113
Thèse de Doctorat en Biotechnologie Option : Microbiologie appliquée Présentée par BOUBLENZA Faiza Intitulée Devant le Jury : Pr., Université d’Oran N-E. Karam Président Pr., Université de Tlemcen Pr., Université de Mostaganem Dr., Université de Mostaganem Dr., Université d’Oran Pr., Université d’Oran D-E. Abdelouahed M. Bellahcène F. Dalache S. Roudj H. Zadi-Karam Examinateurs : Rapporteur Année universitaire 2012-2013 اﻟﺠﻤﻬﻮرﻳﺔ اﻟﺠﺰاﺋﺮﻳﺔ اﻟﺪﻳﻤﻘﺮاﻃﻴﺔ اﻟﺸﻌﺒﻴﺔRépublique Algérienne Démocratique et Populaire وزارة اﻟﺘﻌﻠﻴﻢ اﻟﻌﺎﻟﻲ و اﻟﺒﺤﺚ اﻟﻌﻠﻤﻲMinistère de l’Enseignement et de la Recherche Scientifique Faculté des Sciences Département de Biotechnologie Etude du stress osmotique chez des lactocoques isolés de lait de chamelle de Timimoun

Page de garde - Université d'Oran 1 Ahmed Ben Bella

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Thèse de Doctorat en Biotechnologie

Option : Microbiologie appliquée

Présentée par

BOUBLENZA Faiza

Intitulée

Devant le Jury :

Pr., Université d’Oran N-E. Karam Président Pr., Université de Tlemcen Pr., Université de Mostaganem Dr., Université de Mostaganem Dr., Université d’Oran Pr., Université d’Oran

D-E. Abdelouahed M. Bellahcène F. Dalache S. Roudj H. Zadi-Karam

Examinateurs : Rapporteur

Année universitaire 2012-2013

الشعبية الديمقراطية الجزائرية الجمهوريةRépublique Algérienne Démocratique et Populaire

العلمي البحث و العالي التعليم وزارةMinistère de l’Enseignement et de la Recherche Scientifique

Faculté des Sciences Département de Biotechnologie

Etude du stress osmotique chez des lactocoques isolés de

lait de chamelle de Timimoun

Page 2: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Remerciements et dédicaces  

Remerciements et dédicaces

J’exprime mes vifs remerciements, ma profonde gratitude et ma reconnaissance à mon

encadreur Professeur Zadi Karam Halima qui a dirigé cette thèse.

Je remercie le Professeur Karam NourEddine, Directeur du Laboratoire de Biologie des Microorganismes et Biotechnologie d’avoir préparé les meilleures conditions de travail, je le

remercie pour ses conseils et ses critiques toujours constructives, je le remercie également d’avoir accepté de présider le jury de ma soutenance.

Mes plus sincères remerciements vont également aux Membres du jury, Pr D.E.Abedlouahed de l’Université de Tlemcen ainsi que Pr M. Bellahcène de l’Université de Mostaganem qui

ont accepté d’examiner ce travail.

J’aimerais exprimer ma reconnaissance et mes remerciements les plus sincères pour Dr F. Dalache et Dr S. Roudj et tous les membres du Groupe de Travail. J’ai bénéficié, par ailleurs, des conseils, des remarques et des échanges intéressants de tous les membres,

preuve de la confiance qu’ils m’ont accordée tout au long de cette thèse. J’adresse, pareillement, mes remerciements à tous les membres du Laboratoire LBMB de

l’Université d’Oran.

Je remercie sincèrement Mr J.Y. Leveau et le professeur M. Bouix, responsables du laboratoire de Microbiologie Industrielle de l’école nationale supérieure des industries

alimentaires (E.N.S.I.A. de Massy -France), pour l’accueil qu’ils m’ont réservé lors de mon stage pour la réalisation de la cytométrie.

Ma reconnaissance et mon affection totales vont à mon mari Zoheir pour son soutien, sa présence et ses encouragements durant la thèse.

Je dédie cette thèse à la mémoire de mon défunt cher père et à ma mère pour son encouragement permanant, à mes deux enfants Fahim et Souha ainsi que toute ma famille et

ma belle famille.

Page 3: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Sommaire page

Liste des tableaux i

Liste des figures iiIntroduction 11. Bibliographie 1.1. Lactococcus modèle d’étude des réponses au stress 41.1.1Classification et phylogénie 41.1.2 Lactococcus lactis 61.1.3 Utilisation de NaCl dans l’industrie agro-alimentaire 71.1.3.1 NaCl et conserves de viandes 81.1.3.2 Confiserie ou conserverie de légumes saumurés 81.1.3.3 Industrie laitière : fabrication de beurre et de fromages 81.2 Origine des souches utilisées dans cette étude 91.3 Stress osmotique 101.3.1 Définition de l’osmose 101.3.2 Les bactéries face au stress 111.3.3 Effet du stress osmotique sur la cellule bactérienne 111.3.3.1 Environnement hypo-osmotique 111.3.3.2 Environnement hyper-osmotique 111.4 Réponses des bactéries lactiques au stress osmotique 131.4.1 Altération de la physiologie cellulaire 131.4.1.1Croissance et Viabilité 141.5.1.2 Constituants macromoléculaires 161.5 Réponse des bactéries lactiques au stress hyperosmotique 161.5.Osmoprotection chez les bactéries lactiques 171.5.2 Solutés compatibles : un moyen de réponse à un stress hyper-osmotique 181.5.2.1 Glycine betaine 221.5.2.2 Proline 231.5.2.3 Glutamate 241.5.2.4 Les polyols 241.5.2.5 Les sucres 241.5.2.6 Les sulfoniums tertiaires 241.6 Mécanismes de perception et régulateur du stress 251.6.1 Régulateurs globaux de la réponse au stress 251.6.1.1 systèmes à deux composants 251.7 Mécanismes de lutte contre le stress 261.7.1 Protection et réparation des constituants macromoléculaires 271.7.1.1 Les chaperonnes 271.7.1.2 Les protéases 301.7.1.3 Les protéines générales du stress 311.7.1.4 Réparation de l’ADN 33

Page 4: Page de garde - Université d'Oran 1 Ahmed Ben Bella

2. Matériel et méthodes 2.1. Matériel biologique 34

2.2Culture bactériennes 342.3 Remise en culture des bactéries 352.4 Conservation des souches 35

2.5Croissance des bactéries en présence de NaCl 35

2.6 Estimation de la concentration minimale inhibitrice de NaCl 36

2.7 Croissance des souches en présence de NaCl et d’osmoprotecteurs 36

2.8 Cinétique de croissance 37

2.5.5 Croissance des souches en fermenteur 37

2.10 Analyse des protéines solubles par électrophorèse SDS-PAGE 37

2.11 Analyse du contenu cellulaire des souches par la chromatographie 39

sur couche mince 2.12 Dosage de la proline par spectrophotométrie 40

2.13 Extraction de l’ADN plasmidique 41

2.14. Cytométrie en flux 42

2.14.1 Marquage des cellules 42

2.14.2Analyse de la fluorescence par cytométrie en flux 43

3. Résultats et discussion 3.1 Effet du stress salin sur les cellules bactériennes 45

3.1.1 Caractéristiques des souches utilisées 45

3.1.2 Application du stress osmotique 46

3.1.2.1 Croissance des souches en présence de NaCl 46

3.1.2.2 Croissance des souches en présence d’osmoprotecteurs 48

• Osmoprotection par la proline 48

• Osmoprotection par la glycine bétaine 49

3.1.3 Cinétique de croissance 51

3.1.4 Croissance en fermenteur 53

3.2 Caractérisation biochimique du stress osmotique 55

3.2.1 Analyse des protéines totales par SDS-PAGE 55

3.2.2 Analyse des contenus en acides aminés 643.2.2.1 Analyse du contenu cellulaire par chromatographie en couche mince CCM 64

3.2.2.2 Dosage spectrophotométrique de la proline 65

3.2.3 Recherche d’ADN plasmidique 68

3.3 Caractérisation physiologique par la cytométrie 693.3.1 Etat physiologique des cellules dans les différentes conditions de stress osmotique 70

3.3.2 Etat physiologique des cellules sous microscope à fluorescence 79

4. Conclusion et perspectives 81

5. Références bibliographiques 84

6. Annexe 95 

Page 5: Page de garde - Université d'Oran 1 Ahmed Ben Bella

 i

  Liste des tableaux  page 

 

 

 

Tableau 1: Fonction des systèmes à deux composantes chez Lactococcus lactis 26

Tableau 2 :caractérisisation de l’induction de protéines en réponse au stress chez Lc. Lactis

32

Tableau 3 : Souches utilisées dans cette étude 34

Tableau 4 : Gamme étalon pour le dosage des protéines 38

Tableau 5 : Composition des gels de polyacrylamides 39

Tableau 6: Gamme étalon pour dosage de proline 40

Tableau7 : Les caractéristiques des souches utilisées 46

Tableau 8 : Concentrations de proline estimées dans chaque échantillon 67

Page 6: Page de garde - Université d'Oran 1 Ahmed Ben Bella

 

ii

Liste des figures page

Figure 1. Réponse au stress hyperosmotique des bactéries à Gram négatif 17

et des bactérieslactiques (Romeo et al ., 2003). Figure 2. représentation schématique des systèmes de transport de solutés 20

compatibles chez Lc . lactis et Lb plantarum (Baliarda,2003) Figure 3. Effet de l’osmolarité sur la structure d’une protéine d’une halobactérie 21

et sastabilisation après l’ajout des solutés compatibles (Sleator et Hill, 2002) Figure 4. Effet stabilisateur de la proline sur la conformation protéique au cours 23

du stress osmotique. Figure 5. Modèle de la fonction des chaperonnes Hsp (sonomoto. 2008) 28

Figure 6. Modèle d’action du système GroESL dans le repliement protéique 29

(Mary, 2003) Figure 7. Modèle d’action du système DnaK dans le repliement protéique 30

(Mary, 2003) Figure 8. Modèle d’action du complexe Clp protéase (Mary, 2003) 31

Figure 9.Extraction d’ADN plasmidiques (selon Klaenhammer 41

et O’Sullivan, 1993) Figure 10. Principe de la cytométrie en flux 42Figure 11. Réaction d'hydrolyse de la 5(6)-carboxyfluorescéine diacétate en

435(6)-carboxyfluorescéine par les estérases intracellulaires (Hoefel et al., 2003)

Figure 12. Aspect des colonies des bactéries CHT1 et CHT4 en milieu M17 45

Figure 13. Croissance des bactéries à différentes concentrations de NaCl. 47Figure 14. Croissance des souches en présence de la CMI de NaCl et différentes concentrations de proline 48Figure 15. Croissance des souches en présence de la CMI de NaCl et différentes concentrations de glycine betaine 50

Figure 16. Croissance de la CHT1 dans différentes conditions de culture 51

Figure 17. Croissance de la CHT2 dans différentes conditions de culture 52

Figure 18. Croissance de la CHT4 dans différentes conditions de culture 52

Figure 19 : évolution de la biomasse et du pH pour la souche CHT2 en fermenteur 54

(A) En condition normale, (B) en présence de 1.4M de NaCl Figure 20. Profils protéique de CHT1 et CHT4 sous des conditions de stress 55Figure 21. Contenu protéique des deux souches étudiées à différents temps d’incubation. 57

Figure 22. Plots de gel traités par image j des deux bactéries cultivées 59

dans les conditions de stress Figure 23. Plots de la CHT1 dans les différentes conditions après 24H, 48H, 72H 61 d’incubation. Figure 24. Plots de la CHT4 dans les différentes conditions après 24H, 48H, 72H 63

d’incubation. Figure25. Analyse du contenu cellulaire en acides aminés par CCM 64

Figure 26. Gamme de dosage de la proline 65

Page 7: Page de garde - Université d'Oran 1 Ahmed Ben Bella

 

iii

Figure 27. Dosage de trois acides aminés témoins 65

Figure 28. Courbe étalon représentant la variation de l’absorbance en proline 66

en fonction de la concentration Figure 29. Aspect de la gamme de dosage de la proline 66

Figure 30. Contenus en ADN plasmidique des deux souches étudiées 68

Figure 31 (A). cytogramme de CHT4 cultivé en absence de sel 70

Figure 31 (B). cytogramme de CHT4 cultivé en présence de 1.1M de NaCl 71

Figure 31 (C). cytogramme de CHT4 cultivé en présence de 1.2M de NaCl 71

Figure 31 (D). cytogramme de CHT4 cultivé en présence de 1.4M de NaCl 72

Figure 32(A). cytogramme de CHT2 cultivé en absence de NaCl 72

Figure 32 (B). cytogramme de CHT2 cultivé en présence de 1.1M de NaCl 73

Figure 32(C). cytogramme de CHT2 cultivé en présence de 1.2M de NaCl 73

Figure 32 (D). cytogramme de CHT2 cultivé en présence de 1.4M de NaCl 74

Figure 32 (E). cytogramme de CHT2 cultivé en présence de 1.6M de NaCl 74

Figure 33. Etat des cellules CHT2 dans les différentes concentrations de NaCl. 76

Figure 34. Etat des cellules CHT4 dans les différentes concentrations de NaCl . 76

Figure 35. cytogrammes obtenus suite à la coloration par le système cFDA/IP 78

Figure 36. Aspect des cellules de CHT2 en absence 79

de NaCl en microscope à fluorescence Figure 37.Aspect des cellules de la CHT2 en présence de 1.6M de NaCl 80

sous microscope à fluorescence  

Page 8: Page de garde - Université d'Oran 1 Ahmed Ben Bella

INTRODUCTION

Page 9: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Introduction   

  

 

1

Couramment employé dans le langage quotidien, le terme de stress n’est pourtant pas

clairement défini et relève plus du concept que du phénomène tangible. Du point de vue de

l’homme, le mot stress est utilisé à tout va pour définir une sensation, un ressenti par rapport à

une agression extérieure qu’elle soit de nature physique ou, plus souvent, émotionnelle.

Bien que défini de manière intuitive, le stress est de plus en plus considéré comme le mal du

siècle pour l’Homme car il peut entraîner des manifestations physiologiques et

psychologiques. En ce sens, le terme de stress est généralement associé à la notion

d’adaptation car la perturbation de l’équilibre nécessite le rétablissement de l’homéostasie.

Pour les microorganismes, auxquels nous nous intéressons dans cette étude, la notion de

stress est beaucoup moins connue du grand public mais n’est finalement pas très éloignée.

Elle reprend en effet l’idée d’adaptation en réponse à une agression environnementale. Cette

dernière est liée à la présence de conditions de croissance non optimales, rencontrées aussi

bien au sein d’un écosystème naturel que lors d’une exploitation industrielle, et peut être de

nature nutritionnelle ou physico-chimique. Comprendre les effets engendrés par un stress et

élucider les différents mécanismes de régulations mis en jeu est un défi scientifique de taille

aussi bien pour son aspect cognitif que dans l’optique de réduire et/ou de maitriser l’impact

d’un stress sur un microorganisme d’intérêt (Dressaire, 2009).

Les bactéries lactiques constituent le groupe microbien le plus utilisé dans la

transformation des aliments et des boissons. L’intérêt des bactéries lactiques dans l’industrie

agroalimentaire réside principalement dans leur capacité à transformer certains sucres en

lactate et ainsi à acidifier le milieu environnant. Il s’agit d’une caractéristique utilisée dans de

nombreux procédés de transformation dont la fabrication fromagère (Rius et al., 2008).

Certaines sont dites homofermentaires car elles produisent très majoritairement de l’acide

lactique alors que d’autres sont dites hétérofermentaires et produisent de l’acide lactique en

même temps que d’autres composés (acétate et éthanol en général). Ces bactéries sont bien

connues des transformateurs du secteur laitier qui les utilisent pour la production de laits

fermentés et de fromage.

Page 10: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Introduction   

  

 

2

Les bactéries lactiques impliquées dans l’industrie alimentaire appartiennent à différents

genres: Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc,

Oenococcus, Pediococcus, Tetragenococcus, Vagococcus et Weissella (Vandamme et al.,

1996).

En industrie fromagère, le salage est une phase indispensable de la fabrication des

produits destinés à subir un affinage, il consiste en un apport de NaCl sous forme de sel ou par

trempage dans la saumure, ce qui induit un stress osmotique. Les starters, constituées de

bactéries lactiques, qui déclenchent les fermentations, sont inhibées par des solutions de 5%

NaCl alors que les bactéries coliformes ne sont pas inhibées jusqu'à des concentrations de

12% et sont stimulées par des concentrations de 3-4% (Romeo et al., 2003b).

De ce fait, l'étude des mécanismes de réponse au stress osmotique chez les bactéries lactiques

est importante d’un point de vue fondamental et économique, et devrait permettre d'accroître

la résistance des cellules aux contraintes imposées dans leur environnement en vue

d'améliorer la qualité des levains lactiques utilisés en industrie.

Les bactéries lactiques occupent des niches écologiques extrêmement variées. Ces

dernières sont constamment soumises à des fluctuations extérieures (variation quantitative et

qualitative des paramètres physico-chimiques environnants) auxquelles les bactéries lactiques

doivent répondre efficacement et rapidement afin de pouvoir survivre et se développer. Un

des enjeux de la recherche actuelle pour les industries agroalimentaires consiste à mieux

comprendre et favoriser la capacité de réponse et d’adaptation des bactéries lactiques à ces

variations afin de conditionner la survie et la vitalité ultérieure des souches. L’identification

des régulateurs de la réponse au stress et la compréhension des schémas de régulation

permettront de contrôler, prédire ou modifier le comportement des bactéries lactiques (dans

des conditions environnementales données).

Dans ce contexte, le Laboratoire de Biologie des Microorganismes et Biotechnologie

s’intéresse aux mécanismes de réponses au stress chez des souches de bactéries lactiques

isolées à partir de lait de chamelle collecté dans la région de Timimoun (Karam, 1995; Zadi-

karam, 1998). L’identification des souches isolées a permis de distinguer des biotypes de

Lactococcus lactis et Lactococcus lactis résistant à 6.5% de NaCl (Selkh, 1995; Saad, 1997;

Page 11: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Introduction   

  

 

3

Zadi Karam, 1998; Karam et Karam, 2006). Cependant peu de connaissances sont

disponibles concernant leur tolérance et modalités de réponse aux contraintes technologiques.

La notion de stress intervient dès que les conditions optimales de croissance d’un

microorganisme ne sont pas réunies. Par conséquent, quelle que soit sa nature, toute

modification environnementale conduisant à des conditions de croissance non favorables va

perturber la physiologie cellulaire et sera donc perçue comme un stress. La capacité

d’adaptation des microorganismes aux différentes conditions de vie qu’ils rencontrent va être

déterminante pour leur survie et leur développement. Elucider les mécanismes cellulaires et

les régulations permettant de résister aux stress reste depuis de nombreuses années le cheval

de bataille de nombreux microbiologistes.

L’objectif de cette thèse est de contribuer à l’étude de l’effet du stress osmotique chez

des coques lactiques isolés au laboratoire à partir de lait de chamelle de la région de

Timimoun. Des souches de Lactococcus pouvant croître en présence de plus de 4% de NaCl

ont été isolés de ce milieu légèrement salé et il nous a paru intéressant de préciser les raisons

de cette propriété peu connue chez cette espèce bactérienne. Les mécanismes mis en jeu lors

des réponses au stress osmotique seront abordés par une approche biochimique et

physiologique.

