0)τ + (γc20 )p

⋆ Conditions aux limites (tuyau drsquoaxe x et de rayon R) rArr ~v(x r = R) = 0 τ(x r = R) = 0

vx (x r) = i(ωρ0)dx p [1 minus Fν (r)]

τ(x r) = p(ρ0Cp) [1 minus Fκ(r)] minus 1(ρ0ω2)dx pdxT0 [1 minus (PrFν (r) minus Fκ(r))(Pr minus 1)]

ρprime = 1ω2

[1 minus (PrFν minus Fκ)(Pr minus 1)+] dxT0T0dx p + 1c20 [1 + (γ minus 1)Fκ] p

s = minusp(ρ0T0)Fκ minus Cp(ρ0ω2)dx pdxT0T0 [1 minus (PrFν minus Fκ)(Pr minus 1)]

Fνκ(r) =J0(kνκr)J0(kνκR)

kνκ = 1minusiδνκ

δν =q

2νω δκ =

q2κω

fνκ = 〈Fνκ〉 = 2kνκR

J1(kνκR)J0(kνκR)

0 05 1 15 20

02

04

06

08

1

(1minusFν)(1minusfν)

rR

R=100δν

R=10δν

R=δν

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 17 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le point de vue thermodynamique

⋆ Onde plane stationnaire dans un tuyau ldquolargerdquo

p(x) = Pmax cos (k0x)

ρprime = 1ω2

h

1 minus PrFνminusFκPrminus1 +

idxT0T0

dx p + 1c20

[1 + (γ minus 1)Fκ] p

δκ

d

R=10

d = δκ3 d = δκ d = 3δκ

P

P

P

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

dxT0 = 0 dxT0 = 0 dxT0 = 0dxT0 = minus220Km dxT0 = minus220Km dxT0 = minus220Km

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 18 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Sound amplification

⋆ From the knowledge of the acoustic variables it is possible to calculate thetime-average second order acoustic power produced (or absorbed) per unit volume w2

([w2 ] = Wmminus3)

w2 = partx(p lt vx gt)

⋆ After some calculations3

w2 = wκ + wν + wsw + wtw

wκ =1

2

(γ minus 1)ω

ρ0c2

0

image (fκ) |p|2

wν =1

2ωρ0

image(fν)

|1 minus fν |2|〈vx〉|

2

wsw = minusimage(h)dxT0

T0

1

2image (p〈vlowast

x 〉)

wtw = real(h)dx T0

T0

1

2real (p〈vlowast

x 〉)

h =fκ minus fν

(1 minus Pr)(1 minus fν)0 02 04 06 08 1 12 14 16 18 2

minus14

minus12

minus10

minus8

minus6

minus4

minus2

δκRh

minus04

minus02

0

02

04

06

08

1

real (h)

image (fν)

|1minusfν|2

image (h)image (fκ)

[3] A Tominaga Cryogenics 1995

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 19 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Heat transport by sound

⋆ From the knowledge of the acoustic variables it is also possible to calculate thethermoacoustic heat flux q2 ([q2 ] = Wmminus2)

q2 = ρ0T0(〈svx 〉) s =CpT0

τ minus 1

ρ0T0p

⋆ After some calculations

q2 = qsw + qtw + λacdxT0

qsw = minusimage(g)1

2image`p〈vlowast

x 〉acute

qtw = real(g)1

2real`p〈vlowast

x 〉acute

λac =ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2

g =f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 20 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Amplification of a standing wave

w2 = wκ + wν| z

losses

+

propminusimage(h)z|wsw +

propreal(h)z|wtw

| z production

h = (fκ minus fν )[(1 minus Pr)(1 minus fν)]δκ

Q Qrsquo

411

33

2

x

x

yz

CYLINDER

2Rh

x

yz

2Rh

2Rh

SQUARE

2ri

hR

R = 3 rh i

PINminusARRAY

⋆ In case of a standing wave one need δκ le Rh (stack) and always have |image(h)| lt 1=gt intrinsic irreversibility4due to the need of an imperfect thermal contact⋆ But in case of a travelling wave phasing we have |image(h)| asymp 1 if δκ ge Rh=gt a travelling wave phasing combined with a regenerator (δκ ge Rh) should be better

[4] J C Wheatley et al J Acoust Soc Am 1983

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 21 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

How to build an intrinsically reversible Thermoacoustic engine

w2 = wκ + wν| z

losses

+

propminusimage(h)z|

wsw +

propreal(h)z|

wtw| z

production

δκ

Qrsquo Q

1

213

3

1

2 34

4

Stirling Cycle

ρ1

p

=gt use a regenerator(δκ ge Rh) and a travelling wave phasing between p and vx

⋆ [CeperleyJASA1979]

regenerator

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does not singbecause wtw lt wν

⋆ [Yazaki et al PRL 1998]

stack

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does sing but employs a stack

⋆ [Backhaus et al Nature1999]

regenerator

=gt acoustic feedback loopbull local TW phasingbull Z gtgt ρ0c0 locallybull f ltlt c0L=gt does sing quite well

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 22 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

A Standing wave engine [Swift JASA 1992]

bull fluiddagger 138 bar Heliumbull frequency 120 Hzbull drive ratio pP0 6bull TH 1000 Kbull Wload 630 Wbull QH 7 kWbull η = 009 (013ηc )

A thermoacoustic-Stirling engine [Backhaus amp Swift Nature 1999]

bull fluiddagger 30 bar Heliumbull frequency 80 Hzbull drive ratio pP0 6-10bull TH 1000 Kbull Wload 710 Wbull QH 24 kWbull η = 03 (042ηc )

dagger Need a large γ low Pr and high P0 (in 1-bar air at 120 dBSPL Wac asymp 10minus2Wmminus2 )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 23 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

Advantages of θac engines (and heat pumps)

⋆ Simple easy to build =gt potential reliability low cost⋆ Working gas = pressurized inert gas =gt harmless environmental friendly⋆ No or not much moving parts =gt resists wear⋆ Decent efficiencies(currently up to 32 in thermo-acoustic conversion for engines 5 )with potential improvements

Limitations of θac engines (and heat pumps)

⋆ Moderate output powers =gt up to a few kilowatts⋆ decent efficiencies =gt to be improved⋆ A development which remains limited to a few researchlaboratories and start-up companies

Potential applications of θac engines (and heat pumps)

⋆ Waste heat recovery micro-cogeneration⋆ Thermoacoustically driven pulse-tube refrigeration(cryogeny liquefaction of natural gas in methane tankers )⋆ Domestic refrigeration electronics cooling

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

Sketch of a thermo-acousto-electric

generator Such kind of engine has

been demonstrated to achieve a glo-

bal efficiency of 18 6

[5] Tijani et al J Appl Phys 2011 [6] Backhaus et al Appl Phys Lett 2004

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 24 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 6: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Haut-parleur TA

Tomographie thermoacoustique

Haut-parleurs thermoacoustiqueschauffage fluctuant drsquoune surface solide

=gt rayonnement acoustique

Haut-parleur thermoacoustique Drsquoapregraves [1]

Effet piston Instabiliteacutes de combustion Machines thermoacoustiques

Reacuteponse en freacutequence drsquoun HP TADrsquoapregraves [1]

Ecouteurs thermoacoustiques Drsquoapregraves [2]

[1] Nyskacen et al Appl Phys Let 95 163102 2009 [2] US Patent n 8625822 Tsinghua University (Beijing)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 6 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Effet piston

Tomographie thermoacoustique Haut-parleurs thermoacoustiques

Effet pistonUn 4e mode de transport de la chaleur

Autour du point critique χ rarr infin et κ rarr 0Increacutement de chauffage localrArr expansion abrupte de la CL (effet piston)rArr compression adiabatique de la cellule amp ondes TArArr T uarr avec un temps caracteacuteristique τPE ≪ τκ

Instabiliteacutes de combustion Machines thermoacoustiques

Mesure des ondes TA dans du CO2 aupoint critique1

Reacuteponse ∆ρρ agrave un pulse de chauffage1

∆ρ(x t) au cours du chauffage1

[1] Y Miura et al Phys Rev E 74 010101 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 7 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Instabiliteacutes de combustion

Tomographie thermoacoustique Haut-parleurs thermoacoustiques Effet piston

Instabiliteacutes de combustionGeacuteneacuteration spontaneacutee drsquooscillations acoustiques reacutesul-tant drsquoune interaction complexe drsquoune flamme et drsquouneacutecoulement dans une chambre de combustion

Machines thermoacoustiques

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 8 85

videoscombustion_instabilitymp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Machines thermoacoustiques

Tomographie thermoacoustique Haut-parleurs thermoacoustiques Effet piston Instabiliteacutes de combustion

Machines thermoacoustiqueMachine thermique cyclique faisant usage drsquoun travailmeacutecanique de nature acoustique

Congeacutelateur thermoacoustique reacutealiseacute agrave lrsquouniversiteacute de Penn

State pour le glacier ben amp Jerryrsquos1

Machine TA tritherme (moteur+frigo) reacutea-

liseacute au Los Alamos National Laboratory2

[1] httpwwwacspsueduthermoacousticsrefrigerationbenandjerryshtm [2] G W Swift J J WollanGasTIPS Volume 8 Number 4 pages 21-26 (Fall 2002)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 9 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Machines thermoacoustiques

Elementary sources of sound emission unsteady heat release

The linearized equations of motion for an inviscid and non-heat-conducting idealgas

parttρprime + ρ0divv = Q(r t) Q mass addition

time

pulsating sphere

ρ0parttv + gradp = f(r t) f force

time

oscillating sphere

ρ0Cpparttτ minus parttp = q(r t) q Heat release

time

sphere with oscillating temperature

The resulting inhomogeneous wave equation (using p = RT0ρprime + Rρ0τ) is

∆p minus1

c2

0

part2

ttp = minuspartt q

T0Cp

minus ρ0parttQ + divf

Contrarily to Q and f q is difficult to derive in realistic cases because The heat conductivity of the gas should be considered Generally q = q (p v) which may lead to self-sustained oscillations(eg Rijke tube etc )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 10 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The Rayleigh criterium

The Rayleigh criterium (int

pqdt gt 0)

ldquo at the phase of greatest condensation heat is receivedby the air and at the phase of greatest rarefaction heat isgiven up from it and thus there is a tendency to maintainthe vibrations rdquo JW Strutt (Lord Rayleigh) laquo The theory ofsound raquo Dover New York 2nd edition sect 322i p 231 1945)

pq

TA Laser Rijke tube

Q in

Wout

T(x)

Q in

WoutWout

V0

wire

q = f (dxT p vx stack ) q = f (Twire vx V0 )

⋆ not acoustically compact ⋆ acoustically compact(q asymp q(t)δ(x minus xwire ))

⋆ amplification of the first mode ⋆ amplification of the first mode R

pqdt gt 0 =gt dxT lt 0R

pqdt gt 0 =gt xw lt L2

Common features⋆ Autonomous oscillators driven by heat (which both fill the ldquoRayleigh criteriumrdquo)⋆ Simple in terms of geometry but complicated operation above threshold

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 11 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TA Laser a prototypical example

Heat input =gt sound output (self-sustained acoustic oscillations at the frequency of themost unstable mode(s))

Keywords heat engine (prime-movers and heat pumps) autonomous oscillator Paradigmatic of the challenges that need to be taken up to understand more deeply the

processes controlling the operation of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 12 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Auto-oscillateur thermo-acoustique contexte et probleacutematique

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

⋆ Application drsquoun nablaT le long drsquoun mateacuteriau poreux placeacute dans un reacuteseau de guidedrsquoonde rArr auto-oscillations agrave la freacutequence du mode le plus instable

⋆ Geacuteomeacutetrie plusmn simple mais fonctionnement complexe au delagrave du seuil (pompage θac ldquovent acoustiquerdquo perte de charge singuliegravere propa NL )

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 13 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 14 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic principles

The TA Laser a conceptual very simplified approach

⋆ Simplistic description =gt Lagrangian approach follow a gas parcel submitted to a standingwave through a channel with an axial temperature gradient dxT0

δκ

ρ1

x

Hot Heat eXchanger (HHX) Cold Heat eXchanger (CHX)

Q Qrsquo

2 411

33

v

21 3 4 1τp

p 2

13

4

ξ max2

1 ~ adiabatic compression2 ~ isobaric expansion3 ~ adiabatic relaxation4 ~ isobaric contraction

=gt Work production if |dxT |ξmax gt τmax and dxT lt 0

⋆ But actual processes are actually more complex (heat exchange occurs continuously)⋆ A key point need of an imperfect thermal contact

=gtldquoefficientrdquo gas parcels should be at about δκ from the wall where δκ =p

2κωis the (frequency-dependent) thermal boundary layer thickness

⋆ Threshold of thermoacoustic instability (for a given mode)

=gt Sound amplification must be larger than losses

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 15 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Plane wave propagation through a viscous and heat-conducting gas along a ductsubmitted to a temperature gradient

⋆ Both the production of acoustic work and the ldquobucket briga-derdquo heat transport by sound along the duct are then described bysecond-order quantities

the ldquobucket brigaderdquo

xR

y

z

r

C T (x)s ss sρ λ pC T (x)ρ λ (x) (x)

θ

Main assumptions⋆ Low amplitudes ⋆ Typical wavelength raquo R ⋆ No mean flow

P(x r t) = P0 + p(x r t) =gt planes waves ⋆ ideal gasρ(x r t) = ρ0(x) + ρprime(x r t) p(x r t) = p(x t) ⋆ ρsCs ≫ ρ0Cp

T (x r t) = T0(x) + τ (x r t) =gtldquoboundary layer approximationrdquo ⋆ λs ≫ λv(x r t) ≪ c0 |partrζ| ≫ |partxζ|

S(x r t) = S0(x) + s(x r t) (ζ = p ρprime τ v s)[1] N Rott Adv Appl Mech 1980 [2] GW Swift J Acoust Soc Am 1988

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 16 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Equations fondamentales lineacuteariseacutees

ρdtV = minusnablaP + micronabla2V + (η + micro3)nabla (nablaV) rArr ρ0iωvx = minusdx p + micro(1r)partr (rpartr vx )

parttρ + nabla (ρV) = 0 rArr iωρprime + ρ0partx vx + vxdxρ0 = 0

ρTdtS = λ∆T + O2(v) rArr ρ0T0 (iωs + vxpartxS0) = λ(1r)partr (rpartr τ )

dS = (CpT )dT minus (αρ)dP rArr T0 s = Cp τ minus pρ0

dρ = minusραdT + ρχtdP rArr ρprime = minus(ρ0T0)τ + (γc20 )p

⋆ Conditions aux limites (tuyau drsquoaxe x et de rayon R) rArr ~v(x r = R) = 0 τ(x r = R) = 0

vx (x r) = i(ωρ0)dx p [1 minus Fν (r)]

τ(x r) = p(ρ0Cp) [1 minus Fκ(r)] minus 1(ρ0ω2)dx pdxT0 [1 minus (PrFν (r) minus Fκ(r))(Pr minus 1)]

ρprime = 1ω2

[1 minus (PrFν minus Fκ)(Pr minus 1)+] dxT0T0dx p + 1c20 [1 + (γ minus 1)Fκ] p

s = minusp(ρ0T0)Fκ minus Cp(ρ0ω2)dx pdxT0T0 [1 minus (PrFν minus Fκ)(Pr minus 1)]

Fνκ(r) =J0(kνκr)J0(kνκR)

kνκ = 1minusiδνκ

δν =q

2νω δκ =

q2κω

fνκ = 〈Fνκ〉 = 2kνκR

J1(kνκR)J0(kνκR)

0 05 1 15 20

02

04

06

08

1

(1minusFν)(1minusfν)

rR

R=100δν

R=10δν

R=δν

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 17 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le point de vue thermodynamique

⋆ Onde plane stationnaire dans un tuyau ldquolargerdquo

p(x) = Pmax cos (k0x)

ρprime = 1ω2

h

1 minus PrFνminusFκPrminus1 +

idxT0T0

dx p + 1c20

[1 + (γ minus 1)Fκ] p

δκ

d

R=10

d = δκ3 d = δκ d = 3δκ

P

P

P

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

dxT0 = 0 dxT0 = 0 dxT0 = 0dxT0 = minus220Km dxT0 = minus220Km dxT0 = minus220Km

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 18 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Sound amplification

⋆ From the knowledge of the acoustic variables it is possible to calculate thetime-average second order acoustic power produced (or absorbed) per unit volume w2

([w2 ] = Wmminus3)

w2 = partx(p lt vx gt)

⋆ After some calculations3

w2 = wκ + wν + wsw + wtw

wκ =1

2

(γ minus 1)ω

ρ0c2

0

image (fκ) |p|2

wν =1

2ωρ0

image(fν)

|1 minus fν |2|〈vx〉|

2

wsw = minusimage(h)dxT0

T0

1

2image (p〈vlowast

x 〉)

wtw = real(h)dx T0

T0

1

2real (p〈vlowast

x 〉)

h =fκ minus fν

(1 minus Pr)(1 minus fν)0 02 04 06 08 1 12 14 16 18 2

minus14

minus12

minus10

minus8

minus6

minus4

minus2

δκRh

minus04

minus02

0

02

04

06

08

1

real (h)

image (fν)

|1minusfν|2

image (h)image (fκ)

[3] A Tominaga Cryogenics 1995

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 19 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Heat transport by sound

⋆ From the knowledge of the acoustic variables it is also possible to calculate thethermoacoustic heat flux q2 ([q2 ] = Wmminus2)

q2 = ρ0T0(〈svx 〉) s =CpT0

τ minus 1

ρ0T0p

⋆ After some calculations

q2 = qsw + qtw + λacdxT0

qsw = minusimage(g)1

2image`p〈vlowast

x 〉acute

qtw = real(g)1

2real`p〈vlowast

x 〉acute

λac =ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2

g =f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 20 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Amplification of a standing wave

w2 = wκ + wν| z

losses

+

propminusimage(h)z|wsw +

propreal(h)z|wtw

| z production

h = (fκ minus fν )[(1 minus Pr)(1 minus fν)]δκ

Q Qrsquo

411

33

2

x

x

yz

CYLINDER

2Rh

x

yz

2Rh

2Rh

SQUARE

2ri

hR

R = 3 rh i

PINminusARRAY

⋆ In case of a standing wave one need δκ le Rh (stack) and always have |image(h)| lt 1=gt intrinsic irreversibility4due to the need of an imperfect thermal contact⋆ But in case of a travelling wave phasing we have |image(h)| asymp 1 if δκ ge Rh=gt a travelling wave phasing combined with a regenerator (δκ ge Rh) should be better

[4] J C Wheatley et al J Acoust Soc Am 1983

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 21 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

How to build an intrinsically reversible Thermoacoustic engine

w2 = wκ + wν| z

losses

+

propminusimage(h)z|

wsw +

propreal(h)z|

wtw| z

production

δκ

Qrsquo Q

1

213

3

1

2 34

4

Stirling Cycle

ρ1

p

=gt use a regenerator(δκ ge Rh) and a travelling wave phasing between p and vx

⋆ [CeperleyJASA1979]

regenerator

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does not singbecause wtw lt wν

⋆ [Yazaki et al PRL 1998]

stack

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does sing but employs a stack

⋆ [Backhaus et al Nature1999]

regenerator

=gt acoustic feedback loopbull local TW phasingbull Z gtgt ρ0c0 locallybull f ltlt c0L=gt does sing quite well

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 22 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

A Standing wave engine [Swift JASA 1992]

bull fluiddagger 138 bar Heliumbull frequency 120 Hzbull drive ratio pP0 6bull TH 1000 Kbull Wload 630 Wbull QH 7 kWbull η = 009 (013ηc )

A thermoacoustic-Stirling engine [Backhaus amp Swift Nature 1999]

bull fluiddagger 30 bar Heliumbull frequency 80 Hzbull drive ratio pP0 6-10bull TH 1000 Kbull Wload 710 Wbull QH 24 kWbull η = 03 (042ηc )

dagger Need a large γ low Pr and high P0 (in 1-bar air at 120 dBSPL Wac asymp 10minus2Wmminus2 )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 23 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

Advantages of θac engines (and heat pumps)

⋆ Simple easy to build =gt potential reliability low cost⋆ Working gas = pressurized inert gas =gt harmless environmental friendly⋆ No or not much moving parts =gt resists wear⋆ Decent efficiencies(currently up to 32 in thermo-acoustic conversion for engines 5 )with potential improvements

Limitations of θac engines (and heat pumps)

⋆ Moderate output powers =gt up to a few kilowatts⋆ decent efficiencies =gt to be improved⋆ A development which remains limited to a few researchlaboratories and start-up companies

Potential applications of θac engines (and heat pumps)

⋆ Waste heat recovery micro-cogeneration⋆ Thermoacoustically driven pulse-tube refrigeration(cryogeny liquefaction of natural gas in methane tankers )⋆ Domestic refrigeration electronics cooling

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

Sketch of a thermo-acousto-electric

generator Such kind of engine has

been demonstrated to achieve a glo-

bal efficiency of 18 6

[5] Tijani et al J Appl Phys 2011 [6] Backhaus et al Appl Phys Lett 2004

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 24 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 7: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Effet piston

Tomographie thermoacoustique Haut-parleurs thermoacoustiques

Effet pistonUn 4e mode de transport de la chaleur

Autour du point critique χ rarr infin et κ rarr 0Increacutement de chauffage localrArr expansion abrupte de la CL (effet piston)rArr compression adiabatique de la cellule amp ondes TArArr T uarr avec un temps caracteacuteristique τPE ≪ τκ

Instabiliteacutes de combustion Machines thermoacoustiques

Mesure des ondes TA dans du CO2 aupoint critique1

Reacuteponse ∆ρρ agrave un pulse de chauffage1

∆ρ(x t) au cours du chauffage1

[1] Y Miura et al Phys Rev E 74 010101 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 7 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Instabiliteacutes de combustion

Tomographie thermoacoustique Haut-parleurs thermoacoustiques Effet piston

Instabiliteacutes de combustionGeacuteneacuteration spontaneacutee drsquooscillations acoustiques reacutesul-tant drsquoune interaction complexe drsquoune flamme et drsquouneacutecoulement dans une chambre de combustion

Machines thermoacoustiques

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 8 85

videoscombustion_instabilitymp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Machines thermoacoustiques

Tomographie thermoacoustique Haut-parleurs thermoacoustiques Effet piston Instabiliteacutes de combustion

Machines thermoacoustiqueMachine thermique cyclique faisant usage drsquoun travailmeacutecanique de nature acoustique

Congeacutelateur thermoacoustique reacutealiseacute agrave lrsquouniversiteacute de Penn

State pour le glacier ben amp Jerryrsquos1

Machine TA tritherme (moteur+frigo) reacutea-

liseacute au Los Alamos National Laboratory2

[1] httpwwwacspsueduthermoacousticsrefrigerationbenandjerryshtm [2] G W Swift J J WollanGasTIPS Volume 8 Number 4 pages 21-26 (Fall 2002)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 9 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Machines thermoacoustiques

Elementary sources of sound emission unsteady heat release

The linearized equations of motion for an inviscid and non-heat-conducting idealgas

parttρprime + ρ0divv = Q(r t) Q mass addition

time

pulsating sphere

ρ0parttv + gradp = f(r t) f force

time

oscillating sphere

ρ0Cpparttτ minus parttp = q(r t) q Heat release

time

sphere with oscillating temperature

The resulting inhomogeneous wave equation (using p = RT0ρprime + Rρ0τ) is

∆p minus1

c2

0

part2

ttp = minuspartt q

T0Cp

minus ρ0parttQ + divf

Contrarily to Q and f q is difficult to derive in realistic cases because The heat conductivity of the gas should be considered Generally q = q (p v) which may lead to self-sustained oscillations(eg Rijke tube etc )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 10 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The Rayleigh criterium

The Rayleigh criterium (int

pqdt gt 0)

ldquo at the phase of greatest condensation heat is receivedby the air and at the phase of greatest rarefaction heat isgiven up from it and thus there is a tendency to maintainthe vibrations rdquo JW Strutt (Lord Rayleigh) laquo The theory ofsound raquo Dover New York 2nd edition sect 322i p 231 1945)

pq

TA Laser Rijke tube

Q in

Wout

T(x)

Q in

WoutWout

V0

wire

q = f (dxT p vx stack ) q = f (Twire vx V0 )

⋆ not acoustically compact ⋆ acoustically compact(q asymp q(t)δ(x minus xwire ))

⋆ amplification of the first mode ⋆ amplification of the first mode R

pqdt gt 0 =gt dxT lt 0R

pqdt gt 0 =gt xw lt L2

Common features⋆ Autonomous oscillators driven by heat (which both fill the ldquoRayleigh criteriumrdquo)⋆ Simple in terms of geometry but complicated operation above threshold

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 11 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TA Laser a prototypical example

Heat input =gt sound output (self-sustained acoustic oscillations at the frequency of themost unstable mode(s))

Keywords heat engine (prime-movers and heat pumps) autonomous oscillator Paradigmatic of the challenges that need to be taken up to understand more deeply the

processes controlling the operation of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 12 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Auto-oscillateur thermo-acoustique contexte et probleacutematique

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

⋆ Application drsquoun nablaT le long drsquoun mateacuteriau poreux placeacute dans un reacuteseau de guidedrsquoonde rArr auto-oscillations agrave la freacutequence du mode le plus instable

⋆ Geacuteomeacutetrie plusmn simple mais fonctionnement complexe au delagrave du seuil (pompage θac ldquovent acoustiquerdquo perte de charge singuliegravere propa NL )

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 13 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 14 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic principles

The TA Laser a conceptual very simplified approach

⋆ Simplistic description =gt Lagrangian approach follow a gas parcel submitted to a standingwave through a channel with an axial temperature gradient dxT0

δκ

ρ1

x

Hot Heat eXchanger (HHX) Cold Heat eXchanger (CHX)

Q Qrsquo

2 411

33

v

21 3 4 1τp

p 2

13

4

ξ max2

1 ~ adiabatic compression2 ~ isobaric expansion3 ~ adiabatic relaxation4 ~ isobaric contraction

=gt Work production if |dxT |ξmax gt τmax and dxT lt 0

⋆ But actual processes are actually more complex (heat exchange occurs continuously)⋆ A key point need of an imperfect thermal contact

=gtldquoefficientrdquo gas parcels should be at about δκ from the wall where δκ =p

2κωis the (frequency-dependent) thermal boundary layer thickness

⋆ Threshold of thermoacoustic instability (for a given mode)

=gt Sound amplification must be larger than losses

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 15 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Plane wave propagation through a viscous and heat-conducting gas along a ductsubmitted to a temperature gradient

⋆ Both the production of acoustic work and the ldquobucket briga-derdquo heat transport by sound along the duct are then described bysecond-order quantities

the ldquobucket brigaderdquo

xR

y

z

r

C T (x)s ss sρ λ pC T (x)ρ λ (x) (x)

θ

Main assumptions⋆ Low amplitudes ⋆ Typical wavelength raquo R ⋆ No mean flow

P(x r t) = P0 + p(x r t) =gt planes waves ⋆ ideal gasρ(x r t) = ρ0(x) + ρprime(x r t) p(x r t) = p(x t) ⋆ ρsCs ≫ ρ0Cp

T (x r t) = T0(x) + τ (x r t) =gtldquoboundary layer approximationrdquo ⋆ λs ≫ λv(x r t) ≪ c0 |partrζ| ≫ |partxζ|

S(x r t) = S0(x) + s(x r t) (ζ = p ρprime τ v s)[1] N Rott Adv Appl Mech 1980 [2] GW Swift J Acoust Soc Am 1988

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 16 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Equations fondamentales lineacuteariseacutees

ρdtV = minusnablaP + micronabla2V + (η + micro3)nabla (nablaV) rArr ρ0iωvx = minusdx p + micro(1r)partr (rpartr vx )

parttρ + nabla (ρV) = 0 rArr iωρprime + ρ0partx vx + vxdxρ0 = 0

ρTdtS = λ∆T + O2(v) rArr ρ0T0 (iωs + vxpartxS0) = λ(1r)partr (rpartr τ )

dS = (CpT )dT minus (αρ)dP rArr T0 s = Cp τ minus pρ0

dρ = minusραdT + ρχtdP rArr ρprime = minus(ρ0T0)τ + (γc20 )p

⋆ Conditions aux limites (tuyau drsquoaxe x et de rayon R) rArr ~v(x r = R) = 0 τ(x r = R) = 0

vx (x r) = i(ωρ0)dx p [1 minus Fν (r)]

τ(x r) = p(ρ0Cp) [1 minus Fκ(r)] minus 1(ρ0ω2)dx pdxT0 [1 minus (PrFν (r) minus Fκ(r))(Pr minus 1)]

ρprime = 1ω2

[1 minus (PrFν minus Fκ)(Pr minus 1)+] dxT0T0dx p + 1c20 [1 + (γ minus 1)Fκ] p

s = minusp(ρ0T0)Fκ minus Cp(ρ0ω2)dx pdxT0T0 [1 minus (PrFν minus Fκ)(Pr minus 1)]

Fνκ(r) =J0(kνκr)J0(kνκR)

kνκ = 1minusiδνκ

δν =q

2νω δκ =

q2κω

fνκ = 〈Fνκ〉 = 2kνκR

J1(kνκR)J0(kνκR)

0 05 1 15 20

02

04

06

08

1

(1minusFν)(1minusfν)

rR

R=100δν

R=10δν

R=δν

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 17 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le point de vue thermodynamique

⋆ Onde plane stationnaire dans un tuyau ldquolargerdquo

p(x) = Pmax cos (k0x)

ρprime = 1ω2

h

1 minus PrFνminusFκPrminus1 +

idxT0T0

dx p + 1c20

[1 + (γ minus 1)Fκ] p

δκ

d

R=10

d = δκ3 d = δκ d = 3δκ

P

P

P

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

dxT0 = 0 dxT0 = 0 dxT0 = 0dxT0 = minus220Km dxT0 = minus220Km dxT0 = minus220Km

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 18 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Sound amplification

⋆ From the knowledge of the acoustic variables it is possible to calculate thetime-average second order acoustic power produced (or absorbed) per unit volume w2

([w2 ] = Wmminus3)

w2 = partx(p lt vx gt)

⋆ After some calculations3

w2 = wκ + wν + wsw + wtw

wκ =1

2

(γ minus 1)ω

ρ0c2

0

image (fκ) |p|2

wν =1

2ωρ0

image(fν)

|1 minus fν |2|〈vx〉|

2

wsw = minusimage(h)dxT0

T0

1

2image (p〈vlowast

x 〉)

wtw = real(h)dx T0

T0

1

2real (p〈vlowast

x 〉)

h =fκ minus fν

(1 minus Pr)(1 minus fν)0 02 04 06 08 1 12 14 16 18 2

minus14

minus12

minus10

minus8

minus6

minus4

minus2

δκRh

minus04

minus02

0

02

04

06

08

1

real (h)

image (fν)

|1minusfν|2

image (h)image (fκ)

[3] A Tominaga Cryogenics 1995

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 19 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Heat transport by sound

⋆ From the knowledge of the acoustic variables it is also possible to calculate thethermoacoustic heat flux q2 ([q2 ] = Wmminus2)

q2 = ρ0T0(〈svx 〉) s =CpT0

τ minus 1

ρ0T0p

⋆ After some calculations

q2 = qsw + qtw + λacdxT0

qsw = minusimage(g)1

2image`p〈vlowast

x 〉acute

qtw = real(g)1

2real`p〈vlowast

x 〉acute

λac =ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2

g =f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 20 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Amplification of a standing wave

w2 = wκ + wν| z

losses

+

propminusimage(h)z|wsw +

propreal(h)z|wtw

| z production

h = (fκ minus fν )[(1 minus Pr)(1 minus fν)]δκ

Q Qrsquo

411

33

2

x

x

yz

CYLINDER

2Rh

x

yz

2Rh

2Rh

SQUARE

2ri

hR

R = 3 rh i

PINminusARRAY

⋆ In case of a standing wave one need δκ le Rh (stack) and always have |image(h)| lt 1=gt intrinsic irreversibility4due to the need of an imperfect thermal contact⋆ But in case of a travelling wave phasing we have |image(h)| asymp 1 if δκ ge Rh=gt a travelling wave phasing combined with a regenerator (δκ ge Rh) should be better

[4] J C Wheatley et al J Acoust Soc Am 1983

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 21 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

How to build an intrinsically reversible Thermoacoustic engine

w2 = wκ + wν| z

losses

+

propminusimage(h)z|

wsw +

propreal(h)z|

wtw| z

production

δκ

Qrsquo Q

1

213

3

1

2 34

4

Stirling Cycle

ρ1

p

=gt use a regenerator(δκ ge Rh) and a travelling wave phasing between p and vx

⋆ [CeperleyJASA1979]

regenerator

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does not singbecause wtw lt wν

⋆ [Yazaki et al PRL 1998]

stack

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does sing but employs a stack

⋆ [Backhaus et al Nature1999]

regenerator

=gt acoustic feedback loopbull local TW phasingbull Z gtgt ρ0c0 locallybull f ltlt c0L=gt does sing quite well

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 22 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

A Standing wave engine [Swift JASA 1992]

bull fluiddagger 138 bar Heliumbull frequency 120 Hzbull drive ratio pP0 6bull TH 1000 Kbull Wload 630 Wbull QH 7 kWbull η = 009 (013ηc )

A thermoacoustic-Stirling engine [Backhaus amp Swift Nature 1999]

bull fluiddagger 30 bar Heliumbull frequency 80 Hzbull drive ratio pP0 6-10bull TH 1000 Kbull Wload 710 Wbull QH 24 kWbull η = 03 (042ηc )

dagger Need a large γ low Pr and high P0 (in 1-bar air at 120 dBSPL Wac asymp 10minus2Wmminus2 )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 23 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

Advantages of θac engines (and heat pumps)

⋆ Simple easy to build =gt potential reliability low cost⋆ Working gas = pressurized inert gas =gt harmless environmental friendly⋆ No or not much moving parts =gt resists wear⋆ Decent efficiencies(currently up to 32 in thermo-acoustic conversion for engines 5 )with potential improvements

Limitations of θac engines (and heat pumps)

⋆ Moderate output powers =gt up to a few kilowatts⋆ decent efficiencies =gt to be improved⋆ A development which remains limited to a few researchlaboratories and start-up companies

Potential applications of θac engines (and heat pumps)

⋆ Waste heat recovery micro-cogeneration⋆ Thermoacoustically driven pulse-tube refrigeration(cryogeny liquefaction of natural gas in methane tankers )⋆ Domestic refrigeration electronics cooling

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

Sketch of a thermo-acousto-electric

generator Such kind of engine has

been demonstrated to achieve a glo-

bal efficiency of 18 6

[5] Tijani et al J Appl Phys 2011 [6] Backhaus et al Appl Phys Lett 2004

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 24 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 8: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Instabiliteacutes de combustion

Tomographie thermoacoustique Haut-parleurs thermoacoustiques Effet piston

Instabiliteacutes de combustionGeacuteneacuteration spontaneacutee drsquooscillations acoustiques reacutesul-tant drsquoune interaction complexe drsquoune flamme et drsquouneacutecoulement dans une chambre de combustion

Machines thermoacoustiques

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 8 85

videoscombustion_instabilitymp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Machines thermoacoustiques

Tomographie thermoacoustique Haut-parleurs thermoacoustiques Effet piston Instabiliteacutes de combustion

Machines thermoacoustiqueMachine thermique cyclique faisant usage drsquoun travailmeacutecanique de nature acoustique

Congeacutelateur thermoacoustique reacutealiseacute agrave lrsquouniversiteacute de Penn

State pour le glacier ben amp Jerryrsquos1

Machine TA tritherme (moteur+frigo) reacutea-

liseacute au Los Alamos National Laboratory2

[1] httpwwwacspsueduthermoacousticsrefrigerationbenandjerryshtm [2] G W Swift J J WollanGasTIPS Volume 8 Number 4 pages 21-26 (Fall 2002)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 9 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Machines thermoacoustiques

Elementary sources of sound emission unsteady heat release

The linearized equations of motion for an inviscid and non-heat-conducting idealgas

parttρprime + ρ0divv = Q(r t) Q mass addition

time

pulsating sphere

ρ0parttv + gradp = f(r t) f force

time

oscillating sphere

ρ0Cpparttτ minus parttp = q(r t) q Heat release

time

sphere with oscillating temperature

The resulting inhomogeneous wave equation (using p = RT0ρprime + Rρ0τ) is

∆p minus1

c2

0

part2

ttp = minuspartt q

T0Cp

minus ρ0parttQ + divf

Contrarily to Q and f q is difficult to derive in realistic cases because The heat conductivity of the gas should be considered Generally q = q (p v) which may lead to self-sustained oscillations(eg Rijke tube etc )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 10 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The Rayleigh criterium

The Rayleigh criterium (int

pqdt gt 0)

ldquo at the phase of greatest condensation heat is receivedby the air and at the phase of greatest rarefaction heat isgiven up from it and thus there is a tendency to maintainthe vibrations rdquo JW Strutt (Lord Rayleigh) laquo The theory ofsound raquo Dover New York 2nd edition sect 322i p 231 1945)

pq

TA Laser Rijke tube

Q in

Wout

T(x)

Q in

WoutWout

V0

wire

q = f (dxT p vx stack ) q = f (Twire vx V0 )

⋆ not acoustically compact ⋆ acoustically compact(q asymp q(t)δ(x minus xwire ))

⋆ amplification of the first mode ⋆ amplification of the first mode R

pqdt gt 0 =gt dxT lt 0R

pqdt gt 0 =gt xw lt L2

Common features⋆ Autonomous oscillators driven by heat (which both fill the ldquoRayleigh criteriumrdquo)⋆ Simple in terms of geometry but complicated operation above threshold

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 11 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TA Laser a prototypical example

Heat input =gt sound output (self-sustained acoustic oscillations at the frequency of themost unstable mode(s))

Keywords heat engine (prime-movers and heat pumps) autonomous oscillator Paradigmatic of the challenges that need to be taken up to understand more deeply the

processes controlling the operation of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 12 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Auto-oscillateur thermo-acoustique contexte et probleacutematique

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

⋆ Application drsquoun nablaT le long drsquoun mateacuteriau poreux placeacute dans un reacuteseau de guidedrsquoonde rArr auto-oscillations agrave la freacutequence du mode le plus instable

⋆ Geacuteomeacutetrie plusmn simple mais fonctionnement complexe au delagrave du seuil (pompage θac ldquovent acoustiquerdquo perte de charge singuliegravere propa NL )

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 13 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 14 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic principles

The TA Laser a conceptual very simplified approach

⋆ Simplistic description =gt Lagrangian approach follow a gas parcel submitted to a standingwave through a channel with an axial temperature gradient dxT0

δκ

ρ1

x

Hot Heat eXchanger (HHX) Cold Heat eXchanger (CHX)

Q Qrsquo

2 411

33

v

21 3 4 1τp

p 2

13

4

ξ max2

1 ~ adiabatic compression2 ~ isobaric expansion3 ~ adiabatic relaxation4 ~ isobaric contraction

=gt Work production if |dxT |ξmax gt τmax and dxT lt 0

⋆ But actual processes are actually more complex (heat exchange occurs continuously)⋆ A key point need of an imperfect thermal contact

=gtldquoefficientrdquo gas parcels should be at about δκ from the wall where δκ =p

2κωis the (frequency-dependent) thermal boundary layer thickness

⋆ Threshold of thermoacoustic instability (for a given mode)

=gt Sound amplification must be larger than losses

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 15 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Plane wave propagation through a viscous and heat-conducting gas along a ductsubmitted to a temperature gradient

⋆ Both the production of acoustic work and the ldquobucket briga-derdquo heat transport by sound along the duct are then described bysecond-order quantities

the ldquobucket brigaderdquo

xR

y

z

r

C T (x)s ss sρ λ pC T (x)ρ λ (x) (x)

θ

Main assumptions⋆ Low amplitudes ⋆ Typical wavelength raquo R ⋆ No mean flow

P(x r t) = P0 + p(x r t) =gt planes waves ⋆ ideal gasρ(x r t) = ρ0(x) + ρprime(x r t) p(x r t) = p(x t) ⋆ ρsCs ≫ ρ0Cp

T (x r t) = T0(x) + τ (x r t) =gtldquoboundary layer approximationrdquo ⋆ λs ≫ λv(x r t) ≪ c0 |partrζ| ≫ |partxζ|

S(x r t) = S0(x) + s(x r t) (ζ = p ρprime τ v s)[1] N Rott Adv Appl Mech 1980 [2] GW Swift J Acoust Soc Am 1988

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 16 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Equations fondamentales lineacuteariseacutees

ρdtV = minusnablaP + micronabla2V + (η + micro3)nabla (nablaV) rArr ρ0iωvx = minusdx p + micro(1r)partr (rpartr vx )

parttρ + nabla (ρV) = 0 rArr iωρprime + ρ0partx vx + vxdxρ0 = 0

ρTdtS = λ∆T + O2(v) rArr ρ0T0 (iωs + vxpartxS0) = λ(1r)partr (rpartr τ )

dS = (CpT )dT minus (αρ)dP rArr T0 s = Cp τ minus pρ0

dρ = minusραdT + ρχtdP rArr ρprime = minus(ρ0T0)τ + (γc20 )p

⋆ Conditions aux limites (tuyau drsquoaxe x et de rayon R) rArr ~v(x r = R) = 0 τ(x r = R) = 0

vx (x r) = i(ωρ0)dx p [1 minus Fν (r)]

τ(x r) = p(ρ0Cp) [1 minus Fκ(r)] minus 1(ρ0ω2)dx pdxT0 [1 minus (PrFν (r) minus Fκ(r))(Pr minus 1)]

ρprime = 1ω2

[1 minus (PrFν minus Fκ)(Pr minus 1)+] dxT0T0dx p + 1c20 [1 + (γ minus 1)Fκ] p

s = minusp(ρ0T0)Fκ minus Cp(ρ0ω2)dx pdxT0T0 [1 minus (PrFν minus Fκ)(Pr minus 1)]

Fνκ(r) =J0(kνκr)J0(kνκR)

kνκ = 1minusiδνκ

δν =q

2νω δκ =

q2κω

fνκ = 〈Fνκ〉 = 2kνκR

J1(kνκR)J0(kνκR)

0 05 1 15 20

02

04

06

08

1

(1minusFν)(1minusfν)

rR

R=100δν

R=10δν

R=δν

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 17 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le point de vue thermodynamique

⋆ Onde plane stationnaire dans un tuyau ldquolargerdquo

p(x) = Pmax cos (k0x)

ρprime = 1ω2

h

1 minus PrFνminusFκPrminus1 +

idxT0T0

dx p + 1c20

[1 + (γ minus 1)Fκ] p

δκ

d

R=10

d = δκ3 d = δκ d = 3δκ

P

P

P

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

dxT0 = 0 dxT0 = 0 dxT0 = 0dxT0 = minus220Km dxT0 = minus220Km dxT0 = minus220Km

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 18 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Sound amplification

⋆ From the knowledge of the acoustic variables it is possible to calculate thetime-average second order acoustic power produced (or absorbed) per unit volume w2

([w2 ] = Wmminus3)

w2 = partx(p lt vx gt)

⋆ After some calculations3

w2 = wκ + wν + wsw + wtw

wκ =1

2

(γ minus 1)ω

ρ0c2

0

image (fκ) |p|2

wν =1

2ωρ0

image(fν)

|1 minus fν |2|〈vx〉|

2

wsw = minusimage(h)dxT0

T0

1

2image (p〈vlowast

x 〉)

wtw = real(h)dx T0

T0

1

2real (p〈vlowast

x 〉)

h =fκ minus fν

(1 minus Pr)(1 minus fν)0 02 04 06 08 1 12 14 16 18 2

minus14

minus12

minus10

minus8

minus6

minus4

minus2

δκRh

minus04

minus02

0

02

04

06

08

1

real (h)

image (fν)

|1minusfν|2

image (h)image (fκ)

[3] A Tominaga Cryogenics 1995

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 19 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Heat transport by sound

⋆ From the knowledge of the acoustic variables it is also possible to calculate thethermoacoustic heat flux q2 ([q2 ] = Wmminus2)

q2 = ρ0T0(〈svx 〉) s =CpT0

τ minus 1

ρ0T0p

⋆ After some calculations

q2 = qsw + qtw + λacdxT0

qsw = minusimage(g)1

2image`p〈vlowast

x 〉acute

qtw = real(g)1

2real`p〈vlowast

x 〉acute

λac =ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2

g =f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 20 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Amplification of a standing wave

w2 = wκ + wν| z

losses

+

propminusimage(h)z|wsw +

propreal(h)z|wtw

| z production

h = (fκ minus fν )[(1 minus Pr)(1 minus fν)]δκ

Q Qrsquo

411

33

2

x

x

yz

CYLINDER

2Rh

x

yz

2Rh

2Rh

SQUARE

2ri

hR

R = 3 rh i

PINminusARRAY

⋆ In case of a standing wave one need δκ le Rh (stack) and always have |image(h)| lt 1=gt intrinsic irreversibility4due to the need of an imperfect thermal contact⋆ But in case of a travelling wave phasing we have |image(h)| asymp 1 if δκ ge Rh=gt a travelling wave phasing combined with a regenerator (δκ ge Rh) should be better

[4] J C Wheatley et al J Acoust Soc Am 1983

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 21 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

How to build an intrinsically reversible Thermoacoustic engine

w2 = wκ + wν| z

losses

+

propminusimage(h)z|

wsw +

propreal(h)z|

wtw| z

production

δκ

Qrsquo Q

1

213

3

1

2 34

4

Stirling Cycle

ρ1

p

=gt use a regenerator(δκ ge Rh) and a travelling wave phasing between p and vx

⋆ [CeperleyJASA1979]

regenerator

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does not singbecause wtw lt wν

⋆ [Yazaki et al PRL 1998]

stack

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does sing but employs a stack

⋆ [Backhaus et al Nature1999]

regenerator

=gt acoustic feedback loopbull local TW phasingbull Z gtgt ρ0c0 locallybull f ltlt c0L=gt does sing quite well

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 22 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

A Standing wave engine [Swift JASA 1992]

bull fluiddagger 138 bar Heliumbull frequency 120 Hzbull drive ratio pP0 6bull TH 1000 Kbull Wload 630 Wbull QH 7 kWbull η = 009 (013ηc )

A thermoacoustic-Stirling engine [Backhaus amp Swift Nature 1999]

bull fluiddagger 30 bar Heliumbull frequency 80 Hzbull drive ratio pP0 6-10bull TH 1000 Kbull Wload 710 Wbull QH 24 kWbull η = 03 (042ηc )

dagger Need a large γ low Pr and high P0 (in 1-bar air at 120 dBSPL Wac asymp 10minus2Wmminus2 )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 23 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

Advantages of θac engines (and heat pumps)

⋆ Simple easy to build =gt potential reliability low cost⋆ Working gas = pressurized inert gas =gt harmless environmental friendly⋆ No or not much moving parts =gt resists wear⋆ Decent efficiencies(currently up to 32 in thermo-acoustic conversion for engines 5 )with potential improvements

Limitations of θac engines (and heat pumps)

⋆ Moderate output powers =gt up to a few kilowatts⋆ decent efficiencies =gt to be improved⋆ A development which remains limited to a few researchlaboratories and start-up companies

Potential applications of θac engines (and heat pumps)

⋆ Waste heat recovery micro-cogeneration⋆ Thermoacoustically driven pulse-tube refrigeration(cryogeny liquefaction of natural gas in methane tankers )⋆ Domestic refrigeration electronics cooling

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

Sketch of a thermo-acousto-electric

generator Such kind of engine has

been demonstrated to achieve a glo-

bal efficiency of 18 6

[5] Tijani et al J Appl Phys 2011 [6] Backhaus et al Appl Phys Lett 2004

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 24 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 9: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Machines thermoacoustiques

Tomographie thermoacoustique Haut-parleurs thermoacoustiques Effet piston Instabiliteacutes de combustion

Machines thermoacoustiqueMachine thermique cyclique faisant usage drsquoun travailmeacutecanique de nature acoustique

Congeacutelateur thermoacoustique reacutealiseacute agrave lrsquouniversiteacute de Penn

State pour le glacier ben amp Jerryrsquos1

Machine TA tritherme (moteur+frigo) reacutea-

liseacute au Los Alamos National Laboratory2

[1] httpwwwacspsueduthermoacousticsrefrigerationbenandjerryshtm [2] G W Swift J J WollanGasTIPS Volume 8 Number 4 pages 21-26 (Fall 2002)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 9 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Machines thermoacoustiques

Elementary sources of sound emission unsteady heat release

The linearized equations of motion for an inviscid and non-heat-conducting idealgas

parttρprime + ρ0divv = Q(r t) Q mass addition

time

pulsating sphere

ρ0parttv + gradp = f(r t) f force

time

oscillating sphere

ρ0Cpparttτ minus parttp = q(r t) q Heat release

time

sphere with oscillating temperature

The resulting inhomogeneous wave equation (using p = RT0ρprime + Rρ0τ) is

∆p minus1

c2

0

part2

ttp = minuspartt q

T0Cp

minus ρ0parttQ + divf

Contrarily to Q and f q is difficult to derive in realistic cases because The heat conductivity of the gas should be considered Generally q = q (p v) which may lead to self-sustained oscillations(eg Rijke tube etc )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 10 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The Rayleigh criterium

The Rayleigh criterium (int

pqdt gt 0)

ldquo at the phase of greatest condensation heat is receivedby the air and at the phase of greatest rarefaction heat isgiven up from it and thus there is a tendency to maintainthe vibrations rdquo JW Strutt (Lord Rayleigh) laquo The theory ofsound raquo Dover New York 2nd edition sect 322i p 231 1945)

pq

TA Laser Rijke tube

Q in

Wout

T(x)

Q in

WoutWout

V0

wire

q = f (dxT p vx stack ) q = f (Twire vx V0 )

⋆ not acoustically compact ⋆ acoustically compact(q asymp q(t)δ(x minus xwire ))

⋆ amplification of the first mode ⋆ amplification of the first mode R

pqdt gt 0 =gt dxT lt 0R

pqdt gt 0 =gt xw lt L2

Common features⋆ Autonomous oscillators driven by heat (which both fill the ldquoRayleigh criteriumrdquo)⋆ Simple in terms of geometry but complicated operation above threshold

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 11 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TA Laser a prototypical example

Heat input =gt sound output (self-sustained acoustic oscillations at the frequency of themost unstable mode(s))

Keywords heat engine (prime-movers and heat pumps) autonomous oscillator Paradigmatic of the challenges that need to be taken up to understand more deeply the

processes controlling the operation of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 12 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Auto-oscillateur thermo-acoustique contexte et probleacutematique

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

⋆ Application drsquoun nablaT le long drsquoun mateacuteriau poreux placeacute dans un reacuteseau de guidedrsquoonde rArr auto-oscillations agrave la freacutequence du mode le plus instable

⋆ Geacuteomeacutetrie plusmn simple mais fonctionnement complexe au delagrave du seuil (pompage θac ldquovent acoustiquerdquo perte de charge singuliegravere propa NL )

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 13 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 14 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic principles

The TA Laser a conceptual very simplified approach

⋆ Simplistic description =gt Lagrangian approach follow a gas parcel submitted to a standingwave through a channel with an axial temperature gradient dxT0

δκ

ρ1

x

Hot Heat eXchanger (HHX) Cold Heat eXchanger (CHX)

Q Qrsquo

2 411

33

v

21 3 4 1τp

p 2

13

4

ξ max2

1 ~ adiabatic compression2 ~ isobaric expansion3 ~ adiabatic relaxation4 ~ isobaric contraction

=gt Work production if |dxT |ξmax gt τmax and dxT lt 0

⋆ But actual processes are actually more complex (heat exchange occurs continuously)⋆ A key point need of an imperfect thermal contact

=gtldquoefficientrdquo gas parcels should be at about δκ from the wall where δκ =p

2κωis the (frequency-dependent) thermal boundary layer thickness

⋆ Threshold of thermoacoustic instability (for a given mode)

=gt Sound amplification must be larger than losses

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 15 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Plane wave propagation through a viscous and heat-conducting gas along a ductsubmitted to a temperature gradient

⋆ Both the production of acoustic work and the ldquobucket briga-derdquo heat transport by sound along the duct are then described bysecond-order quantities

the ldquobucket brigaderdquo

xR

y

z

r

C T (x)s ss sρ λ pC T (x)ρ λ (x) (x)

θ

Main assumptions⋆ Low amplitudes ⋆ Typical wavelength raquo R ⋆ No mean flow

P(x r t) = P0 + p(x r t) =gt planes waves ⋆ ideal gasρ(x r t) = ρ0(x) + ρprime(x r t) p(x r t) = p(x t) ⋆ ρsCs ≫ ρ0Cp