Page 12: Page de garde - Université d'Oran 1 Ahmed Ben Bella

BIBLIOGRAPHIE

Page 13: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  4

1.1 Lactococcus modèle d’étude des réponses au stress

Les bactéries du genre Lactococcus sont des bactéries en forme de coques, regroupées

ou non en chaînettes de longueurs variables. Elles présentent un métabolisme homolactique,

sont mésophiles puisque leur température optimale de croissance est proche de 30°C. Ce sont

les études de Schleifer et al. (1985) qui ont justifié la création de ce nouveau genre bactérien

regroupant la quasi-totalité des streptocoques du groupe N de la classification de Lancefield.

Les tests à l’arabinose, sorbitol, pyruvate et raffinose peuvent faciliter la distinction

entre les lactocoques et les entérocoques car leurs réactions sont opposées (Facklam et

Elliott, 1995). Le genre Lactococcus inclue différentes espèces : garviae, lactis, piscium,

plantarum et raffinolactis. L’espèce lactis regroupe elle-même trois sous-espèces, cremoris,

hordniae et lactis qui elle-même comprend le biovar diacetylactis, capable de surproduire le

diacétyle.

1.1.1 Classification et phylogénie

En 1919 Orla-Jensen a défini les bactéries lactiques comme étant un groupe de

bactéries à Gram positif, non mobiles, asporogènes et fermentant les hydrates de carbone et

certains alcools en lactate. Cependant, plus récemment, l’apport de nouvelles approches de

taxonomie bactérienne (physiologie, génétique), a permis d’affiner cette classification

(Schleifer, 1987; Vandamme et al., 1996), ce qui a conduit à regrouper les bactéries

lactiques en 11 genres (Stiles et Holzapfel, 1997).

En 2008 Pot les a classées en 14 genres: Aerococcus, Alloiococcus, Atopobium,

Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus,

Pediococcus, Streptococcus, Tetragenococcus, Vagococcus et Weisella, dont les plus étudiés

restent Lactobacillus, Lactococcus, Streptococcus, Leuconostoc, Oenococcus et Enterococcus

comme souligné auparavant par Stiles et Holzapfel (1997).

Phylogénétiquement, les bactéries lactiques appartiennent à la branche clostridienne

des bactéries à Gram positif. Elles sont anaérobies mais parfois aérotolérantes, ce sont des

coques, coccobacilles ou bâtonnets qui possèdent moins de 55% de bases GC dans leur

génome. Ainsi, ces caractéristiques les éloignent des bifidobactéries longtemps considérées

comme appartenant à ce groupe, et elles sont dépourvues d’activité de cytochrome.

Toutes les bactéries lactiques possèdent un métabolisme fermentaire leur permettant

de produire de l’acide lactique en utilisant des sucres fermentescibles : elles utilisent

principalement l’une des deux voies majeures du métabolisme des sucres. Il s’agit des voies

homofermentaire (voie EMP) et hétérofermentaire (voie des pentoses-phosphate)

Page 14: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  5

Ainsi, les bactéries lactiques sont divisées en deux principaux groupes d’espèces

homo- ou hétérofermentaires selon la nature et la concentration des produits terminaux issus

de la fermentation du glucose.

Le principal atout de ces bactéries réside donc dans leur capacité à acidifier les

produits alimentaires. L’acide lactique mais aussi d’autres acides organiques (acide acétique,

acide formique) sont les produits du métabolisme fermentaire et jouent un rôle majeur dans la

conservation des aliments puisqu’ils inhibent fortement la croissance des bactéries pathogènes

à bas pH (Stiles, 1996). L’acide lactique a également un rôle direct dans l’industrie laitière

puisqu’il permet la formation du caillé.

Les bactéries lactiques participent également à la texture (production

d’exopolysaccharides) et à la saveur des produits laitiers. Les arômes sont multiples, parfois

indésirables (amines biogènes) et peuvent provenir d’origines diverses, soit du catabolisme

des hydrates de carbone présents dans le lait (lactose, citrate, ...), soit du métabolisme des

acides aminés ou encore des matières grasses.

Les bactéries lactiques sont dépourvues de catalase, enzyme catalysant la

décomposition du peroxyde d’hydrogène (H2O2) en eau et en oxygène. En conséquence,

l’H2O2 produit s’accumule dans l’environnement et peut inhiber certains microorganismes

présents (Condon, 1987, Caplice et Fitzgerald, 1999). Quelques souches possèdent une

pseudocatalase.

Les bactéries lactiques hétérofermentaires synthétisent du dioxyde de carbone (CO2)

comme métabolite secondaire. Son accumulation dans le milieu extérieur crée une

anaérobiose qui peut être toxique pour les microorganismes aérobies présents dans l’aliment.

Toutefois, le dioxyde de carbone peut aussi, à faible concentration, stimuler la croissance de

certaines bactéries (Lindgren et Dobrogosz, 1998).

Le diacétyle est un produit du métabolisme du citrate qui est responsable de l’arôme

«beurre» des produits laitiers. Les bactéries à Gram négatif, les levures et les moisissures sont

plus sensibles au diacétyle que les bactéries à Gram positif. Le diacétyle inhibe la croissance

bactérienne en interférant probablement avec les mécanismes gouvernant l’utilisation de

l’arginine (Motlagh et al., 1991). Toutefois, le diacétyle est rarement présent dans l’aliment

en quantité suffisante pour y exercer une activité antimicrobienne importante (Caplice et

Fitzgerald, 1999).

Page 15: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  6

L’utilisation des ferments lactiques capables de produire des substances à activité

antimicrobienne tel que les bactériocines pourraient aider a améliorer la qualité et la sécurité

des aliments fermentés. La seule bactériocine dont l’utilisation est autorisée en tant qu’additif

alimentaire est la Nisine (E234).

Certaines bactéries lactiques appartenant aux genres Lactobacillus et Pediococcus sont

capables de créer des molécules à activité antifongique : des acides organiques (acide

propionique, acide phényl-lactique, acide 4-hydroxyphényl-lactique, en plus de l’acide

lactique (Lavermicocca et al., 2000 ; Magnusson et al., 2003).

Les bactéries lactiques sont également impliquées dans de nouveaux types de produits

dits «probiotiques». Il s’agit de micro-organismes vivants qui, une fois ingérés, vont conférer

un effet physiologique bénéfique à leur hôte animal grâce à leurs propriétés microbiennes

(Fuller, 1992). Les genres Lactobacillus, Bifidobacterium et Enterococcus abritent des

espèces considérées comme probiotiques (Fuller, 1992; Gordin et Gorbach, 1992). D’autres

bactéries, qui ne colonisent pas naturellement le tractus digestif des mammifères, mais sont

utilisées comme starters dans l’industrie laitière, Lactobacillus bulgaricus et Streptococus

thermophilus, sont également considérées comme des probiotiques.

Leur classification dans les probiotiques ainsi que parmi les microorganismes GRAS,

fait de ces bactéries des acteurs potentiellement importants dans les domaines de la médecine

et de la santé: amélioration de la digestion du lactose, stimulation du système immunitaire,

vecteurs de molécules à effets thérapeutiques.

Les bactéries lactiques impliquées dans l’industrie alimentaire appartiennent à

différents genres: Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc,

Oenococcus, Pediococcus, Tetragenococcus, Vagococcus et Weissella (Vandamme et al.,

1996).

1.1.2 Lactococcus lactis

Lactococcus lactis est l’une des bactéries lactiques les plus étudiées. Son importance

cruciale dans les procédés de fermentations alimentaires, ainsi que la disponibilité de ses

séquences d’ADN génomique et plasmidiques font de ce micro-organisme un modèle pour

l’étude du métabolisme des bactéries lactiques ainsi que de leur comportement face à

différents stress. Il est parmi les micro-organismes les plus importants pour l’industrie laitière,

faisant partie des levains utilisés dans la plupart des fabrications fromagères.

Lactococcus lactis est une bactérie hétérotrophe à Gram positif, anaérobie facultative,

catalase négative, non sporulante, non mobile, formant des cellules sphériques ou ovoïdes,

isolées ou en courtes chaînettes de longueur variable mesurant 0,5 par 1,5 µ, mésophile

Page 16: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  7

possédant une température optimale de croissance d’environ 30°C, et neutrophile puisque sa

gamme de pH optimale varie de 6,3 à 6,9.Cette espèce est homofermentaire.

Les différentes sous-espèces de Lactococcus lactis peuvent être différenciées, entre

autres, par leur résistance aux stress. Ainsi, la sous-espèce lactis est plus robuste que la sous-

espèce cremoris puisqu’elle est capable de croître à 40°C, ou en présence de 4 % de NaCl. De

plus, la sous-espèce lactis est capable de produire de l’ammoniac à partir d’arginine grâce à la

voie de l’arginine déiminase (ADI) qui est très rare chez cremoris.

Les habitats les plus importants des lactocoques demeurent le lait, les laits fermentés

ainsi que les fromages où ils constituent la flore dominante. Cependant, on peut également les

isoler des plantes (Sandine et al., 1972) ainsi que de la peau de certains animaux, et il semble

que la contamination qui a lieu au cours de la traite a pour origine principale le fourrage. Le

milieu d’isolement de Lc. cremoris semble être limité aux produits laitiers (Mofredj et al.,

2007).

Cependant, Lc. lactis est un micro-organisme régulièrement soumis à des conditions

de croissance non favorables, tant dans son environnement naturel que lors des procédés

industriels.

Lactococcus lactis est soumise, dans son environnement naturel (sols, plantes) et lors des

procédés industriels laitiers dans lesquels elle est largement utilisée, à de nombreuses

contraintes environnementales. Le stress acide est le plus fréquemment rencontré du fait du

métabolisme fermentaire homolactique de ce micro-organisme. Néanmoins, dans les procédés

fromagers, des stress thermique, osmotique ou oxydatif viennent se superposer lors des étapes

de fermentation, de pressage, d’affinage ou de stockage par exemple. De plus, des carences

nutritionnelles (carbone, azote, phosphate) peuvent être fréquemment rencontrées, en

particulier dans les habitats naturels où la disponibilité des nutriments est très aléatoire. La

diversité et l’intensité des stress rencontrés par Lc. lactis en ont fait un microorganisme de

choix pour l’étude des réponses au stress tant d’un point de vue fondamental que dans un

souci d’optimisation des performances de ce micro-organisme ou d’amélioration des qualités

organoleptiques ou sanitaires des produits laitiers (Redon, 2005).

1.1.3 Utilisation de NaCl dans l’industrie agro-alimentaire

Le sel destiné à la consommation humaine a un double rôle de nutrition et de

conservation des aliments. La teneur en NaCl des aliments est très variable, allant de quelques

pour cent pour les plats préparés, le pain, les fromages, à plus de 40% dans le cas de

préparations très concentrées comme les bouillons en sachets. Par ailleurs, NaCl agit comme

Page 17: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  8

un agent dépresseur de l’activité de l’eau dans les aliments, assurant ainsi leur stabilité

microbiologique. En effet, la disponibilité de l'eau présente dans l'atmosphère ou dans une

substance favorise la croissance bactérienne. Or l'activité de l'eau (Aw) est inversement

proportionnelle à la pression osmotique d'un composé. Ainsi, elle est affectée par la présence

plus ou moins importante de sels ou de sucres dissous dans l'eau.

Enfin, selon sa concentration en NaCl, l’eau salée autorise le développement de

certains micro-organismes au détriment d’autres qui sont soit détruits soit inactivés.

Ainsi, le sel agit comme antimicrobien sélectif ou agent bactériostatique. Le rôle d’inhibiteur-

retardateur du sel est mis à profit en conserverie, notamment des viandes et du poisson

(salaisons), tandis que son rôle de régulateur-orientateur sur le développement des micro-

organismes sert, par exemple, au processus de fabrication puis d’affinage des fromages

(Martinez et al., 1995). C’est ainsi que de nombreux secteurs agro-alimentaires sont

concernés par l’utilisation de NaCl.

1.1.3.1 NaCl et conserves de viandes

On distingue généralement les «salaisons vraies» dans lesquelles le sel est réparti

uniformément dans la viande à un taux supérieur à 5%, assurant ainsi une conservation de

plusieurs mois, des «produits salés» dans lesquels le sel est réparti parfois de façon hétérogène

et à des taux de 1 à 2% au maximum, servant alors davantage à accroître la qualité

organoleptique du produit qu’à en assurer sa conservation.

Le sel est aussi largement utilisé dans les produits marinés très populaires en Europe

du Nord. Les marinades sont typiquement des émulsions d’eau et d’huile contenant du sel, du

sucre et des acides. Le double effet du sel et du pH acide agit alors comme un exhausteur de

goût en même temps qu’un agent antimicrobien.

1.1.3.2 Confiserie ou conserverie de légumes saumurés

Dans l’industrie de la conserve, le sel agit par osmose, c’est à dire qu’il pénètre dans

les aliments au fur et à mesure que ceux-ci se vident de leur eau de constitution. Par ailleurs,

alors qu’il pénètre peu à peu à l’intérieur des aliments, le sel inhibe la croissance des micro-

organismes qu’ils contiennent, retardant leur décomposition. Le sel se retrouve généralement

à un taux de 2% dans les conserves de légumes .

1.1.3.3 Industrie laitière : fabrication de beurre et de fromages

La concentration moyenne en sel dans le fromage est de l’ordre de 1 à 2%. Dans les

fromages bleus et dans certains fromages de chèvre, elle peut toutefois atteindre 3 à 4%. Dans

le cycle de fabrication des fromages, le salage s’effectue après l’égouttage et avant l’affinage.

Il sert à protéger les fromages contre les micro-organismes indésirables (protection d’autant

Page 18: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  9

plus nécessaire que le fromage est humide), mais aussi à sélectionner des micro-organismes

spécifiques nécessaires à la maturation du produit (développement du goût et de la fleur du

fromage).

Ainsi le sel permet la sélection de souches microbiennes productrices d’enzymes utiles

à la protéolyse et à la lipolyse du fromage et conditionne son affinage. En effet, la

transformation du lait en fromage se fait sous l’influence de différents micro-organismes.

Jusqu’à l’affinage et la maturation, le sel sélectionne certains micro-organismes producteurs

d’enzymes spécifiques indispensables à la protéolyse du caillé et autorise le développement

d’espèces utiles telles que celles responsables de la pousse du bleu dans la masse de certains

fromages ou celles formant la croûte fleurie en blanc des camemberts, ou encore la flore du

rouge des munsters et des pont-l’évêque. En ce qui concerne le beurre, le taux de sel n’excède

pas 5% du poids total du beurre demi-sel et 10% du beurre salé, en respect des normes

françaises. Le salage permet d’inhiber partiellement le développement microbien, notamment

celui des ferments lactiques (Lozach, 2001).

1.2 Origine des souches utilisées dans cette étude

Le dromadaire joue un rôle social et économique primordial car il a toujours été associé aux

formes de vie dans les zones pastorales arides et semi-arides. Il répond en effet aux multiples

besoins de ces populations en leur fournissant du lait et de la viande et en leur servant comme

moyen utilisé dans le transport et pour les travaux agricoles.

Les études sur les capacités de production du lait par la chamelle datent de la fin des années

cinquante avec les travaux de Rosetti et al. (1955), cités par Yagil (1982) qui marquent

véritablement le point de départ du mouvement d’exploration de ce produit dont la visée

première était sa valorisation.

La variabilité des rendements laitiers observés est liée à celle de divers facteurs: rang et stade

de lactation, race, type d’élevage, saison, etc... Toutefois, et comme pour le bovin,

l’alimentation du dromadaire reste le facteur le plus déterminant (Ramet, 1993; Mehaia et al,

1995). En effet, selon plusieurs auteurs (Knoess et al, 1986; Richard et Gerald, 1989;

Moslah, 1994) l’amélioration des conditions alimentaires (régimes riches en fourrages verts

renfermant de la luzerne, du mélilot ou du chou) prolonge la période de lactation et augmente

la quantité de lait produite jusqu’à atteindre parfois le double.

Page 19: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  10

Le lait de chamelle est de couleur blanche, en raison notamment de la structure et de la

composition de sa matière grasse, relativement pauvre en β-carotène (Sawaya et al, 1984). Il

est légèrement sucré, avec un goût acide, parfois même salé (Abdel-Rahim, 1987) et/ou

amère (Ramet, 2003). Cette variabilité dans le goût est liée au type de fourrage ingéré ainsi

qu’à la disponibilité en eau (Yagil et Etzion, 1980; Wangoh et al, 1998).

Dans cette étude nous avons utilisé des bactéries lactiques isolées du lait de chamelle de la

région de Timimoun, ce lait a la caractéristique d’être un peu salé par rapport au lait de vache,

cette caractéristique est due à l’alimentation de l’animal qui est friand d’une plante désertique

abondante dans la région de Timimoun, communément appelée « zita ».(Limoniastrum

guyoniamum ) bonne fixatrice de NaCl.

1.3 Stress osmotique

Outre les stress acide et hypothermique, les lactocoques sont soumis à d’autres stress

physico-chimiques au cours des procédés fromagers. Ils sont soumis à de brusques variations

de l’osmolarité environnante lors par exemple de l’égouttage/pressage ou du salage des

produits. Le stress osmotique correspond à une diminution ou une augmentation de

l’osmolarité de l’environnement de la bactérie (Csonka, 1989) qui, en modifiant la

disponibilité de l’eau de la cellule, affecte sa survie et/ou sa croissance (Potts, 1994).

Donc l’abaissement de l’activité de l’eau extérieure provoque un stress osmotique chez

la flore microbienne des aliments, qui se matérialise par une diminution de la pression de

turgescence pouvant conduire à la plasmolyse cellulaire et une dénaturation des

macromolécules causée par l’augmentation de la force ionique.

1.3.1 Définition de l’osmose

Le phénomène d’osmose correspond à la diffusion spontanée, sous la seule influence

de l’agitation moléculaire, d’un composé chimique à travers une membrane semi-perméable.

Il se produit lorsqu’une substance est présente à des concentrations différentes de part et

d’autre de la membrane. Cette différence engendre un excès de pression, appelé pression

osmotique. La diffusion se fait alors de manière à ce que les deux concentrations tendent à

s’égaliser. Le corps dissous dans l’eau franchit la membrane vers la solution la moins

concentrée sous l’effet de la pression osmotique.

Ce transfert spontané ne nécessite aucune dépense d’énergie et joue un rôle essentiel dans

l’activité des cellules. Par osmose, les cellules vivantes peuvent, par exemple, capter des

nutriments dont elles ont besoin et rejeter leurs déchets.

Page 20: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  11

1.3.2 Les bactéries face au stress

Les cellules bactériennes sont entourées d’une paroi rigide, composée d’une (bactérie à Gram

négatif) ou plusieurs (bactéries à Gram positif, dont font partie les bactéries lactiques)

couches de peptidoglycane qui assure leur résistance mécanique. Dans les conditions

standards de croissance, ces cellules maintiennent dans leur cytoplasme une osmolarité

supérieure à celle du milieu environnant. Il en résulte une force, la pression de turgescence,

qui s’exerce sur la paroi, de l’intérieur vers l’extérieur, et qui est le moteur de l’élongation des

cellules (Csonka et Hanson, 1991; Kempf et Bremer, 1998). La membrane cytoplasmique

des bactéries est perméable à l’eau mais constitue une barrière efficace contre le passage de la

plupart des solutés du milieu et des métabolites présents dans le cytoplasme. Une

augmentation brusque de l’osmolarité du milieu externe entraine un rapide flux d’eau vers

l’extérieur de la cellule, qui a pour conséquence une diminution de la pression de turgescence,

une variation de la concentration cytoplasmique en solutés et un changement du volume

cellulaire (plasmolyse, dans les cas extrêmes). Afin de maintenir une pression de turgescence

positive, les bactéries possèdent des systèmes de transport et/ou de synthèse des solutés

particuliers, appelés osmoprotecteurs ou solutés compatibles (Csonka, 1989;Csonka et

Hanson , 1991; Kempf et Bremer, 1998).