T (x r t) = T0(x) + τ (x r t) =gtldquoboundary layer approximationrdquo ⋆ λs ≫ λv(x r t) ≪ c0 |partrζ| ≫ |partxζ|

S(x r t) = S0(x) + s(x r t) (ζ = p ρprime τ v s)[1] N Rott Adv Appl Mech 1980 [2] GW Swift J Acoust Soc Am 1988

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 16 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Equations fondamentales lineacuteariseacutees

ρdtV = minusnablaP + micronabla2V + (η + micro3)nabla (nablaV) rArr ρ0iωvx = minusdx p + micro(1r)partr (rpartr vx )

parttρ + nabla (ρV) = 0 rArr iωρprime + ρ0partx vx + vxdxρ0 = 0

ρTdtS = λ∆T + O2(v) rArr ρ0T0 (iωs + vxpartxS0) = λ(1r)partr (rpartr τ )

dS = (CpT )dT minus (αρ)dP rArr T0 s = Cp τ minus pρ0

dρ = minusραdT + ρχtdP rArr ρprime = minus(ρ0T0)τ + (γc20 )p

⋆ Conditions aux limites (tuyau drsquoaxe x et de rayon R) rArr ~v(x r = R) = 0 τ(x r = R) = 0

vx (x r) = i(ωρ0)dx p [1 minus Fν (r)]

τ(x r) = p(ρ0Cp) [1 minus Fκ(r)] minus 1(ρ0ω2)dx pdxT0 [1 minus (PrFν (r) minus Fκ(r))(Pr minus 1)]

ρprime = 1ω2

[1 minus (PrFν minus Fκ)(Pr minus 1)+] dxT0T0dx p + 1c20 [1 + (γ minus 1)Fκ] p

s = minusp(ρ0T0)Fκ minus Cp(ρ0ω2)dx pdxT0T0 [1 minus (PrFν minus Fκ)(Pr minus 1)]

Fνκ(r) =J0(kνκr)J0(kνκR)

kνκ = 1minusiδνκ

δν =q

2νω δκ =

q2κω

fνκ = 〈Fνκ〉 = 2kνκR

J1(kνκR)J0(kνκR)

0 05 1 15 20

02

04

06

08

1

(1minusFν)(1minusfν)

rR

R=100δν

R=10δν

R=δν

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 17 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le point de vue thermodynamique

⋆ Onde plane stationnaire dans un tuyau ldquolargerdquo

p(x) = Pmax cos (k0x)

ρprime = 1ω2

h

1 minus PrFνminusFκPrminus1 +

idxT0T0

dx p + 1c20

[1 + (γ minus 1)Fκ] p

δκ

d

R=10

d = δκ3 d = δκ d = 3δκ

P

P

P

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

dxT0 = 0 dxT0 = 0 dxT0 = 0dxT0 = minus220Km dxT0 = minus220Km dxT0 = minus220Km

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 18 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Sound amplification

⋆ From the knowledge of the acoustic variables it is possible to calculate thetime-average second order acoustic power produced (or absorbed) per unit volume w2

([w2 ] = Wmminus3)

w2 = partx(p lt vx gt)

⋆ After some calculations3

w2 = wκ + wν + wsw + wtw

wκ =1

2

(γ minus 1)ω

ρ0c2

0

image (fκ) |p|2

wν =1

2ωρ0

image(fν)

|1 minus fν |2|〈vx〉|

2

wsw = minusimage(h)dxT0

T0

1

2image (p〈vlowast

x 〉)

wtw = real(h)dx T0

T0

1

2real (p〈vlowast

x 〉)

h =fκ minus fν

(1 minus Pr)(1 minus fν)0 02 04 06 08 1 12 14 16 18 2

minus14

minus12

minus10

minus8

minus6

minus4

minus2

δκRh

minus04

minus02

0

02

04

06

08

1

real (h)

image (fν)

|1minusfν|2

image (h)image (fκ)

[3] A Tominaga Cryogenics 1995

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 19 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Heat transport by sound

⋆ From the knowledge of the acoustic variables it is also possible to calculate thethermoacoustic heat flux q2 ([q2 ] = Wmminus2)

q2 = ρ0T0(〈svx 〉) s =CpT0

τ minus 1

ρ0T0p

⋆ After some calculations

q2 = qsw + qtw + λacdxT0

qsw = minusimage(g)1

2image`p〈vlowast

x 〉acute

qtw = real(g)1

2real`p〈vlowast

x 〉acute

λac =ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2

g =f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 20 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Amplification of a standing wave

w2 = wκ + wν| z

losses

+

propminusimage(h)z|wsw +

propreal(h)z|wtw

| z production

h = (fκ minus fν )[(1 minus Pr)(1 minus fν)]δκ

Q Qrsquo

411

33

2

x

x

yz

CYLINDER

2Rh

x

yz

2Rh

2Rh

SQUARE

2ri

hR

R = 3 rh i

PINminusARRAY

⋆ In case of a standing wave one need δκ le Rh (stack) and always have |image(h)| lt 1=gt intrinsic irreversibility4due to the need of an imperfect thermal contact⋆ But in case of a travelling wave phasing we have |image(h)| asymp 1 if δκ ge Rh=gt a travelling wave phasing combined with a regenerator (δκ ge Rh) should be better

[4] J C Wheatley et al J Acoust Soc Am 1983

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 21 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

How to build an intrinsically reversible Thermoacoustic engine

w2 = wκ + wν| z

losses

+

propminusimage(h)z|

wsw +

propreal(h)z|

wtw| z

production

δκ

Qrsquo Q

1

213

3

1

2 34

4

Stirling Cycle

ρ1

p

=gt use a regenerator(δκ ge Rh) and a travelling wave phasing between p and vx

⋆ [CeperleyJASA1979]

regenerator

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does not singbecause wtw lt wν

⋆ [Yazaki et al PRL 1998]

stack

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does sing but employs a stack

⋆ [Backhaus et al Nature1999]

regenerator

=gt acoustic feedback loopbull local TW phasingbull Z gtgt ρ0c0 locallybull f ltlt c0L=gt does sing quite well

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 22 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

A Standing wave engine [Swift JASA 1992]

bull fluiddagger 138 bar Heliumbull frequency 120 Hzbull drive ratio pP0 6bull TH 1000 Kbull Wload 630 Wbull QH 7 kWbull η = 009 (013ηc )

A thermoacoustic-Stirling engine [Backhaus amp Swift Nature 1999]

bull fluiddagger 30 bar Heliumbull frequency 80 Hzbull drive ratio pP0 6-10bull TH 1000 Kbull Wload 710 Wbull QH 24 kWbull η = 03 (042ηc )

dagger Need a large γ low Pr and high P0 (in 1-bar air at 120 dBSPL Wac asymp 10minus2Wmminus2 )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 23 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

Advantages of θac engines (and heat pumps)

⋆ Simple easy to build =gt potential reliability low cost⋆ Working gas = pressurized inert gas =gt harmless environmental friendly⋆ No or not much moving parts =gt resists wear⋆ Decent efficiencies(currently up to 32 in thermo-acoustic conversion for engines 5 )with potential improvements

Limitations of θac engines (and heat pumps)

⋆ Moderate output powers =gt up to a few kilowatts⋆ decent efficiencies =gt to be improved⋆ A development which remains limited to a few researchlaboratories and start-up companies

Potential applications of θac engines (and heat pumps)

⋆ Waste heat recovery micro-cogeneration⋆ Thermoacoustically driven pulse-tube refrigeration(cryogeny liquefaction of natural gas in methane tankers )⋆ Domestic refrigeration electronics cooling

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

Sketch of a thermo-acousto-electric

generator Such kind of engine has

been demonstrated to achieve a glo-

bal efficiency of 18 6

[5] Tijani et al J Appl Phys 2011 [6] Backhaus et al Appl Phys Lett 2004

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 24 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 10: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Machines thermoacoustiques

Elementary sources of sound emission unsteady heat release

The linearized equations of motion for an inviscid and non-heat-conducting idealgas

parttρprime + ρ0divv = Q(r t) Q mass addition

time

pulsating sphere

ρ0parttv + gradp = f(r t) f force

time

oscillating sphere

ρ0Cpparttτ minus parttp = q(r t) q Heat release

time

sphere with oscillating temperature

The resulting inhomogeneous wave equation (using p = RT0ρprime + Rρ0τ) is

∆p minus1

c2

0

part2

ttp = minuspartt q

T0Cp

minus ρ0parttQ + divf

Contrarily to Q and f q is difficult to derive in realistic cases because The heat conductivity of the gas should be considered Generally q = q (p v) which may lead to self-sustained oscillations(eg Rijke tube etc )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 10 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The Rayleigh criterium

The Rayleigh criterium (int

pqdt gt 0)

ldquo at the phase of greatest condensation heat is receivedby the air and at the phase of greatest rarefaction heat isgiven up from it and thus there is a tendency to maintainthe vibrations rdquo JW Strutt (Lord Rayleigh) laquo The theory ofsound raquo Dover New York 2nd edition sect 322i p 231 1945)

pq

TA Laser Rijke tube

Q in

Wout

T(x)

Q in

WoutWout

V0

wire

q = f (dxT p vx stack ) q = f (Twire vx V0 )

⋆ not acoustically compact ⋆ acoustically compact(q asymp q(t)δ(x minus xwire ))

⋆ amplification of the first mode ⋆ amplification of the first mode R

pqdt gt 0 =gt dxT lt 0R

pqdt gt 0 =gt xw lt L2

Common features⋆ Autonomous oscillators driven by heat (which both fill the ldquoRayleigh criteriumrdquo)⋆ Simple in terms of geometry but complicated operation above threshold

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 11 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TA Laser a prototypical example

Heat input =gt sound output (self-sustained acoustic oscillations at the frequency of themost unstable mode(s))

Keywords heat engine (prime-movers and heat pumps) autonomous oscillator Paradigmatic of the challenges that need to be taken up to understand more deeply the

processes controlling the operation of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 12 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Auto-oscillateur thermo-acoustique contexte et probleacutematique

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

⋆ Application drsquoun nablaT le long drsquoun mateacuteriau poreux placeacute dans un reacuteseau de guidedrsquoonde rArr auto-oscillations agrave la freacutequence du mode le plus instable

⋆ Geacuteomeacutetrie plusmn simple mais fonctionnement complexe au delagrave du seuil (pompage θac ldquovent acoustiquerdquo perte de charge singuliegravere propa NL )

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 13 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 14 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic principles

The TA Laser a conceptual very simplified approach

⋆ Simplistic description =gt Lagrangian approach follow a gas parcel submitted to a standingwave through a channel with an axial temperature gradient dxT0

δκ

ρ1

x

Hot Heat eXchanger (HHX) Cold Heat eXchanger (CHX)

Q Qrsquo

2 411

33

v

21 3 4 1τp

p 2

13

4

ξ max2

1 ~ adiabatic compression2 ~ isobaric expansion3 ~ adiabatic relaxation4 ~ isobaric contraction

=gt Work production if |dxT |ξmax gt τmax and dxT lt 0

⋆ But actual processes are actually more complex (heat exchange occurs continuously)⋆ A key point need of an imperfect thermal contact

=gtldquoefficientrdquo gas parcels should be at about δκ from the wall where δκ =p

2κωis the (frequency-dependent) thermal boundary layer thickness

⋆ Threshold of thermoacoustic instability (for a given mode)

=gt Sound amplification must be larger than losses

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 15 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Plane wave propagation through a viscous and heat-conducting gas along a ductsubmitted to a temperature gradient

⋆ Both the production of acoustic work and the ldquobucket briga-derdquo heat transport by sound along the duct are then described bysecond-order quantities

the ldquobucket brigaderdquo

xR

y

z

r

C T (x)s ss sρ λ pC T (x)ρ λ (x) (x)

θ

Main assumptions⋆ Low amplitudes ⋆ Typical wavelength raquo R ⋆ No mean flow

P(x r t) = P0 + p(x r t) =gt planes waves ⋆ ideal gasρ(x r t) = ρ0(x) + ρprime(x r t) p(x r t) = p(x t) ⋆ ρsCs ≫ ρ0Cp

T (x r t) = T0(x) + τ (x r t) =gtldquoboundary layer approximationrdquo ⋆ λs ≫ λv(x r t) ≪ c0 |partrζ| ≫ |partxζ|

S(x r t) = S0(x) + s(x r t) (ζ = p ρprime τ v s)[1] N Rott Adv Appl Mech 1980 [2] GW Swift J Acoust Soc Am 1988

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 16 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Equations fondamentales lineacuteariseacutees

ρdtV = minusnablaP + micronabla2V + (η + micro3)nabla (nablaV) rArr ρ0iωvx = minusdx p + micro(1r)partr (rpartr vx )

parttρ + nabla (ρV) = 0 rArr iωρprime + ρ0partx vx + vxdxρ0 = 0

ρTdtS = λ∆T + O2(v) rArr ρ0T0 (iωs + vxpartxS0) = λ(1r)partr (rpartr τ )

dS = (CpT )dT minus (αρ)dP rArr T0 s = Cp τ minus pρ0

dρ = minusραdT + ρχtdP rArr ρprime = minus(ρ0T0)τ + (γc20 )p

⋆ Conditions aux limites (tuyau drsquoaxe x et de rayon R) rArr ~v(x r = R) = 0 τ(x r = R) = 0

vx (x r) = i(ωρ0)dx p [1 minus Fν (r)]

τ(x r) = p(ρ0Cp) [1 minus Fκ(r)] minus 1(ρ0ω2)dx pdxT0 [1 minus (PrFν (r) minus Fκ(r))(Pr minus 1)]

ρprime = 1ω2

[1 minus (PrFν minus Fκ)(Pr minus 1)+] dxT0T0dx p + 1c20 [1 + (γ minus 1)Fκ] p

s = minusp(ρ0T0)Fκ minus Cp(ρ0ω2)dx pdxT0T0 [1 minus (PrFν minus Fκ)(Pr minus 1)]

Fνκ(r) =J0(kνκr)J0(kνκR)

kνκ = 1minusiδνκ

δν =q

2νω δκ =

q2κω

fνκ = 〈Fνκ〉 = 2kνκR

J1(kνκR)J0(kνκR)

0 05 1 15 20

02

04

06

08

1

(1minusFν)(1minusfν)

rR

R=100δν

R=10δν

R=δν

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 17 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le point de vue thermodynamique

⋆ Onde plane stationnaire dans un tuyau ldquolargerdquo

p(x) = Pmax cos (k0x)

ρprime = 1ω2

h

1 minus PrFνminusFκPrminus1 +

idxT0T0

dx p + 1c20

[1 + (γ minus 1)Fκ] p

δκ

d

R=10

d = δκ3 d = δκ d = 3δκ

P

P

P

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

dxT0 = 0 dxT0 = 0 dxT0 = 0dxT0 = minus220Km dxT0 = minus220Km dxT0 = minus220Km

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 18 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Sound amplification

⋆ From the knowledge of the acoustic variables it is possible to calculate thetime-average second order acoustic power produced (or absorbed) per unit volume w2

([w2 ] = Wmminus3)

w2 = partx(p lt vx gt)

⋆ After some calculations3

w2 = wκ + wν + wsw + wtw

wκ =1

2

(γ minus 1)ω

ρ0c2

0

image (fκ) |p|2

wν =1

2ωρ0

image(fν)

|1 minus fν |2|〈vx〉|

2

wsw = minusimage(h)dxT0

T0

1

2image (p〈vlowast

x 〉)

wtw = real(h)dx T0

T0

1

2real (p〈vlowast

x 〉)

h =fκ minus fν

(1 minus Pr)(1 minus fν)0 02 04 06 08 1 12 14 16 18 2

minus14

minus12

minus10

minus8

minus6

minus4

minus2

δκRh

minus04

minus02

0

02

04

06

08

1

real (h)

image (fν)

|1minusfν|2

image (h)image (fκ)

[3] A Tominaga Cryogenics 1995

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 19 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Heat transport by sound

⋆ From the knowledge of the acoustic variables it is also possible to calculate thethermoacoustic heat flux q2 ([q2 ] = Wmminus2)

q2 = ρ0T0(〈svx 〉) s =CpT0

τ minus 1

ρ0T0p

⋆ After some calculations

q2 = qsw + qtw + λacdxT0

qsw = minusimage(g)1

2image`p〈vlowast

x 〉acute

qtw = real(g)1

2real`p〈vlowast

x 〉acute

λac =ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2

g =f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 20 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Amplification of a standing wave

w2 = wκ + wν| z

losses

+

propminusimage(h)z|wsw +

propreal(h)z|wtw

| z production

h = (fκ minus fν )[(1 minus Pr)(1 minus fν)]δκ

Q Qrsquo

411

33

2

x

x

yz

CYLINDER

2Rh

x

yz

2Rh

2Rh

SQUARE

2ri

hR

R = 3 rh i

PINminusARRAY

⋆ In case of a standing wave one need δκ le Rh (stack) and always have |image(h)| lt 1=gt intrinsic irreversibility4due to the need of an imperfect thermal contact⋆ But in case of a travelling wave phasing we have |image(h)| asymp 1 if δκ ge Rh=gt a travelling wave phasing combined with a regenerator (δκ ge Rh) should be better

[4] J C Wheatley et al J Acoust Soc Am 1983

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 21 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

How to build an intrinsically reversible Thermoacoustic engine

w2 = wκ + wν| z

losses

+

propminusimage(h)z|

wsw +

propreal(h)z|

wtw| z

production

δκ

Qrsquo Q

1

213

3

1

2 34

4

Stirling Cycle

ρ1

p

=gt use a regenerator(δκ ge Rh) and a travelling wave phasing between p and vx

⋆ [CeperleyJASA1979]

regenerator

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does not singbecause wtw lt wν

⋆ [Yazaki et al PRL 1998]

stack

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does sing but employs a stack

⋆ [Backhaus et al Nature1999]

regenerator

=gt acoustic feedback loopbull local TW phasingbull Z gtgt ρ0c0 locallybull f ltlt c0L=gt does sing quite well

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 22 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

A Standing wave engine [Swift JASA 1992]

bull fluiddagger 138 bar Heliumbull frequency 120 Hzbull drive ratio pP0 6bull TH 1000 Kbull Wload 630 Wbull QH 7 kWbull η = 009 (013ηc )

A thermoacoustic-Stirling engine [Backhaus amp Swift Nature 1999]

bull fluiddagger 30 bar Heliumbull frequency 80 Hzbull drive ratio pP0 6-10bull TH 1000 Kbull Wload 710 Wbull QH 24 kWbull η = 03 (042ηc )

dagger Need a large γ low Pr and high P0 (in 1-bar air at 120 dBSPL Wac asymp 10minus2Wmminus2 )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 23 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

Advantages of θac engines (and heat pumps)

⋆ Simple easy to build =gt potential reliability low cost⋆ Working gas = pressurized inert gas =gt harmless environmental friendly⋆ No or not much moving parts =gt resists wear⋆ Decent efficiencies(currently up to 32 in thermo-acoustic conversion for engines 5 )with potential improvements

Limitations of θac engines (and heat pumps)

⋆ Moderate output powers =gt up to a few kilowatts⋆ decent efficiencies =gt to be improved⋆ A development which remains limited to a few researchlaboratories and start-up companies

Potential applications of θac engines (and heat pumps)

⋆ Waste heat recovery micro-cogeneration⋆ Thermoacoustically driven pulse-tube refrigeration(cryogeny liquefaction of natural gas in methane tankers )⋆ Domestic refrigeration electronics cooling

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

Sketch of a thermo-acousto-electric

generator Such kind of engine has

been demonstrated to achieve a glo-

bal efficiency of 18 6

[5] Tijani et al J Appl Phys 2011 [6] Backhaus et al Appl Phys Lett 2004

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 24 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 11: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The Rayleigh criterium

The Rayleigh criterium (int

pqdt gt 0)

ldquo at the phase of greatest condensation heat is receivedby the air and at the phase of greatest rarefaction heat isgiven up from it and thus there is a tendency to maintainthe vibrations rdquo JW Strutt (Lord Rayleigh) laquo The theory ofsound raquo Dover New York 2nd edition sect 322i p 231 1945)

pq

TA Laser Rijke tube

Q in

Wout

T(x)

Q in

WoutWout

V0

wire

q = f (dxT p vx stack ) q = f (Twire vx V0 )

⋆ not acoustically compact ⋆ acoustically compact(q asymp q(t)δ(x minus xwire ))

⋆ amplification of the first mode ⋆ amplification of the first mode R

pqdt gt 0 =gt dxT lt 0R

pqdt gt 0 =gt xw lt L2

Common features⋆ Autonomous oscillators driven by heat (which both fill the ldquoRayleigh criteriumrdquo)⋆ Simple in terms of geometry but complicated operation above threshold

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 11 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TA Laser a prototypical example

Heat input =gt sound output (self-sustained acoustic oscillations at the frequency of themost unstable mode(s))

Keywords heat engine (prime-movers and heat pumps) autonomous oscillator Paradigmatic of the challenges that need to be taken up to understand more deeply the

processes controlling the operation of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 12 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Auto-oscillateur thermo-acoustique contexte et probleacutematique

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

⋆ Application drsquoun nablaT le long drsquoun mateacuteriau poreux placeacute dans un reacuteseau de guidedrsquoonde rArr auto-oscillations agrave la freacutequence du mode le plus instable

⋆ Geacuteomeacutetrie plusmn simple mais fonctionnement complexe au delagrave du seuil (pompage θac ldquovent acoustiquerdquo perte de charge singuliegravere propa NL )

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 13 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 14 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic principles

The TA Laser a conceptual very simplified approach

⋆ Simplistic description =gt Lagrangian approach follow a gas parcel submitted to a standingwave through a channel with an axial temperature gradient dxT0

δκ

ρ1

x

Hot Heat eXchanger (HHX) Cold Heat eXchanger (CHX)

Q Qrsquo

2 411

33

v

21 3 4 1τp

p 2

13

4

ξ max2

1 ~ adiabatic compression2 ~ isobaric expansion3 ~ adiabatic relaxation4 ~ isobaric contraction

=gt Work production if |dxT |ξmax gt τmax and dxT lt 0

⋆ But actual processes are actually more complex (heat exchange occurs continuously)⋆ A key point need of an imperfect thermal contact

=gtldquoefficientrdquo gas parcels should be at about δκ from the wall where δκ =p

2κωis the (frequency-dependent) thermal boundary layer thickness

⋆ Threshold of thermoacoustic instability (for a given mode)

=gt Sound amplification must be larger than losses

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 15 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Plane wave propagation through a viscous and heat-conducting gas along a ductsubmitted to a temperature gradient

⋆ Both the production of acoustic work and the ldquobucket briga-derdquo heat transport by sound along the duct are then described bysecond-order quantities

the ldquobucket brigaderdquo

xR

y

z

r

C T (x)s ss sρ λ pC T (x)ρ λ (x) (x)

θ

Main assumptions⋆ Low amplitudes ⋆ Typical wavelength raquo R ⋆ No mean flow

P(x r t) = P0 + p(x r t) =gt planes waves ⋆ ideal gasρ(x r t) = ρ0(x) + ρprime(x r t) p(x r t) = p(x t) ⋆ ρsCs ≫ ρ0Cp

T (x r t) = T0(x) + τ (x r t) =gtldquoboundary layer approximationrdquo ⋆ λs ≫ λv(x r t) ≪ c0 |partrζ| ≫ |partxζ|

S(x r t) = S0(x) + s(x r t) (ζ = p ρprime τ v s)[1] N Rott Adv Appl Mech 1980 [2] GW Swift J Acoust Soc Am 1988

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 16 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Equations fondamentales lineacuteariseacutees

ρdtV = minusnablaP + micronabla2V + (η + micro3)nabla (nablaV) rArr ρ0iωvx = minusdx p + micro(1r)partr (rpartr vx )

parttρ + nabla (ρV) = 0 rArr iωρprime + ρ0partx vx + vxdxρ0 = 0

ρTdtS = λ∆T + O2(v) rArr ρ0T0 (iωs + vxpartxS0) = λ(1r)partr (rpartr τ )

dS = (CpT )dT minus (αρ)dP rArr T0 s = Cp τ minus pρ0

dρ = minusραdT + ρχtdP rArr ρprime = minus(ρ0T0)τ + (γc20 )p

⋆ Conditions aux limites (tuyau drsquoaxe x et de rayon R) rArr ~v(x r = R) = 0 τ(x r = R) = 0

vx (x r) = i(ωρ0)dx p [1 minus Fν (r)]

τ(x r) = p(ρ0Cp) [1 minus Fκ(r)] minus 1(ρ0ω2)dx pdxT0 [1 minus (PrFν (r) minus Fκ(r))(Pr minus 1)]

ρprime = 1ω2

[1 minus (PrFν minus Fκ)(Pr minus 1)+] dxT0T0dx p + 1c20 [1 + (γ minus 1)Fκ] p

s = minusp(ρ0T0)Fκ minus Cp(ρ0ω2)dx pdxT0T0 [1 minus (PrFν minus Fκ)(Pr minus 1)]

Fνκ(r) =J0(kνκr)J0(kνκR)

kνκ = 1minusiδνκ

δν =q

2νω δκ =

q2κω

fνκ = 〈Fνκ〉 = 2kνκR

J1(kνκR)J0(kνκR)

0 05 1 15 20

02

04

06

08

1

(1minusFν)(1minusfν)

rR

R=100δν

R=10δν

R=δν

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 17 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le point de vue thermodynamique

⋆ Onde plane stationnaire dans un tuyau ldquolargerdquo

p(x) = Pmax cos (k0x)

ρprime = 1ω2

h

1 minus PrFνminusFκPrminus1 +

idxT0T0

dx p + 1c20

[1 + (γ minus 1)Fκ] p

δκ

d

R=10

d = δκ3 d = δκ d = 3δκ

P

P

P

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

dxT0 = 0 dxT0 = 0 dxT0 = 0dxT0 = minus220Km dxT0 = minus220Km dxT0 = minus220Km

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 18 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Sound amplification

⋆ From the knowledge of the acoustic variables it is possible to calculate thetime-average second order acoustic power produced (or absorbed) per unit volume w2

([w2 ] = Wmminus3)

w2 = partx(p lt vx gt)

⋆ After some calculations3

w2 = wκ + wν + wsw + wtw

wκ =1

2

(γ minus 1)ω

ρ0c2

0

image (fκ) |p|2

wν =1

2ωρ0

image(fν)

|1 minus fν |2|〈vx〉|

2

wsw = minusimage(h)dxT0

T0

1

2image (p〈vlowast

x 〉)

wtw = real(h)dx T0

T0

1

2real (p〈vlowast

x 〉)

h =fκ minus fν

(1 minus Pr)(1 minus fν)0 02 04 06 08 1 12 14 16 18 2

minus14

minus12

minus10

minus8

minus6

minus4

minus2

δκRh

minus04

minus02

0

02

04

06

08

1

real (h)

image (fν)

|1minusfν|2

image (h)image (fκ)

[3] A Tominaga Cryogenics 1995

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 19 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Heat transport by sound

⋆ From the knowledge of the acoustic variables it is also possible to calculate thethermoacoustic heat flux q2 ([q2 ] = Wmminus2)

q2 = ρ0T0(〈svx 〉) s =CpT0

τ minus 1

ρ0T0p

⋆ After some calculations

q2 = qsw + qtw + λacdxT0

qsw = minusimage(g)1

2image`p〈vlowast

x 〉acute

qtw = real(g)1

2real`p〈vlowast

x 〉acute

λac =ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2

g =f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 20 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Amplification of a standing wave

w2 = wκ + wν| z

losses

+

propminusimage(h)z|wsw +

propreal(h)z|wtw

| z production

h = (fκ minus fν )[(1 minus Pr)(1 minus fν)]δκ

Q Qrsquo

411

33

2

x

x

yz

CYLINDER

2Rh

x

yz

2Rh

2Rh

SQUARE

2ri

hR

R = 3 rh i

PINminusARRAY

⋆ In case of a standing wave one need δκ le Rh (stack) and always have |image(h)| lt 1=gt intrinsic irreversibility4due to the need of an imperfect thermal contact⋆ But in case of a travelling wave phasing we have |image(h)| asymp 1 if δκ ge Rh=gt a travelling wave phasing combined with a regenerator (δκ ge Rh) should be better

[4] J C Wheatley et al J Acoust Soc Am 1983

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 21 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

How to build an intrinsically reversible Thermoacoustic engine

w2 = wκ + wν| z

losses

+

propminusimage(h)z|

wsw +

propreal(h)z|

wtw| z

production

δκ

Qrsquo Q

1

213

3

1

2 34

4

Stirling Cycle

ρ1

p

=gt use a regenerator(δκ ge Rh) and a travelling wave phasing between p and vx

⋆ [CeperleyJASA1979]

regenerator

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does not singbecause wtw lt wν

⋆ [Yazaki et al PRL 1998]

stack

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does sing but employs a stack

⋆ [Backhaus et al Nature1999]

regenerator

=gt acoustic feedback loopbull local TW phasingbull Z gtgt ρ0c0 locallybull f ltlt c0L=gt does sing quite well

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 22 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

A Standing wave engine [Swift JASA 1992]

bull fluiddagger 138 bar Heliumbull frequency 120 Hzbull drive ratio pP0 6bull TH 1000 Kbull Wload 630 Wbull QH 7 kWbull η = 009 (013ηc )

A thermoacoustic-Stirling engine [Backhaus amp Swift Nature 1999]

bull fluiddagger 30 bar Heliumbull frequency 80 Hzbull drive ratio pP0 6-10bull TH 1000 Kbull Wload 710 Wbull QH 24 kWbull η = 03 (042ηc )

dagger Need a large γ low Pr and high P0 (in 1-bar air at 120 dBSPL Wac asymp 10minus2Wmminus2 )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 23 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

Advantages of θac engines (and heat pumps)

⋆ Simple easy to build =gt potential reliability low cost⋆ Working gas = pressurized inert gas =gt harmless environmental friendly⋆ No or not much moving parts =gt resists wear⋆ Decent efficiencies(currently up to 32 in thermo-acoustic conversion for engines 5 )with potential improvements

Limitations of θac engines (and heat pumps)

⋆ Moderate output powers =gt up to a few kilowatts⋆ decent efficiencies =gt to be improved⋆ A development which remains limited to a few researchlaboratories and start-up companies

Potential applications of θac engines (and heat pumps)

⋆ Waste heat recovery micro-cogeneration⋆ Thermoacoustically driven pulse-tube refrigeration(cryogeny liquefaction of natural gas in methane tankers )⋆ Domestic refrigeration electronics cooling

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

Sketch of a thermo-acousto-electric

generator Such kind of engine has

been demonstrated to achieve a glo-

bal efficiency of 18 6

[5] Tijani et al J Appl Phys 2011 [6] Backhaus et al Appl Phys Lett 2004

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 24 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 12: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TA Laser a prototypical example

Heat input =gt sound output (self-sustained acoustic oscillations at the frequency of themost unstable mode(s))

Keywords heat engine (prime-movers and heat pumps) autonomous oscillator Paradigmatic of the challenges that need to be taken up to understand more deeply the

processes controlling the operation of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 12 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Auto-oscillateur thermo-acoustique contexte et probleacutematique

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

⋆ Application drsquoun nablaT le long drsquoun mateacuteriau poreux placeacute dans un reacuteseau de guidedrsquoonde rArr auto-oscillations agrave la freacutequence du mode le plus instable

⋆ Geacuteomeacutetrie plusmn simple mais fonctionnement complexe au delagrave du seuil (pompage θac ldquovent acoustiquerdquo perte de charge singuliegravere propa NL )

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 13 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 14 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic principles

The TA Laser a conceptual very simplified approach

⋆ Simplistic description =gt Lagrangian approach follow a gas parcel submitted to a standingwave through a channel with an axial temperature gradient dxT0

δκ

ρ1

x

Hot Heat eXchanger (HHX) Cold Heat eXchanger (CHX)

Q Qrsquo

2 411

33

v

21 3 4 1τp

p 2

13

4

ξ max2

1 ~ adiabatic compression2 ~ isobaric expansion3 ~ adiabatic relaxation4 ~ isobaric contraction

=gt Work production if |dxT |ξmax gt τmax and dxT lt 0

⋆ But actual processes are actually more complex (heat exchange occurs continuously)⋆ A key point need of an imperfect thermal contact

=gtldquoefficientrdquo gas parcels should be at about δκ from the wall where δκ =p

2κωis the (frequency-dependent) thermal boundary layer thickness

⋆ Threshold of thermoacoustic instability (for a given mode)

=gt Sound amplification must be larger than losses

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 15 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Plane wave propagation through a viscous and heat-conducting gas along a ductsubmitted to a temperature gradient

⋆ Both the production of acoustic work and the ldquobucket briga-derdquo heat transport by sound along the duct are then described bysecond-order quantities

the ldquobucket brigaderdquo

xR

y

z

r

C T (x)s ss sρ λ pC T (x)ρ λ (x) (x)

θ

Main assumptions⋆ Low amplitudes ⋆ Typical wavelength raquo R ⋆ No mean flow

P(x r t) = P0 + p(x r t) =gt planes waves ⋆ ideal gasρ(x r t) = ρ0(x) + ρprime(x r t) p(x r t) = p(x t) ⋆ ρsCs ≫ ρ0Cp

T (x r t) = T0(x) + τ (x r t) =gtldquoboundary layer approximationrdquo ⋆ λs ≫ λv(x r t) ≪ c0 |partrζ| ≫ |partxζ|

S(x r t) = S0(x) + s(x r t) (ζ = p ρprime τ v s)[1] N Rott Adv Appl Mech 1980 [2] GW Swift J Acoust Soc Am 1988

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 16 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Equations fondamentales lineacuteariseacutees

ρdtV = minusnablaP + micronabla2V + (η + micro3)nabla (nablaV) rArr ρ0iωvx = minusdx p + micro(1r)partr (rpartr vx )

parttρ + nabla (ρV) = 0 rArr iωρprime + ρ0partx vx + vxdxρ0 = 0

ρTdtS = λ∆T + O2(v) rArr ρ0T0 (iωs + vxpartxS0) = λ(1r)partr (rpartr τ )

dS = (CpT )dT minus (αρ)dP rArr T0 s = Cp τ minus pρ0

dρ = minusραdT + ρχtdP rArr ρprime = minus(ρ0T0)τ + (γc20 )p

⋆ Conditions aux limites (tuyau drsquoaxe x et de rayon R) rArr ~v(x r = R) = 0 τ(x r = R) = 0

vx (x r) = i(ωρ0)dx p [1 minus Fν (r)]

τ(x r) = p(ρ0Cp) [1 minus Fκ(r)] minus 1(ρ0ω2)dx pdxT0 [1 minus (PrFν (r) minus Fκ(r))(Pr minus 1)]

ρprime = 1ω2

[1 minus (PrFν minus Fκ)(Pr minus 1)+] dxT0T0dx p + 1c20 [1 + (γ minus 1)Fκ] p

s = minusp(ρ0T0)Fκ minus Cp(ρ0ω2)dx pdxT0T0 [1 minus (PrFν minus Fκ)(Pr minus 1)]

Fνκ(r) =J0(kνκr)J0(kνκR)

kνκ = 1minusiδνκ

δν =q

2νω δκ =

q2κω

fνκ = 〈Fνκ〉 = 2kνκR

J1(kνκR)J0(kνκR)

0 05 1 15 20

02

04

06

08

1

(1minusFν)(1minusfν)

rR

R=100δν

R=10δν

R=δν

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 17 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le point de vue thermodynamique

⋆ Onde plane stationnaire dans un tuyau ldquolargerdquo

p(x) = Pmax cos (k0x)

ρprime = 1ω2

h

1 minus PrFνminusFκPrminus1 +

idxT0T0

dx p + 1c20

[1 + (γ minus 1)Fκ] p

δκ

d

R=10

d = δκ3 d = δκ d = 3δκ

P

P

P

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

dxT0 = 0 dxT0 = 0 dxT0 = 0dxT0 = minus220Km dxT0 = minus220Km dxT0 = minus220Km

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 18 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Sound amplification

⋆ From the knowledge of the acoustic variables it is possible to calculate thetime-average second order acoustic power produced (or absorbed) per unit volume w2

([w2 ] = Wmminus3)

w2 = partx(p lt vx gt)

⋆ After some calculations3

w2 = wκ + wν + wsw + wtw

wκ =1

2

(γ minus 1)ω

ρ0c2

0

image (fκ) |p|2

wν =1

2ωρ0

image(fν)

|1 minus fν |2|〈vx〉|

2

wsw = minusimage(h)dxT0

T0

1

2image (p〈vlowast

x 〉)

wtw = real(h)dx T0

T0

1

2real (p〈vlowast

x 〉)

h =fκ minus fν

(1 minus Pr)(1 minus fν)0 02 04 06 08 1 12 14 16 18 2

minus14

minus12

minus10

minus8

minus6

minus4

minus2

δκRh

minus04

minus02

0

02

04

06

08

1

real (h)

image (fν)

|1minusfν|2

image (h)image (fκ)

[3] A Tominaga Cryogenics 1995

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 19 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Heat transport by sound

⋆ From the knowledge of the acoustic variables it is also possible to calculate thethermoacoustic heat flux q2 ([q2 ] = Wmminus2)

q2 = ρ0T0(〈svx 〉) s =CpT0

τ minus 1

ρ0T0p

⋆ After some calculations

q2 = qsw + qtw + λacdxT0

qsw = minusimage(g)1

2image`p〈vlowast

x 〉acute

qtw = real(g)1

2real`p〈vlowast

x 〉acute

λac =ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2

g =f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 20 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Amplification of a standing wave

w2 = wκ + wν| z

losses

+

propminusimage(h)z|wsw +

propreal(h)z|wtw

| z production

h = (fκ minus fν )[(1 minus Pr)(1 minus fν)]δκ

Q Qrsquo

411

33

2

x

x

yz

CYLINDER

2Rh

x

yz

2Rh

2Rh

SQUARE

2ri

hR

R = 3 rh i

PINminusARRAY

⋆ In case of a standing wave one need δκ le Rh (stack) and always have |image(h)| lt 1=gt intrinsic irreversibility4due to the need of an imperfect thermal contact⋆ But in case of a travelling wave phasing we have |image(h)| asymp 1 if δκ ge Rh=gt a travelling wave phasing combined with a regenerator (δκ ge Rh) should be better

[4] J C Wheatley et al J Acoust Soc Am 1983

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 21 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

How to build an intrinsically reversible Thermoacoustic engine

w2 = wκ + wν| z

losses

+

propminusimage(h)z|

wsw +

propreal(h)z|

wtw| z

production

δκ

Qrsquo Q

1

213

3

1

2 34

4

Stirling Cycle

ρ1

p

=gt use a regenerator(δκ ge Rh) and a travelling wave phasing between p and vx

⋆ [CeperleyJASA1979]

regenerator

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does not singbecause wtw lt wν

⋆ [Yazaki et al PRL 1998]

stack

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does sing but employs a stack

⋆ [Backhaus et al Nature1999]

regenerator

=gt acoustic feedback loopbull local TW phasingbull Z gtgt ρ0c0 locallybull f ltlt c0L=gt does sing quite well

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 22 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

A Standing wave engine [Swift JASA 1992]

bull fluiddagger 138 bar Heliumbull frequency 120 Hzbull drive ratio pP0 6bull TH 1000 Kbull Wload 630 Wbull QH 7 kWbull η = 009 (013ηc )

A thermoacoustic-Stirling engine [Backhaus amp Swift Nature 1999]

bull fluiddagger 30 bar Heliumbull frequency 80 Hzbull drive ratio pP0 6-10bull TH 1000 Kbull Wload 710 Wbull QH 24 kWbull η = 03 (042ηc )

dagger Need a large γ low Pr and high P0 (in 1-bar air at 120 dBSPL Wac asymp 10minus2Wmminus2 )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 23 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

Advantages of θac engines (and heat pumps)

⋆ Simple easy to build =gt potential reliability low cost⋆ Working gas = pressurized inert gas =gt harmless environmental friendly⋆ No or not much moving parts =gt resists wear⋆ Decent efficiencies(currently up to 32 in thermo-acoustic conversion for engines 5 )with potential improvements

Limitations of θac engines (and heat pumps)

⋆ Moderate output powers =gt up to a few kilowatts⋆ decent efficiencies =gt to be improved⋆ A development which remains limited to a few researchlaboratories and start-up companies

Potential applications of θac engines (and heat pumps)

⋆ Waste heat recovery micro-cogeneration⋆ Thermoacoustically driven pulse-tube refrigeration(cryogeny liquefaction of natural gas in methane tankers )⋆ Domestic refrigeration electronics cooling

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

Sketch of a thermo-acousto-electric

generator Such kind of engine has

been demonstrated to achieve a glo-

bal efficiency of 18 6

[5] Tijani et al J Appl Phys 2011 [6] Backhaus et al Appl Phys Lett 2004

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 24 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 13: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Auto-oscillateur thermo-acoustique contexte et probleacutematique

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

⋆ Application drsquoun nablaT le long drsquoun mateacuteriau poreux placeacute dans un reacuteseau de guidedrsquoonde rArr auto-oscillations agrave la freacutequence du mode le plus instable

⋆ Geacuteomeacutetrie plusmn simple mais fonctionnement complexe au delagrave du seuil (pompage θac ldquovent acoustiquerdquo perte de charge singuliegravere propa NL )

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 13 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 14 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic principles

The TA Laser a conceptual very simplified approach

⋆ Simplistic description =gt Lagrangian approach follow a gas parcel submitted to a standingwave through a channel with an axial temperature gradient dxT0

δκ

ρ1

x

Hot Heat eXchanger (HHX) Cold Heat eXchanger (CHX)

Q Qrsquo

2 411

33

v

21 3 4 1τp

p 2

13

4

ξ max2

1 ~ adiabatic compression2 ~ isobaric expansion3 ~ adiabatic relaxation4 ~ isobaric contraction

=gt Work production if |dxT |ξmax gt τmax and dxT lt 0

⋆ But actual processes are actually more complex (heat exchange occurs continuously)⋆ A key point need of an imperfect thermal contact

=gtldquoefficientrdquo gas parcels should be at about δκ from the wall where δκ =p

2κωis the (frequency-dependent) thermal boundary layer thickness

⋆ Threshold of thermoacoustic instability (for a given mode)

=gt Sound amplification must be larger than losses

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 15 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Plane wave propagation through a viscous and heat-conducting gas along a ductsubmitted to a temperature gradient

⋆ Both the production of acoustic work and the ldquobucket briga-derdquo heat transport by sound along the duct are then described bysecond-order quantities

the ldquobucket brigaderdquo

xR

y

z

r

C T (x)s ss sρ λ pC T (x)ρ λ (x) (x)

θ

Main assumptions⋆ Low amplitudes ⋆ Typical wavelength raquo R ⋆ No mean flow

P(x r t) = P0 + p(x r t) =gt planes waves ⋆ ideal gasρ(x r t) = ρ0(x) + ρprime(x r t) p(x r t) = p(x t) ⋆ ρsCs ≫ ρ0Cp

T (x r t) = T0(x) + τ (x r t) =gtldquoboundary layer approximationrdquo ⋆ λs ≫ λv(x r t) ≪ c0 |partrζ| ≫ |partxζ|

S(x r t) = S0(x) + s(x r t) (ζ = p ρprime τ v s)[1] N Rott Adv Appl Mech 1980 [2] GW Swift J Acoust Soc Am 1988

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 16 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Equations fondamentales lineacuteariseacutees

ρdtV = minusnablaP + micronabla2V + (η + micro3)nabla (nablaV) rArr ρ0iωvx = minusdx p + micro(1r)partr (rpartr vx )

parttρ + nabla (ρV) = 0 rArr iωρprime + ρ0partx vx + vxdxρ0 = 0

ρTdtS = λ∆T + O2(v) rArr ρ0T0 (iωs + vxpartxS0) = λ(1r)partr (rpartr τ )

dS = (CpT )dT minus (αρ)dP rArr T0 s = Cp τ minus pρ0

dρ = minusραdT + ρχtdP rArr ρprime = minus(ρ0T0)τ + (γc20 )p

⋆ Conditions aux limites (tuyau drsquoaxe x et de rayon R) rArr ~v(x r = R) = 0 τ(x r = R) = 0

vx (x r) = i(ωρ0)dx p [1 minus Fν (r)]

τ(x r) = p(ρ0Cp) [1 minus Fκ(r)] minus 1(ρ0ω2)dx pdxT0 [1 minus (PrFν (r) minus Fκ(r))(Pr minus 1)]

ρprime = 1ω2

[1 minus (PrFν minus Fκ)(Pr minus 1)+] dxT0T0dx p + 1c20 [1 + (γ minus 1)Fκ] p

s = minusp(ρ0T0)Fκ minus Cp(ρ0ω2)dx pdxT0T0 [1 minus (PrFν minus Fκ)(Pr minus 1)]

Fνκ(r) =J0(kνκr)J0(kνκR)

kνκ = 1minusiδνκ

δν =q

2νω δκ =

q2κω

fνκ = 〈Fνκ〉 = 2kνκR

J1(kνκR)J0(kνκR)

0 05 1 15 20

02

04

06

08

1

(1minusFν)(1minusfν)

rR

R=100δν

R=10δν

R=δν

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 17 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le point de vue thermodynamique

⋆ Onde plane stationnaire dans un tuyau ldquolargerdquo

p(x) = Pmax cos (k0x)

ρprime = 1ω2

h

1 minus PrFνminusFκPrminus1 +

idxT0T0

dx p + 1c20

[1 + (γ minus 1)Fκ] p

δκ

d

R=10

d = δκ3 d = δκ d = 3δκ

P

P

P

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

dxT0 = 0 dxT0 = 0 dxT0 = 0dxT0 = minus220Km dxT0 = minus220Km dxT0 = minus220Km

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 18 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Sound amplification

⋆ From the knowledge of the acoustic variables it is possible to calculate thetime-average second order acoustic power produced (or absorbed) per unit volume w2

([w2 ] = Wmminus3)

w2 = partx(p lt vx gt)

⋆ After some calculations3

w2 = wκ + wν + wsw + wtw

wκ =1

2

(γ minus 1)ω

ρ0c2

0

image (fκ) |p|2

wν =1

2ωρ0

image(fν)

|1 minus fν |2|〈vx〉|

2

wsw = minusimage(h)dxT0

T0

1

2image (p〈vlowast

x 〉)

wtw = real(h)dx T0

T0

1

2real (p〈vlowast

x 〉)

h =fκ minus fν

(1 minus Pr)(1 minus fν)0 02 04 06 08 1 12 14 16 18 2

minus14

minus12

minus10

minus8

minus6

minus4

minus2

δκRh

minus04

minus02

0

02

04

06

08

1

real (h)

image (fν)

|1minusfν|2

image (h)image (fκ)

[3] A Tominaga Cryogenics 1995

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 19 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Heat transport by sound

⋆ From the knowledge of the acoustic variables it is also possible to calculate thethermoacoustic heat flux q2 ([q2 ] = Wmminus2)

q2 = ρ0T0(〈svx 〉) s =CpT0

τ minus 1

ρ0T0p

⋆ After some calculations

q2 = qsw + qtw + λacdxT0

qsw = minusimage(g)1

2image`p〈vlowast

x 〉acute

qtw = real(g)1

2real`p〈vlowast

x 〉acute

λac =ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2

g =f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 20 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Amplification of a standing wave

w2 = wκ + wν| z

losses

+

propminusimage(h)z|wsw +

propreal(h)z|wtw

| z production

h = (fκ minus fν )[(1 minus Pr)(1 minus fν)]δκ

Q Qrsquo

411

33

2

x

x

yz

CYLINDER

2Rh

x

yz

2Rh

2Rh

SQUARE

2ri

hR

R = 3 rh i

PINminusARRAY

⋆ In case of a standing wave one need δκ le Rh (stack) and always have |image(h)| lt 1=gt intrinsic irreversibility4due to the need of an imperfect thermal contact⋆ But in case of a travelling wave phasing we have |image(h)| asymp 1 if δκ ge Rh=gt a travelling wave phasing combined with a regenerator (δκ ge Rh) should be better

[4] J C Wheatley et al J Acoust Soc Am 1983

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 21 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

How to build an intrinsically reversible Thermoacoustic engine

w2 = wκ + wν| z

losses

+

propminusimage(h)z|

wsw +

propreal(h)z|

wtw| z

production

δκ

Qrsquo Q

1

213

3

1

2 34

4

Stirling Cycle

ρ1

p

=gt use a regenerator(δκ ge Rh) and a travelling wave phasing between p and vx

⋆ [CeperleyJASA1979]

regenerator

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does not singbecause wtw lt wν

⋆ [Yazaki et al PRL 1998]

stack

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does sing but employs a stack

⋆ [Backhaus et al Nature1999]

regenerator

=gt acoustic feedback loopbull local TW phasingbull Z gtgt ρ0c0 locallybull f ltlt c0L=gt does sing quite well

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 22 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

A Standing wave engine [Swift JASA 1992]

bull fluiddagger 138 bar Heliumbull frequency 120 Hzbull drive ratio pP0 6bull TH 1000 Kbull Wload 630 Wbull QH 7 kWbull η = 009 (013ηc )

A thermoacoustic-Stirling engine [Backhaus amp Swift Nature 1999]

bull fluiddagger 30 bar Heliumbull frequency 80 Hzbull drive ratio pP0 6-10bull TH 1000 Kbull Wload 710 Wbull QH 24 kWbull η = 03 (042ηc )

dagger Need a large γ low Pr and high P0 (in 1-bar air at 120 dBSPL Wac asymp 10minus2Wmminus2 )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 23 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

Advantages of θac engines (and heat pumps)

⋆ Simple easy to build =gt potential reliability low cost⋆ Working gas = pressurized inert gas =gt harmless environmental friendly⋆ No or not much moving parts =gt resists wear⋆ Decent efficiencies(currently up to 32 in thermo-acoustic conversion for engines 5 )with potential improvements

Limitations of θac engines (and heat pumps)

⋆ Moderate output powers =gt up to a few kilowatts⋆ decent efficiencies =gt to be improved⋆ A development which remains limited to a few researchlaboratories and start-up companies

Potential applications of θac engines (and heat pumps)

⋆ Waste heat recovery micro-cogeneration⋆ Thermoacoustically driven pulse-tube refrigeration(cryogeny liquefaction of natural gas in methane tankers )⋆ Domestic refrigeration electronics cooling

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

Sketch of a thermo-acousto-electric

generator Such kind of engine has

been demonstrated to achieve a glo-

bal efficiency of 18 6

[5] Tijani et al J Appl Phys 2011 [6] Backhaus et al Appl Phys Lett 2004

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 24 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 14: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 14 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic principles

The TA Laser a conceptual very simplified approach

⋆ Simplistic description =gt Lagrangian approach follow a gas parcel submitted to a standingwave through a channel with an axial temperature gradient dxT0

δκ

ρ1

x

Hot Heat eXchanger (HHX) Cold Heat eXchanger (CHX)

Q Qrsquo

2 411

33

v

21 3 4 1τp

p 2

13

4

ξ max2

1 ~ adiabatic compression2 ~ isobaric expansion3 ~ adiabatic relaxation4 ~ isobaric contraction

=gt Work production if |dxT |ξmax gt τmax and dxT lt 0

⋆ But actual processes are actually more complex (heat exchange occurs continuously)⋆ A key point need of an imperfect thermal contact

=gtldquoefficientrdquo gas parcels should be at about δκ from the wall where δκ =p

2κωis the (frequency-dependent) thermal boundary layer thickness

⋆ Threshold of thermoacoustic instability (for a given mode)

=gt Sound amplification must be larger than losses

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 15 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Plane wave propagation through a viscous and heat-conducting gas along a ductsubmitted to a temperature gradient

⋆ Both the production of acoustic work and the ldquobucket briga-derdquo heat transport by sound along the duct are then described bysecond-order quantities

the ldquobucket brigaderdquo

xR

y

z

r

C T (x)s ss sρ λ pC T (x)ρ λ (x) (x)

θ

Main assumptions⋆ Low amplitudes ⋆ Typical wavelength raquo R ⋆ No mean flow

P(x r t) = P0 + p(x r t) =gt planes waves ⋆ ideal gasρ(x r t) = ρ0(x) + ρprime(x r t) p(x r t) = p(x t) ⋆ ρsCs ≫ ρ0Cp

T (x r t) = T0(x) + τ (x r t) =gtldquoboundary layer approximationrdquo ⋆ λs ≫ λv(x r t) ≪ c0 |partrζ| ≫ |partxζ|

S(x r t) = S0(x) + s(x r t) (ζ = p ρprime τ v s)[1] N Rott Adv Appl Mech 1980 [2] GW Swift J Acoust Soc Am 1988

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 16 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Equations fondamentales lineacuteariseacutees