1.3.3 Effet du stress osmotique sur la cellule bactérienne

1.3.3.1 Environnement hypo-osmotique :

Une diminution rapide de l’osmolarité du milieu extérieur (choc hypo-osmotique)

provoque un afflux d’eau dans la cellule et par conséquent une augmentation du volume

cellulaire et de la pression de turgescence. Etant donné que la rigidité de la paroi bactérienne

permet à la cellule de supporter des pressions élevées [jusqu’à 100 atm chez les bactéries à

Gram négatif (Carpita, 1985)], un choc hypo-osmotique ne provoque, en général, qu’une

faible augmentation du volume cellulaire.

1.3.3.2 Environnement hyper-osmotique :

Une augmentation brusque de l’osmolarité du milieu extérieur (choc hyper-osmotique)

entraîne un rapide flux d’eau vers l’extérieur de la cellule; le volume du cytoplasme diminue.

Ce phénomène de plasmolyse peut être détecté instantanément par une augmentation de la

turbidité du milieu (Koch, 1984).

La cinétique de plasmolyse dépend de l’importance de la variation de l’osmolarité du

milieu et de la nature des solutés employés (sels, sucres…).

Page 21: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  12

Dans le cas d’un choc hyper-osmotique sévère, la brusque diminution de l’activité de l'eau du

cytoplasme inhibe certaines fonctions cellulaires comme l’adsorption de nutriments, la

réplication de l’ADN ou la biosynthèse de macromolécules (Csonka, 1989).

En cas de choc hyper-osmotique modéré, la plasmolyse n’est qu’une étape transitoire.

En effet, la cellule est capable de s’adapter à ces faibles variations de l’osmolarité du milieu.

Ce phénomène n’est, bien sûr, pas observé lorsque la solution hyper-osmotique

contient des molécules diffusibles comme le glycérol ou l’éthanol. Il n’y a pas de plasmolyse

chez les bactéries à Gram positif car elles ont une pression de turgescence supérieure à celle

des Gram négatif parce que leur membrane est collée au peptidoglycane.

Cependant un stress osmotique entraînera quand même un arrêt de la croissance ainsi

que l’inhibition d’autres fonctions biologiques. De la même façon, lors d’un choc hypo-

osmotique, il va y avoir un afflux d’eau vers l’intérieur de la bactérie provoquant un

gonflement, une augmentation de la pression de turgescence s’exerçant sur la membrane

allant parfois jusqu’à l’éclatement cellulaire (Glaasker et al., 1998; Poolman et Glaasker,

1998).

Les canaux mécano-sensibles ont été étudiés chez E. coli (Blount et Moe, 1999;

Sukharev, 1999), trois canaux ont été mis en évidence en fonction de leur conductance :

MscL (large conductance), MscS (small) et MscM (mini), il semble que MscL et S jouent un

rôle important et redondant dans l’osmorégulation.

Il semble que ces canaux soient activés soit par la tension exercée au niveau de la membrane

soit par un état d’hydratation des protéines tel que la conformation ouverte du canal est

favorisée (Poolman et al., 2002). Chez Lactococcus lactis les gènes yncB et mscL codent pour

des protéines homologues à MscS et MscL. Seule l’activité de MscL est identifiée chez Lc.

lactis qui utilise ce type de canal pour l’efflux de solutés compatibles et la protection

cellulaire dans des conditions d’hypo-osmolarité (Folgering et al., 2005).

Les porines n’existent que chez les bactéries à Gram négatif car elles sont enchâssées

dans la membrane externe. L’expression des porines OmpF et C en réponse à l’osmolarité

extracellulaire est régulée par un système à deux composants dont la protéine membranaire

EnvZ est le senseur et OmpR l’activateur transcriptionnel (Csonka, 1989).

Page 22: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  13

1.4 Réponses des bactéries lactiques au stress osmotique Toute modification des conditions environnementales, nutritionnelles ou physico-chimiques,

causant une perturbation notable de la physiologie cellulaire est considérée comme un stress,

qu’elle s’accompagne ou non d’une létalité.

La croissance des bactéries en général, et de Lactococcus lactis en particulier, dépend des

conditions nutritionnelles (sources de carbone et d’azote) et physico-chimiques (pH,

température, salinité.). Les conditions de culture en laboratoire sont souvent optimisées et

contrôlées pour assurer une croissance rapide. A l’inverse, Lactococcus lactis, que ce soit

dans son habitat naturel (plantes, sol) ou lors de sa mise en œuvre dans les processus

industriels, doit faire face à de multiples stress nutritionnels ou physico-chimiques (thermique,

oxydatif, acide, osmotique) parfois concomitants (Bunthof et al., 1999; Sanders et al., 1998;

Stuart et al., 1999). En effet, Lc. lactis est soumis à de fortes variations de températures dans

le sol ou lors de la fabrication de fromages tels que le cheddar, pour lequel la température

monte jusqu’à 40°C. A l’inverse, la température est beaucoup plus faible pendant l’affinage

(8-16°C) ou le stockage du fromage. De même, la production de lactate dans les levains

provoque, quant à elle, une acidification croissante du milieu (lait). Dans ce cas, les bactéries

sont elles-mêmes à l’origine du stress acide. La pression osmotique est également susceptible

de varier significativement, notamment lors du pressage. Cette étape peut également conduire

à une limitation carbonée par l’élimination du lactose dans le lactosérum (Stuart et al., 1999).

1.4.1 Altération de la physiologie cellulaire

La croissance des bactéries dépend des conditions nutritionnelles et environnementales

qu’elles rencontrent. En effet, les micro-organismes ne peuvent se développer de façon

optimale que dans une gamme limitée de facteurs physico-chimiques (tels que la température,

le pH, la salinité, etc.) et nécessitent un apport en carbone, azote et phosphate, requis pour la

synthèse des constituants cellulaires (protéines, acides nucléiques, etc.).

Pendant la production des ferments lactiques, les bactéries sont soumises à différents

stress et leur résistance à ces stress varie selon plusieurs facteurs. Deux concepts sont

importants pour l’analyse et la compréhension d’un stress: le concept d’intensité et le concept

de cinétique.

Les cellules peuvent être soumises à des stress dits mineurs, modérés ou létaux et elles

réagissent différemment à ces conditions. Par exemple, les cellules exposées à un stress

mineur, vont réduire leur taux de croissance mais vont être capables de s’adapter au nouvel

environnement. Quand le stress devient un peu plus intense (stress modéré), la croissance peut

être drastiquement réduite et les cellules adaptent leur métabolisme énergétique avec l’objectif

Page 23: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  14

de survivre. Enfin, dans une situation de stress létal, une grande mortalité cellulaire est

observée. Dans ce cas, les bactéries survivantes développent des mécanismes leur permettant

de retrouver un état cellulaire actif, lorsqu’elles sont, par la suite, exposées à des conditions

environnementales plus favorables (Nikolaev et al., 2006).

L’intensité du stress perçu par les cellules comprend aussi la notion de cinétique

d’application du stress. Par exemple, un changement brusque dans l’environnement, même si

l’intensité de ce changement est faible, peut être ressenti par les cellules comme un stress fort,

car elles n’ont pas eu le temps de s’adapter. Par contre, un changement lent et progressif avec

une intensité forte, peut donner aux cellules l’opportunité de développer des mécanismes

d’adaptation et, donc, de mieux résister (Avinash et al., 2008).

1.4.1.1 Croissance et viabilité

L’étude des réponses au stress est souvent abordée via des études de viabilité, qui reflètent

différent états physiologiques tels que la capacité de se multiplier, la capacité métabolique ou

l’intégrité membranaire.

Les effets du stress sur la croissance sont essentiellement dépendants de la nature et de

l’intensité du stress (Kim et al., 1993). Les stress physico-chimiques semblent permettre la

croissance tant que les niveaux létaux de stress ne sont pas atteints, à l’inverse la viabilité

semble profondément affectée lors de stress physico-chimiques alors qu’elle est altérée dans

une proportion moindre lors des carences nutritionnelles.

• Croissance en fermenteur

Lors des cultures discontinues, le milieu de culture et le microorganisme à cultiver sont

initialement introduits dans le réacteur mais aucun élément supplémentaire n’est rajouté en

cours de fermentation. Ainsi, l’évolution de la croissance en fonction de la composition du

milieu va conduire à la division de la fermentation en différentes phases: selon ses conditions

de développement avant son inoculation dans le fermenteur, le microorganisme peut présenter

une phase de latence caractérisée par une croissance très lente et durant laquelle il s’adapte à

son nouvel environnement; lors de la phase exponentielle de croissance tous les nutriments

sont en excès et la croissance est alors optimale; vient ensuite une phase de ralentissement de

croissance liée à l’épuisement de l’un des nutriments ou à l’inhibition par l’un des produits de

fermentation; le microorganisme entre ensuite en phase stationnaire: la biomasse est

maintenue mais il n’y a plus de croissance; enfin peut apparaître une phase de lyse au cours de

laquelle la concentration en biomasse décroît (Enfors, 1991).

Page 24: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  15

La spécificité de ce type de fermentation réside dans l’état d’adaptation dynamique dans

lequel se trouve le microorganisme. Il doit en effet constamment réajuster ses processus

cellulaires afin de s’adapter à la perpétuelle évolution de l’environnement de culture.

• Etude de la viabilité par cytométrie en flux :

La concentration des cellules viables en culture ainsi que leur état physiologique est une

évaluation importante pour les bioprocédés comme la croissance microbienne en fermenteur.

Suite à un changement de ses conditions de vie, un microorganisme se défend. Bien qu’un

stress trop important entraîne la mort de la cellule, entre l’état non stressé et la mort, un

certain nombre d’états physiologiques différents peuvent naître. Le passage d’un état

physiologique à un autre est conditionné par le degré de stress imposé par les conditions

environnementales. Pendant longtemps, la définition de la viabilité s’est limitée à l’aptitude

des bactéries à se multiplier jusqu’à ce que l’état Viable Non Cultivable (VNC) soit

clairement établi (Xu et al., 1982).

Depuis, le débat sur la viabilité cellulaire perdure. En 1998, Kell et al. résument les différents

états de vie d’une cellule bactérienne. Selon eux, il est possible de distinguer les états

physiologiques suivants : viable cultivable, en dormance, Actif mais Non Cultivable (ANC) et

mort. Ainsi, une cellule VNC n’est pas une cellule en dormance. Une cellule en état VNC est

métaboliquement active, mais non cultivable. Au contraire, une cellule dormante donne une

réponse négative aux essais vitaux mais est pourtant capable d’être « potentiellement »

cultivée. Le cœur du problème est essentiellement méthodologique, dans le sens où le « retour

à la vie » des bactéries, c’est à dire le recouvrement de la division cellulaire, reste

hypothétique et ne peut, pour l’instant, être mis en évidence. En l’absence d’outils

méthodologiques, le débat scientifique devient alors philosophique… En 2000, Nebe von

Caron et al. apportent des précisions supplémentaires et s’appuient sur l’intégrité

membranaire en tant que critère de viabilité. En effet, dans la mesure où la perte de l’intégrité

des membranes aboutit à l’effondrement des mécanismes énergétiques et des transports actifs,

cette perte d’intégrité signifie la mort de la cellule. Au contraire, une cellule dont l’intégrité

membranaire est intacte peut être considérée comme une cellule viable, ce qui englobe les

états actifs (présence d’activités métaboliques) et inactifs (absence d’activités enzymatiques

ou métaboliques décelables) (Prorot et al., 2008).

Page 25: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  16

1.4.1.2 Constituants macromoléculaires

Les différents stress que peut rencontrer un microorganisme peuvent altérer sa

composition en macromolécules. Plusieurs techniques sont à disposition pour mesurer les

différents constituants cellulaires. Après extraction appropriée, les ADN et ARN totaux sont

quantifiés par mesure de l’absorbance à 260 nm tandis que leur contamination protéique peut

être évaluée par le rapport entre l’absorbance à 260 nm et celle à 280 nm. Les stress peuvent

modifier la topologie de l’ADN. L’état de sur-enroulement connu pour être sensible aux stress

thermiques (Lopez-Garcia et Forterre, 2000), pourra par exemple être déterminé par des

techniques faisant appel à l’électrophorèse.

Les stress n’épargnent pas non plus l’enveloppe cellulaire, entraînant des modifications de la

membrane cellulaire (Mykytczuk et al., 2007). Ces variations de la composition lipidique

(lipides, acides gras, taux d’insaturation) vont affecter la fluidité membranaire. Plusieurs

méthodes sont disponibles pour mesurer cette fluidité mais depuis de nombreuses années

maintenant, c’est la polarisation de fluorescence qui prévaut. Cette technique repose sur

l’utilisation de lipides fluorescents comme sonde (Denich et al., 2003). L’analyse de la

perméabilité membranaire à différentes sondes fluorescentes a par exemple permis de mettre

en évidence chez Geobacter sulfurreducens à la fois une modification de la structure de la

membrane et une perte de viabilité en réponse au stress hyper-osmotique (Ragoonanan et al.,

2008).

1.5 Réponse des bactéries lactiques au stress hyperosmotique

Chez les bactéries lactiques la réponse à un choc hyperosmotique diffère légèrement de

celle des bactéries à Gram négatif. En effet, le cytoplasme des bactéries lactiques présente en

conditions normales de culture une concentration en potassium très élevée (environ 1 mol.L–

1), ainsi qu’un important pool d’acides aminés, le plus abondant étant le glutamate (Glaasker

et al., 1996 a , 1998 ; Measures et al., 1975 ; Poolman et al., 1987).

Des études récentes chez Lb. plantarum ont montré que, contrairement aux

Entérobactéries, la majeure partie du potassium se trouve à l’état lié dans la cellule et qu’il

n’aurait donc peut-être pas de rôle majeur dans le maintien de l’équilibre osmotique de ces

cellules (Glaasker et al., 1996a, 1998).

Cette hypothèse est renforcée par le fait que l’augmentation de la concentration

cytoplasmique en potassium en réponse à un choc hypertonique n’est observée que lorsque

l’augmentation de la salinité du milieu environnant est provoquée par du KCl et non du NaCl,

suggérant que le transport des ions K+ n’intervient pas en réponse à l’augmentation de la

pression osmotique (Romeo et al., 2001). La réponse initiale des bactéries lactiques à une

Page 26: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  17

augmentation de pression osmotique dans le milieu environnant correspond à une

accumulation immédiate de solutés compatibles tels que la proline et essentiellement la

glycine bétaïne dans leur cytoplasme (Glaasker et al., 1996b ; Molenaar et al., 1993).

La Figure 1 illustre la réponse au stress hyperosmotique des bactéries à Gram négatif et des

bactéries lactiques.

Figure 1 : Réponse au stress hyperosmotique des bactéries à Gram négatif et des bactéries lactiques (Romeo et al ., 2003).

1.5.1 Osmoprotection chez les bactéries lactiques

L’osmoprotection est une réponse cellulaire commune à l’ensemble des organismes

vivants. Elle repose essentiellement sur l’accumulation intracellulaire des petites molécules

appelées osmoprotecteurs qui ont comme rôle de rétablir la pression de turgescence cellulaire

des cellules osmostressées (Gouffi Belhabich, 1998 ; Touze, 2000).

Ces molécules sont des composés organiques de faibles poids moléculaires, fortement

hydrosolubles, non chargés ou de charge nulle au pH physiologique, elles sont accumulées à

des concentrations élevées lorsque les cellules sont soumises à un stress hyperosmotique, en

fonction des besoins de la cellule et non de leur concentration dans le milieu extérieur

(Meury, 1988). Elles sont incapables de traverser rapidement la paroi cellulaire sans l’aide

Page 27: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  18

d’un système de transport actif, la plupart d’entre elles ne font pas varier la charge électrique

cellulaire pour un pH voisin de 7. Elles ont un effet stabilisateur sur les conformations des

protéines et permettent de maintenir ou de rétablir leur activité (Csonka, 1989).

Il est à présent reconnu que ces solutés organiques non seulement assurent le rôle d’effecteurs

osmotiques mais aussi stabilisent la structure et les fonctions des macromolécules et des

organites. Ces solutés ont également une action protectrice vis à vis des activités

enzymatiques et des membranes en milieux de forte osmolarité .

Les molécules osmoprotectrices majeures se repartissent en trois familles :

• Les sucres dont le plus représenté est le tréhalose.

• Les polyols.

• Les acides aminés, dont la proline et surtout les dérivés N-triméthylés.

• Les bétaïnes : la glycine bétaïne en est le représentant majeur. Le mot bétaïne est utilisé

pour désigner la glycine bétaïne, mais également ses dérivés et un composé organique

portant un azote quaternaire. La glycine bétaïne est un petit composé amphotérique, très

polaire qui agit comme osmoprotecteur chez les végétaux et agent protecteur du foie, du

cœur et des vaisseaux chez l'homme.

1.5.2 Solutés compatibles : un moyen de réponse à un stress hyper-osmotique

En réponse à ces phénomènes physiques, la cellule ne se contente pas de voir son

volume varier, elle va mettre en place un système actif permettant d’équilibrer les pressions

osmotiques sans mouvements d’eau. Ce système est basé sur l’entrée ou la sortie de solutés

qui peuvent être récupérés dans le milieu ou néo-synthétisés, appelés solutés compatibles. Les

solutés impliqués dans ces phénomènes sont dits compatibles car leur accumulation dans le

cytoplasme bactérien n’a aucun effet sur les processus cellulaires vitaux. Parmi eux, on trouve

des ions K+, des acides aminés (proline, glutamate, glutamine), des polyols, des sucres

(sucrose, tréhalose) ainsi que des composés ammoniums quaternaires (glycine bétaïne et

carnitine).

Certains de ces composés sont dits osmoprotectants car en plus d’être compatibles avec la

physiologie cellulaire, ils sont capables de lever les différentes inhibitions de croissance

imposées par le stress osmotique.

Les osmoprotectants les plus importants sont la proline et surtout la glycine bétaïne qui en

plus de modifier l’osmolarité cellulaire est capable de se lier aux protéines et de les stabiliser.

Ces solutés peuvent être accumulés dans la cellule grâce à un transport actif ou dans certains

cas grâce à une synthèse de novo induite par le stress (Glaasker et al., 1998; Poolman et

Glaasker, 1998).

Page 28: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  19

Chez les bactéries à Gram négatif, un stress hyper-osmotique va entraîner des mouvements de

solutés compatibles. Les premiers transporteurs activés suite à un tel stress chez E. coli sont

ceux responsables de l’entrée d’ions K+. Deux types de systèmes sont impliqués, un système

Kdp à deux composants, dont KdpD qui est la protéine kinase-senseur membranaire

probablement activée par une altération des interactions protéines-lipides (Poolman et al.,

2002), et KdpE qui est la protéine régulatrice associée qui une fois phosphorylée va activer les

gènes kdpABC du transporteur. Le second système, Trk, est également régulé au niveau

transcriptionnel et son activité dépend de la pression de turgescence, de l’osmolarité interne

et/ou de la concentration intracellulaire en K+.