ρdtV = minusnablaP + micronabla2V + (η + micro3)nabla (nablaV) rArr ρ0iωvx = minusdx p + micro(1r)partr (rpartr vx )

parttρ + nabla (ρV) = 0 rArr iωρprime + ρ0partx vx + vxdxρ0 = 0

ρTdtS = λ∆T + O2(v) rArr ρ0T0 (iωs + vxpartxS0) = λ(1r)partr (rpartr τ )

dS = (CpT )dT minus (αρ)dP rArr T0 s = Cp τ minus pρ0

dρ = minusραdT + ρχtdP rArr ρprime = minus(ρ0T0)τ + (γc20 )p

⋆ Conditions aux limites (tuyau drsquoaxe x et de rayon R) rArr ~v(x r = R) = 0 τ(x r = R) = 0

vx (x r) = i(ωρ0)dx p [1 minus Fν (r)]

τ(x r) = p(ρ0Cp) [1 minus Fκ(r)] minus 1(ρ0ω2)dx pdxT0 [1 minus (PrFν (r) minus Fκ(r))(Pr minus 1)]

ρprime = 1ω2

[1 minus (PrFν minus Fκ)(Pr minus 1)+] dxT0T0dx p + 1c20 [1 + (γ minus 1)Fκ] p

s = minusp(ρ0T0)Fκ minus Cp(ρ0ω2)dx pdxT0T0 [1 minus (PrFν minus Fκ)(Pr minus 1)]

Fνκ(r) =J0(kνκr)J0(kνκR)

kνκ = 1minusiδνκ

δν =q

2νω δκ =

q2κω

fνκ = 〈Fνκ〉 = 2kνκR

J1(kνκR)J0(kνκR)

0 05 1 15 20

02

04

06

08

1

(1minusFν)(1minusfν)

rR

R=100δν

R=10δν

R=δν

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 17 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le point de vue thermodynamique

⋆ Onde plane stationnaire dans un tuyau ldquolargerdquo

p(x) = Pmax cos (k0x)

ρprime = 1ω2

h

1 minus PrFνminusFκPrminus1 +

idxT0T0

dx p + 1c20

[1 + (γ minus 1)Fκ] p

δκ

d

R=10

d = δκ3 d = δκ d = 3δκ

P

P

P

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

dxT0 = 0 dxT0 = 0 dxT0 = 0dxT0 = minus220Km dxT0 = minus220Km dxT0 = minus220Km

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 18 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Sound amplification

⋆ From the knowledge of the acoustic variables it is possible to calculate thetime-average second order acoustic power produced (or absorbed) per unit volume w2

([w2 ] = Wmminus3)

w2 = partx(p lt vx gt)

⋆ After some calculations3

w2 = wκ + wν + wsw + wtw

wκ =1

2

(γ minus 1)ω

ρ0c2

0

image (fκ) |p|2

wν =1

2ωρ0

image(fν)

|1 minus fν |2|〈vx〉|

2

wsw = minusimage(h)dxT0

T0

1

2image (p〈vlowast

x 〉)

wtw = real(h)dx T0

T0

1

2real (p〈vlowast

x 〉)

h =fκ minus fν

(1 minus Pr)(1 minus fν)0 02 04 06 08 1 12 14 16 18 2

minus14

minus12

minus10

minus8

minus6

minus4

minus2

δκRh

minus04

minus02

0

02

04

06

08

1

real (h)

image (fν)

|1minusfν|2

image (h)image (fκ)

[3] A Tominaga Cryogenics 1995

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 19 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Heat transport by sound

⋆ From the knowledge of the acoustic variables it is also possible to calculate thethermoacoustic heat flux q2 ([q2 ] = Wmminus2)

q2 = ρ0T0(〈svx 〉) s =CpT0

τ minus 1

ρ0T0p

⋆ After some calculations

q2 = qsw + qtw + λacdxT0

qsw = minusimage(g)1

2image`p〈vlowast

x 〉acute

qtw = real(g)1

2real`p〈vlowast

x 〉acute

λac =ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2

g =f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 20 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Amplification of a standing wave

w2 = wκ + wν| z

losses

+

propminusimage(h)z|wsw +

propreal(h)z|wtw

| z production

h = (fκ minus fν )[(1 minus Pr)(1 minus fν)]δκ

Q Qrsquo

411

33

2

x

x

yz

CYLINDER

2Rh

x

yz

2Rh

2Rh

SQUARE

2ri

hR

R = 3 rh i

PINminusARRAY

⋆ In case of a standing wave one need δκ le Rh (stack) and always have |image(h)| lt 1=gt intrinsic irreversibility4due to the need of an imperfect thermal contact⋆ But in case of a travelling wave phasing we have |image(h)| asymp 1 if δκ ge Rh=gt a travelling wave phasing combined with a regenerator (δκ ge Rh) should be better

[4] J C Wheatley et al J Acoust Soc Am 1983

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 21 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

How to build an intrinsically reversible Thermoacoustic engine

w2 = wκ + wν| z

losses

+

propminusimage(h)z|

wsw +

propreal(h)z|

wtw| z

production

δκ

Qrsquo Q

1

213

3

1

2 34

4

Stirling Cycle

ρ1

p

=gt use a regenerator(δκ ge Rh) and a travelling wave phasing between p and vx

⋆ [CeperleyJASA1979]

regenerator

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does not singbecause wtw lt wν

⋆ [Yazaki et al PRL 1998]

stack

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does sing but employs a stack

⋆ [Backhaus et al Nature1999]

regenerator

=gt acoustic feedback loopbull local TW phasingbull Z gtgt ρ0c0 locallybull f ltlt c0L=gt does sing quite well

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 22 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

A Standing wave engine [Swift JASA 1992]

bull fluiddagger 138 bar Heliumbull frequency 120 Hzbull drive ratio pP0 6bull TH 1000 Kbull Wload 630 Wbull QH 7 kWbull η = 009 (013ηc )

A thermoacoustic-Stirling engine [Backhaus amp Swift Nature 1999]

bull fluiddagger 30 bar Heliumbull frequency 80 Hzbull drive ratio pP0 6-10bull TH 1000 Kbull Wload 710 Wbull QH 24 kWbull η = 03 (042ηc )

dagger Need a large γ low Pr and high P0 (in 1-bar air at 120 dBSPL Wac asymp 10minus2Wmminus2 )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 23 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

Advantages of θac engines (and heat pumps)

⋆ Simple easy to build =gt potential reliability low cost⋆ Working gas = pressurized inert gas =gt harmless environmental friendly⋆ No or not much moving parts =gt resists wear⋆ Decent efficiencies(currently up to 32 in thermo-acoustic conversion for engines 5 )with potential improvements

Limitations of θac engines (and heat pumps)

⋆ Moderate output powers =gt up to a few kilowatts⋆ decent efficiencies =gt to be improved⋆ A development which remains limited to a few researchlaboratories and start-up companies

Potential applications of θac engines (and heat pumps)

⋆ Waste heat recovery micro-cogeneration⋆ Thermoacoustically driven pulse-tube refrigeration(cryogeny liquefaction of natural gas in methane tankers )⋆ Domestic refrigeration electronics cooling

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

Sketch of a thermo-acousto-electric

generator Such kind of engine has

been demonstrated to achieve a glo-

bal efficiency of 18 6

[5] Tijani et al J Appl Phys 2011 [6] Backhaus et al Appl Phys Lett 2004

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 24 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 15: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic principles

The TA Laser a conceptual very simplified approach

⋆ Simplistic description =gt Lagrangian approach follow a gas parcel submitted to a standingwave through a channel with an axial temperature gradient dxT0

δκ

ρ1

x

Hot Heat eXchanger (HHX) Cold Heat eXchanger (CHX)

Q Qrsquo

2 411

33

v

21 3 4 1τp

p 2

13

4

ξ max2

1 ~ adiabatic compression2 ~ isobaric expansion3 ~ adiabatic relaxation4 ~ isobaric contraction

=gt Work production if |dxT |ξmax gt τmax and dxT lt 0

⋆ But actual processes are actually more complex (heat exchange occurs continuously)⋆ A key point need of an imperfect thermal contact

=gtldquoefficientrdquo gas parcels should be at about δκ from the wall where δκ =p

2κωis the (frequency-dependent) thermal boundary layer thickness

⋆ Threshold of thermoacoustic instability (for a given mode)

=gt Sound amplification must be larger than losses

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 15 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Plane wave propagation through a viscous and heat-conducting gas along a ductsubmitted to a temperature gradient

⋆ Both the production of acoustic work and the ldquobucket briga-derdquo heat transport by sound along the duct are then described bysecond-order quantities

the ldquobucket brigaderdquo

xR

y

z

r

C T (x)s ss sρ λ pC T (x)ρ λ (x) (x)

θ

Main assumptions⋆ Low amplitudes ⋆ Typical wavelength raquo R ⋆ No mean flow

P(x r t) = P0 + p(x r t) =gt planes waves ⋆ ideal gasρ(x r t) = ρ0(x) + ρprime(x r t) p(x r t) = p(x t) ⋆ ρsCs ≫ ρ0Cp

T (x r t) = T0(x) + τ (x r t) =gtldquoboundary layer approximationrdquo ⋆ λs ≫ λv(x r t) ≪ c0 |partrζ| ≫ |partxζ|

S(x r t) = S0(x) + s(x r t) (ζ = p ρprime τ v s)[1] N Rott Adv Appl Mech 1980 [2] GW Swift J Acoust Soc Am 1988

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 16 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Equations fondamentales lineacuteariseacutees

ρdtV = minusnablaP + micronabla2V + (η + micro3)nabla (nablaV) rArr ρ0iωvx = minusdx p + micro(1r)partr (rpartr vx )

parttρ + nabla (ρV) = 0 rArr iωρprime + ρ0partx vx + vxdxρ0 = 0

ρTdtS = λ∆T + O2(v) rArr ρ0T0 (iωs + vxpartxS0) = λ(1r)partr (rpartr τ )

dS = (CpT )dT minus (αρ)dP rArr T0 s = Cp τ minus pρ0

dρ = minusραdT + ρχtdP rArr ρprime = minus(ρ0T0)τ + (γc20 )p

⋆ Conditions aux limites (tuyau drsquoaxe x et de rayon R) rArr ~v(x r = R) = 0 τ(x r = R) = 0

vx (x r) = i(ωρ0)dx p [1 minus Fν (r)]

τ(x r) = p(ρ0Cp) [1 minus Fκ(r)] minus 1(ρ0ω2)dx pdxT0 [1 minus (PrFν (r) minus Fκ(r))(Pr minus 1)]

ρprime = 1ω2

[1 minus (PrFν minus Fκ)(Pr minus 1)+] dxT0T0dx p + 1c20 [1 + (γ minus 1)Fκ] p

s = minusp(ρ0T0)Fκ minus Cp(ρ0ω2)dx pdxT0T0 [1 minus (PrFν minus Fκ)(Pr minus 1)]

Fνκ(r) =J0(kνκr)J0(kνκR)

kνκ = 1minusiδνκ

δν =q

2νω δκ =

q2κω

fνκ = 〈Fνκ〉 = 2kνκR

J1(kνκR)J0(kνκR)

0 05 1 15 20

02

04

06

08

1

(1minusFν)(1minusfν)

rR

R=100δν

R=10δν

R=δν

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 17 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le point de vue thermodynamique

⋆ Onde plane stationnaire dans un tuyau ldquolargerdquo

p(x) = Pmax cos (k0x)

ρprime = 1ω2

h

1 minus PrFνminusFκPrminus1 +

idxT0T0

dx p + 1c20

[1 + (γ minus 1)Fκ] p

δκ

d

R=10

d = δκ3 d = δκ d = 3δκ

P

P

P

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

dxT0 = 0 dxT0 = 0 dxT0 = 0dxT0 = minus220Km dxT0 = minus220Km dxT0 = minus220Km

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 18 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Sound amplification

⋆ From the knowledge of the acoustic variables it is possible to calculate thetime-average second order acoustic power produced (or absorbed) per unit volume w2

([w2 ] = Wmminus3)

w2 = partx(p lt vx gt)

⋆ After some calculations3

w2 = wκ + wν + wsw + wtw

wκ =1

2

(γ minus 1)ω

ρ0c2

0

image (fκ) |p|2

wν =1

2ωρ0

image(fν)

|1 minus fν |2|〈vx〉|

2

wsw = minusimage(h)dxT0

T0

1

2image (p〈vlowast

x 〉)

wtw = real(h)dx T0

T0

1

2real (p〈vlowast

x 〉)

h =fκ minus fν

(1 minus Pr)(1 minus fν)0 02 04 06 08 1 12 14 16 18 2

minus14

minus12

minus10

minus8

minus6

minus4

minus2

δκRh

minus04

minus02

0

02

04

06

08

1

real (h)

image (fν)

|1minusfν|2

image (h)image (fκ)

[3] A Tominaga Cryogenics 1995

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 19 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Heat transport by sound

⋆ From the knowledge of the acoustic variables it is also possible to calculate thethermoacoustic heat flux q2 ([q2 ] = Wmminus2)

q2 = ρ0T0(〈svx 〉) s =CpT0

τ minus 1

ρ0T0p

⋆ After some calculations

q2 = qsw + qtw + λacdxT0

qsw = minusimage(g)1

2image`p〈vlowast

x 〉acute

qtw = real(g)1

2real`p〈vlowast

x 〉acute

λac =ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2

g =f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 20 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Amplification of a standing wave

w2 = wκ + wν| z

losses

+

propminusimage(h)z|wsw +

propreal(h)z|wtw

| z production

h = (fκ minus fν )[(1 minus Pr)(1 minus fν)]δκ

Q Qrsquo

411

33

2

x

x

yz

CYLINDER

2Rh

x

yz

2Rh

2Rh

SQUARE

2ri

hR

R = 3 rh i

PINminusARRAY

⋆ In case of a standing wave one need δκ le Rh (stack) and always have |image(h)| lt 1=gt intrinsic irreversibility4due to the need of an imperfect thermal contact⋆ But in case of a travelling wave phasing we have |image(h)| asymp 1 if δκ ge Rh=gt a travelling wave phasing combined with a regenerator (δκ ge Rh) should be better

[4] J C Wheatley et al J Acoust Soc Am 1983

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 21 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

How to build an intrinsically reversible Thermoacoustic engine

w2 = wκ + wν| z

losses

+

propminusimage(h)z|

wsw +

propreal(h)z|

wtw| z

production

δκ

Qrsquo Q

1

213

3

1

2 34

4

Stirling Cycle

ρ1

p

=gt use a regenerator(δκ ge Rh) and a travelling wave phasing between p and vx

⋆ [CeperleyJASA1979]

regenerator

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does not singbecause wtw lt wν

⋆ [Yazaki et al PRL 1998]

stack

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does sing but employs a stack

⋆ [Backhaus et al Nature1999]

regenerator

=gt acoustic feedback loopbull local TW phasingbull Z gtgt ρ0c0 locallybull f ltlt c0L=gt does sing quite well

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 22 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

A Standing wave engine [Swift JASA 1992]

bull fluiddagger 138 bar Heliumbull frequency 120 Hzbull drive ratio pP0 6bull TH 1000 Kbull Wload 630 Wbull QH 7 kWbull η = 009 (013ηc )

A thermoacoustic-Stirling engine [Backhaus amp Swift Nature 1999]

bull fluiddagger 30 bar Heliumbull frequency 80 Hzbull drive ratio pP0 6-10bull TH 1000 Kbull Wload 710 Wbull QH 24 kWbull η = 03 (042ηc )

dagger Need a large γ low Pr and high P0 (in 1-bar air at 120 dBSPL Wac asymp 10minus2Wmminus2 )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 23 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

Advantages of θac engines (and heat pumps)

⋆ Simple easy to build =gt potential reliability low cost⋆ Working gas = pressurized inert gas =gt harmless environmental friendly⋆ No or not much moving parts =gt resists wear⋆ Decent efficiencies(currently up to 32 in thermo-acoustic conversion for engines 5 )with potential improvements

Limitations of θac engines (and heat pumps)

⋆ Moderate output powers =gt up to a few kilowatts⋆ decent efficiencies =gt to be improved⋆ A development which remains limited to a few researchlaboratories and start-up companies

Potential applications of θac engines (and heat pumps)

⋆ Waste heat recovery micro-cogeneration⋆ Thermoacoustically driven pulse-tube refrigeration(cryogeny liquefaction of natural gas in methane tankers )⋆ Domestic refrigeration electronics cooling

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

Sketch of a thermo-acousto-electric

generator Such kind of engine has

been demonstrated to achieve a glo-

bal efficiency of 18 6

[5] Tijani et al J Appl Phys 2011 [6] Backhaus et al Appl Phys Lett 2004

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 24 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 16: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Plane wave propagation through a viscous and heat-conducting gas along a ductsubmitted to a temperature gradient

⋆ Both the production of acoustic work and the ldquobucket briga-derdquo heat transport by sound along the duct are then described bysecond-order quantities

the ldquobucket brigaderdquo

xR

y

z

r

C T (x)s ss sρ λ pC T (x)ρ λ (x) (x)

θ

Main assumptions⋆ Low amplitudes ⋆ Typical wavelength raquo R ⋆ No mean flow

P(x r t) = P0 + p(x r t) =gt planes waves ⋆ ideal gasρ(x r t) = ρ0(x) + ρprime(x r t) p(x r t) = p(x t) ⋆ ρsCs ≫ ρ0Cp

T (x r t) = T0(x) + τ (x r t) =gtldquoboundary layer approximationrdquo ⋆ λs ≫ λv(x r t) ≪ c0 |partrζ| ≫ |partxζ|

S(x r t) = S0(x) + s(x r t) (ζ = p ρprime τ v s)[1] N Rott Adv Appl Mech 1980 [2] GW Swift J Acoust Soc Am 1988

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 16 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Equations fondamentales lineacuteariseacutees

ρdtV = minusnablaP + micronabla2V + (η + micro3)nabla (nablaV) rArr ρ0iωvx = minusdx p + micro(1r)partr (rpartr vx )

parttρ + nabla (ρV) = 0 rArr iωρprime + ρ0partx vx + vxdxρ0 = 0

ρTdtS = λ∆T + O2(v) rArr ρ0T0 (iωs + vxpartxS0) = λ(1r)partr (rpartr τ )

dS = (CpT )dT minus (αρ)dP rArr T0 s = Cp τ minus pρ0

dρ = minusραdT + ρχtdP rArr ρprime = minus(ρ0T0)τ + (γc20 )p

⋆ Conditions aux limites (tuyau drsquoaxe x et de rayon R) rArr ~v(x r = R) = 0 τ(x r = R) = 0

vx (x r) = i(ωρ0)dx p [1 minus Fν (r)]

τ(x r) = p(ρ0Cp) [1 minus Fκ(r)] minus 1(ρ0ω2)dx pdxT0 [1 minus (PrFν (r) minus Fκ(r))(Pr minus 1)]

ρprime = 1ω2

[1 minus (PrFν minus Fκ)(Pr minus 1)+] dxT0T0dx p + 1c20 [1 + (γ minus 1)Fκ] p

s = minusp(ρ0T0)Fκ minus Cp(ρ0ω2)dx pdxT0T0 [1 minus (PrFν minus Fκ)(Pr minus 1)]

Fνκ(r) =J0(kνκr)J0(kνκR)

kνκ = 1minusiδνκ

δν =q

2νω δκ =

q2κω

fνκ = 〈Fνκ〉 = 2kνκR

J1(kνκR)J0(kνκR)

0 05 1 15 20

02

04

06

08

1

(1minusFν)(1minusfν)

rR

R=100δν

R=10δν

R=δν

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 17 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le point de vue thermodynamique

⋆ Onde plane stationnaire dans un tuyau ldquolargerdquo

p(x) = Pmax cos (k0x)

ρprime = 1ω2

h

1 minus PrFνminusFκPrminus1 +

idxT0T0

dx p + 1c20

[1 + (γ minus 1)Fκ] p

δκ

d

R=10

d = δκ3 d = δκ d = 3δκ

P

P

P

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

dxT0 = 0 dxT0 = 0 dxT0 = 0dxT0 = minus220Km dxT0 = minus220Km dxT0 = minus220Km

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 18 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Sound amplification

⋆ From the knowledge of the acoustic variables it is possible to calculate thetime-average second order acoustic power produced (or absorbed) per unit volume w2

([w2 ] = Wmminus3)

w2 = partx(p lt vx gt)

⋆ After some calculations3

w2 = wκ + wν + wsw + wtw

wκ =1

2

(γ minus 1)ω

ρ0c2

0

image (fκ) |p|2

wν =1

2ωρ0

image(fν)

|1 minus fν |2|〈vx〉|

2

wsw = minusimage(h)dxT0

T0

1

2image (p〈vlowast

x 〉)

wtw = real(h)dx T0

T0

1

2real (p〈vlowast

x 〉)

h =fκ minus fν

(1 minus Pr)(1 minus fν)0 02 04 06 08 1 12 14 16 18 2

minus14

minus12

minus10

minus8

minus6

minus4

minus2

δκRh

minus04

minus02

0

02

04

06

08

1

real (h)

image (fν)

|1minusfν|2

image (h)image (fκ)

[3] A Tominaga Cryogenics 1995

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 19 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Heat transport by sound

⋆ From the knowledge of the acoustic variables it is also possible to calculate thethermoacoustic heat flux q2 ([q2 ] = Wmminus2)

q2 = ρ0T0(〈svx 〉) s =CpT0

τ minus 1

ρ0T0p

⋆ After some calculations

q2 = qsw + qtw + λacdxT0

qsw = minusimage(g)1

2image`p〈vlowast

x 〉acute

qtw = real(g)1

2real`p〈vlowast

x 〉acute

λac =ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2

g =f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 20 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Amplification of a standing wave

w2 = wκ + wν| z

losses

+

propminusimage(h)z|wsw +

propreal(h)z|wtw

| z production

h = (fκ minus fν )[(1 minus Pr)(1 minus fν)]δκ

Q Qrsquo

411

33

2

x

x

yz

CYLINDER

2Rh

x

yz

2Rh

2Rh

SQUARE

2ri

hR

R = 3 rh i

PINminusARRAY

⋆ In case of a standing wave one need δκ le Rh (stack) and always have |image(h)| lt 1=gt intrinsic irreversibility4due to the need of an imperfect thermal contact⋆ But in case of a travelling wave phasing we have |image(h)| asymp 1 if δκ ge Rh=gt a travelling wave phasing combined with a regenerator (δκ ge Rh) should be better

[4] J C Wheatley et al J Acoust Soc Am 1983

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 21 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

How to build an intrinsically reversible Thermoacoustic engine

w2 = wκ + wν| z

losses

+

propminusimage(h)z|

wsw +

propreal(h)z|

wtw| z

production

δκ

Qrsquo Q

1

213

3

1

2 34

4

Stirling Cycle

ρ1

p

=gt use a regenerator(δκ ge Rh) and a travelling wave phasing between p and vx

⋆ [CeperleyJASA1979]

regenerator

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does not singbecause wtw lt wν

⋆ [Yazaki et al PRL 1998]

stack

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does sing but employs a stack

⋆ [Backhaus et al Nature1999]

regenerator

=gt acoustic feedback loopbull local TW phasingbull Z gtgt ρ0c0 locallybull f ltlt c0L=gt does sing quite well

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 22 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

A Standing wave engine [Swift JASA 1992]

bull fluiddagger 138 bar Heliumbull frequency 120 Hzbull drive ratio pP0 6bull TH 1000 Kbull Wload 630 Wbull QH 7 kWbull η = 009 (013ηc )

A thermoacoustic-Stirling engine [Backhaus amp Swift Nature 1999]

bull fluiddagger 30 bar Heliumbull frequency 80 Hzbull drive ratio pP0 6-10bull TH 1000 Kbull Wload 710 Wbull QH 24 kWbull η = 03 (042ηc )

dagger Need a large γ low Pr and high P0 (in 1-bar air at 120 dBSPL Wac asymp 10minus2Wmminus2 )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 23 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

Advantages of θac engines (and heat pumps)

⋆ Simple easy to build =gt potential reliability low cost⋆ Working gas = pressurized inert gas =gt harmless environmental friendly⋆ No or not much moving parts =gt resists wear⋆ Decent efficiencies(currently up to 32 in thermo-acoustic conversion for engines 5 )with potential improvements

Limitations of θac engines (and heat pumps)

⋆ Moderate output powers =gt up to a few kilowatts⋆ decent efficiencies =gt to be improved⋆ A development which remains limited to a few researchlaboratories and start-up companies

Potential applications of θac engines (and heat pumps)

⋆ Waste heat recovery micro-cogeneration⋆ Thermoacoustically driven pulse-tube refrigeration(cryogeny liquefaction of natural gas in methane tankers )⋆ Domestic refrigeration electronics cooling

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

Sketch of a thermo-acousto-electric

generator Such kind of engine has

been demonstrated to achieve a glo-

bal efficiency of 18 6

[5] Tijani et al J Appl Phys 2011 [6] Backhaus et al Appl Phys Lett 2004

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 24 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 17: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Basic equations

⋆ Equations fondamentales lineacuteariseacutees

ρdtV = minusnablaP + micronabla2V + (η + micro3)nabla (nablaV) rArr ρ0iωvx = minusdx p + micro(1r)partr (rpartr vx )

parttρ + nabla (ρV) = 0 rArr iωρprime + ρ0partx vx + vxdxρ0 = 0

ρTdtS = λ∆T + O2(v) rArr ρ0T0 (iωs + vxpartxS0) = λ(1r)partr (rpartr τ )

dS = (CpT )dT minus (αρ)dP rArr T0 s = Cp τ minus pρ0

dρ = minusραdT + ρχtdP rArr ρprime = minus(ρ0T0)τ + (γc20 )p

⋆ Conditions aux limites (tuyau drsquoaxe x et de rayon R) rArr ~v(x r = R) = 0 τ(x r = R) = 0

vx (x r) = i(ωρ0)dx p [1 minus Fν (r)]

τ(x r) = p(ρ0Cp) [1 minus Fκ(r)] minus 1(ρ0ω2)dx pdxT0 [1 minus (PrFν (r) minus Fκ(r))(Pr minus 1)]

ρprime = 1ω2

[1 minus (PrFν minus Fκ)(Pr minus 1)+] dxT0T0dx p + 1c20 [1 + (γ minus 1)Fκ] p

s = minusp(ρ0T0)Fκ minus Cp(ρ0ω2)dx pdxT0T0 [1 minus (PrFν minus Fκ)(Pr minus 1)]