Chez Bacillus subtilis, un tel choc induit également l’accumulation d’ions K+ dans le

cytoplasme puis une augmentation soit de la bétaïne soit de la proline intracellulaire par

transport ou synthèse de novo. Il existe trois systèmes de transport osmorégulés chez B.

subtilis, OpuA qui est de la famille des transporteurs ABC (homologue à ProU d’E. coli),

OpuC (ProP), et OpuD qui est un homologue de BetT, transporteur de haute affinité pour la

choline indispensable à la néo-synthèse de glycine-bétaïne chez E. coli (Kappes et al., 1996).

Contrairement aux lactocoques, B. subtilis est capable comme E. coli de synthétiser de la

glycine-bétaïne (Boch et al., 1996) lorsque la choline (précurseur) se trouve dans le milieu,

par le biais d’enzymes analogues à celles trouvées chez E. coli qui sont ici codées par

l’opéron plasmidique gbsAB.

Chez les bactéries lactiques un choc hyper-osmotique entraîne également l’accumulation

cytoplasmique de glycine bétaïne qui paraît être le soluté le plus efficace pour ces bactéries.

Ici, l’accumulation s’effectue grâce à un transport de glycine-bétaïne exogène car les

lactocoques, comme les lactobacilles (Glaasker et al., 1996a; Glaasker et al., 1998), sont

incapables de synthétiser ce composé. Obis et al. (1999) ont caractérisé à l’aide de mutants

les gènes impliqués dans ce transport. L’opéron busA comprend le gène busAA qui code pour

la protéine BusAA (407 acides aminés) homologue à OpuAA de B. subtilis et ProV d’E. coli

qui sont des protéines de liaison à l’ATP. Le gène busAB code pour une protéine de 573

acides aminés qui comporte un domaine hydrophobe transmembranaire (N-terminal) et un

domaine hydrophile C-terminal de liaison à la bétaïne.

BusAB présente des homologies avec OpuAC et ProV bien que les sous-domaines se trouvent

inversés. L’opéron busAB semble sous contrôle osmotique, et outre la glycine-bétaïne, ce

transporteur peut également utiliser la proline mais avec une affinité moindre.

Van der Heide et Poolman (2000) nomment ce système de transport OpuABC. Pour eux, la

régulation de l’entrée de la glycine-bétaïne s’effectue au niveau de l’expression et de l’activité

Page 29: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  20

du transporteur chez Lc. lactis, alors que chez Lb. plantarum, seule une régulation de son

activité est impliquée (Figure 2).

Figure 2 : Représentation schématique des systèmes de transport de solutés compatibles chez Lc. lactis et Lb. plantarum (Baliarda, 2003). (Car : carnitine ; GB : glycine bétaïne ; Pro : proline).

En effet, il a été mis en évidence chez Lc. lactis l’existence d’une protéine OpuR impliquée

dans la régulation osmotique du gène opuA (Romeo et al., 2001).

L’opéron opuA ou busA semble être induit par des changements de gradient osmotique

transmembranaire ou de pression de turgescence qui seraient transmis au système via des

distorsions de la bicouche lipidique induisant des modifications physiques du statut lipidique

membranaire (plus d’acides gras insaturés et cycliques) ressenties via des interactions

lipide/protéine (Guillot et al., 2000; van der Heide et Poolman, 2000).

La capacité d’accumulation de la bétaïne va donc déterminer l’osmotolérance des

lactocoques. Ainsi, la différence de tolérance au stress osmotique des bactéries de la sous

espèce lactis par rapport à celles de la sous-espèce cremoris (souches généralement moins

résistantes) a pu être expliquée par une absence ou une faible activité du transporteur (Obis et

al., 2001).

Ces systèmes permettent donc aux bactéries de contrecarrer les effets de l’hyperosmolarité du

milieu. Néanmoins, comme c’est le cas avec le stress acide, une meilleure réponse cellulaire

(croissance, survie) est obtenue lorsque les bactéries ont été pré-adaptées par un stress non

létal. L’analyse de la production de protéines en réponse à un choc hyperosmotique chez Lc.

lactis a montré l’augmentation de la synthèse d’au moins douze protéines, dont celles

impliquées dans le transport de la glycine-bétaïne (OpuAA et OpuABC) ainsi que DnaK,

GroES et GroEL impliquées dans la réponse au choc thermique (Kilstrup et al., 1997).

Page 30: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  21

Comme c’est le cas pour les deux stress physico-chimiques précédents, il semble clairement

que le stress hyper-osmotique induise des réponses croisées avec d’autres stress. La réponse à

l’hypo-osmolarité du milieu passe par l’efflux de solutés compatibles afin d’éviter le

gonflement cellulaire. Cette réponse a essentiellement été étudiée chez les bactéries à Gram

négatif, et deux systèmes d’efflux ont été identifiés à ce jour, les canaux mécano-sensibles et

les porines.

En réponse à un stress osmotique, une perte d’eau est constatée dans la cellule pour maintenir

une pression de turgescence constante. Ceci conduit à une modification du volume cellulaire

et des concentrations des solutés. Pour remédier à ces effets, la cellule accumule des solutés

compatibles, physiologiquement inactifs, qui permettent de rétablir la balance osmotique

(Figure 3).

Figure 3. Effet de l’osmolarité sur la structure d’une protéine d’une halobactérie et sa stabilisation après l’ajout des solutés compatibles (Sleator et Hill, 2002)

 

Page 31: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  22

Les solutés compatibles sont des molécules organiques très hydrosolubles qui possèdent une

charge nette nulle au pH physiologique, n’interagissent pas avec les protéines, n’interfèrent

pas, même à forte concentration (>1 M), avec les fonctions cellulaires vitales (Sleator et Hill,

2002).

Bien que les solutés compatibles ont été décrits comme «inertes» vis-à-vis des

macromolécules biologiques, des études réalisées in vitro montrent qu’ils stabilisent

indirectement les enzymes contre les effets d’agents dénaturants comme le sel, la température

ou la dessiccation (Lipper et Galinski, 1992; Timasheff, 1993). Ces composés agiraient

comme des chaperonnes chimiques en aidant les protéines cytoplasmiques à conserver leur

état de compaction (Tatzelt et al., 1996; Bourot et al., 2000).

1.5.2.1 Glycine bétaïne

Le rôle de cet ammonium quaternaire naturel, le N,N,N-triméthylglycine (Anthoni et al.,

1991) dans l’osmoprotection a été signalé chez Pediococcus soyas dès 1960. Plusieurs

observations suggèrent que la glycine bétaïne est préférable aux autres solutés compatibles

pour plusieurs bactéries en conditions hyper-osmotiques. C’est un osmoprotecteur qui stimule

la croissance des bactéries lactiques à pression osmotique élevée (Csonka, 1989). Chez les

entérobacteriacées et les Rhizobiacées, la glycine bétaïne joue un rôle majeur dans

l’osmorégulation (Perroud et Le Rudulier, 1985) ; la synthèse de la glycine bétaïne dépend

de la présence d’un précurseur immédiat, la choline ou la glycine bétaïne aldéhyde (Smith et

al., 1988).

Le transport de la glycine bétaïne exogène chez les cellules soumises à un stress

osmotique, conduit à l’accumulation massive de cette molécule (Perroud et Le Rudulier,

1985), elle permet l’attraction et la rétention d’eau dans la cellule (Le Rudulier et al., 1984).

Les entérobactéries et Bacillus subtilis ne peuvent pas synthétiser les solutés compatibles.

Elles les accumulent dans le milieu intracellulaire lors d’un choc osmotique grâce aux

mécanismes de transport (Glaasker et al., 1998 ; Romeo et al., 2001). Parfois l’accumulation

intracellulaire de la glycine bétaïne dépend d’un transport stimulé par un stress osmotique (Le

Rudulier, 1993).

Page 32: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  23

1.5.2.2 Proline

La proline est un marqueur de la résistance aux contraintes abiotiques et son accumulation

est l’une des manifestations les plus remarquables du stress salin La synthèse intracellulaire

de la proline n’est pas stimulée par le stress osmotique, son accumulation s’effectue à partir

du milieu extérieur par augmentation de l’activité du transport, elle est proportionnelle à la

force osmotique du milieu et peut atteindre des concentrations intracellulaires importantes

(Larsen et al., 1987 ; Csonka.,1989). Le rôle osmoprotecteur de la proline exogène est connu

chez de nombreuses espèces bactériennes (Csonka et al., 1994). La Figure 4 montre l’effet

stabilisateur de la proline sur la conformation protéique au cours du stress osmotique.

Figure 4 : Effet stabilisateur de la proline sur la conformation protéique au cours du stress osmotique.

La proline est un acide aminé essentiel pour certaines souches de lactocoques. La proline est

également un soluté impliqué dans la résistance contre le stress osmotique et des transporteurs

spécifiques osmorégulés ont été mis en évidence chez Lc. lactis (Molenaar et al., 1993). La

concentration intracellulaire en proline augmente chez plusieurs bactéries Gram – ou + ; cette

accumulation peut être le résultat d’une stimulation de la synthèse et/ou d’activité de transport

(Csonka, 1981 ; Le Rudulier et al., 1984). Divers travaux ont mis en évidence le rôle

Page 33: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  24

osmoprotecteur de la proline exogène chez de nombreuses espèces bactériennes (Csonka et

al., 1991)

Les bactéries Gram – sont entièrement dépendantes de la présence de proline exogène pour

l’accumuler sous stress osmotique (Le Rudulier et Bouillard, 1993 ; Csonka, 1989).

1.5.2.3 Glutamate

Le taux de glutamate dans le cytoplasme augmente chez les procaryotes après exposition à

une forte osmolarité (Fujihama et Yaneyama, 1994) ; l’augmentation relative du glutamate

est moins importante chez les bactéries à Gram positif que chez les bactéries à Gram négatif

(Killham et Firestone, 1984). La teneur intracellulaire en glutamate augmente aussi lors

d’une élévation de l’osmolarité du cytoplasme (Le Rudulier, 1993) afin de maintenir

l’électroneutralité du milieu intracellulaire chez les bactéries à Gram négatif le glutamate est

important dans la maintenance de la pression de turgescence de la cellule (Neidhardt et al .,

1994)

1.5.2.4 Les polyols

Les polyols (glucides et leurs dérivés polyalcools) sont les principaux solutés compatibles,

le glycérol est le prédominant (Brown et Edgley, 1980).

Chez les bactéries, les plantes et les animaux, les acides aminés et leurs dérivés sont

prédominants (Csonka, 1989 ; Kinne, 1993). Chez Pseudomonas neudocina, le glycérol est

important. Chez les algues et les champignons, les polyols sont limités, à l’exception du

sorbitol chez Zymomonas mobilis et du mannitol chez Pseudomonas putida (Kets et al.,

1996).

1.5.2.5 Les sucres

Les sucres sont des solutés moins compatibles, utilisés dans l’adaptation osmotique chez les

organismes halotolérants limités. Dans la croissance normale, l’addition des sucres provoque

des altérations physiologiques et structurelles.

Les sucres (tels que le saccharose et le tréhalose) interviennent chez quelques

microorganismes lorsqu’ils poussent sous stress osmotique. Ces sucres dépassent une

concentration cytoplasmique de 0.5 M (Galinski et Truper, 1994).

1.5.2.6 Les sulfoniums tertiaires

Ces composés ont une structure analogue à celle des ammoniums quaternaires (N est

substitué par S) : le diméthylsulfoniacétate (DMSA) est une molécule osmoprotectrice aussi

efficace que la glycine bétaïne chez les bactéries (Chambers et al., 1987).

Page 34: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  25

Le diméthylsulfoniopropionate (DMSP) a un rôle très important dans l’ajustement osmotique

chez les algues marines (Blunden et al., 1982 ; Seruto et al., 1989 ; Colmer et al., 1996).

1.6 Mécanismes de perception et régulateur du stress

Les bactéries préviennent les dommages plutôt que de les réparer (Hengge-Aronis,

2002) aussi une bactérie dispose de différents systèmes la protégeant des contraintes

extérieures et dont les activités seront modulées par les variations des paramètres

environnementaux.

La plupart du temps, il s’agira pour la bactérie de détecter le signal stress puis

d’activer ou de réprimer la transcription de différents gènes permettant une réponse rapide et

efficace. Cette réponse est spécifique de la nature du stress appliqué et/ou générale (réponse

globale indépendante de la nature du stress appliqué).

Les régulateurs potentiels de la réponse au stress chez les bactéries sont nombreux. Il

en existe par exemple 138 chez Lc. lactis (par homologie avec des familles connues de

régulateurs) (Guedon et al., 2002 ). Deux types de régulateurs jouent un rôle important chez

les bactéries. Il s’agit des facteurs de transcription et des systèmes à deux composants.

1.6.1 Régulateurs globaux de la réponse au stress

Les bactéries répondent aux variations de leur environnement en activant ou en

réprimant certains gènes. La détection du signal stress et la régulation des gènes protecteurs

supposent l’existence de systèmes plus ou moins généraux de régulation.

1.6.1.1 Systèmes à deux composants

La membrane est une zone privilégiée pour percevoir tout changement de l’environnement car

elle constitue le contact entre le milieu extérieur et la cellule. Les systèmes à deux composants

assurent la double fonction de détecteur d’un changement environnemental et d’inducteur de

la réponse (Tableau 1).

Ils comprennent une protéine Histidine Kinase senseur (HK) et une protéine régulatrice de

réponse (RR). Les protéines senseurs intégrées dans la membrane s’autophosphorylent au

niveau de résidus histidine lorsqu’elles perçoivent un signal de type stress.

Elles sont alors capables d’activer les protéines régulatrices par phosphorylation. Ceci

s’effectue au niveau d’un résidu aspartate de la protéine RR. Sous leur état phosphorylé, ces

protéines RR activent une réponse cellulaire appropriée, souvent par induction

transcriptionnelle (les RR sont pour la plupart des protéines de liaison à l’ADN) (Baliarda,

2003).

Page 35: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  26

Tableau 1: Fonction des systèmes à deux composantes chez Lactococcus lactis

Les mécanismes de perception du stress, essentiels pour que la cellule puisse se protéger

avant que les effets de ce stress ne soient irréversibles, sont encore peu connus chez

Lactococcus lactis, mais semblent se faire chez les autres bactéries, soit au niveau

membranaire, soit au niveau du cytoplasme (Rallu, 1999). Les effets du stress peuvent être

visualisés à plusieurs niveaux: modification du catabolisme, de l’anabolisme, de l’état

énergétique, des constituants cellulaires.

1.7 Mécanismes de lutte contre le stress

La résistance devient nécessaire lorsque le stress est persistant et/ou dommageable pour

les constituants cellulaires. Elle peut être acquise soit par une modification irréversible du

matériel génétique (mutation, remaniement) conduisant à une meilleure tolérance aux

conditions environnementales, soit par l’induction de systèmes de protection et de lutte contre

le stress ou de réparation contre les dommages causés.

Chez Lc. lactis, bien que la participation d’un mécanisme de réponse générale au stress

reste entièrement hypothétique, de nombreuses réponses au stress ont été identifiées, dont

certaines apparaissent communes à différentes conditions. Les réponses mises en œuvre pour

les stress que peut rencontrer Lc. lactis, seront décrites dans la section suivante selon leur rôle

dans la cellule. Les mécanismes de lutte contre les effets du stress seront abordés

essentiellement pour la réparation des constituants cellulaires.

Page 36: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  27

1.7.1 Protection et réparation des constituants macromoléculaires

Divers stress, en particulier les stress physico-chimiques, altèrent les protéines et les

acides nucléiques. Ces composants étant essentiels au fonctionnement de la cellule, une des

réponses majeures au stress chez tous les micro-organismes est l’induction de protéines

impliquées dans leur protection ou leur réparation.

L’étude des modifications des protéines cellulaire en fonction des conditions

environnementales est importante pour comprendre les mécanismes de réponse à

l’environnement mis en place par les cellules. Cette approche rend possible l’identification

des principales voies métaboliques affectées par ces conditions ou par des stress. Selon

Champomier-Vergès et al. (2002), les protéines dont la synthèse est affectée en conditions

de stress peuvent être groupées en trois familles :

·- Protéines du métabolisme général : représentant l’ensemble de protéines liées à la

production d’énergie (glycolyse) et au maintien du métabolisme de base des cellules

(métabolisme azoté, lipidique) ;

·- Protéines de stress général : ce sont les protéines qui ne sont pas induites spécifiquement par

un stress donné, mais qui apparaissent à la suite de différents types de stress ; elles sont liées

au repliement, à la désagrégation et à la dégradation de l’ADN et des protéines endommagées

par le stress ;

·- Protéines de stress spécifique : elles regroupent les protéines induites spécifiquement dans

une condition de stress précise.

1.7.1.1 Les chaperonnes

Ces protéines, très conservées parmi les différentes espèces bactériennes, assurent le

repliement correct des protéines nouvellement synthétisées ou endommagées et préviennent

l’agrégation des protéines altérées. Les chaperonnes initialement identifiées lors du choc

thermique sont également impliquées dans la majorité des stress chez la plupart des micro-

organismes (Figure 5).

Page 37: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  28

Figure 5. Modèle de la fonction des chaperonnes Hsp (selon Sugimoto, 2008)

L’exposition au stress provoque le repliement des protéines. Ces protéines repliées peuvent

former des agrégats. Les Hsp (Heat shock proteins) sont des structures oligomériques

dynamiques, qui existent dans deux états: un état inactif (état de faible affinité) et un e forme

active (état de haute-affinité) ; l'équilibre entre ces deux états est contrôlé par la température

de manière dépendante. Dans des conditions de stress thermique, l'équilibre s’oriente vers

l'état de haute affinité : les Hsp s’associent à des protéines repliées et cela empêche

l'agrégation des protéines. Lors du retour des conditions favorables, le complexe Hsp-substrat

se dissocie et les protéines repliées sont libérées et s’associent avec des chaperonnes ATP-

dépendantes tels que le système DnaK-CIpB bichaperonne. Bien que le système DnaK-CIpB

bichapronne puisse replier l’agrégat de protéines, la présence de Hsp augmente l'efficacité du

repliement.

Chez Lc. lactis, elles sont induites en stress hyperthermique, acide et osmotique (Whitaker et

Batt, 1991; Kim et Batt, 1993; Arnau et al., 1996; Hartke et al., 1997; Kilstrup et al.,

1997; Frees et al., 2003). Le mécanisme le mieux caractérisé est l’induction des chaperonnes

DnaK, GroEL et GroES (Figure 6). Les chaperonnes DnaJ et GrpE ont été identifiées

uniquement en stress hyperthermique et acide (Duwat et al., 1995; Arnau et al., 1996; Frees

et al., 2003).

Page 38: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  29

En revanche, l’implication des chaperonnes dans les réponses à la carence en carbone ou en

azote ou lors du stress hypothermique n’a pas été mise en évidence chez Lc. lactis (Kunji et

al., 1993; Hartke et al., 1994) ni chez B. subtilis (Eymann et al., 2002; Bernhardt et al.,

2003). Ceci peut certainement s’expliquer par le fait que ces conditions ne causent pas de

dommages majeurs aux protéines.

Figure 6: Modèle d’action du système GroESL dans le repliement protéique

(Mary ,2003)

Chez B. subtilis, les gènes codant pour les chaperonnes (opérons dnaK et groE) sont

régulés par le répresseur HrcA (Schulz et Schumann, 1996). Celui-ci réprime l’expression

des chaperonnes en se fixant sur les séquences CIRCE (Controlling Inverted Repeat

Chaperone Expression) présentes en amont des gènes (Zuber et Schumann, 1994; Hecker et

al., 1996). Ces séquences inversées répétées de 9bp sont retrouvées chez plus de 27 espèces

bactériennes (Hecker et al., 1996). L’activité du répresseur HrcA est contrôlée chez B.

subtilis par les chaperonnes GroES/EL (Mogk et al., 1997; Mogk et al., 1998).

En conditions normales de croissance, elles assurent un repliement optimal de HrcA,

ce qui autorise sa fixation aux séquences CIRCE. Lors d’un stress, la disponibilité des

chaperonnes GroES/EL va être réduite, causant une inactivation partielle de HrcA qui affecte

sa fixation aux séquences CIRCE. Par conséquent, une levée de la répression des gènes

codant pour les chaperonnes est observée.

Chez Lc. lactis, 3 unités de transcription codant pour les chaperonnes ont été

identifiées, révélant une organisation génétique particulière (Figure 7): l’opéron hrcA-grpE-

Page 39: Page de garde - Université d'Oran 1 Ahmed Ben Bella

 

dnaK (E

al., 1993

Figur

L

impliqu

identifié

séquenc

importa

indiquan

qui est o

1998) a

1.7.1.2 L

D

protéoly

l’accum

régulati

majeurs

Les pro

été mis

Eaton et al.

3).

re 7 : Modè

Leur régula

uer HrcA, c

é (Kilstrup

ce CIRCE

ant de soul

nt que le ré

observé che

lors que Gr

Les protéa

Différentes

ytique a un

mulation de

on spécifiq

s de réponse

otéases Clp

en évidence

., 1993), l’o

èle d’action

ation n’a p

comme chez

p et al., 199

en amont

ligner qu’au

égulon hrcA

ez B. subtili

oES/EL ne

ses

protéases

n rôle prép

protéines a

ques. On c

e au stress: l

sont les plu

e chez Lc. l

B

opéron groE

du système

as été form

z B. subtilis

97) et les 3

de leurs s

ucune autre

A doit être li

is, DnaK est

semblent p

sont impli

pondérant p

anormales d

connait troi

les protéase

us répandue

lactis : clpP

Bibliograph

ESL (Kim e

e DnaK dan

mellement m

s. En effet,

opérons co

séquences c

e séquence

imité à ces

t impliquée

as interveni

iquées dan

pour dégrad

dans la cell

is types de

es Clp, HtrA

es et les mi

qui code po

hie 

et Batt, 199

ns le repliem

mise en évi

, le gène co

dant pour l

codantes (G

e CIRCE n

3 unités ch

dans la ma

ir dans le co

ns les répo

der les pro

lule, ou pou

e protéases

A et HflB.

eux caracté

our une séri

93) et dnaJ

ment protéiq

idence, cep

odant pour

es chaperon

Guedon et

n’est présen

ez Lc. lacti

aturation de

ontrôle de c

nses au st

otéines altér

ur assurer d

s participan

érisées (Figu

ine protéase

(Van Assel

que (Mary ,

pendant elle

ce régulate

nnes présen

t al., 2002)

nte sur le

is. A l’inver

HrcA (Koc

e répresseu

tress. Leur

rées, limita

des phénom

nt aux méc

ure 8). 4 g

e (Frees et I

3

ldonk et

2003)

e semble

eur a été

ntent une

). Il est

génome,

rse de ce

ch et al.,

r.

activité

ant ainsi

mènes de

canismes

ènes ont

Ingmer,

30

Page 40: Page de garde - Université d'Oran 1 Ahmed Ben Bella

 

1999) e

seules o

à cette p

dégrade

permet

notamm

1.7.1.3 L

C

éventue

lactis, a

Le

d’un po

encore i

en évid

sont ind

en stres

MG136

(Kilstru

stress (c

de stres

En effe

t 3 gènes co

ont un rôle d

protéase et

e les protéin

d’éviter l’a

ment induite

Figur

Les protéin

es phénomè

elle d’une ré

avec un méc

es réponses

oint de vue p

identifiées.

ence l’indu

duites en str

ss oxydatif

63 en stress

up et al., 1

carences, st

s (GSP), se

et, hormis l

odant pour d

de chaperon

définit sa s

nes dénaturé

accumulatio

à bas pH et

re 8 : Modè

nes général

ènes de pro

éponse géné

canisme rest

s à différen

protéique ch

L’observat

uction de pr

ress acide, d

(Hartke e

s osmotique

1997). Tout

tress acide,

mblent peu

les chapero

B

des ATPase

nnes. Leur a

spécificité d

ées qui ne p

on de proté

t en stress th

èle d’action

les du stres

otections cr

érale mise e

tant à défini

nts stress, ré

hez Lc. lact

tion des pro

rotéines com

dont 9 le son

et al., 1996

e (2,5 % N

tefois, les p

thermique,

u nombreuse

onnes DnaK

Bibliograph

es Clp-dépe

association

de substrat

peuvent pas

éines anorm

hermique ou

du complex

ss

roisées et d

en place dan

ir.

éférencées

tis, mais la m

ofils protéiq

mmunes. Ai

nt égalemen

6). De mêm

NaCl) sont

protéines in

osmotique

es chez Lc.

K, GroEL e

hie 

endantes, clp

à ClpP con

(Ingmer e

s être replié

males (Frees

u osmotiqu

xe Clp proté

de multi-rés

ns différent

dans le Ta

majorité des

ques obtenu

insi, chez L

nt en stress

me, les prot

toutes des

nduites dans

, oxydatif),

lactis et les

et GroES, u

pB, clpC et

nfère une ac

et al., 1999)

ées par les c

s et Ingme

e.

éase (Mary

sistances su

tes condition

ableau 2, o

s protéines

us lors de d

Lc. lactis IL

thermique,

téines indui

protéines

s la totalité

nommées

s bactéries la

une seule G

clpE. Ces A

ctivité proté

). Le compl

chaperonnes

er, 1999). C

,2003)

uggèrent l’e

ns de stress

nt été carac

induites ne

différents str

L1403, 33 p

4 en stress

ites chez L

de choc th

é des condi

protéines g

actiques en

GSP a été

3

ATPases

éolytique

lexe Clp

s, ce qui

ClpP est

existence

s chez L.

ctérisées

sont pas

ress met

protéines

UV et 2

Lc. lactis

hermique

itions de

générales

général.

mise en

31

Page 41: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  32

évidence chez Lc. lactis, Gls24 (anciennement YtgH, Giard et al., 2002) et elles sont au

nombre de 6 seulement chez Streptococcus mutans (Svensater et al., 2000).

Ceci contraste fortement avec ce qui est observé chez les micro-organismes modèles B.subtilis

et E. coli, qui présentent une réponse générale au stress (GSR) beaucoup plus étendue, et

laisse donc en suspens notre interrogation sur l’existence d’une réponse générale au stress

chez Lc. lactis.

Tableau 2 : Caractérisation de l’induction de protéines en réponse au stress chez Lc. lactis

Le stress peut être défini comme un changement dans le génome, protéome ou

l’environnement. Le stress thermique est l’une des majeures contraintes des microorganismes

car il induit des altérations importantes telles que la dénaturation des protéines et la

déstabilisation des macromolécules (ribosomes, RNA, membrane).

Pour surmonter ces perturbations les bactéries ont développé plusieurs systèmes de défense tel

que l’induction de chaperonnes moléculaires et les protéases qui sont impliquées dans

l’adaptation des bactéries aux différents stress.

Page 42: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Bibliographie 

  33

1.7.1.4 Réparation de l’ADN

Diverses conditions de stress conduisent à une altération de l’ADN qui est fortement

dommageable pour le développement de la cellule. RecA est la principale protéine impliquée

dans la réparation de l’ADN par ses propriétés recombinantes et sa capacité à induire la

réponse SOS. Chez Lc. lactis, recA est impliqué dans les réponses aux agents endommageant

l’ADN (Duwat et al., 1995).

Page 43: Page de garde - Université d'Oran 1 Ahmed Ben Bella

MATERIEL ET

METHODES

Page 44: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Matériel et méthodes  

 

34

2-1 Matériel biologique

Les vingt souches utilisées dans cette étude sont des coques lactiques isolées au laboratoire à

partir de lait de chamelles de la région de Timimoun (Sud algérien). Ces souches sont codées

CHT et numérotées de 1 à 20. Elles ont été identifiées comme montré dans le Tableau 3

(Zadi, 1998 ; Karam et Karam 2006).

 

Tableau 3 : Souches utilisées dans cette étude

Code  Identifiée à CHT1  Lactococcus lactis diacetylactis CHT2  Lactococcus lactis diacetylactis CHT3  Lactococcus lactis diacetylactis CHT4  Lactococcus lactis diacetylactis CHT5  Lactococcus lactis cremoris CHT6  Lactococcus lactis cremoris CHT7  Lactococcus lactis diacetylactis CHT8  Lactococcus lactis cremoris CHT9  Lactococcus lactis diacetylactis CHT10  Lactococcus lactis diacetylactis CHT11  Lactococcus lactis diacetylactis CHT12  Lactococcus lactis diacetylactis CHT13  Lactococcus lactis diacetylactis CHT14  Lactococcus lactis diacetylactis CHT15  Enterococcus faecalis CHT16  Lactococcus lactis diacetylactis CHT17  Lactococcus lactis diacetylactis CHT18  Lactococcus lactis diacetylactis CHT19  Lactococcus lactis cremoris CHT20  Lactococcus lactis diacetylactis 

2-2 Cultures bactériennes

En raison de leurs exigences nutritionnelles complexes, ces bactéries lactiques sont cultivées

sur des milieux riches : nous avons donc réalisé les cultures bactériennes avec le milieu le

plus utilisé, le milieu M17 mis au point par Terzaghi et Sandine (1975). Le milieu

déshydraté commercial prêt à l’emploi (Merck) est utilisé pour préparer du bouillon M17 ou

de la gélose M17 (obtenue par addition de 15 g/l d’agar-agar au milieu liquide).

Ces milieux sont stérilisés par autoclavage à 120°C pendant 15mn.

Les bactéries sont cultivées à 30°C sur milieu solide ou dans des milieux liquides.

Page 45: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Matériel et méthodes  

 

35

2-3 Remise en culture des bactéries

Les bactéries conservées sur lait à -20°C sont remise en culture dans du milieu M17. Elles

sont soumises en routine à purification par la méthode des stries sur milieu M17 solide.

Une coloration de Gram et la recherche de catalase sont également effectuées en routine.

Après coloration de Gram d’un frottis bactérien un examen microscopique permet de

déterminer la morphologie des cellules bactériennes (taille, forme et disposition) et de

connaître le caractère Gram (+) ou (-). Toutes les bactéries lactiques sont à Gram positif.

La catalase est l’enzyme permettant la décomposition de l’eau oxygénée (toxique pour les

bactéries), selon la réaction « 2 H2O2 2 H2O + O2 ». Cette enzyme est mise en évidence par

l’émulsion de la suspension bactérienne dans une goutte d’eau oxygénée à 10V sur une lame.

La présence de l’enzyme se manifeste par l’apparition de bulle de gaz (d’oxygène). Les

bactéries lactiques sont catalase négative.

2-4 Conservation des souches

Les souches pures sont conservées selon deux méthodes différentes

• Conservation de courte durée (à 4°C)

Les souches pures sont ensemencées sur milieu M17 solide incliné et incubées à 30°C

pendant 24h. Elles sont ensuite conservées à 4°C pour une période de quelques semaines.

• Conservation de longue durée (à -20°C)

Les souches pures sont cultivées sur lait écrémé stérile à 10% enrichi par 0.05% d’extrait de

levure, et incubées à 30°C. Dès coagulation du lait, les cultures sont placées à -20°C pour une

période de plusieurs mois. Les bactéries peuvent être conservées aussi dans leur milieu de

culture additionné de 20% de glycérol stérile.

2-5 Croissance des bactéries en présence de NaCl

Les tests de croissance des bactéries étaient réalisés en milieu M17 liquide contenant 1,1M,

1,2M, 1,4M, 1,6M ou 1,7M de NaCl. Après 72h d’incubation à 30°C, la croissance

bactérienne était estimée par mesure spectrophotométrique à 600nm (UV-Vis Jasco V530).

Une culture témoin était réalisée dans du milieu M17 non supplémenté en NaCl.

Page 46: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Matériel et méthodes  

 

36

2-6 Estimation de la concentration minimale inhibitrice de NaCl

Des cellules issues d’une préculture de 18h (DO600nm ~ 1) sont utilisées pour inoculer des

bouillons M17 salé (concentrations en NaCl variant de 1,1 M à 1,7 M). La croissance

bactérienne est suivie par mesure de la densité optique à DO600nm. Une culture témoin était

réalisée dans du milieu M17 non supplémenté en NaCl.

La concentration minimale inhibitrice (CMI) de NaCl correspond à la plus faible

concentration en NaCl empêchant la croissance bactérienne.

2-7 Croissance des souches en présence de NaCl et d’osmoprotecteurs

Des cellules cultivées en milieu M17 (DO600nm ~ 1) sont utilisées pour ensemencer des

cultures de 5ml contenant le milieu salé additionné de proline ou de glycine bétaine qui sont

des molécules potentiellement osmoprotectrices.

• Proline : la proline a été reconnue comme osmoprotecteur efficace chez ces bactéries

lors d’une étude préalable (Boublenza, 2003). Nous avons réalisé des tests de

croissance à 30°C en milieu M17 liquide contenant la CMI de NaCl correspondante à

chaque souche, en présence de différentes concentrations de proline (40mM, 50mM,

60mM, 70mM ,100mM). Après 72h d’incubation à 30°C, la croissance en présence

des différentes concentrations de proline est estimée par mesure de l’absorbance à

600nm. Ceci permet de déterminer la concentration de proline assurant une

osmoprotection optimale.

• Glycine-bétaïne : le transport de la glycine-bétaïne exogène chez les cellules

soumises à un stress osmotique, conduit à l’accumulation massive de cette molécule

conduisant à la protection des cellules (Perroud et Le Rudulier, 1985). Nous avons

estimé la croissance des bactéries à 30°C en présence de CMI de NaCl et de

différentes concentrations de glycine-bétaïne (40 mM, 50 mM, 60 mM, 70 mM ou 100

mM). La lecture de la densité optique à 600nm nous renseigne sur la concentration

cellulaire obtenue après incubation et permet d’estimer la concentration de glycine-

bétaïne permettant une protection optimale.

Une culture témoin était réalisée dans du milieu M17 non supplémenté en NaCl et/ou

osmoprotecteurs.

Page 47: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Matériel et méthodes  

 

37

2-8 Cinétiques de croissance

Des cinétiques de croissance bactériennes sont réalisées dans du milieu M17 sous différentes

conditions : absence de sel, présence de différentes concentrations de sel, présence de proline

et de la CMI de NaCl.

L’ensemencement est effectué à raison de 1% à partir d’une préculture (DO600nm ~ 1). La

croissance est estimée par mesure de la densité optique à 600nm sur des prélèvements

effectués toutes les 2heures.

2-9 Croissance des souches en fermenteur

Après la préparation du fermenteur (SGI 220V) contenant 1.5 L de milieu M17 et la

stérilisation de ce dernier dans un autoclave (LEQUEUX) à 120ºC pendant 2h, une pré culture

est réalisée dans 5ml de M17 et incubés pendant 18h à 30ºC (DO=1) ; 200µl de cette pré

culture sont ensemencés dans 20ml de milieu après incubation, ces 20ml de culture sont

utilisés pour l’ensemencement du fermenteur.

De la même manière on prépare des ensemencements en fermenteur dans un milieu M17

additionné de NaCl.

2-10 Analyse des protéines solubles par électrophorèse SDS-PAGE

L’électrophorèse des protéines sur gel de polyacrylamide en conditions dénaturante est

utilisée pour séparer les protéines en fonction de leur poids moléculaire (Laemmli, 1970).

Le traitement par du SDS et du β-mercapto-éthanol à 100°C pendant 2mn permet d’une part

la dissociation des sous-unités des protéines oligomériques et d’autre par l’adsorption d’un

grand nombre d’ions dodécylsulfate chargés négativement sur tous les monomères : dans ces

conditions la mobilité électrophorétique de ces complexes protéine-SDS dépend donc

uniquement du poids moléculaire des monomères.

• Préparation des échantillons bactériens : des cultures bactériennes sont réalisées

dans 20ml de milieu M17 sans NaCl ou à différentes concentrations de NaCl (1,1M,

1,2M, 1,4M, 1,6M et 1,7M) ainsi qu’en présence de la CMI de NaCl correspondante à

chaque souche et de la concentration optimale de la proline, et incubées à 30°C.

Lorsque DO600nm = 1, les cultures sont arrêtées et les cellules sont récoltées par

centrifugation (7000rpm/mn pendant 15mn) puis resuspendues dans 300µl d’eau

distillée stérile.

Page 48: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Matériel et méthodes  

 

38

• Lyse cellulaire : la lyse cellulaire est obtenue après 30 cycles de congélation-

décongélation. Chaque cycle correspond à une heure de congélation à -20°C suivie de

30 mn de décongélation à 30°C. Le lysat obtenu est soumis à une centrifugation

(12 000 rpm/mn pendant 15mn) afin d’éliminer les débris cellulaires. Après cette

centrifugation, les surnageants sont récupérés.

• Dosage des protéines : les protéines du surnageant sont dosées par la méthode de

Bradford (1976). Le Bleu de Coomassie G250 forme avec les protéines un complexe

coloré présentant un maximum d’absorption à 595 nm. Une gamme étalon est réalisée

avec la protéine albumine sérique bovine comme montré dans le Tableau 4.

Après homogénéisation, les tubes sont laissés à l’obscurité pendant 2mn puis la lecture

de l’absorbance est effectuée à 595nm. Les résultats obtenus permettent d’établir la

courbe étalon de la densité optique en fonction de la concentration protéique.

Le dosage des protéines des échantillons est réalisé sur un aliquote de 50ul de chaque

échantillon à analyser, après lecture de l’absorbance, la concentration en protéines est

déterminée graphiquement à l’aide de la courbe étalon

Tableau 4 : Gamme étalon pour le dosage des protéines

Tube 1 2 3 4 5 6

Solution d’albumine 1mg/ml (µl) 0 10 20 30 40 50

Eau distillée (µl) 50 40 30 20 10 0

Réactif de Bradford) (ml) 2 2 2 2 2 2

• Électrophorèses des protéines en conditions dissociantes : les protéines totales des

surnageants sont séparées par électrophorèse en conditions dénaturantes selon la

méthode de Laemmli (1970). Nous avons utilisé un gel biphasique composé d’un gel

de concentration à 5% et d’un gel de séparation à 10% de polyacrylamide. La

composition des gels est indiquée dans le Tableau 5.