Fνκ(r) =J0(kνκr)J0(kνκR)

kνκ = 1minusiδνκ

δν =q

2νω δκ =

q2κω

fνκ = 〈Fνκ〉 = 2kνκR

J1(kνκR)J0(kνκR)

0 05 1 15 20

02

04

06

08

1

(1minusFν)(1minusfν)

rR

R=100δν

R=10δν

R=δν

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 17 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le point de vue thermodynamique

⋆ Onde plane stationnaire dans un tuyau ldquolargerdquo

p(x) = Pmax cos (k0x)

ρprime = 1ω2

h

1 minus PrFνminusFκPrminus1 +

idxT0T0

dx p + 1c20

[1 + (γ minus 1)Fκ] p

δκ

d

R=10

d = δκ3 d = δκ d = 3δκ

P

P

P

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

dxT0 = 0 dxT0 = 0 dxT0 = 0dxT0 = minus220Km dxT0 = minus220Km dxT0 = minus220Km

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 18 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Sound amplification

⋆ From the knowledge of the acoustic variables it is possible to calculate thetime-average second order acoustic power produced (or absorbed) per unit volume w2

([w2 ] = Wmminus3)

w2 = partx(p lt vx gt)

⋆ After some calculations3

w2 = wκ + wν + wsw + wtw

wκ =1

2

(γ minus 1)ω

ρ0c2

0

image (fκ) |p|2

wν =1

2ωρ0

image(fν)

|1 minus fν |2|〈vx〉|

2

wsw = minusimage(h)dxT0

T0

1

2image (p〈vlowast

x 〉)

wtw = real(h)dx T0

T0

1

2real (p〈vlowast

x 〉)

h =fκ minus fν

(1 minus Pr)(1 minus fν)0 02 04 06 08 1 12 14 16 18 2

minus14

minus12

minus10

minus8

minus6

minus4

minus2

δκRh

minus04

minus02

0

02

04

06

08

1

real (h)

image (fν)

|1minusfν|2

image (h)image (fκ)

[3] A Tominaga Cryogenics 1995

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 19 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Heat transport by sound

⋆ From the knowledge of the acoustic variables it is also possible to calculate thethermoacoustic heat flux q2 ([q2 ] = Wmminus2)

q2 = ρ0T0(〈svx 〉) s =CpT0

τ minus 1

ρ0T0p

⋆ After some calculations

q2 = qsw + qtw + λacdxT0

qsw = minusimage(g)1

2image`p〈vlowast

x 〉acute

qtw = real(g)1

2real`p〈vlowast

x 〉acute

λac =ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2

g =f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 20 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Amplification of a standing wave

w2 = wκ + wν| z

losses

+

propminusimage(h)z|wsw +

propreal(h)z|wtw

| z production

h = (fκ minus fν )[(1 minus Pr)(1 minus fν)]δκ

Q Qrsquo

411

33

2

x

x

yz

CYLINDER

2Rh

x

yz

2Rh

2Rh

SQUARE

2ri

hR

R = 3 rh i

PINminusARRAY

⋆ In case of a standing wave one need δκ le Rh (stack) and always have |image(h)| lt 1=gt intrinsic irreversibility4due to the need of an imperfect thermal contact⋆ But in case of a travelling wave phasing we have |image(h)| asymp 1 if δκ ge Rh=gt a travelling wave phasing combined with a regenerator (δκ ge Rh) should be better

[4] J C Wheatley et al J Acoust Soc Am 1983

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 21 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

How to build an intrinsically reversible Thermoacoustic engine

w2 = wκ + wν| z

losses

+

propminusimage(h)z|

wsw +

propreal(h)z|

wtw| z

production

δκ

Qrsquo Q

1

213

3

1

2 34

4

Stirling Cycle

ρ1

p

=gt use a regenerator(δκ ge Rh) and a travelling wave phasing between p and vx

⋆ [CeperleyJASA1979]

regenerator

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does not singbecause wtw lt wν

⋆ [Yazaki et al PRL 1998]

stack

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does sing but employs a stack

⋆ [Backhaus et al Nature1999]

regenerator

=gt acoustic feedback loopbull local TW phasingbull Z gtgt ρ0c0 locallybull f ltlt c0L=gt does sing quite well

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 22 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

A Standing wave engine [Swift JASA 1992]

bull fluiddagger 138 bar Heliumbull frequency 120 Hzbull drive ratio pP0 6bull TH 1000 Kbull Wload 630 Wbull QH 7 kWbull η = 009 (013ηc )

A thermoacoustic-Stirling engine [Backhaus amp Swift Nature 1999]

bull fluiddagger 30 bar Heliumbull frequency 80 Hzbull drive ratio pP0 6-10bull TH 1000 Kbull Wload 710 Wbull QH 24 kWbull η = 03 (042ηc )

dagger Need a large γ low Pr and high P0 (in 1-bar air at 120 dBSPL Wac asymp 10minus2Wmminus2 )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 23 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

Advantages of θac engines (and heat pumps)

⋆ Simple easy to build =gt potential reliability low cost⋆ Working gas = pressurized inert gas =gt harmless environmental friendly⋆ No or not much moving parts =gt resists wear⋆ Decent efficiencies(currently up to 32 in thermo-acoustic conversion for engines 5 )with potential improvements

Limitations of θac engines (and heat pumps)

⋆ Moderate output powers =gt up to a few kilowatts⋆ decent efficiencies =gt to be improved⋆ A development which remains limited to a few researchlaboratories and start-up companies

Potential applications of θac engines (and heat pumps)

⋆ Waste heat recovery micro-cogeneration⋆ Thermoacoustically driven pulse-tube refrigeration(cryogeny liquefaction of natural gas in methane tankers )⋆ Domestic refrigeration electronics cooling

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

Sketch of a thermo-acousto-electric

generator Such kind of engine has

been demonstrated to achieve a glo-

bal efficiency of 18 6

[5] Tijani et al J Appl Phys 2011 [6] Backhaus et al Appl Phys Lett 2004

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 24 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 18: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le point de vue thermodynamique

⋆ Onde plane stationnaire dans un tuyau ldquolargerdquo

p(x) = Pmax cos (k0x)

ρprime = 1ω2

h

1 minus PrFνminusFκPrminus1 +

idxT0T0

dx p + 1c20

[1 + (γ minus 1)Fκ] p

δκ

d

R=10

d = δκ3 d = δκ d = 3δκ

P

P

P

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

minus1

minus05

0

05

1

pPmax

ρρmax

0 02 04 06 08 1minus1

minus05

0

05

1

tT

pPmax

ρρmax

dxT0 = 0 dxT0 = 0 dxT0 = 0dxT0 = minus220Km dxT0 = minus220Km dxT0 = minus220Km

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 18 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Sound amplification

⋆ From the knowledge of the acoustic variables it is possible to calculate thetime-average second order acoustic power produced (or absorbed) per unit volume w2

([w2 ] = Wmminus3)

w2 = partx(p lt vx gt)

⋆ After some calculations3

w2 = wκ + wν + wsw + wtw

wκ =1

2

(γ minus 1)ω

ρ0c2

0

image (fκ) |p|2

wν =1

2ωρ0

image(fν)

|1 minus fν |2|〈vx〉|

2

wsw = minusimage(h)dxT0

T0

1

2image (p〈vlowast

x 〉)

wtw = real(h)dx T0

T0

1

2real (p〈vlowast

x 〉)

h =fκ minus fν

(1 minus Pr)(1 minus fν)0 02 04 06 08 1 12 14 16 18 2

minus14

minus12

minus10

minus8

minus6

minus4

minus2

δκRh

minus04

minus02

0

02

04

06

08

1

real (h)

image (fν)

|1minusfν|2

image (h)image (fκ)

[3] A Tominaga Cryogenics 1995

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 19 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Heat transport by sound

⋆ From the knowledge of the acoustic variables it is also possible to calculate thethermoacoustic heat flux q2 ([q2 ] = Wmminus2)

q2 = ρ0T0(〈svx 〉) s =CpT0

τ minus 1

ρ0T0p

⋆ After some calculations

q2 = qsw + qtw + λacdxT0

qsw = minusimage(g)1

2image`p〈vlowast

x 〉acute

qtw = real(g)1

2real`p〈vlowast

x 〉acute

λac =ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2

g =f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 20 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Amplification of a standing wave

w2 = wκ + wν| z

losses

+

propminusimage(h)z|wsw +

propreal(h)z|wtw

| z production

h = (fκ minus fν )[(1 minus Pr)(1 minus fν)]δκ

Q Qrsquo

411

33

2

x

x

yz

CYLINDER

2Rh

x

yz

2Rh

2Rh

SQUARE

2ri

hR

R = 3 rh i

PINminusARRAY

⋆ In case of a standing wave one need δκ le Rh (stack) and always have |image(h)| lt 1=gt intrinsic irreversibility4due to the need of an imperfect thermal contact⋆ But in case of a travelling wave phasing we have |image(h)| asymp 1 if δκ ge Rh=gt a travelling wave phasing combined with a regenerator (δκ ge Rh) should be better

[4] J C Wheatley et al J Acoust Soc Am 1983

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 21 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

How to build an intrinsically reversible Thermoacoustic engine

w2 = wκ + wν| z

losses

+

propminusimage(h)z|

wsw +

propreal(h)z|

wtw| z

production

δκ

Qrsquo Q

1

213

3

1

2 34

4

Stirling Cycle

ρ1

p

=gt use a regenerator(δκ ge Rh) and a travelling wave phasing between p and vx

⋆ [CeperleyJASA1979]

regenerator

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does not singbecause wtw lt wν

⋆ [Yazaki et al PRL 1998]

stack

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does sing but employs a stack

⋆ [Backhaus et al Nature1999]

regenerator

=gt acoustic feedback loopbull local TW phasingbull Z gtgt ρ0c0 locallybull f ltlt c0L=gt does sing quite well

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 22 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

A Standing wave engine [Swift JASA 1992]

bull fluiddagger 138 bar Heliumbull frequency 120 Hzbull drive ratio pP0 6bull TH 1000 Kbull Wload 630 Wbull QH 7 kWbull η = 009 (013ηc )

A thermoacoustic-Stirling engine [Backhaus amp Swift Nature 1999]

bull fluiddagger 30 bar Heliumbull frequency 80 Hzbull drive ratio pP0 6-10bull TH 1000 Kbull Wload 710 Wbull QH 24 kWbull η = 03 (042ηc )

dagger Need a large γ low Pr and high P0 (in 1-bar air at 120 dBSPL Wac asymp 10minus2Wmminus2 )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 23 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

Advantages of θac engines (and heat pumps)

⋆ Simple easy to build =gt potential reliability low cost⋆ Working gas = pressurized inert gas =gt harmless environmental friendly⋆ No or not much moving parts =gt resists wear⋆ Decent efficiencies(currently up to 32 in thermo-acoustic conversion for engines 5 )with potential improvements

Limitations of θac engines (and heat pumps)

⋆ Moderate output powers =gt up to a few kilowatts⋆ decent efficiencies =gt to be improved⋆ A development which remains limited to a few researchlaboratories and start-up companies

Potential applications of θac engines (and heat pumps)

⋆ Waste heat recovery micro-cogeneration⋆ Thermoacoustically driven pulse-tube refrigeration(cryogeny liquefaction of natural gas in methane tankers )⋆ Domestic refrigeration electronics cooling

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

Sketch of a thermo-acousto-electric

generator Such kind of engine has

been demonstrated to achieve a glo-

bal efficiency of 18 6

[5] Tijani et al J Appl Phys 2011 [6] Backhaus et al Appl Phys Lett 2004

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 24 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 19: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Sound amplification

⋆ From the knowledge of the acoustic variables it is possible to calculate thetime-average second order acoustic power produced (or absorbed) per unit volume w2

([w2 ] = Wmminus3)

w2 = partx(p lt vx gt)

⋆ After some calculations3

w2 = wκ + wν + wsw + wtw

wκ =1

2

(γ minus 1)ω

ρ0c2

0

image (fκ) |p|2

wν =1

2ωρ0

image(fν)

|1 minus fν |2|〈vx〉|

2

wsw = minusimage(h)dxT0

T0

1

2image (p〈vlowast

x 〉)

wtw = real(h)dx T0

T0

1

2real (p〈vlowast

x 〉)

h =fκ minus fν

(1 minus Pr)(1 minus fν)0 02 04 06 08 1 12 14 16 18 2

minus14

minus12

minus10

minus8

minus6

minus4

minus2

δκRh

minus04

minus02

0

02

04

06

08

1

real (h)

image (fν)

|1minusfν|2

image (h)image (fκ)

[3] A Tominaga Cryogenics 1995

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 19 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Heat transport by sound

⋆ From the knowledge of the acoustic variables it is also possible to calculate thethermoacoustic heat flux q2 ([q2 ] = Wmminus2)

q2 = ρ0T0(〈svx 〉) s =CpT0

τ minus 1

ρ0T0p

⋆ After some calculations

q2 = qsw + qtw + λacdxT0

qsw = minusimage(g)1

2image`p〈vlowast

x 〉acute

qtw = real(g)1

2real`p〈vlowast

x 〉acute

λac =ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2

g =f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 20 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Amplification of a standing wave

w2 = wκ + wν| z

losses

+

propminusimage(h)z|wsw +

propreal(h)z|wtw

| z production

h = (fκ minus fν )[(1 minus Pr)(1 minus fν)]δκ

Q Qrsquo

411

33

2

x

x

yz

CYLINDER

2Rh

x

yz

2Rh

2Rh

SQUARE

2ri

hR

R = 3 rh i

PINminusARRAY

⋆ In case of a standing wave one need δκ le Rh (stack) and always have |image(h)| lt 1=gt intrinsic irreversibility4due to the need of an imperfect thermal contact⋆ But in case of a travelling wave phasing we have |image(h)| asymp 1 if δκ ge Rh=gt a travelling wave phasing combined with a regenerator (δκ ge Rh) should be better

[4] J C Wheatley et al J Acoust Soc Am 1983

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 21 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

How to build an intrinsically reversible Thermoacoustic engine

w2 = wκ + wν| z

losses

+

propminusimage(h)z|

wsw +

propreal(h)z|

wtw| z

production

δκ

Qrsquo Q

1

213

3

1

2 34

4

Stirling Cycle

ρ1

p

=gt use a regenerator(δκ ge Rh) and a travelling wave phasing between p and vx

⋆ [CeperleyJASA1979]

regenerator

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does not singbecause wtw lt wν

⋆ [Yazaki et al PRL 1998]

stack

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does sing but employs a stack

⋆ [Backhaus et al Nature1999]

regenerator

=gt acoustic feedback loopbull local TW phasingbull Z gtgt ρ0c0 locallybull f ltlt c0L=gt does sing quite well

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 22 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

A Standing wave engine [Swift JASA 1992]

bull fluiddagger 138 bar Heliumbull frequency 120 Hzbull drive ratio pP0 6bull TH 1000 Kbull Wload 630 Wbull QH 7 kWbull η = 009 (013ηc )

A thermoacoustic-Stirling engine [Backhaus amp Swift Nature 1999]

bull fluiddagger 30 bar Heliumbull frequency 80 Hzbull drive ratio pP0 6-10bull TH 1000 Kbull Wload 710 Wbull QH 24 kWbull η = 03 (042ηc )

dagger Need a large γ low Pr and high P0 (in 1-bar air at 120 dBSPL Wac asymp 10minus2Wmminus2 )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 23 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

Advantages of θac engines (and heat pumps)

⋆ Simple easy to build =gt potential reliability low cost⋆ Working gas = pressurized inert gas =gt harmless environmental friendly⋆ No or not much moving parts =gt resists wear⋆ Decent efficiencies(currently up to 32 in thermo-acoustic conversion for engines 5 )with potential improvements

Limitations of θac engines (and heat pumps)

⋆ Moderate output powers =gt up to a few kilowatts⋆ decent efficiencies =gt to be improved⋆ A development which remains limited to a few researchlaboratories and start-up companies

Potential applications of θac engines (and heat pumps)

⋆ Waste heat recovery micro-cogeneration⋆ Thermoacoustically driven pulse-tube refrigeration(cryogeny liquefaction of natural gas in methane tankers )⋆ Domestic refrigeration electronics cooling

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

Sketch of a thermo-acousto-electric

generator Such kind of engine has

been demonstrated to achieve a glo-

bal efficiency of 18 6

[5] Tijani et al J Appl Phys 2011 [6] Backhaus et al Appl Phys Lett 2004

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 24 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 20: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Heat transport by sound

⋆ From the knowledge of the acoustic variables it is also possible to calculate thethermoacoustic heat flux q2 ([q2 ] = Wmminus2)

q2 = ρ0T0(〈svx 〉) s =CpT0

τ minus 1

ρ0T0p

⋆ After some calculations

q2 = qsw + qtw + λacdxT0

qsw = minusimage(g)1

2image`p〈vlowast

x 〉acute

qtw = real(g)1

2real`p〈vlowast

x 〉acute

λac =ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2

g =f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 20 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Amplification of a standing wave

w2 = wκ + wν| z

losses

+

propminusimage(h)z|wsw +

propreal(h)z|wtw

| z production

h = (fκ minus fν )[(1 minus Pr)(1 minus fν)]δκ

Q Qrsquo

411

33

2

x

x

yz

CYLINDER

2Rh

x

yz

2Rh

2Rh

SQUARE

2ri

hR

R = 3 rh i

PINminusARRAY

⋆ In case of a standing wave one need δκ le Rh (stack) and always have |image(h)| lt 1=gt intrinsic irreversibility4due to the need of an imperfect thermal contact⋆ But in case of a travelling wave phasing we have |image(h)| asymp 1 if δκ ge Rh=gt a travelling wave phasing combined with a regenerator (δκ ge Rh) should be better

[4] J C Wheatley et al J Acoust Soc Am 1983

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 21 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

How to build an intrinsically reversible Thermoacoustic engine

w2 = wκ + wν| z

losses

+

propminusimage(h)z|

wsw +

propreal(h)z|

wtw| z

production

δκ

Qrsquo Q

1

213

3

1

2 34

4

Stirling Cycle

ρ1

p

=gt use a regenerator(δκ ge Rh) and a travelling wave phasing between p and vx

⋆ [CeperleyJASA1979]

regenerator

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does not singbecause wtw lt wν

⋆ [Yazaki et al PRL 1998]

stack

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does sing but employs a stack

⋆ [Backhaus et al Nature1999]

regenerator

=gt acoustic feedback loopbull local TW phasingbull Z gtgt ρ0c0 locallybull f ltlt c0L=gt does sing quite well

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 22 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

A Standing wave engine [Swift JASA 1992]

bull fluiddagger 138 bar Heliumbull frequency 120 Hzbull drive ratio pP0 6bull TH 1000 Kbull Wload 630 Wbull QH 7 kWbull η = 009 (013ηc )

A thermoacoustic-Stirling engine [Backhaus amp Swift Nature 1999]

bull fluiddagger 30 bar Heliumbull frequency 80 Hzbull drive ratio pP0 6-10bull TH 1000 Kbull Wload 710 Wbull QH 24 kWbull η = 03 (042ηc )

dagger Need a large γ low Pr and high P0 (in 1-bar air at 120 dBSPL Wac asymp 10minus2Wmminus2 )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 23 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

Advantages of θac engines (and heat pumps)

⋆ Simple easy to build =gt potential reliability low cost⋆ Working gas = pressurized inert gas =gt harmless environmental friendly⋆ No or not much moving parts =gt resists wear⋆ Decent efficiencies(currently up to 32 in thermo-acoustic conversion for engines 5 )with potential improvements

Limitations of θac engines (and heat pumps)

⋆ Moderate output powers =gt up to a few kilowatts⋆ decent efficiencies =gt to be improved⋆ A development which remains limited to a few researchlaboratories and start-up companies

Potential applications of θac engines (and heat pumps)

⋆ Waste heat recovery micro-cogeneration⋆ Thermoacoustically driven pulse-tube refrigeration(cryogeny liquefaction of natural gas in methane tankers )⋆ Domestic refrigeration electronics cooling

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

Sketch of a thermo-acousto-electric

generator Such kind of engine has

been demonstrated to achieve a glo-

bal efficiency of 18 6

[5] Tijani et al J Appl Phys 2011 [6] Backhaus et al Appl Phys Lett 2004

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 24 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 21: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Amplification of a standing wave

w2 = wκ + wν| z

losses

+

propminusimage(h)z|wsw +

propreal(h)z|wtw

| z production

h = (fκ minus fν )[(1 minus Pr)(1 minus fν)]δκ

Q Qrsquo

411

33

2

x

x

yz

CYLINDER

2Rh

x

yz

2Rh

2Rh

SQUARE

2ri

hR

R = 3 rh i

PINminusARRAY

⋆ In case of a standing wave one need δκ le Rh (stack) and always have |image(h)| lt 1=gt intrinsic irreversibility4due to the need of an imperfect thermal contact⋆ But in case of a travelling wave phasing we have |image(h)| asymp 1 if δκ ge Rh=gt a travelling wave phasing combined with a regenerator (δκ ge Rh) should be better

[4] J C Wheatley et al J Acoust Soc Am 1983

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 21 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

How to build an intrinsically reversible Thermoacoustic engine

w2 = wκ + wν| z

losses

+

propminusimage(h)z|

wsw +

propreal(h)z|

wtw| z

production

δκ

Qrsquo Q

1

213

3

1

2 34

4

Stirling Cycle

ρ1

p

=gt use a regenerator(δκ ge Rh) and a travelling wave phasing between p and vx

⋆ [CeperleyJASA1979]

regenerator

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does not singbecause wtw lt wν

⋆ [Yazaki et al PRL 1998]

stack

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does sing but employs a stack

⋆ [Backhaus et al Nature1999]

regenerator

=gt acoustic feedback loopbull local TW phasingbull Z gtgt ρ0c0 locallybull f ltlt c0L=gt does sing quite well

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 22 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

A Standing wave engine [Swift JASA 1992]

bull fluiddagger 138 bar Heliumbull frequency 120 Hzbull drive ratio pP0 6bull TH 1000 Kbull Wload 630 Wbull QH 7 kWbull η = 009 (013ηc )

A thermoacoustic-Stirling engine [Backhaus amp Swift Nature 1999]

bull fluiddagger 30 bar Heliumbull frequency 80 Hzbull drive ratio pP0 6-10bull TH 1000 Kbull Wload 710 Wbull QH 24 kWbull η = 03 (042ηc )

dagger Need a large γ low Pr and high P0 (in 1-bar air at 120 dBSPL Wac asymp 10minus2Wmminus2 )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 23 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

Advantages of θac engines (and heat pumps)

⋆ Simple easy to build =gt potential reliability low cost⋆ Working gas = pressurized inert gas =gt harmless environmental friendly⋆ No or not much moving parts =gt resists wear⋆ Decent efficiencies(currently up to 32 in thermo-acoustic conversion for engines 5 )with potential improvements

Limitations of θac engines (and heat pumps)

⋆ Moderate output powers =gt up to a few kilowatts⋆ decent efficiencies =gt to be improved⋆ A development which remains limited to a few researchlaboratories and start-up companies

Potential applications of θac engines (and heat pumps)

⋆ Waste heat recovery micro-cogeneration⋆ Thermoacoustically driven pulse-tube refrigeration(cryogeny liquefaction of natural gas in methane tankers )⋆ Domestic refrigeration electronics cooling

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

Sketch of a thermo-acousto-electric

generator Such kind of engine has

been demonstrated to achieve a glo-

bal efficiency of 18 6

[5] Tijani et al J Appl Phys 2011 [6] Backhaus et al Appl Phys Lett 2004

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 24 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 22: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

How to build an intrinsically reversible Thermoacoustic engine

w2 = wκ + wν| z

losses

+

propminusimage(h)z|

wsw +

propreal(h)z|

wtw| z

production

δκ

Qrsquo Q

1

213

3

1

2 34

4

Stirling Cycle

ρ1

p

=gt use a regenerator(δκ ge Rh) and a travelling wave phasing between p and vx

⋆ [CeperleyJASA1979]

regenerator

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does not singbecause wtw lt wν

⋆ [Yazaki et al PRL 1998]

stack

=gt closed-loop resonator

bull p vx prop eminusi(kxminusωt)

bull Z = pvx

= ρ0c0

bull f asymp c0L=gt does sing but employs a stack

⋆ [Backhaus et al Nature1999]

regenerator

=gt acoustic feedback loopbull local TW phasingbull Z gtgt ρ0c0 locallybull f ltlt c0L=gt does sing quite well

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 22 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

A Standing wave engine [Swift JASA 1992]

bull fluiddagger 138 bar Heliumbull frequency 120 Hzbull drive ratio pP0 6bull TH 1000 Kbull Wload 630 Wbull QH 7 kWbull η = 009 (013ηc )

A thermoacoustic-Stirling engine [Backhaus amp Swift Nature 1999]

bull fluiddagger 30 bar Heliumbull frequency 80 Hzbull drive ratio pP0 6-10bull TH 1000 Kbull Wload 710 Wbull QH 24 kWbull η = 03 (042ηc )

dagger Need a large γ low Pr and high P0 (in 1-bar air at 120 dBSPL Wac asymp 10minus2Wmminus2 )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 23 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

Advantages of θac engines (and heat pumps)

⋆ Simple easy to build =gt potential reliability low cost⋆ Working gas = pressurized inert gas =gt harmless environmental friendly⋆ No or not much moving parts =gt resists wear⋆ Decent efficiencies(currently up to 32 in thermo-acoustic conversion for engines 5 )with potential improvements

Limitations of θac engines (and heat pumps)

⋆ Moderate output powers =gt up to a few kilowatts⋆ decent efficiencies =gt to be improved⋆ A development which remains limited to a few researchlaboratories and start-up companies

Potential applications of θac engines (and heat pumps)

⋆ Waste heat recovery micro-cogeneration⋆ Thermoacoustically driven pulse-tube refrigeration(cryogeny liquefaction of natural gas in methane tankers )⋆ Domestic refrigeration electronics cooling

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

Sketch of a thermo-acousto-electric

generator Such kind of engine has

been demonstrated to achieve a glo-

bal efficiency of 18 6

[5] Tijani et al J Appl Phys 2011 [6] Backhaus et al Appl Phys Lett 2004

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 24 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 23: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

A Standing wave engine [Swift JASA 1992]

bull fluiddagger 138 bar Heliumbull frequency 120 Hzbull drive ratio pP0 6bull TH 1000 Kbull Wload 630 Wbull QH 7 kWbull η = 009 (013ηc )