Un volume V de chaque échantillon (contenant 20µg de protéine) est additionné de

V/5 de tampon de charge. Le mélange est chauffé à 100°C pendant 2 minutes puis

déposé au fond d’une poche du gel.

Page 49: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Matériel et méthodes  

 

39

La migration est réalisée à température ambiante en appliquant un courant continu de

50mA jusqu'à ce que le Bleu de Bromophénol atteigne le bas du gel de séparation.

Le gel est démoulé et on écarte le gel de focalisation. Le gel de séparation est placé

pendant 45min dans une solution de coloration à 0.5% de Bleu de Coomassie

R250(Merck).

Le gel est ensuite placé dans la solution de décoloration sous agitation lente. La

solution est remplacée plusieurs fois jusqu’à décoloration du gel.

Tableau 5 : Composition des gels de polyacrylamide

Composition  Gel supérieur 5% 

Gel de concentration 10% 

     Tampon Tris 1M pH6.8 (ml)  1   Tris 1.5M pH8.8 (ml)    7.5 Eau distillée (ml)  5.5  12 Acrylamide 30% (ml)  1.3  10 SDS 10% (ml)  0.08  0.3 PerSO4 14% (ml)  0.08  0.3 TEMED (ml)  0.006  0.006 

     

2-11 Analyse du contenu cellulaire des souches par chromatographie sur couche mince

La chromatographie sur couche mince (CCM) est une technique qui repose principalement sur

des phénomènes d’adsorption, la phase mobile est un solvant (apolaire) qui progresse par

capillarité le long d’une phase stationnaire fixée sur une feuille d’aluminium, ce qui permet de

séparer et d’identifier les espèces chimiques d’un mélange.

Dans notre cas la CCM a pour but de mettre en évidence l’accumulation des osmoprotecteurs

à l’intérieur des cellules cultivées en milieu en condition de stress. Une solution de proline

(2mg/ml, préparée dans de l’eau distillée) est utilisée comme acide aminé étalon.

3µl de surnageant sont déposés sur gel de silice (Kieselgal 60F 254 Merk); les

chromatographies sont réalisées en utilisant comme solvant un mélange butanol-acide

acétique-eau (80:20:20). Après migration, le solvant est éliminé par séchage dans un

incubateur à 60°C puis la révélation est réalisée par pulvérisation d’une solution de

ninhydrine (0,2% dans un mélange 4:1 d’acide acétique-éthanol).

Page 50: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Matériel et méthodes  

 

40

2-12 Dosage de la proline par spectrophotométrie

• Principe :

Cette méthode décrite par Trolls and Lindsley (1955) a été utilisée par pour quantifier

la proline par spectrophotométrie. La caractéristique principale de l'interaction de la

proline avec la ninhydrine en solvant acide est une coloration rouge. La proline

présente un maximum d’absorbance à 528 nm.

• Mode opératoire :

Une gamme étalon est établie avec une solution de proline (1mg/ml) préparée dans de

l’eau distillée. Une série de six tubes est préparée, en triple exemplaires, comme

indiqué dans le Tableau 6.

Tableau 6: Gamme étalon pour dosage de proline

Tube 1 2 3 4 5 6

Proline (µl) 0 10 20 30 40 50

Proline (µg) 0 10 20 30 40 50

Eau distillée (ml) 1 0.99 0.98 0.97 0.96 0.95

Acide acétique (ml) 1 1 1 1 1 1

Mélange* (ml) 1 1 1 1 1 1

Ninhydrine (mg) 25 25 25 25 25 25

Mélange* : (acide acétique : acide ortho phosphorique: eau distillée) (30 :8 :12)

Après homogénéisation, les tubes sont incubés à 100°C pendant 30 minutes. La lecture

de l’absorbance est ensuite effectuée à 528 nm. Les résultats permettent d’établir une

courbe étalon (densité optique en fonction de la concentration de proline).

• Dosage de la proline dans le surnageant : Les échantillons à analyser (de même densité optique) sont préparés de la même

manière que pour l’électrophorèse SDS-PAGE.

La concentration de la proline est estimée après extrapolation des densités optiques

correspondantes sur la courbe étalon.

Page 51: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Matériel et méthodes  

 

41

2-13 Extraction de l’ADN plasmidique

La méthode utilisée est celle décrite par Klaenhammer et O’Sullivan (1993). Les étapes de

cette méthode qui convient pour les lactocoques et les lactobacilles sont résumées dans la

Figure 9.

20 µl de la solution d’ADN obtenue sont additionnés de 20 µl de Bleu de Bromophénol puis

sont soumis à électrophorèse sur un gel d’agarose à 0.8% pendant 2h à 100 volts. Le tampon

de migration est du tampon TBE (Tris-Borate-EDTA) contenant 5 µg/l de BET (Bromure

d’éthidium).

Après migration le gel est examiné sous lumière UV.

 

Etape 1 Culture (20 ml ; D0600nm=1) Centrifuger (5000g, 10mn, 4°C) Culot récupéré, surnageant écarté Resuspendre le culot dans la solution I (Volume final 200 µl) Incuber à 37°C/15min Etape 2 Ajouter 400 µl de solution II (Vortexer) Incuber 7 min (TA) Etape 3 Ajouter 300 µl de solution III (Vortexer) Centrifuger (15 min/12000g/TA) Etape 4 Transférer le surnageant dans un nouvel eppendorf Ajouter 650 µl d’isopropanol (TA) (Vortexer) Centrifuger (15 min/12000g/4°C) Etape 5 Eliminer le surnageant Resuspendre le culot dans 320 µl d’EDS Ajouter 200 µl d’acétate d’ammonium 7.5M Ajouter 350 µl de phénol/chloroforme (Vortexer) Centrifuger (15 min/12000g/TA) Etape 6 Transférer la phase aqueuse dans un tube eppendorf Ajouter 1 ml d’éthanol absolu (-20°C) (Vortexer) Placer à -20°C une nuit Centrifuger (15 min/12000g/4°C) Culot d’ADN plasmidique récupéré, surnageant écarté Etape 7 Lavage du culot à l’éthanol 70% (TA) Centrifuger (15 min/12000g/4°C) Eliminer surnageant, sécher le culot Resuspendre le culot dans 40 µl de TE+2 µl RNase (0.1 mg/ml)

Solution I : 25% sucrose – 30 mg/ml de lysozyme Solution II : 3% SDS – 0.2N NaOH Solution III : 3M acétate de sodium glacial (pH=4.8) TA : température ambiante EDS : eau distillée stérile TE : Tris-HCl 50mM -EDTA 5m M.

Figure 9 : Extraction d’ADN plasmidiques (selon Klaenhammer et O’Sullivan, 1993)

Page 52: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Matériel et méthodes  

 

42

2-14 Cytométrie en flux

La cytométrie de flux est une méthode permettant de différencier et de dénombrer les cellules

des microparticules en mesurant simultanément de multiples caractéristiques physiques d’une

cellule.

Le cytomètre (Figure 10) enregistre le comportement de la cellule quand celle-ci passe devant

le laser en mesurant la diffusion de la lumière incidente et l’émission de la fluorescence

Figure10 : Principe de la cytométrie en flux.

Cette étude a été réalisée au laboratoire de Microbiologie Industrielle (ENSIA, Massy

Palaiseau, France) en utilisant la technique établie au laboratoire pour les bactéries lactiques.

2-14-1 Marquage des cellules

100µl de culture cellulaire (DO600nm = 1) sont dilués par 900µl de tampon citrate phosphate di

sodique pH7,7 . 10µl d’une solution d’iodure de propidium (marqueur de cellules mortes)

sont ajoutés à 100µl de dilution cellulaire. Après incubation à 40ºC pendant 20mn on ajoute

20µl d’une solution de cFDA (diacétate de carboxy fluorescéine : marqueur de cellules

vivantes).

Page 53: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Matériel et méthodes  

 

43

Après agitation sur vortex, les cellules sont ré incubées pendant 10mn puis centrifugées à

12000g pendant 1mn et enfin resuspendues dans 1ml de tampon pH7,7 . La suspension

cellulaire est alors diluée au 1/1000 avec le même tampon avant analyse par cytométrie.

Les longueurs d'onde d'excitation et d'émission du cFDA, ou plus exactement de sa forme cF,

(Figure 11) sont respectivement de 492 nm et de 516 nm.

Figure 11 : Réaction d'hydrolyse de la 5(6)-carboxyfluorescéine diacétate en 5(6)-carboxyfluorescéine par les estérases intracellulaires (Hoefel et al., 2003)

2-14-2 Analyse des cellules stressées par cytométrie

Des cultures bactériennes sont préparés dans un milieu M 17 en présence de 0, 1.1, 1.2, 1.4,

1.6 et 1.7 M de NaCl, après incubation à 30ºC pendant 40h les cellules sont doublements

marqués comme décrit précédemment puis analysés par le cytomètre.

Les analyses ont été réalisées avec un cytomètre BACTIFLOW multiparamétrique

(Chemunex) équipé d’une source laser à argon. Les résultats des analyses (cellules viables et

cellules mortes) sont fournis sous forme de cytogrammes.

Il est équipé de 4 filtres différents, permettant d'analyser 4 paramètres simultanément :

• Un détecteur de taille (FSC : forward angle light scatter) : mesure la lumière

diffractée dans l'axe du laser, combiné à un collecteur

• Un détecteur de granulosité (SSC : side angle light scatter), mesure la lumière

diffractée à 90°C et donne des informations relatives à la granulosité des cellules.

• Un filtre (photomultiplicateur FL-1) de bande passante à 530 nm (515-545 nm), qui

collecte la fluorescence verte de la carboxyfluorescéine.

Page 54: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Matériel et méthodes  

 

44

• Un filtre (photomultiplicateur FL-2) de bande passante à 670 nm, qui collecte la

fluorescence rouge.

Une combinaison spécifique de FSC et SSC est utilisée afin de discriminer les bactéries

dubruit de fond.

Les enregistrements transmis par le cytomètre sont donc la taille relative de la cellule (FSC),

sa granulométrie relative (SSC) et l’intensité de la fluorescence émise (FL1).

Les cellules doublement marquées sont observés à l’aide d’un microscope à fluorescence

Axiostar plus (HBO50).

Page 55: Page de garde - Université d'Oran 1 Ahmed Ben Bella

RESULTATS ET

DISCUSSION

Page 56: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

45

3.1 Effet du stress salin sur les cellules bactériennes

3.1.1 Caractéristiques des souches utilisées

Les souches utilisées dans ce travail étant identifiées majoritairement comme des souches de

Lactococcus par Zadi (1998) et Karam et Karam (2006). Les souches de Lactococcus,

identifiées à l’aide de galeries API 20 STREPT ainsi que par comparaison des profils protéique

des bactéries avec des souches de références, présentent la capacité de croître en présence de

1.1M de NaCl et à 45ºC.

Nous avons tout d’abord confirmé la pureté des souches et vérifié leurs caractéristiques basiques

(morphologie des colonies, aspect des cellules, test de catalase et coloration de Gram).

La culture des bactéries sur boite montre des petites colonies blanchâtres, rondes à contour

régulier, lisses et légèrement bombées, comme illustré par la Figure 12 pour deux souches.

Figure 12. Aspect des colonies des bactéries CHT1 et CHT4 sur milieu M17

Sous microscope, les cellules se présentent sous forme de coques isolés ou regroupés en paires

ou en petites chainettes, colorées positivement à la coloration de Gram. Les souches étudiées

sont toutes dépourvues d’activité catalasique.

Le Tableau 6 résume les caractéristiques des souches utilisées. Les résultats obtenus confirment

l’appartenance de ces souches au groupe lactique.

Page 57: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

46

Tableau 7 : Caractéristiques des souches utilisées

Caractère Souche

Forme Gram Catalase Mode d’association

CHT1 Cocci + - Cellules en amas CHT2 Cocci + - Cellules isolées CHT3 Cocci + - Cellules isolées CHT4 Cocci + - Cellules en amas et en chaînettes CHT5 Cocci + - Cellules isolées CHT6 Cocci + - Cellules en amas CHT7 Cocci + - Cellules en amas CHT8 Cocci + - Cellules isolées CHT9 Cocci + - Cellules isolées CHT10 Cocci + - Cellules en chaînette CHT11 Cocci + - Cellules en amas CHT12 Cocci + - Cellules isolées CHT13 Cocci + - Cellules isolées CHT14 Cocci + - Cellules isolées CHT15 Cocci + - Cellules isolées CHT16 Cocci + - Cellules isolées CHT17 Cocci + - Cellules isolées CHT18 Cocci + - Cellules en chainette CHT19 Cocci + - Cellules en chainette CHT20 Cocci + - Cellules en chainette

3.1.2 Application du stress osmotique

3.1.2.1 Croissance des souches en présence de NaCl

La croissance des bactéries en présences de différentes concentration de NaCl (1.1M ,1.2M,

1.4M, 1.6M et 1.7M) en comparaison avec la croissance en conditions favorables (sans NaCl)

révèle une sensibilité différentes des souches vis-à-vis de ce stress (Figure 13).

Les résultats montrent que la croissance des souches CHT8, CHT11, CHT14 et CHT18 est faible

(DO600nm=0.8) en comparaison aux autres souches. La présence de NaCl affecte drastiquement

leur croissance (DO600nm<0.2 en présence de 1.6M de NaCl).

Par contre on observe une bonne croissance des souches CHT1 et CHT4 même aux

concentrations maximales de 1.4M et 1.6M de NaCl.

Cette différence de comportement des souches en présence de sel nous a conduits à estimer les

concentrations minimales inhibitrices (CMI) de NaCl pour ces bactéries lactiques. Les résultats

obtenus montrent que la CMI de NaCl est différente pour chaque souche. Elle est proche de

1.7M NaCl pour les souches CHT1, CHT4 et CHT5 et proche de 1.6M NaCl pour les souches

CHT2, CHT3 et CHT14. Pour le reste des souches la CMI est inférieure à 1.6M NaCl.

Page 58: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

47

Figure 13 : Croissance des bactéries à différentes concentrations de NaCl.

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8

CHT1

CHT2

CHT3

CHT4

CHT5

CHT6

CHT7

CHT8

CHT9

CHT10

CHT11

CHT12

CHT13

CHT14

CHT15

CHT16

CHT17

CHT18

CHT19

CHT20

OD600nm

STRA

INS

1,7M

1,6M

1,4M

1,2M

1,1M

0M

NaCl

Page 59: Page de garde - Université d'Oran 1 Ahmed Ben Bella

 

 

3.1.2.2 C

• O

L’additi

présenc

proline

Figure

On rem

croissan

considé

Souche

sCroissance

Osmoprote

ion de proli

e de la CM

ajoutée au m

e 14. Croiss

marque auss

nces différen

rable dans

0

CHT1

CHT2

CHT3 

CHT4

CHT5

CHT6

CHT7

CHT8

CHT9

CHT10

CHT11

CHT12

CHT13

CHT14

CHT15

CHT16

CHT17

CHT18

CHT19

CHT20

e des souch

ection par l

ine dans le m

MI de NaCl

milieu, com

sance des b

i que, pour

ntes. Par ex

un milieu

0,1 0,

Résu

es en prése

la proline

milieu de cu

l. La croiss

mme le mont

actéries lacconce

r une même

xemple pour

salé, la con

,2 0,3

ultats et di

ence de NaC

ulture perm

sance obser

trent les rés

ctiques en pntrations d

e concentra

r les souche

ncentration

0,4 0,5

DO  600nm

iscussion 

Cl et d’osm

met à la bact

vée est diff

sultats prése

présence dede proline

ation de pro

es CHT1 et

optimale d

5 0,6

m

moprotecteu

térie de repr

fférente selo

entés dans la

e la CMI d

oline, les s

t CHT4 qui

de proline (q

0,7 0,8

urs

rendre la cro

on la conce

a Figure 14

e NaCl et d

ouches pré

avaient une

qui permet

0,9

oissance en

entration de

4.

différentes

sentent des

e résistance

une bonne

100mM

70 mM

60 mM

50 mM

40 mM

Proline

48

n

e

s

e

e

Page 60: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

49

croissance) est de 70mM : à cette concentration la croissance atteint DO600nm =0,72 et DO600nm

=0,85 respectivement CHT1 et CHT4.

C’est la concentration de 60mM proline qui permet une reprise optimale de la croissance pour les

souches CHT8, CHT9, CHT10, CHT12, CHT14, alors qu’il faut 100mM proline pour permettre

une bonne croissance de CHT17 et CHT20.

Ces résultats montrent que la meilleure protection par la proline est observée pour les souches

CHT1 et CHT4.

• Osmoprotection par la glycine bétaine :

La glycine bétaïne (ou bétaïne) est une molécule osmoprotectrice universelle. Nous avons voulu

comparer son effet osmoprotecteur par rapport à la proline. Les résultats obtenus sont regroupés

dans la Figure 15. On remarque que la croissance est rétablie par cet osmoprotecteur à toutes les

concentrations utilisées, mais reste généralement moins importante par rapport aux résultats

observés avec la proline. Cependant on peut noter que les souches CHT2, CHT4 et CHT5 ont

une bonne croissance (0,6<DO600nm<0,8) en présence de 70mM et plus de Glycine betaine.

Nos résultats montrent que les différentes concentrations des deux substances osmoprotectrices

ont un effet protecteur qui permet aux souches de croitre en présence de la CMI de NaCl. La

concentration optimale de l’osmoprotecteur diffère d’un osmoprotecteur à un autre mais aussi

d’une souche à une autre. Ainsi, par exemple, la proline et la glycine-bétaïne à 70mM assurent

tous deux une bonne osmoprotection pour CHT4 alors que pour CHT2 seule la glycine-bétaïne

est efficace à cette concentration (la croissance maximale étant observée en présence de 100mM

de cet osmoprotecteur).

Le rôle osmoprotecteur de la proline et la glycine bétaine chez diverses bactéries a été rapporté

par Csonka (1981, 1989) et Glaasker et al. (1993). Romeo et al. (2001) ont plus spécifiquement

rapporté que ces substances assuraient une bonne osmoprotection chez les lactocoques.

D’après les résultats obtenus dans notre étude, on peut retenir que la proline est un

osmoprotecteur efficace pour la majorité des souches CHT. Ceci pourrait être relié avec la nature

particulière du milieu d’origine de ces bactéries : le lait de chamelle contient une concentration

en proline (11% selon Knoess et al., 1986) plus importante par rapport aux autres laits.

Page 61: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

50

Figure 15 : Croissance des souches en présence de la CMI de NaCl et différentes concentrations de glycine bétaïne

0 0,2 0,4 0,6 0,8 1

CHT1

CHT2

CHT3 

CHT4

CHT5

CHT6

CHT7

CHT8

CHT9

CHT10

CHT11

CHT12

CHT13

CHT14

CHT15

CHT16

CHT17

CHT18

CHT19

CHT20

DO 600nm

souche

s

100mM

70 mM

60 mM

50 mM

40 mM

Page 62: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

51

Chez les bactéries lactiques, les principaux solutés compatibles sont la glycine bétaïne et la

proline. En plus de leur effet sur l’osmolarité, les solutés compatibles auraient un effet

stabilisateur sur les enzymes autorisant ainsi une protection chez les cellules en stress osmotique

(Poolman et Glaasker, 1998).

En réponse à une contrainte osmotique, toute cellule bactérienne va accumuler des solutés

compatibles. Ce phénomène permettra aussi à la cellule de développer parallèlement une

cryotolérance et une thermoprotection via la stabilisation de protéines essentielles (Santoro et

al., 1992; Ko et al., 1994; Caldas et al., 1999 ; O’Byrne et Booth, 2002). Il a été suggéré que la

glycine-bétaïne joue un rôle similaire à celui des chaperonnes (malgré un mécanisme

d’interaction différent). In vivo, les osmoprotectants et les chaperonnes pourraient agir en

synergie lors d’une situation de stress (Bourot et al., 2000).

3.1.3 Cinétique de croissance :

La croissance des bactéries CHT1, CHT2 et CHT4 en absence de sel ou en présence de

concentrations croissantes de sel (jusqu’à la CMI), ainsi qu’en milieu additionné de la

concentration optimale d’osmoprotecteur est montrée dans les Figures 16, 17 et 18

respectivement.

Figure 16 : Croissance de CHT1 dans différentes conditions de culture

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

DO 600

nm

Temps (h)

CHT1

(OM)NaCl

(1.1M)NaCl

(1.2M)NaCl

(1.4M)NaCl

(1.6M)NaCl

(1.7MNaCl+proline)

Page 63: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

52

Figure 17 : Croissance de CHT2 dans différentes conditions de culture

Figure 18 : Croissance de CHT4 dans différentes conditions de culture

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

DO 600

nm

Temps (h)

CHT2

(OM)NaCl

(1.1M)NaCl

(1.2M)NaCl

(1.4M)NaCl

(1.6MNaCl+proline)

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

DO 600

nm

Temps (h)

CHT4

(OM)NaCl

(1.1M)NaCl

(1.2M)NaCl

(1.4M)NaCl

(1.6MNaCl+proline)

Page 64: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

53

Ces résultats montrent que plus la concentration en NaCl augmente et plus le temps de latence

est plus long. Il atteint pratiquement 36 h pour les trois bactéries cultivées dans le milieu

contenant la CMI de NaCl et la proline.

La croissance se déroule néanmoins selon un schéma classique d’une culture discontinue, à des

concentrations faibles de NaCl on note une croissance faible au début de la cinétique (phase de

latence) puis la croissance devient rapide. La durée de la phase de latence est proportionnelle à la

concentration de NaCl ; cette phase correspond à la phase d’adaptation des cellules en présence

de sel.

3.1.4 Croissance en fermenteur

De par la possibilité de suivi de la dynamique de croissance ainsi que des paramètres

physiologiques qui vont être associés aux différentes phases, la culture en batch est couramment

utilisée comme un outil pour déterminer la réponse à divers stress de type nutritionnel (Albers et

al., 2007; Colombie et al., 2005; Gyaneshwar et al., 2005; Moritz et al., 2002; Ryu et al.,

2007). La comparaison de deux phases exponentielles dans des conditions différentes est

également envisageable afin d’étudier l’effet d’un paramètre particulier comme dans notre cas la

concentration en NaCl.

Nous avons choisi la souche CHT2 pour suivre son développement en fermenteur dans les

conditions normales ou en présence d’une concentration élevée de NaCl mais non inhibitrice. En

parallèle nous avons suivi la production d’acide lactique au cours de cette fermentation afin

d’estimer l’effet du sel sur la production d’acide.

Nous avons cultivé la souche dans un fermenteur SGI 220V en conditions normales (sans stress

salin) sur milieu M17 en mesurant la densité optique de la culture ainsi que le pH toute les

heures. L’expérience était aussi réalisée en conditions de stress salin dans du milieu M17

contenant 1.4M de NaCl (Figure 19).

Page 65: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

54

(A)

(B)

Figure 19. Evolution de la biomasse et du pH pour la souche CHT2 en fermenteur (A) : En condition normales, (B) en présence de 1.4M de NaCl

Ces résultats montrent qu’en présence de sel le temps de latence est d’environ 9h, temps

nécessaire aux cellules pour s’adapter à ce milieu. Après cela l’évolution de la biomasse est

relativement identique à celle des cellules non stressées, mais par contre la production d’acide

par les cellules stressées est beaucoup moins importante (pH 5.52) que pour les cellules non

stressées (pH 3.7).

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0

1

2

3

4

5

6

7

0 10 20 30

DO 600

nm

pH

Temps h

pH

DO

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0

1

2

3

4

5

6

7

0 10 20 30 40

DO 600

nm

pH

Temps  h

pH

DO

Page 66: Page de garde - Université d'Oran 1 Ahmed Ben Bella

 

 

3.2 Car

Nous av

du stres

montren

M17 ad

3.2.1 A

Les con

proline

L’analy

d’une p

d’une pr

Pour C

souche

l’intensi

intensité

Lanes 1 t1: Free s7: Free s

ractérisatio

vons voulu

ss salin. Po

nt une bonn

dditionné ou

Analyse de

ntenus proté

comme os

yse du gel m

protéine de p

rotéine de 4

HT4 nous

se trouve

ité des band

é diminue e

Figure 20

to 6: proteinsalt strain; 2salt strain; 8:

on biochimi

rechercher

our cette rec

ne croissanc

u non de sel,

es protéines

éiques de C

moprotecte

montre que

poids molé

45kDa.

avons rele

en présenc

des protéiqu

en présence

. Profils pr

ns from CHT1: 1.1M NaCl;: 1.1M NaCl; 

Résu

ique du str

les protéin

cherche, no

ce en milie

, et en prése

s totales pa

HT1 et CH

eur ont été

chez CHT

culaire d’en

evé l’appari

ce de 1.1M

ues de 116,

de la prolin

rotéique de

1; Lanes from; 3: 1.2M Na9: 1.2M NaC

ultats et di

ess osmotiq

es générale

ous avons re

eu salin. Le

ence ou abse

ar SDS-PAG

HT4 cultivés

comparé p

T1 confronté

nviron 125k

ition d’une

M et 1.2M

67 et 43.7 k

ne.

CHT1 et C

m 7 to 11: proaCl; 4: 1.4 NaCl; 10: 1.4 Na

iscussion 

que

ment impliq

etenu les d

es deux bac

ence de pro

GE

s en absence

par électrop

ée au stress

kDa et, de m

nouvelle p

de NaCl.

kDa augmen

CHT4 sous

oteins from CaCl;5:1.6 NaCaCl; 11: 1.6 N

quées dans

eux souche

ctéries étaie

oline.

e ou en pré

horèse SDS

s (1.2M Na

manière con

protéine de

Nous avon

nte en prése

des condit

CHT4 Cl; 6: 1.7M NNaCl and 70m

la protectio

es CHT1 et

ent cultivées

sence de se

S-PAGE (F

aCl), il y a

ncomitante,

e 106kDa q

ns constaté

ence de sel

tions de stre

NaCl and 70mmM proline.  

on vis-à-vis

t CHT4 qui

s en milieu

el et avec la

Figure 20).

disparition

, apparition

quand cette

é aussi que

et que cette

ess

mM proline;

55

s

i

u

a

.

n

n

e

e

e

Page 67: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

56

Nos résultats indiquent des différences en termes de teneur en protéines de Lactococcus sp

CHT1 et CHT4 sous différentes conditions de stress salin: il ya production de certaines protéines

nouvelles, non présentes dans le milieu sans sel (par exemple pour les protéines d’environ 45kDa

et 106kDa chez les deux bactéries), et l'inhibition de la production de certaines autres protéines

qui sont produites dans le milieu sans sel (par exemple pour la protéine 125kDa chez CHT1). On

peut noter aussi une augmentation ou une diminution du niveau d'expression de certaines

protéines (par exemple pour les protéines 116kDa, 67kDa et 43.7kDa).

Toutes ces différences sont à relier à la réponse bactérienne au stress salin. La production de

nouvelles protéines ou l'augmentation de la production de protéines déjà existantes, qui ne sont

fabriqués que dans des conditions de stress, est le résultat induit par le stress. La diminution de la

production ou l'inhibition de la production de certaines protéines est probablement le résultat de

niveaux élevés de modification des protéines ou la régulation des gènes, causée par une

diminution de l'activité métabolique.

L’ensemble de ces résultats semble montrer que le sel induit des modifications qualitatives et

quantitatives dans la synthèse protéique. Ceci rejoint les études de Romeo et al (2001) qui ont

montré après une analyse de la production de protéines en réponse à un choc hypertonique chez

Lc.lactis qu’il ya une diminution de la synthèse totale de protéines d’environ 50% lorsque les

bactéries sont cultivées dans un milieu à 2.5% de NaCl ; cependant la synthèse d’au moins douze

protéines est augmentée dans de telles conditions.

Zadi Karam en 1998 avait constaté la production de certaines protéines à 7.5% de NaCl ainsi

que la disparition de d’autres protéines qui étaient observées en absence de sel après analyse par

électrophorèse du contenu protéique de la CHT4 cultivée en milieu contenant 2.5%,4.5%,6.5% et

7.5% de NaCl.

Nous avons aussi comparé les contenus protéiques de ces deux bactéries à différents temps

d’incubation, afin d’examiner leurs évolutions au cours du temps. La Figure 21 montre les

profils protéiques des cellules obtenues après 24h, 48h et 72h d’incubation.

L’analyse comparative des résultats révèle des différences dans les profils protéiques des deux

souches. On remarque l’apparition ou la disparition de quelques protéines après 48h et 72h

d’incubation. La disparition de protéines pourrait être l’un des mécanismes de lutte contre ce

stress par la cellule qui se débarrasse des protéines altérées, par l’action de protéases, limitant

ainsi l’accumulation de protéines anormales dans la cellule.

Page 68: Page de garde - Université d'Oran 1 Ahmed Ben Bella

 

 

Figure Canaux 11 : en abNaCl+70Canaux 77 : en ab

21. Conten1 à 6 : CHT1

bsence de NaCmM proline. 7 à 11 : CHTbsence de NaC

(A)

(B)

(C)

nu protéiqu

Cl ; 2 : 1.1M N

T4 Cl ; 8 : 1.1M

Résu

: Profils pr

: Profils pr

: Profils pr

ue des deux

NaCl ; 3 : 1.2

NaCl ; 9 : 1.

ultats et di

rotéiques d

rotéiques d

rotéiques d

x souches ét

2M NaCl ; 4

.2M NaCl ; 10

iscussion 

de cultures

de cultures

de cultures

tudiées à di

: 1.4M NaCl

0 : 1.4M NaC

de 24h.

de 48h.

de 72h.

ifférents te

; 5 : 1.6M Na

Cl ; 11 : 1.6M

mps d’incu

aCl ; 6 : 1.7M

M NaCl+70mM

ubation.

M

M proline.

57

Page 69: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

58

L’apparition de nouvelles protéines pourrait être la réponse à ce stress, le rôle de ces protéines

serait d’assurer le repliement correct des protéines endommagées par le stress et/ou prévenir

l’agrégation des protéines altérées.

Pour analyser les gels obtenus des deux souches et comparer plus précisément les profils

protéiques dans les différentes conditions de stress, nous avons utilisé le logiciel imagej® qui se

présente sous la forme d’une barre de menus flottante qui ouvre des fenêtres de données. Par

cette analyse de chaque canal des gels d’électrophorèse, nous avons pu ressortir des plots de gel

qui permettent de mettre en évidence les différences entre les profils protéiques. Ces différences

se traduisent par des pics de tailles variables selon l’intensité des bandes sur les gels (Figures 22,

23 et 24).

Page 70: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

59

CHT1 CHT4

Figure 22 : Plots de gels traités par imagej® des deux bactéries cultivées dans les conditions de stress

1

7

10 

11 

1  à  6:  CHT1:  1:  Free  salt  strain;  2:  1.1M NaCl;  3:  1.2M NaCl;  4:  1.4  NaCl;5:1.6  NaCl;  6:  1.7M  NaCl  et  70mM proline;  7 à 11: CHT4: 7:  Free  salt  strain; 8: 1.1M NaCl; 9: 1.2M NaCl; 10: 1.4 NaCl; 11: 1.6 NaCl et 70mM proline.  

Page 71: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

60

CHT1 CHT1 1.1M NaCl

CHT1 1.2M NaCl CHT1 1.4M NaCl

24H  24H 

24H  24H 

48H  48H 

48H  48H 

72H  72H 

72H  72H 

Page 72: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

61

CHT1 1.6M NaCl CHT1 1.7M NaCl + proline

 

Figure 23 : Plots de CHT1 dans les différentes conditions après 24, 48 et 72h d’incubation

24H  24H 

48H  48H 

72H 72H 

Page 73: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

62

CHT4 CHT4 1.1M NaCl

24H  24H 

48H  48H 

72H  72H 

Page 74: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

63

CHT4 1.2M NaCl CHT4 1.4M NaCl CHT4 1.6M NaCl + proline 

Figure 24 : Plots de CHT4 dans les différentes conditions après 24, 48 et 72h d’incubation.

Les plots montrés dans la Figure 22 nous permettent de relever les différences qualitatives

(présence ou absence) et quantitatives (tailles des pics) entre les profils protéiques obtenus dans

les différentes conditions de culture (différentes concentrations de NaCl).

Pour les mêmes bandes protéiques, l’intensité des pics augmente lorsque la concentration de

NaCl est de 1.1M, 1.2M et1.4M. Par contre, en présence de proline ces pics sont vraiment plus

restreints et ceci pour les deux souches testées.

On peut aussi noter, pour les deux souches analysées, que plus la durée d’incubation en présence

de 1.1M, 1.2M et 1.4M de NaCl augmente et plus l’intensité des pics protéiques augmente; en

présence de 1.6M NaCl et 1.7M NaCl+proline, les pics protéiques augmentent à 48h puis

diminuent à 72h (Figures 23, 24). Ceci suggère que la réponse des cellules au stress salin

comporte une étape d’augmentation de synthèse protéique (maximale à 48h d’incubation).

24H 

48H 

72H 

24H  24H 

48H 48H 

72H 72H 

Page 75: Page de garde - Université d'Oran 1 Ahmed Ben Bella

 

 

3.2.2 An

3.2.2.1 A

Nous av

à 30°C

ainsi qu

Les résu

I ExtraiC1:70CC8 prC

II AcideAreLaco

La com

bactérie

conditio

nalyse des

Analyse pa

vons compa

en milieu M

ue de la CM

ultats obtenu

Figure

its bactérienanaux 1 à 6 en absence

0mM prolineanal 7: Prolianaux 8 à 12: en absence

roline; anal 13: mil

es aminés tém, B, C, D in

espectivemena proline puontient une fo

mparaison d

es présenten

ons différen

contenus e

ar chromat

aré les conte

M17 en abs

MI de NaCl a

us sont illus

I

e 25 : Analy

ns : extraits CHde sel; 2: 1

e ine Pure (Tém2: extraits Ce de sel; 9:

lieu M17 stérmoins ndiquent la pnt avec leurs ure donne unonction amin

du contenu

nt presque l

ntes. Quatre

Résu

n acides am

ographie e

enus en acid

sence de se

additionnée

strés dans la

yse du cont

HT1 .1M NaCl; 3

moin) CHT4 1.1M NaCl;

rile .

position des Rf. n spot jaunene secondaire

cellulaire

es mêmes c

spots (app

ultats et di

minés

n couche m

des aminés

l ou en pré

de 70 mM

a Figure 25

tenu cellula

3: 1.2M NaC

10: 1.2M N

acides amin

e (Rf=0.20)e, contrairem

peut cond

contenus ce

elés A, B, C

iscussion 

mince CCM

libres des b

sence de di

de proline.

5.

aire en acid

Cl; 4: 1.4M N

NaCl; 11: 1.4

nés histidine,

caractéristiqment aux autr

duire aux o

ellulaires lor

C, D) sont r

M

bactéries CH

ifférentes co

II

des aminés

NaCl; 5: 1.6

4M NaCl; 1

proline, try

que (la prolires acides am

observations

rsqu’elles s

retrouvés ch

HT1 et CHT

oncentration

par CCM

6M NaCl; 6:

2: 1.6M NaC

yptophane et

ine, et l’hydminés).

s suivantes

sont cultivée

hez les deux

T4 cultivées

ns de NaCl

1.7 NaCl et

Cl et 70mM

methionine,

droxyproline,

s: les deux

es dans des

x bactéries,

64

s

l

t

M

,

,

x

s

,

Page 76: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

65

correspondant respectivement à: A histidine (Rf = 0,05), C-méthionine (Rf = 0,41) et D

tryptophane (Rf = 0,52). La tache B (Rf = 0,20) correspond à la proline, qui migre tout près d’un

autre acide aminé (resté indéterminé) dont la quantité varie dans les extraits.

Les études sur les bactéries lactiques ont montré qu'il n'ya pas de voie de biosynthèse des solutés

compatibles dans ces bactéries (Romeo et al., 2001). Ainsi, il semble que la proline qui a été

détecté dans nos échantillons soit exogène et que son accumulation se fait à partir du milieu de

culture M17. La présence de proline dans les cellules en absence et en présence de sel confirme

que les bactéries utilisent la proline pour la croissance et aussi pour l’osmoprotection. La

présence de proline dans les souches en absence de sel est liée au métabolisme des bactéries

lactiques qui sont dotés de peptidases spécifiques pour la libération de proline (Monnet, 1993).

3.3.2.2 Dosage spectrophotométrique de la proline

Ce dosage a pour but de quantifier la proline dans les cellules bactériennes cultivées en

différentes conditions salines, avec ou sans osmoprotecteur.

Le dosage est réalisé avec une gamme 0-50µg de proline (Figure 26) et trois acides aminés

témoins (Figure 27). Dans cette technique (Trolls and Lindsley, 1955), la proline donne en

milieu acide une coloration rouge dont l’intensité est fonction de la concentration en proline.

     

Figure 26. Gamme du dosage de la proline   Figure 27. Dosage de trois acides aminés témoins  Tube 1 : 0µg proline ; Tube 2 : 10µg proline ; Tube 8 : Leucine (100µg) Tube 3 : 20µg proline ; Tube 4 : 30µg proline ; Tube 9 : Tryptophane (100µg) Tube 5 : 40µg proline ; Tube 6 : 50µg proline ; Tube 10 : Proline (100µg) Tube 7 : Proline (100µg)

Page 77: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

66

La Figure 28 montre la courbe étalon de l’absorbance à 582nm en fonction de la concentration en proline.

 

Figure 28. Courbe étalon représentant la variation de l’absorbance en fonction de la concentration en proline

La Figure 29 montre l’aspect des tubes du dosage de la proline dans les échantillons.

 

 

Figure 29 : Aspect de la gamme de dosage de la proline

Tube 1 : Témoin sans proline Tube 11 : Témoin sans proline Tube 2 : CHT1 Tube 12 : CHT4 Tube 3 : 1.1 M de NaCl. Tube 13 : 1.1 M de NaCl Tube 4 : 1.2 M de NaCl. Tube 14 : 1.2 M de NaCl Tube 5 : 1.4 M de NaCl. Tube 15 :1.4 M de NaCl Tube 6 : 1.6 M de NaCl. Tube 16 :1.6 M de NaCl +70mM proline Tube 7 : 1.7 M de NaCl+70mM proline Tube 17 : proline pure Tube 8 : Proline pure.

Page 78: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

67

Le Tableau 8 représente les concentrations de proline estimées dans chaque échantillon. Ces valeurs sont mesurées grâce à la courbe étalon et exprimées en µM.