A thermoacoustic-Stirling engine [Backhaus amp Swift Nature 1999]

bull fluiddagger 30 bar Heliumbull frequency 80 Hzbull drive ratio pP0 6-10bull TH 1000 Kbull Wload 710 Wbull QH 24 kWbull η = 03 (042ηc )

dagger Need a large γ low Pr and high P0 (in 1-bar air at 120 dBSPL Wac asymp 10minus2Wmminus2 )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 23 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

Advantages of θac engines (and heat pumps)

⋆ Simple easy to build =gt potential reliability low cost⋆ Working gas = pressurized inert gas =gt harmless environmental friendly⋆ No or not much moving parts =gt resists wear⋆ Decent efficiencies(currently up to 32 in thermo-acoustic conversion for engines 5 )with potential improvements

Limitations of θac engines (and heat pumps)

⋆ Moderate output powers =gt up to a few kilowatts⋆ decent efficiencies =gt to be improved⋆ A development which remains limited to a few researchlaboratories and start-up companies

Potential applications of θac engines (and heat pumps)

⋆ Waste heat recovery micro-cogeneration⋆ Thermoacoustically driven pulse-tube refrigeration(cryogeny liquefaction of natural gas in methane tankers )⋆ Domestic refrigeration electronics cooling

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

Sketch of a thermo-acousto-electric

generator Such kind of engine has

been demonstrated to achieve a glo-

bal efficiency of 18 6

[5] Tijani et al J Appl Phys 2011 [6] Backhaus et al Appl Phys Lett 2004

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 24 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 24: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Examples

Advantages of θac engines (and heat pumps)

⋆ Simple easy to build =gt potential reliability low cost⋆ Working gas = pressurized inert gas =gt harmless environmental friendly⋆ No or not much moving parts =gt resists wear⋆ Decent efficiencies(currently up to 32 in thermo-acoustic conversion for engines 5 )with potential improvements

Limitations of θac engines (and heat pumps)

⋆ Moderate output powers =gt up to a few kilowatts⋆ decent efficiencies =gt to be improved⋆ A development which remains limited to a few researchlaboratories and start-up companies

Potential applications of θac engines (and heat pumps)

⋆ Waste heat recovery micro-cogeneration⋆ Thermoacoustically driven pulse-tube refrigeration(cryogeny liquefaction of natural gas in methane tankers )⋆ Domestic refrigeration electronics cooling

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

Sketch of a thermo-acousto-electric

generator Such kind of engine has

been demonstrated to achieve a glo-

bal efficiency of 18 6

[5] Tijani et al J Appl Phys 2011 [6] Backhaus et al Appl Phys Lett 2004

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 24 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 25: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

⋆ The basic principles of design tools may be summarized as

A two-port modeling of acoustic wave propagation under an assigned T0(x)through the device leading to a characteristic equation

An energy balance under an assigned heat input QH which accounts for thethermoacoustic heat transport by sound Q2

⋆ A simplistic illustration would be for instance as follows

T (x)0

TH

TC

QH

QC

W2

PA

|p(x)|

1 Assign QH and set PA = 0 (and thusQ2 = 0)

2 Solve heat transfer =gt get T0(x)

3 Solve acoustics =gt get spatial distributionp(x) and working frequency f

4 Fix arbitrary amplitude PA

5 Calculate thermoacoustic heat transport Q2

6 Solve heat transfer =gt get T0(x)(accounting for Q2)

7 Repeat steps 3-6 until equilibrium ieQH = QC + W2 with QC = QC0 + Q2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 25 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 26: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Design of thermoacoustic engines

Limitations of the existing design tools

⋆ Up to now the design of TA engines is always realized from the linear TA theory

⋆ A famous free-downloadable software developed at Los Alamos DELTA-EC9

⋆ Efficient tool for design purposes which works quite-well for the prediction ofsteady-state operation of Low-Amplitude TA engines

But

⋆ These tools are restricted to the linear (or weakly nonlinear) regime

⋆ These tools are restricted to a 1-D description of the phenomena

⋆ They predict performance in steady-state

⋆ The user need to be experienced in the fieldlowast

[9] WC Ward et al J Acoust Soc Am 1994

lowastlaquo Intuition is required from the start and successful solutions yield intuition raquo WC Ward Acousticsrsquo08Paris 2008

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 26 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 27: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 27 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 28: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Le systegraveme consideacutereacute

⋆ Systegraveme consideacutereacute sim tube de Sondhauss1

TH

TC

Tm

Ls L

volume V

⋆ Objectif = le deacutecrire comme 1 oscillateur 1 ddl (oscillateur agrave amortissement lt 0 )

hypothegravese BF + analogies eacutelectriques

Approximation (fausse) de son fonctionnement par une DDE

Reacutesolution analytique par la meacutethode des eacutechelle multiples

Modeacutelisation de la saturation NL par pompage thermoacoustique

C Sondhauss Ann Phys(Leipzig) 79 11850

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 28 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 29: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Analogie eacutelectroacoustique

⋆ portion de stack de longueur dx ≪ λ

dp = minus iωρ0dxφS

11minusfν

u

du = minus iωφSdxγP0

[1 + (γ minus 1)fκ] p +(fκminusfν )

(1minusfν )(1minusσ)

dT0T0

u

p~

T0 T +dT0 0

p+dp~ ~

u+du~ ~u~

dx

⋆ Analogie eacutelectro-acoustique

dp = minus(iωM + Rν)u

du = minus (iωC + 1Rκ) p + Gu

M =ρ0dxφS

1minusreal(fν )

|1minusfν |2

C = φSdxγP0

(1 + (γ minus 1)real(fκ))

Rν =ωρ0dx

φSimage(minusfν )

|1minusfν |2

Rν~u(x)

p(x)~ ~p(x+dx)

~u(x+dx)

C Rκ ~ u(x)

G

M

1Rκ

= γminus1γ

ωφSdximage(minusfκ)P0

G = fκminusfν(1minusfν )(1minusσ)

dT0T0

⋆ Approximation ldquoquasi adiabatiquerdquo

fνκ sim (1 minus i)ǫνκ avec ǫνκ = δνκRs ≪ 1 (et ǫνκ prop ωminus12)

M prop (1 minus ǫν) C prop 1 + (γ minus 1)ǫκ Rν prop ωǫν 1Rκ

prop ωǫκ G prop (1 minus i)ǫκdT0T0

isin C

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 29 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 30: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Scheacutema eacutelectrique eacutequivalent

⋆ Scheacutema eacutelectrique eacutequivalent

TH

TC

Tm

Ls L

volume V

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

⋆ Equation caracteacuteristique

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

1

ω20(TH)

=

bdquo

M +ρ0Ls

ΦS

TC

Tm

laquo

C

|f | =2radic

κ

Rs

bdquoTm

Tc

laquoβ2radic

Pr

1 +radic

Pr

∆T

Tm

1

1 + LsφL

TCTm

s

1 +

bdquoradicPr

ldquo

1 +radic

Pr

rdquo Ls

φL

TC

Tm

laquo2

Arg(f ) = arctan

bdquoradicPr

ldquo

1 +radic

Pr

rdquo TC

∆T

Ls

φL

laquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 30 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 31: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Approximation par une DDE

(iω)2 u minus (iω)32 f (TH)u + ω20 u = 0

⋆ On preacutesume que la solution est un signal harmonique de pulsation ω asymp ω0 et drsquoam-plitude lentement variable En posant ω = ω0 + ∆ω avec ∆ω = (ω minus ω0) ≪ ω0 ilvient

minus (iω)32 f (TH) asymp 12 ω0

radicω0|f |eminusiω0t1 minus iω times 3

2radic

ω0|f |eminusiω0t2

avec ω0t1 = 5π4 minus Arg(f ) et ω0t2 = 7π

4 minus Arg(f )

⋆ On prend ensuite la transformeacutee de Fourier inverse en remarquantque

ueminusiω0t12 asymp ueminusiωt12 + i ∆ωω ueminusiωt12

de sorte que (sous reacuteserve drsquoune grossedagger approximation)

Fminus1h

minus (iω)32 f u(ω)i

asymp ω320 |f |

2 u(t minus t1) minus 3ω120 |f |2 dtu(t minus t2)

rArr obtention drsquoune eacutequation diffeacuterentielle agrave retard

d2ttu(t) minus 3

2radic

ω0|f |dtu(t minus t2) + 12 ω0

radicω0|f |u(t minus t1) + ω2

0u(t) asymp 0

dont les retards t12 traduisent un effet meacutemoire qui est lrsquoessence des pheacutenomegravenes misen jeu dans les couches limites viscothermiques

daggerTransformation drsquoune deacuteriveacutee fractionnaire en une fonction agrave retard

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 31 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 32: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution numeacuterique

p minus 32radic

ω0|f |p(t minus t2) + 12 ω0

radicω0|f |p(t minus t1) + ω2

0p asymp 0

rArr Utilisation drsquoun solveur de DDE et calcul de p(t ge 0) pourdiffeacuterentes valeurs de TH et pour p(t le 0) = 1 Pa

TH

TC

Tm

Ls L

volume V

Valeurs des paramegravetres de calculfluide (agrave TC = 300K) tuyau

viscositeacute micro = 184 10minus5Pas longueur L = 12cm

conductiviteacute λ = 226 10minus2Wmminus1Kminus1 section S = π times 32cm2

masse volumique ρ0 = 12kgmminus3 stackcapaciteacute calorifique Cp = 1003Jkgminus1Kminus1 longueur Ls = 4cm

coef polytropique γ = 14 rayon pore Rs = 3mm

caviteacute porositeacute φ = 095

volume V = 1l

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

0 005 01 015 02 025

minus1

minus05

0

05

1

temps s

p (P

a)

TH = 300K TH = 460K TH = 470K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 32 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 33: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples

⋆ Changement de variable θ equiv ω0t rArr

d2θθp minus 3ζdθp(θ minus θ2) + ζp(θ minus θ1) + p = 0

avec θ12 = ω0θ12 et ζ = 12

|f |radicω0

≪ 1 (ζ prop (∆TTm)(q

2νmω0

Rs) ≪ 1)

⋆ On cherche une solution sous la forme

p(θ) = p(τ s) = p0(τ s) + ζp1(τ s) + avec s equiv ζθ et τ equiv θ

dθp asymp partτp + ζpartsp

d2θθp asymp part

2ττ p + 2ζpart

2τsp

p(θ minus θ1) asymp p(τ minus θ1 s) minus ζθ1partsp(τ minus θ1 s) +

dθp(θ minus θ2) asymp partτp(τ minus θ2 s) minus ζθ2part2τsp(τ minus θ2 s) + ζpartsp(τ minus θ2 s)

⋆ Ordre ζ0

part2ττ p0 + p0 = 0 rArr p0(τ s) = A(s)e it + cc avec A(s) = R(s)e iΦ(s) isin C

⋆ Ordre ζ1

part2ττ p1 + p1 =

ldquo

minus2idsA + 3iAeminusiθ2 minus Aeminusiθ1rdquo

| z =0 condition de solvabiliteacute

e iτ + cc

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 33 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 34: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Reacutesolution analytique meacutethode des temps multiples (2)

(

dsA = 12Aldquo

3eminusiθ2 + ieminusiθ1rdquo

A(s) = R(s)e iΦ(s)rArr

dsR =`

32 cos θ2 + 1

2 sin θ1acute

RdsΦ = 1

2 [cos θ1 minus 3 sin θ2]

p(t) asymp 2R(0)eminusΩprimeprimet cos`Ωprimet + Φ(0)

acute

avec

Ωprimeprime = minus 12 (3 cos θ2 + sin θ1) ζω0

Ωprime = ω0ˆ1 +

`12 cos θ1 minus 3

2 sin θ2acute

ζ˜ et

(

ζ(TH ) = 12

|f |radicω0

prop (∆TTm)(δκRs) ≪ 1

θ1(TH ) = 5π4 minus Arg(f ) = θ2(TH ) minus π

2

300 350 400 450 500 550 6001005

101

1015

Ωrsquoω

0

TH

(K)300 350 400 450 500 550 600

minus001

minus0005

0

0005

001

Ωrsquorsquo

ω0

minus1

minus05

0

05

1

p (P

a)

DDE23

analyt

0 005 01 015 02 025 03 035 04 045 05

minus1

minus05

0

05

1

temps (s)

p (P

a)

DDE23

analyt

TH

=470K

TH

=460K

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 34 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 35: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Saturation par pompage thermoacoustique

T =cteC

HQ

T (t)H

~ uC p~

M~u

G

~(1+G)uMstackcavite tuyau

S

QH rArr ∆T րrArr auto-oscillations ր rArr Q2 prop p2 rArr ∆T ց

rArr un effet de saturation NL deacutecrit par la theacuteorie lineacuteaire

⋆ Amplification TAp(t ζt) asymp P(ζt) cos

`Ωprime(ζt)t

acute

⋆ Equation de la thermocineacutetique

ρsCsVsdtTH = QH + Qc + Q2

Qc = minusλsS∆TLs

Q2 = ρ0TcS〈svx〉 asymp minusλacS∆TLs

avec λac (ζt) prop P2(ζt)

⋆ BilanDagger

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

0

2

4

6

8

p (k

Pa)

0 15 30 450

50

100

150

temps (min)∆

T (

K)

Transitoire de deacuteclenchement et de saturation pourun chauffage QH de 15 W en prenant ρsCs =

18 105Jmminus3Kminus1 et λs = 017W mminus1Kminus1

Daggersous reacuteserve que dtTH sim ζTH ou ≪ ζTH

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 35 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 36: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autres meacutecanismes de saturation

dtP = σ(TH )P

ρsCsdtTH = QHVs minus (λs + ΓλP2)∆TL2s

rArr

8gtlt

gt

∆T |infin = ∆T |seuil

Pinfin =

s

1Γλ

bdquoQHL2

sVs∆T|infin minus λs

laquo

Ajoutons arbitrairement un terme de saturation quadratique

dtP

prime = σ(T primeH )Pprime minus αPprime2

ρsCsdtTprimeH = QHVs minus (λs + ΓλPprime2)∆T primeL2

s

et choisissons α = 10minus4 de sorte que Pprimeinfin asymp 099Pinfin

0

2

4

6

8

p (k

Pa)

5 100

2

4

p (k

Pa)

0 15 30 450

50

100

150

temps (min)

∆ T

(K

)

Transitoire de deacuteclenchement et saturation En noir seul le pompage thermoacoustique est pris en compte En

rouge ajout arbitraire drsquoune saturation quadratique avec α = 10minus4

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 36 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 37: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 37 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 38: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Autonomous oscillators =gt nonlinear saturation processes

⋆ Thermoacoustic engines = self-sustained oscillators⋆ Most of the nonlinear processes controlling wave saturation are well identified

⋆ Some of them are well-predicted by theory (at least for moderate pressure levels) ⋆ but most of them are poorly described

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 38 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 39: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Thermoacoustic heat transport by sound

A second-order effect which is described by the linear thermoacoustic theory

q2 =1

2realraquo

f lowastν minus fκ

(1 + Pr)(1 minus f lowastν )

p〈vlowastx 〉ndash

+ρ0Cp

2ω(1 minus Pr2)

image (Prf lowastν minus fκ)

|1 minus fν |2|〈vx〉|2dxT0

but actual stackregenerators employ materials of complicated geometry

mesh grids NiCr foam RVC foam which are also anisotropicrArr How to know T0(x) from Qin Is T0 uniform through a section

and finally the problem is the same for the evaluation of w2

rArr Measure the sound scattered by the TAC

to evaluate both f 1minus4νκ (with QH = 0)

to predict the onset threshold of a TAengine56 (as a function of QH) andor to evaluate the thermophysical proper-ties of the stack7

QH

QC

QC

PZE buzzer

Ac Imp Sensor

Mic3

Ref planeMic2Mic1

ThermoAcoustic Core

Sketch of the experimental set-up used by Bannwart

et al6 to measure the T-matrix of the TAC as afunction of QH

[1] Hayden et al JASA 1997 [2] Wilen JASA 2001 [3] Petculescu et al JASA 2001 [4] Y Ueda etal JASA 2009 [5] M Guedra et al JASA 2011 [6] FC Bannwart et al JASA 2013 [7] M Guedraet al submitted to Appl Therm Eng 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 39 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 40: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation

⋆ High amplitude oscillations rArr wave distorsion eg a simple wave traveling along x uarr in an inviscidnon heat conducting gas1

parttp + (c + vx ) partxp = 0 An extensively studied topic23

t + t0 ∆t0

(c+v ) tx ∆

x

acou

stic

pre

ssur

e

⋆ Impact on the operation of TA engines Outside the stack

Higher harmonics generation and even shock waves4 Increase of losses since 〈wνκ〉 prop radic

ωWithin the stack

Decrease of TA amplification (since δκ depends on ω)⋆ Some works tried to account for it

Outside the stack Solve NL propagation5

Determine optimal shape of the resonator5

Within the stack Numerical computation78(no linearization) but a lack of quantitative comparison Most calculations made with an assigned ∆T

rArr Do high amplitude effects play a key role Most TA resonatorrsquos are inharmonic p2 vx2 lead to w4 q4 rArr Other saturating processes are probably worth considering

Transient regime in a SW TA engineunder an assigned ∆T from [7]

An optimum resonatorrsquos shape thatmaximize the Q of a resonator from[6]

[1] AD Pierce Acoustics Acoustical Society of America NY 1991 [2] Rudenko amp Soluyan consultantbureau NY 1977 [3] Hamilton amp Blackstock Ac Soc Am 1998 [4] Biwa et al JASA 2011 [5]Gusev et al Acust Acta Acust 2000 [6] Ilinskii et al JASA 2001 [7] Karpov et al JASA 2002 [8]hamilton et al JASA 2002

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 40 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 41: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Higher harmonics generation shock waves

⋆ Still the study of NL propagation in TA engines is an interesting topic ⋆ Recently shock waves reported in a closed-loop stack based TA engine [Biwa et al JASA2011] and acoustic intensity measurements were performed

TW engine=gt shock wave along x uarr

SW engine=gt no shock waves

damped SWvs

amplified TW

within the TACComplex processes

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 41 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 42: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Entrance effects

⋆ Geometrical singularities =gt Vorticity

ldquoMinorrdquo losses1minus4

Basic modelingωt le π ∆pout(t) = minus 1

2 Koutρ0u2(t)

ωt ge π ∆pin(t) = 12 Kinρ0u

2(t)

Wminor propR π

ω0 ∆pudt +

R 2πω

πω

∆pudt prop U3

but thermal effects as well Abrupt transition from polytropic to adiabatic

rArr higher harmonics in τ5minus6

Heat transport accompanying vortex shedding

polytropic process adiabatic process

Vorticity field at the edge of a stack obtainedwith PIV (from [4])

Amplitudes of τ1 and τ2 as a function of the distance tothe stack obtained with CWA (from [6])

rArr Are established results for steady flows applicable to oscillating flows

[1] GW Acoustical Society of America NY 2001 [2] Blanc-Benon et al CR Meca 2003 [3] Marx etal JASA 2003 [4] Berson et alJASA 2008 [5] Gusev et al JASA 2001 [6] Berson et al Int JournHeat Mass Transf 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 42 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 43: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Start with the Navier-Stokes equation with party gtgt partx then make successive approximations(ζ = ζ0 + ζ1 + ζ2 ) up to second order and after time averaging one gets

ν0part2yyvx2 = 1ρ0partxp2 + partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acuteminus party

ldquo

ν1partyvx1

rdquo

⋆ A steady velocity vx2 generated by acoustic oscillations

- because of the convective derivative

partx

ldquo

v2x1

rdquo

+ party`vx1vy1

acute

- because ν depends on temperature (ν = ν0(T0) + ν1(τ ))

party

ldquo

ν1partyvx1

rdquo

- and actually many other sources of streaming

ν prop T1+βR 21 νdt gt

R 32 νdt

δν

2

21 3

31

net drift

inner streaming

oute

r st

ream

ing

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 43 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 44: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Since the pioneering theoretical works of Rayleigh (1883) and Schlichting (1932) many analyticalnumericalexperimental studies including

⋆ thermal effects1minus4 (dxT0 micro = micro(T ) λ = λ(T ))

⋆ acoustic streaming in closed-loop devices5minus7 (ldquoGedeon streamingrdquo)

⋆ high amplitude effects8minus11 (eg inertia effects as Renl =p

MSh asymp 1)

⋆ the coupling between u2 and dxT0 (reciprocal impact10minus11)

u2 ρ1u1ρ + 00

u2

u2

u20 ρ1u1ρ + 0

closed loop traveling wave engine standing wave engine

but still many open question ⋆ Acoustic streaming in ldquonon-emptyrdquo resonators (additional cells )

⋆ Amount of heat-transport by 〈ρ0U2 + ρ1u1〉 ⋆ What about the dynamics of streaming establishment

[1] N Rott ZAMP 1974 [2] Bailliet et al JASA 2001 [3] Hamilton et al JASA 2003 [4] Thompsonet al JASA 2005 [5] DC Gedeon Cryocoolers 1997 [6] V Gusev et al JASA 2000 [7] desjouy etal JASA 2009 [8] Menguy et al JASA2000 [9] Moreau et al JASA 2008 [10] Daru et al WaveMotion 2013 [11] Reyt et al JASA 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 44 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 45: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

⋆ Thompson et al (JASA 2004) outer streaming at high Renl (Renl =p

MSh impact oftemperature distribution and fluid inertia⋆ Moreau et al (JASA 2007) inner and outer streaming at high Renl

insulatingfoam

water

Experimental setminusup of Thompson et al

LDV measurement window

laser beam

laser beam

laser beam

uncontrolled

insulated

isothermal

u (xr=0) Re =102 nl

u (xr=0) Re =202 nl

u (xr=0) Re =402 nl

2 nlu (L4r) Re =40

2 nlu (L2r) Re =40

2u (3L4r) Re =40nl

30 δ

ν

Re =3nl

Re =13nl

Re =13nl

Re =59nl

Re =78nl

Re =132nl

measurement window

Rott

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 45 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 46: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming in a closed-loop resonator (Desjouy et alJASA2009)

u (

ms

)2

|u |

(ms

)1

driven in phase

axial position

u (

ms

)2

|u |

(ms

)1

axial position

out of phaseπ2

Acoustic streaming in SW resonators with a stack (Moreau et al JASA 2009)

nllow Re andor stack close to a velocity antiminusnode

nlRe =4

high Re andor stack close to a velocity nodenl

velocity antinode

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 46 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 47: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Acoustic streaming

Acoustic streaming from the engineering standpoint

⋆ Acoustic streaming well-described only in simple devices at low amplitudes

=gt Empirical solutions to remove acoustic streaming

=gtldquojet pumpsrdquo1(makes ρ0u2 + ρ1u1 = 0) or membranes2(makes u2 = 0) to suppress Gedeonstreaming=gtldquotaperedrdquo tube13to diminish Rayleigh streaming in the TBT

taperedtube

∆p2 right∆p2 left

∆p2 left∆p2 right

steady flow

Jet Pump elastic membraneor

135

⋆ Open questions Heat transport by ρ0v2 + ρ1v1 Is acoustic streaming always undesirablefor TA engines

[1] Backhaus et al JASA 99 [2] Tijani et al JASA 2011 [3] Olson et al Cryogenics 1997

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 47 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 48: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Transition to turbulence extensively studied but in steady flows

rArr Only a few works in oscillating flows1minus8

Hot Wire and LDV measurements only in straight ducts without considering wallrsquos roughness should depend on 2 dimensionless numbers

UD

St = ωDU amp Re = UD

ν

vxvxvx

weakly turbulentlaminar conditionaly turbulentcenter of the duct

close to the wall

tω tωtω

HW measurements of vx as a function of the oscilla-ting amplitude and distance to the wall (from [3])

103

104

105

106

10minus2

10minus1

100

101

Re

St

transition determined by Sergeevtransition determined by Merkli et Thomannlaminar for Hino et alweakly turbulent for Hino et alconditionally turbulent for Hino et altransition determined by Hino et alweakly turbulent for Clamen and Mintonlaminar for Ohmi et alweakly turbulent for Ohmi et alturbulent for Ohmi et altransition determined by Kurzweg et allaminar for Eckmann et Grotbergconditionally turbulent for Eckmann et Grotbergtransition determined by Eckmann et Grotbergtransition determined by Zhao et Chengturbulent for Akhavan et allaminar for present workturbulent for present work

10minus2

10minus1

100

101

103 104 105 106

~minusReδ 280

Reδ minus~500

St

Re

Merkli et al Moreau et al

others

quas

iminusst

atio

narit

y

quasistationarity

loss of

Compressibility

And still many open questions Evaluation of subsequent losses Turbulence near T-junctions in coiled ducts etc

[1] Merkli amp Thomann JFM 1975 [2] Sergeev Fluid Dyn 1966 [3] Hino et al JFM 1976 [4] Ohmiet alJSME 1982 [5] Kurzweg et al Phys Fluid A 1989 [6] Eckman et alJFM 1991 [7] Zhao etal Int J Heat Fluid Flow 1996 [8] S Moreau Phd Poitiers 2006

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 48 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 49: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Turbulence

Evaluation of losses due to turbulence (DELTA-EC)

=gt modification of 〈wν〉 from the time-averaging of well-known results of fully developpedsteady flows

steady flows

∆p = fMLD

12 ρ0〈vx〉2

〈wνturb〉 = ∆p〈vx〉L =

ρ0fM〈vx 〉32D

oscillating flows (Re(t) = 〈vx (t)〉Dν )

〈wνturb〉 =ρ0fM |〈vx 〉|3

2D

fM(Re(t)) asymp fM +dfMdRe

(|Re(t)| minus Remax)

fric

tion

fact

or f

M

εro

ughn

ess

64Re

Re

laminar turbulent

where both fM and dRefM are evaluated at Remax from Moody chart knowing ǫ andRe (approach considered unsatisfactory by the authors themselves )

Avoiding turbulence from the engineering standpoint

polish internal surfaces of ducts

use of ldquoflow straightenersrdquo

flow straightener(mesh grids)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 49 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 50: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Preliminary conclusion

⋆ Linear theoryDesign tools are available but

- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport- they predict steady-state operation

⋆ Nonlinear processesNL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

Q in

Wout

Wout

Q in

experience

model

⋆ How to fit experiments and theory =gt adjust any poorly known parameter

⋆ How to dissociate the role of each NL process =gt study the transient regime

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 50 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 51: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 51 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 52: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Hysteresis6

compeacutetition de modes reacutegimes QP8

Switch onoff24

ldquoFishbone-like instabilityrdquo7

[1] Penelet et al Cryogenics 2002 [2] Swift JASA 1992 [3] Zhou et al Cryogenics 1998 [4] Peneletet al Phys Let A 2006 [5] Penelet et al Int J Heat Mass Trans 2012 [6] Chen et al Cryogenics1999 [7] Yu et al JASA 2010 [8] Unni et al N3L Workshop Munich 2013

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 52 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 53: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Pourquoi eacutetudier le transitoire

Moteur thermoacoustique ldquoquart drsquoonderdquo Geacuteneacuterateur thermo-acousto-eacutelectrique

Q in

Wout

T(x)

HHX

AHX

regenerator

TB

T

flow straighteners

mov

ing

mas

s

flexu

re b

earin

gs

mag

netic

mot

or

TA

C

rArr comprendre le plus simple pour mieux appreacutehender le ldquocompliqueacuterdquo

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 53 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 54: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Description of the TAO in the time domain

⋆ Find of a Green function and make use of the kirchhoff-Helmholtz integral theorem

Rx

part2ppartx2 minus 1

c20

part2ppartt2

= q(x t)

δκ

T0(x)

⋆ But even in the limit of a quasi-adiabatic interaction the inhomogeneous wave equation inthe time domain is not simple1

part2p

partt2minus part

partx

bdquo

c20

partp

partx

laquo

asymp minus 2c20radic

ν

R

2

6664

Cpartminus12

parttminus12

part2p

partx2

| z thermoviscous effects

+ (C + CT )1

T0

dT0

dx

partminus12

parttminus12

bdquopartp

partx

laquo

| z thermoacoustic amplification

3

7775

where the fractional derivatives

partminus12f (x t)

parttminus12=

1radic

π

Z t

minusinfin

f (x τ )radic

t minus τdτ

have the meaning of memory effects which are the essence of the thermoacoustic phenomena1 ⋆ Moreover T0(x) is controlled by p (and vice versa )

rArr letrsquos try a simpler approach based on the quasi-steady state assumption(seek for a slowly varying harmonic solution )

[1] N Sugimoto J Fluid Mech 658 89-116 2010

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 54 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 55: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

TA wave amplification

⋆ Description of wave amplitude growthattenuation For a given temperature distribution T0(x) through the device each element is described byits T-matrix12

bdquop(L)u(L)

laquo

= M3 times M2 times M1 timesbdquo

p(0)u(0)

laquo

=

raquoMpp Mpu

Mup Muu

ndash

timesbdquo

p(0)u(0)

laquo

T 8T 8

1 2 3

T (x)0

TH

xC xH L0

which combined with p(0) = 0 and u(L) = 0 leads to a characteristic equation2

=gt Muu = 0

Allow the angular frequency ω to be complex2 and find ω = Ω + iǫ so that

Muu (ω T0(x) ) = 0

Quasi-steady state assumption (ie ǫ ≪ Ω)

dP

dtasymp ǫ [T0(x)] P

where P = |p(L)| and ǫ = image (ω) is the amplification rate (ǫ gt 0 amplification ǫ lt 0 attenuation)

[1] Penelet et al Acust Acta Acust 2005 [2] Guedra et al Acust Acta Acust 2012

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 55 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 56: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Unsteady Heat Transfer

⋆ Unsteady heat transfer1(simplified and summarized)

xC

xH

8T =Twall

Heating Q(t)

thermoacoustic heat transport x

8

Heat exchange with walls

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉)

Nomenclatureρf Cf (resp ρsCs ) volumetric heat capacity of fluid (resp of stack)λf (resp λs ) thermal conductivity of fluid (resp of stack)

[1] M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 56 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 57: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Summary

⋆ Modeling of the transient regime summaryEquations describing unsteady heat transfer (including thermoacoustic heat pumping)

x isin [0 xc ] cup [xh L]partT0partt = 1

ρf Cf

partpartx

ldquo

λfpartT0partx

rdquo

minus T0minusTinfinτf

x isin [xc xh]partT0partt = 1

ρsCspart

partx

ldquo

λspartT0partx

rdquo

minus T0minusTinfinτs

minus 1ρsCs

partϕacpartx

x = xc λfpartT0partx

˛˛˛xminusc

= λspartT0partx

˛˛˛x+c

minus ϕac (x+c )

x = xh λspartT0partx

˛˛˛xminush

= λfpartT0partx

˛˛˛x+h

+ ϕac (xminush

) + Q(t)πR2

x isin [xc xh] ϕac = 12

ρf T0πR2 real (〈s vlowast

x 〉) = f (P2 x)

coupled to that describing wave amplification

dP

dt= ǫ [T0(x)] P

=gt Nonlinear set of differential and partial differential equations solved using a finitedifference scheme

⋆ Main assumptions The variations of T0(x) are negligible at the time-scale of a few acoustic periods ǫ ≪ Ω T0 is uniform through a cross-sectional area

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 57 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 58: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (1)

The device

L = 05m length of the ductLs = 005m length of the stack

rs = 09mm the diameter of a pored the distance stack-rigid plug (variable)

Qin heating powert = 0 time at which heating is switched on

Comparison theoryexperiments

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

0 50 100 150 200 250 300minus15

minus1

minus05

0

05

1

15

time (s)

P (

kPa)

(a)

(b)

(a) (d=20cmQin=233 W)(d=20cmQin=186 W)

(b) (d=14cmQin=233 W)(d=20cmQin=233W)

M Guedra et al J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 58 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 59: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Comparison with experiments (2)

100 600 700 800 900 1000minus1

minus05

0

05

1

time (s)

P (

kPa)

200 210 220 230 240 250 260 270 280 290 300minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 100 200 300 400 500 600 700 800 900 100020

30

40

50

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 233 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

200 400 600 1000 1200 1400minus1

minus05

0

05

1

time (s)

P (

kPa)

400 420 440 460 480 500 520 540 560 580 600minus1

minus05

0

05

1

time (s)

P (

kPa)

(a)

50

100

150

200

T1 (

deg C

)

100

200

300

T2 (

degC)

0 500 1000 150020

30

40

50

60

time (s)

T3 (

deg C

)

(b)

(c)

(d)

d=26 cm Qin = 262 WSolid line=model dashed line=experimentsT1 temperature in the middle of the stackT2 temperature at hot side of the stack

T3 temperature 25 cm far from the stack

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 59 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 60: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Interfeacuteromeacutetrie

⋆ Pheacutenomegravene responsable du deacuteclenchement-arrecirct

rArr transport de chaleur acoustiquement induit avec temps caracteacuteristique τ 6= τampl

rArr vent acoustique pompage thermoacoustique effets de bords

⋆ Moyen expeacuterimentaux envisageables PIV LDV fil chaudfroid interfeacuteromeacutetrieoptique

CameraSpeed High

Tri CCCCamera

laser 660nm

microphone

laser 532nmM0

M2

dichroic plate

5050 cube

M1

L1 L2

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 60 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 61: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Principe de la mesure

milieu reference n8

verre nv

∆ϕAcces a y

L(y)

faisceau objet

faisceau reference

milieu drsquoetude n(xyzt)

camera CCD

z

λ∆ϕref (x y)

2π=R

L

h

nref (x y z) minus ninfini

dz + 2R

Lv[nv (x y z) minus ninfin] dz

λ∆ϕ(x y t)

2π=R

L [n(x y z t) minus ninfin] dz + 2R

Lv[nv (x y z) minus ninfin] dz

=rArr λ[∆ϕ(xyt)minus∆ϕref (xy)]2π =

R

L

h

n(x y z t) minus nref (x y z)i

dz

rArr accegraves agrave 〈n〉 = (1L)R

ndz puis 〈ρ〉 = (1L)R

ρdz via la relation de Gladstone-Dalesect

r = 23

1ρ(xyt) (n(x y t) minus 1) r = 01516m3kgminus1mminus1 pour de lrsquoairpara agrave 288 K et λ = 607 nm

sectNB si P = P0 + pac connue alors accegraves agrave T = T0 + τac (P0 = ρ0RT0 amp propa lineacuteaire)

paraNB2 r = r(λ T) rArr utilisation de deux longueurs drsquoonde

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 61 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 62: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Monteacutee en teacutempeacuterature

Avant les auto-oscillations P0 = Patm =gt T0(t) directement deacuteduit de ρ0(t)

Exemple drsquointerfeacuterogramme avec deacutefi-nition de zones drsquointeacuterecirct

Tempeacuterature en zone 1 lors du chauffage (initieacuteagrave t = 0) pour xs = 24cm et Qin = 251W

pas drsquoeffet de chromatisme

mesure de T = T0(t) + τac assureacutement fausse apregraves le deacuteclenchement

mais peut-on supposer que P = P0 + pmic cos(k0xs ) cos(ωt) (ie pas drsquoeffets de bordssur P) pour calculer T0 et τac au delagrave du seuil Dans le doute eacutevitons de le faire

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 62 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 63: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 77 s (fe = 1kHz)dureacutee=4 s

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacutee lors du deacuteclen-chement

masse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12

d(2dac )

()8 28 48 68 88 108 128 148 168 188 208 228

ρmaxρ0 () 75 96 121 129 108 103 80 55 31 17 12 09

alors mecircme que Pmax cos(k0xs)P0 asymp 07

dac asymp Pmax

ωc0sin(k0xs ) asymp 14mm

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 63 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 64: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple analyse spectrale

⋆ Analyse spectrale des signaux de masse volumique instantaneacutee

Spectres de ρ dans les zones 3 6 9 et 12 (de hauten bas)

Amplitude des harmoniques en fonction de la zonedrsquoobservation

rArr Effets de bords ldquothermiquesrdquolowastlowast

polytropic process adiabatic process

Passage abrupte drsquoune zone polytropiquevers une zone adiabatique

Mesures par fil froid des fluctuation de tempeacuteratures aux extreacute-miteacutes drsquoun stack drsquoapregraves [3]

lowastlowast[1] Gusev et al JASA1092001 [2]Marx et al JASA 118 2005 [3] Berson et al IJHMT 54 2011

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 64 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 65: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Deacuteclenchement simple moyenne glissante

⋆ moyenne glissante ρ = (1T )R

ρdt (T asymp 20 peacuteriode acoustiques)

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

ρ (k

gm

minus3 )

0 05 1 15 2 25 3 35 4070809

11112

temps (s)

ρ (k

gm

minus3 )

ρ dans les zones 3 6 9 et 12 ρ dans les zones 3 6 9 et 12

rArr variations significatives de ρ au cours du transitoire (jusqursquoagrave asymp 007ρ0 en zone 4)

⋆ Explication possibles

Reacutechauffement localiseacute (dissipation visqueusevent acoustique )

Pertes de charges singuliegraveres ρ = f (T P)

Images PIV (vorticiteacute) en bout de stackdrsquoapregraves [berson et al JASA EL122 2007]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 65 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 66: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee

xs = 24 cm Qin = 194W deacutebut acqui cameacutera rapide agrave t asymp 2183 s (fe = 1kHz)dureacutee=16 s

200 210 220 230 240 250 260 270 280minus800

minus600

minus400

minus200

0

200

400

600

800

Pre

ssio

n ac

oust

ique

(P

a)

Temps (s)

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

ρ (k

gm

minus3 )

0 2 4 6 8 10 12 14 1608

1

12

temps (s)

ρ (k

gm

minus3 )

pression acoustique instantaneacuteemasse volumique instantaneacutee (〈ρ〉 = 〈ρ0〉 + 〈ρac〉) dansles zones 3 (xs minusx asymp 13mm) 6 (asymp 3mm) 9 (asymp 47mm)et 12 (asymp 64mm) de haut en bas

Quelques estimations (au plus fort des auto-oscillations )

zone 1 2 3 4 5 6 7 8 9 10 11 12d(2dac ) () 8 28 48 68 88 108 128 148 168 188 208 228ρmaxρ0 () 45 66 79 96 91 87 7 46 29 16 08 06

alors mecircme que Pmax cos(k0xs)P0 asymp 07

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 66 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 67: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

ρ m (

kgm

minus3 )

0 2 4 6 8 10 12 14 16

1

11

12

temps (s)

ρ m (

kgm

minus3 )

moyenne glissante ρm dans les zones 369et 12

Quelques estimations grossiegraveres (∆ρmρm = 2 lowast (ρmmax minus ρmmin)(ρmmax + ρmmin))

zone 1 2 3 4 5 6 7 8 9 10 11 12∆ρmρm () 22 54 72 78 92 87 68 41 27 17 18 16

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 67 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 68: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Bilan

The transient regime of TA Oscillators the big deal

What is the mechanism responsible for the switch onoff process

1D assumption for both T and p

Entrance effects impacting T

Acoustic streaming Everything together

and how can we claim understanding TA engines if we cannot reproduce such an effect

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 68 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 69: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 69 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 70: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

The TAO as an interesting dynamical system

The ThermoAcoustic Oscillator as an interesting dynamical system

⋆ An autonomous oscillator driven by heat

which is almost out of control above threshold

and which exhibits complicated dynamical behaviors (overshoot ldquointegrate andfire regimerdquo )

⋆ Investigate the nonlinear coupling between a TAO and an external sound sourcewith two objectives

revisit universal aspects of synchronization1 phenomena in the frame ofthermoacoustics (notably for teaching purpose)

investigate the active control of TA engine to ր their efficiency

[1] A Pikovsky M Rosenblum J Kurths laquo Synchronization A Universal Concept in Nonlinear Science raquo

Cambridge University Press NY 2001

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 70 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 71: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

A movie made at Lancaster University (UK) which can be easily found on youtube

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 71 85

videossynchronisation_metronomemp4
Media File (videomp4)

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 72: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchonization Phenomena

Synchronization phenomena

⋆ First observations Huygens (1665 laquo sympathy of two pendulum clocks raquo)

Mg

coupling beam

coupling beam

f 1 f 2 1f f 2

(a) (b)

Mg2tα ( )

1tα ( )

OR

⋆ Use or observation of synchronization phenomena are nowadays abundant biology medicine(singing crickets circadian rythm cardiac pacemaker ) electronics engineering(triode generators for radio communications ) mechanics(clocks organ pipes ) physicschemistry(lasers BndashZ reaction ) social life(clapping audience)

⋆ An example in the field of acoustics synchronization of organpipes

Former study by Lord Rayleigh mutual synchronizationof two organ pipes and the quenching effect (oscillationdeath)

but even recent studies12

Sketch of the exp by Abel et al2

[1] Abel et al J Acoust Soc Am 119 2467 2006 [2] Abel et al Phys Rev Let 103 114301 2009

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 72 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 73: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization of a TAO by a loudspeaker experiment

Thermoacoustic oscillator

stack

loudspeaker enclosure

(a)

BampK Nexus 2692C

conditioning amplifier

to data acquisition cardNI PCI 6143

amplifier

power Frequency generator

Agilent 33120 A

Agilent 54624 A

Oscilloscope Audio spectrum analyzer

Stanford Research SR785

TT

L S

igna

l

NI BNC 2110

DC Power SupplyMCP Lab electronic

M10minusTPminus305minusC

connector block

Nichrome wire

Loudspeaker enclosure

ds d

(c)

(a) Photograph of the complete experimental set-up (c) Sketch of the experimental set-up

[ Penelet amp Biwa Am Journ Phys 2013]

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 73 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 74: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization phase locking phase trapping beating death

Synchronization by a sound source experimental protocol

⋆ Experimental protocol Fix heat power Q=226 W (Q gt Qonset ) Fix both d and ds

Proceed to measurementsdaggerdagger by varying the driving frequencyf and the loudspeaker voltage Urms

Q=226 W

sd d

⋆ Signal processing Make both FFT and Hilbert transforms of p(t) and U(t) Quantities of interest for data analysis - Frequency spectra p(f ) and U(f )- Amplitude modulation Ap(t)- Instantaneous phase difference Ψ(t) = Φp(t) minus ΦU(t)

⋆ Different possible states(PS) (IPL) (QP) (BD)

Perfect Synchronization Imperfect Phase Locking QuasiPeriodicity Beating Death

fTAO = f (or fTAO = fn ) fTAO 6= f (or fTAO 6= f

n ) fTAO 6= f (or fTAO 6= fn )

Ap (t) = cte Ap (t) 6= cte Ap (t) 6= cte Ap (t) = cte

Ψ(t) = cte Ψ(t) 6= cte but bounded Ψ(t) 6= cte (unbounded)

daggerdaggerEach set of measurements sim 12-24 hours of total duration

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 74 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 75: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization the obtained Arnolrsquod Tongues

⋆ Stability diagram as a function of Uloudspeaker and f for d=1 mm ds=8 cm and Q=226 W

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

7

8

9

Urm

s (

V)

frequency (Hz)

IPL

PS

QP

BD

time (s) time (s) time (s)

Stability diagram

Transition QP=gtBD

Transition PS=gtIPL=gtQP

synchronization 31

Quenching

synchronization 21

synchronisation 11

Some universal aspects of synchronization are retrieved by this experimentDaggerDagger

Some aspects are intrinsic to the TAO itself =gt why are the Arnold tongues asymetric =gt why does quenching occurs around f asymp fTAO2

DaggerDaggerOnly the 2nd experimental evidence of the phase trapping phenomenon

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 75 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 76: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

External forcing of relaxational oscillations

Other phenomena related to the external forcing of a TAO

⋆ What if the TAO is operated as a relaxa-tional oscillator

s

Q=245 W

d=4 cmd =25 cmLoudpseaker off =gt ldquointegrate and fire regi-merdquo with fTAO asymp 1771 Hz

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

ON OFF

Urms

=0V

Urms

=4mV

Urms

=10mV

⋆ Experimental procedure1- Settle f to 1769 Hz (6= fTAO)2- Switch the loudspeaker on at t=100 s3- Switch the loudspeaker off at t=150 s4- Repeat steps 1-3 with another driving vol-tage

minus1000

minus500

0

500

1000

p(t)

(P

a)

minus1000

minus500

0

500

1000

p(t)

(P

a)

0 25 50 75 100 125 150 175 200 225 250 275minus1000

minus500

0

500

1000p(

t) (

Pa)

time (s)

Urms

=105mV

Urms

=175mV

Urms

=380mV

interpretation =gt Simply quenching or more complicated processes =gt does external forcing lead to the transformation of a bistable regime (with periodic switch

between two stable states) into a stable one

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 76 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 77: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Synchronization mutuelle de 2 TAO

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 77 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 78: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the idea

And what about forcing a TAO to increase its efficiency

Basic ideas- Above threshold (and at fixed heat input Q0) TA enginesare ldquoout of controlrdquo- Is there a possibility to ր the efficiency of a TA engine withauxiliary acoustic sources A proof of concept study performed succesfully1

- Closed-loop stack based TA engine- Active control by 2 sources controlled in both amplitude andphase

thermoacoustic core

Loudspeakers

A new proof of concept study on a larger TA engine2

- ThermoAcoustic Stirling electricity generator- Active control by 1 source and a feedback loop

[1] C Desjouy et al J Appl Phys 2010 [2] C Olivier et al accepted for publication in J Appl Phys 2014

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 78 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 79: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the device

⋆ The device (a ldquoStirling typerdquo Thermo-acousto-electric engine working with 5 bars air)

CHX1

CHX2

Regenerator

HHX (Qh)

TBT

Coupling Duct

Alternator (Wel)

0 20 cm

Auxiliary source S (WLS)

Microphone micro

φ

G

TAC

TAC

Auxiliary source Acoustominuselectric conversion(electrodynamic alternator)

⋆ The control parameters

The heat input Qh The phase shift φ

The power supplied to the auxiliary source WLS (controlled via the voltage gain G)⋆ The output

Feedback loop switched off

The output power Wel0

The efficiency η0 = Wel0Qh

The temperature difference ∆T0

as a function of Qh

Feedback loop switched on

Wel and ∆Wel = Wel minus Wel0

η = Wel ldquo

Qh + WLS

rdquo

and ηη0

∆T and ∆T minus ∆T0

as a function of Qh φ and G

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 79 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 80: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(1)

Feedback loop switched off (G=0)

η0(Qh) (bull) ∆T0(Qh) ()

60 80 100 120 140 1600

02

04

06

Qh [W]

η0[

]

60 80 100 120 140 160400

425

450

475

∆T0[K

]

Feedback loop switched on (G 6= 0)

Qh=75 W ηη0(G φ)

0 45 90 135 180 225 270 315 3600

05

1

φ [deg]

ηη0

G = 22

G = 46

G = 10

rArr The electroacoustic feedback loop impacts the operation of the TA engine

Possibility to ր η (ie to have η gt η0)

Here φopt asymp 270

Possibility to destroy TA oscillations (here for φ equiv 50 minus 60 and G ge 10)

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 80 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 81: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(2)

The variation of η(Φ Qh) ∆T (Φ Qh) with a fixed voltage gain G (here G = 32)

0 45 90 135 180 225 270 315 3600

05

1

(a)

ηη0

70W

71W

80W

0 45 90 135 180 225 270 315 360minus10

0

10

20

(b)

φ [deg]

∆Tminus

∆T0[K

]

rArr η gt η0 while ∆T gt ∆T0

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 81 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 82: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Active Control of a TAO the results(3)

The net output power gain ∆Wel compared to the power provided to the auxiliary sourceWLS with an assigned phase shift (here φ = 270)

0 05 1 15 210minus4

10minus3

10minus2

10minus1

100

gain G

WLS∆W

el[W

]

∆Wel () and WLS (bull) as a function of G for Qh = 70W

∆Wel () and WLS (N) as a function of G for Qh = 150W

rArr Possibility to have ∆Wel gt WLS (indisputable proof of concept )

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 82 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 83: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Plan

Preacuteambule de quelle thermoacoustique parle-t-on

Theacuteorie lineacuteaire de la thermoacoustique

Exemple le tube de Sondhauss

Effets de saturation non lineacuteaires

Dynamique des auto-oscillateurs thermoacoustiques

Forccedilage des auto-oscillateurs thermoacoustique

Conclusion

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 83 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 84: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

Conclusion

⋆ Conclusion of part 1-2 (linear theory design tools Sondhauss tube)

Design tools are available but- they are based on the linearization to 1st order of the governing equations- they are based on a 1-D description both acoustics and heat transport

⋆ Conclusion of part 3 (nonlinear processes)NL process Academic understanding Appropriate modeling Impact on TA Engines

TA Heat pumping significant

NL acoustics not much

Streaming significant

Edge effects significant

Turbulence

⋆ Conclusion of part 4 (dynamics of TA Oscillators) Even the simplest TAO exhibit complicated behaviors which are not very well unders-tood The study of the transient regime may provide a deeper physical insight on the me-chanisms responsible for sound saturation and may therefore provide new opportunities to increase the enginersquos efficiencies

⋆ Conclusion of part 5 (External forcing of TA oscillators) The forcing of a TAO allows studying synchronization phenomena But it may also be used to increase the efficiency of TA engines

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 84 85

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion
Page 85: Auto-oscillateurs thermoacoustiques : effets non linéaires et

Avant-propos Theacuteorie lineacuteaire Sondhauss tube Effets Non lineacuteaires Dynamique des TAO Forccedilage des TAO Conclusion

RemerciementsLrsquoOR thermoacoustique du LAUM

Pierrick LOTTON Guillaume PENELET Gaeumllle POIGNAND Cocircme OLIVIER(DR CNRS) (MCF) (IR) (Doc)

Les anciens doctorants

Cyril DESJOUY Matthieu GUEDRA Flavio BANNWART

Autres collegravegues du LAUM

M BRUNEAU JP DALMONT J GILBERT V GUSEV M LECLERCQ P PICART

ou drsquoailleurs

T BIWA (Tohoku Univ Japan)

merci de mrsquoavoir eacutecouteacute

G Penelet Ecole theacutematique Acoustique Non Lineacuteaire et Milieux Complexes Oleacuteron 1-6 Juin 2014 85 85

  • Preacuteambule de quelle thermoacoustique parle-t-on
    • Quelle thermoacoustique
    • Tomographie Thermoacoustique
    • Haut-parleur TA
    • Effet piston
    • Instabiliteacutes de combustion
    • Machines thermoacoustiques
    • The Rayleigh criterium
    • The TA Laser a prototypical example
    • Auto-oscillateur thermo-acoustique contexte et probleacutematique
      • Theacuteorie lineacuteaire de la thermoacoustique
        • Basic principles
        • Basic equations
        • Le point de vue thermodynamique
        • Sound amplification
        • Heat transport by sound
        • Amplification of a standing wave
        • How to build an intrinsically reversible Thermoacoustic engine
        • Examples
        • Design of thermoacoustic engines
          • Exemple le tube de Sondhauss
            • Le systegraveme consideacutereacute
            • Analogies eacutelectroacoustique
            • Scheacutema eacutelectrique eacutequivalent
            • Approximation par une DDE
            • Reacutesolution numeacuterique
            • Reacutesolution analytiquemeacutethode des temps multiples
            • Reacutesolution analytiquemeacutethode des temps multiples (2)
            • Saturation par pompage thermoacoustique
            • Autres meacutecanismes de saturation
              • Effets de saturation non lineacuteaires
                • Thermoacoustic heat transport by sound
                • Higher harmonics generation
                • Higher harmonics generation shock waves
                • Entrance effects
                • Acoustic streaming
                • Turbulence
                • Preliminary conclusion
                  • Dynamique des auto-oscillateurs thermoacoustiques
                    • Pourquoi eacutetudier le transitoire
                    • Description of the TAO in the time domain
                    • ThermoAcoustic wave amplification
                    • Unsteady Heat Transfer
                    • Summary
                    • Comparison with experiments (1)
                    • Comparison with experiments (2)
                    • Interfeacuteromeacutetrie
                    • Principe de la mesure
                    • Monteacutee en teacutempeacuterature
                    • Deacuteclenchement simple masse volumique instantaneacutee
                    • Deacuteclenchement simple analyse spectrale
                    • Deacuteclenchement simple moyenne glissante
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement masse volumique instantaneacutee
                    • Cycle de deacuteclenchementsarrecirct premier deacuteclenchement moyenne glissante
                    • Bilan
                      • Forccedilage des auto-oscillateurs thermoacoustique
                        • The ThermoAcoustic Oscillator as an interesting dynamical system
                        • Synchonization Phenomena
                        • Synchronization of a TAo by a loudspeaker experiment
                        • Synchronization phase locking phase trapping beating death hellip
                        • Synchronization the obtained Arnold Tongues
                        • External forcing of relaxational oscillations
                        • Active control of a TAOthe idea
                        • Active control of a TAOthe device
                        • Active control of a TAO the results(1)
                        • Active control of a TAO the results(2)
                        • Active control of a TAO the results(3)
                          • Conclusion