Tableau 8 : Concentrations de proline estimées dans chaque échantillon

CHT1 CHT4

NaCl (M) 0 1.1 1.2 1.4 1.6 1.7+ proline 0 1.1 1.2 1.4 1.6 +

proline Proline (µM) 26 17.3 39 52.1 56.4 113 17.3 39 39.5 21.7 234

Les résultats obtenus en absence d’osmoprotecteur montrent, pour les deux bactéries, que la

teneur en proline varie selon les conditions de stress. Les valeurs trouvées pour CHT1 sont assez

différentes de celles trouvées pour CHT4, mais dans les deux cas ces valeurs indiquent qu’il y a

accumulation de proline dans les cellules cultivées en présence de NaCl, ce qui est en accord

avec les données de la littérature selon lesquelles l’accumulation des molécules osmoprotectrices

s’effectue en fonction des besoins de la cellule (Meury, 1988).

On note chez les cellules cultivées en présence d’osmoprotecteur une augmentation considérable

de l’accumulation de la proline : sa concentration passe de 17.3µM en absence de NaCl à 234

µM en présence de 1.6 M NaCl + proline pour CHT4, et de 26µM en absence de NaCl à 113µM

en présence de 1.7 M de NaCl + proline pour CHT1. Des résultats similaires ont été obtenus par

Patchet et al (1992) qui ont montré chez Listeria monocytogenes que l’augmentation de la

concentration en NaCl de 0 à 7,5% entraîne une augmentation de la concentration intracellulaire

en acides aminés de 166 à 716 mM. Cette augmentation est en réalité un paramètre d’adaptation

aux conditions de stress salin. 

Page 79: Page de garde - Université d'Oran 1 Ahmed Ben Bella

 

 

3.2.3 Re

Nous a

absence

résultats

 

(A) : CHCanal 1NaCl ; C(B) : CH Canal NaCl ; C

echerche d

vons reche

e et en prése

s obtenus.

Figure

HT1 : 1 : en absenCanal 5 : 1HT4 : 7 : en absenCanal 11 :

d’ADN plas

erché la pré

ence de sel

e 30. Conte

nce de sel ; C.6M NaCl ;

nce de sel ; 1.6M NaCl+

Résu

midique

ésence de p

et de prolin

(A) : ADN

(B) : ADN

enus en AD

Canal 2 : 1.Canal 6 : 1

Canal 8 : 1+70mM pro

ultats et di

plasmide c

ne à la conc

N plasmidiq

N plasmidiq

DN plasmid

.1M NaCl ; 1.7M NaCl+

1.1M NaCl ;oline.

iscussion 

hez les deu

centration op

que de CHT

que de CHT

ique des de

Canal 3 : 1+70mM pro

; Canal 9 :

ux souches

ptimale. La

T1

T4

eux souches

1.2M NaCl oline.

1.2M NaCl

s cultivées

a Figure 30

 

s étudiées

; Canal 4 :

l ; Canal 10

à 30ºC en

0 montre les

 

1.4M

0 : 1.4M

68

n

s

Page 80: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

69

La comparaison des profils plasmidiques des deux souches permet de faire les observations

suivantes : le nombre de bandes plasmidique varie en fonction de la concentration saline du

milieu de culture pour les deux bactéries. Chez CHT1 on note l’apparition d’une quatrième

bande lorsque la concentration de sel est de 1.4M, 1.6M ou 1.7M+70mM de proline. Cette même

bande plasmidique est observée chez CHT4 en 1.4M ou 1.6M en présence de proline.

Ces observations suggèrent donc que la concentration saline aurait un effet sur le contenu en

ADN plasmidique des cellules bactériennes. A ce stade de l’étude on peut émettre quelques

hypothèses qui nécessitent d’être vérifiées : le stress salin pourrait avoir un rôle régulateur de la

réplication de certains plasmides (par exemple en stimulant la synthèse de la protéine de

réplication de ces plasmides) ou le NaCl pourrait avoir un rôle sur le degré de compaction de

l’ADN plasmidique (le plasmide plus ou moins relaxé pourrait alors être présent sous deux ou

plusieurs conformations, chacune ayant sa migration apparente propre).

3.3 Caractérisation physiologique par cytométrie

La cytométrie en flux est utilisée pour estimer l’état physiologique des cellules : cette technique

permet de différencier à partir d’un mélange de cellules celles qui sont ‘’saines’’ ou viables (en

bon état physiologique) de celles ‘’en mauvais état’’ (cellules mortes, cellules abimées, …).

Dans le cas des bactéries lactiques, l'utilisation du couple de colorant "carboxyfluorescéine

diacétate" / "iodure de propidium" (cFDA/IP) est mis en oeuvre en routine pour la détermination

de la viabilité cellulaire (Rault et al., 2007 ; Smelt et al., 2002 ; Bunthof et al., 2001). L'iodure

de propidium pénètre dans les cellules ayant une membrane endommagée et les colore en rouge,

tandis que le cFDA est un composé non fluorescent qui diffuse au travers de toutes les

membranes cellulaires et est hydrolysées par les activités estérases intracellulaires pour donner

un composé fluorescent vert. Ces deux composantes de fluorescence peuvent être facilement

caractérisées par analyse multi paramétrique au niveau d'un cytomètre en flux. La difficulté

majeure que rencontre l'application de la cytométrie en flux au réside dans l'interprétation des

résultats. Les valeurs numériques issues des convertisseurs sont stockées par l’informatique et

présentées sur les écrans des cytomètres sous deux formes :

• des histogrammes monoparamétriques où l’axe des abscisses représente l’intensité du signal

analysé et l’axe des ordonnées le nombre de cellules.

• des histogrammes biparamétriques ou cytogrammes présentant deux signaux simultanément.

Page 81: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

70

La représentation de la taille et de la granulosité « Dot Plot » pour chaque cellule qui passe, sa

taille est analysée par rapport à sa granulosité. C’est un bon moyen de détecter un petit nombre

d’évènements dont les populations sont clairement séparées.

La «density-plot » Cette représentation simule une représentation en 3D où le troisième

paramètre est le nombre d’évènements. Cela permet à l’utilisateur, de mettre en évidence une

population discrète.

Dans ce travail nous avons utilisé les souches CHT2 et CHT4, qui ont des sensibilités différentes

au stress osmotique.

3.3.1 Etat physiologique des cellules dans les différentes conditions de stress osmotique

Les résultats obtenus dans différentes conditions de stress pour les deux souches sont montrés dans les Figures 31 (A, B, C et D) et 32 (A, B, C, D et E).

FL1= Intensité de fluorescence de la carboxy fluorescéine (cellules vivantes); FL2= Intensité de fluorescence de l’iodure de propidium (cellules mortes) ; RN1= Pic de cellules pour le comptage sur FL1 ; FSC : taille relative de la cellule ; SSC : granulométrie relative ; la combinaison spécifique SSC / FSC est utilisée afin de discriminer les bactéries du bruit de fond.

Figure 31 (A) : Cytogramme de CHT4 cultivée en absence de sel

Page 82: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

71

Figure 31 (B) : Cytogramme de CHT4 cultivée en présence de 1.1M de NaCl

Figure 31 (C) : Cytogramme de CHT4 cultivée en présence de 1.2M de NaCl

Page 83: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

72

Figure 31 (D) : Cytogramme de CHT4 cultivée en présence de 1.4M de NaCl

Figure 32 (A) : Cytogramme de CHT2 cultivé en absence de NaCl

Page 84: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

73

Figure 32 (B) : Cytogramme de CHT2 cultivée en présence de 1.1M de NaCl

Figure 32(C) : Cytogramme de CHT2 cultivée en présence de 1.2M de NaCl

Page 85: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

74

Figure 32 (D) : Cytogramme de CHT2 cultivée en présence de 1.4M de NaCl

Figure 32 (E) : Cytogramme de CHT2 cultivée en présence de 1.6M de NaCl

Page 86: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

75

En absence de NaCl le nombre de cellules vivantes atteint la valeur RN1 (Figures 31A et 32A) pour les deux souches avec des pourcentages de 94,48% et 85,96% pour la CHT4 et CHT2 respectivement.

En présence de 1.1M et 1.2M de NaCl le pourcentage des cellules vivantes est réduit à 2,18% et 33,74%, par contre à une concentration plus importante de NaCl ce pourcentage augmente (95,03% et 67,19).

Ces cytogrammes permettent de faire les observations suivantes :

• En absence de sel, il y a très peu de cellules mortes dans les cultures des deux bactéries

(0,58% pour CHT2, 0,01% pour CHT4)

• En présence de 1.1M, 1.2M NaCl, c’est la situation inverse : il y a plus de cellules mortes

dans les cultures (0,48% pour CHT2, 0,55% pour CHT4). Une proportion de 33,74% et

2,18 % de cellules de CHT2 et CHT4 respectivement sont viables dans ces conditions.

Ces cellules ont acquis la capacité de résister au stress.

• En présence de 1.4M et 1.6M NaCl, les cellules vivantes prédominent dans les cultures.

L’avantage du double marquage qui permet de visualiser sur le même graphe les pourcentages de

cellules tuées et de cellules viables. Nous avons mis en évidence au cours de cette étude le fait

que l’IP, souvent considéré comme un marqueur de cellules mortes, marque également les

cellules stressées, qui doivent vraisemblablement présenter une légère perte d’intégrité

membranaire.

L’utilisation conjointe avec le cFDA permet d’évaluer les cellules vivantes par rapport aux

cellules mortes dans les différentes conditions de culture. Les résultats obtenus dans les

cytogrammes permettent d’estimer les nombres de cellules vivantes et de cellules mortes

(Figures 33 et 34) pour les deux souches analysées.

Page 87: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

76

Figure 33 : Etat des cellules CHT2 dans les différentes concentrations de NaCl.

Figure 34 : Etat des cellules CHT4 dans les différentes concentrations de NaCl.

Ces histogrammes montrent que :

• Pour la CHT2 le nombre de cellules viables diminue avec l’augmentation de la concentration en NaCl et le nombre des cellules mortes est très important à 1.1M et 1.2M de NaCl.

• Pour la CHT4 le nombre de cellules viables est considérable à 1.1M et 1.2M de NaCl ce qui nous permet de déduire une meilleur résistance de cette souche.

0

2000

4000

6000

8000

10000

12000

0 1.1M 1.2M 1.4M 1.6M

coun

ts

Concentration en NaCl 

C vivantes

C mortes

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1.1M 1.2M 1.4M

Coun

ts

Concentation de NaCl

C vivantes

C mortes

Page 88: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

77

Dans tous les cas de stress, il y a donc de fortes proportions de sous-populations. Ce phénomène

est dû à la présence de cellules ayant développé un phénotype «viable» comme rapporté dans la

littérature (Abee et Wouters, 1999). Il est aussi probable que des cellules développent un

comportement « intermédiaire » avec des caractéristiques de cellule viable, telle qu’une

membrane cellulaire intègre, et des caractéristiques de cellules non viables, comme par exemple

une activité intracellulaire enzymatique réduite. Ces deux caractéristiques ont évidemment un

impact direct sur le test de double coloration cFDA/IP mis en œuvre, ce qui rend ardue l’analyse

par cytométrie en flux. De manière générale, les cellules métaboliquement actives ont tendance à

développer une fluorescence verte plus importante. Le second colorant utilisé est l’IP qui diffuse

au travers des membranes endommagées et s’intercale de manière irréversible au niveau de

l’ADN de la cellule. Les cellules non viables sont alors colorées en rouge. La Figure 35 montre

les cytogrammes obtenus après double coloration des cellules.

Page 89: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

78

Absence de NaCl

1.1M NaCl

1.2M NaCl

1.4M NaCl

1.6M NaCl

Figure 35 : Cytogrammes obtenus suite à la coloration par le système cFDA/IP Q1 : cellules marquées avec IP(A-B+) ; Q2 : cellules marquées avec cFDA/IP(A+B+) ;

Q3 :cellules non marquées(A-B-) ; Q4 : cellules marquées avec le cFDA(A+B-).

CHT4 CHT2

Page 90: Page de garde - Université d'Oran 1 Ahmed Ben Bella

 

 

La popu

Q2 : cet

et 1.2M

La cyto

l’hétéro

bien sép

d’évalue

3.3.2 Et

L’obser

différen

aux cell

Figure

ulation inte

tte populati

M NaCl respe

ométrie en f

ogénéité phy

paré les ce

er la perte d

tat physiolo

rvation des c

nces morpho

lules stressé

36 : Aspec

ermédiaire,

on est impo

ectivement

flux nous a

ysiologique

ellules viab

de viabilité c

ogique des

cellules par

ologiques en

ées par la pr

ct des cellul

Résu

représentan

ortante car

pour la sou

permis d’e

e dans les p

bles des cel

cellulaire da

cellules sou

r microscope

ntre les cell

résence de 1

les de CHT

ultats et di

nt les cellul

elle atteint

che CHT2,

estimer auss

populations

llules stress

ans un milie

us microsco

e à fluoresc

ules cultivé

1.6M de Na

T2 en absen

iscussion 

les stressées

40,98% et

et 82,45% à

si bien qual

de bactérie

sées et des

eu salé.

ope à fluor

cence après

ées dans les

Cl (Figures

nce de NaCl

s, est représ

50,56% aux

à 1.2M NaC

litativement

es lactique

s cellules m

rescence :

marquage p

conditions

s 36 et 37).

l en micros

sentée par

x concentra

Cl pour la C

t que quant

testées. La

mortes, ce

par FDA rév

normales p

scopie à flu

le quadrant

ations 1.1M

CHT4.

titativement

méthode a

qui permet

vèle des

ar rapport

uorescence.

79

t

M

t

a

t

Page 91: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résultats et discussion  

 

80

Figure 37 : Aspect des cellules de CHT2 en présence de 1.6M NaCl sous microscope à fluorescence

On remarque que les cellules stressées sont rassemblées en agrégats avec une association en

chainettes par rapport aux cellules normales qui sont plutôt isolées. Ce phénomène d’agrégation

a été aussi observé chez Lb. alimentarius (Lemay et al., 2000) en présence d’un stress hyper-

osmotique.

On relève aussi l’allongement de cellules stressées, cet allongement est l’une des modifications

morphologiques connues lors des stress hypothermique, acide et hyper osmotique. Ainsi, un

phénomène d’allongement cellulaire a été décrit chez Lb. acidophilus en présence d’un stress

hypo-thermique (Lorca et Font de Valdez, 1999), chez Lb. alimentarius en présence d’un stress

acide (Lemay et al., 2000), chez Listeria monocytogenes en présence d’un stress acide, basique

ou hyper-osmotique (Isom et al., 1995) et chez Staphylococcus. aureus en présence d’un stress

hyper-osmotique (Vijaranakul et al., 1995).

Au contraire, un raccourcissement cellulaire est observé chez Lb. sakei en présence d’un stress

hypo-thermique ou hyper-osmotique (Marceau et al., 2003).

Page 92: Page de garde - Université d'Oran 1 Ahmed Ben Bella

CONCLUSION

Page 93: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Conclusion et perspectives  

 

81

Chez les microorganismes, l’effet d’un stress peut affecter différents niveaux de la

physiologie cellulaire et se mesure donc par différentes méthodes.

La première étape vers la compréhension des effets d’un stress consiste à observer le

comportement du microorganisme qui le subit, ce qui requiert le suivi de divers paramètres

macromoléculaires.

Dans ce travail nous avons étudié le comportement des souches isolées à partir du lait de

chamelle de la région de Timimoun. Ces souches ont présenté une résistance notable vis-à-vis

du stress salin car elles pouvaient croître dans un milieu salé d’une concentration allant

jusqu'à 1.6M. L’un des paramètres étudié dans ce travail est la survie des souches face à des

concentrations croissantes de NaCl : ceci a permis de montrer que la CMI de NaCl diffère

entre les souches bactériennes testées, ce qui indique des capacités de réponses au stress

souches-dépendantes.

La résistance au sel est liée à l’accumulation d’osmoprotecteurs dans le cytoplasme ; la

glycine bétaïne et la proline ont un effet osmoprotecteur efficace sur les souches étudiées. La

recherche de la concentration optimale d’osmoprotecteur a montré que la concentration

70mM proline apporte une osmoprotection optimale.

La comparaison des cinétiques de croissance des bactéries cultivées dans un milieu hyper salé

montre des phases de latence beaucoup plus prononcées, indiquant que le sel affecte la survie

et la croissance des cellules dans le cas d’un choc hyperosmotique.

D’autres méthodes, rendant compte de différents états physiologiques tels que la capacité

métabolique (test d’acidification, synthèse d’acide nucléique, synthèse d’ATP, respiration…)

ou encore l’intégrité membranaire (méthodes colorimétriques) peuvent également servir à

mesurer la viabilité cellulaire (Oliver, 1993). La cinétique de production d’acide lactique en

bioréacteur par la souche CHT2, dans les conditions normales et en présence d’une

concentration élevée de NaCl non létal pour la bactérie, a montré que la production d’acide

par les cellules stressées est beaucoup moins importante.

Nos résultats indiquent des différences en termes de teneur en protéines chez Lactococcus sp.

CHT1 et CHT4 sous différentes conditions de stress salin : il ya production de certaines

protéines nouvelles, non présentes dans le milieu sans sel (par exemple les protéines 106kDa

et 45kDa) et l'inhibition de la production de certaines autres protéines qui sont produites dans

le milieu sans sel (par exemple la protéine 125kDa). Il ya aussi une augmentation du niveau

d'expression de certaines protéines et diminution pour d’autres (par exemple les protéines

Page 94: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Conclusion et perspectives  

 

82

116kDa, 67kDa, 43.7kDa). Toutes ces différences peuvent être directement associées à la

réponse bactérienne au stress salin. La production de nouvelles protéines ou l'augmentation de

la production de protéines déjà existantes, qui ne sont fabriquées que dans des conditions de

stress, est le résultat induit par le stress. La diminution de la production ou l'inhibition de la

production de certaines protéines est probablement le résultat de niveaux élevés de

modification des protéines ou la régulation des gènes, causée par une diminution de l'activité

métabolique.

Les études sur les bactéries lactiques ont montré qu'il n'ya pas de voie de biosynthèse des

solutés compatibles dans ces bactéries. Ainsi, il semble bien que la proline qui a été détectée

dans nos échantillons est exogène et que son accumulation se fait à partir du milieu de culture

(M17). La présence de proline dans les cellules en absence et en présence de sel confirme que

les bactéries utilisent la proline pour la croissance et aussi pour l’osmoprotection.

La comparaison des profils plasmidiques des deux souches permet de faire les observations

suivantes : le nombre de bandes plasmidiques varie en fonction de la concentration saline du

milieu de culture. Une nouvelle bande d’ADN plasmidique est détectée chez CHT1 cultivé en

présence de 1.4M et 1.6M NaCl ainsi qu’à 1.7M NaCl + 70mM proline. Une bande

plasmidique similaire est observée chez CHT4 cultivée en présence de 1.4M NaCl et 1.6M

NaCl+ 70mM proline.

L’hétérogénéité physiologique dans la population des bactéries lactique testées est bien

constatée grâce à l’étude par cytométrie en flux et le double marquage cFDA/PI a permis de

bien quantifier les proportions des sous populations. Pour CHT2 cultivées dans du milieu

M17 en absence de NaCl les cellules viables représentent 85,95% de la population contre

0,58% de cellules mortes. Par contre en présence de NaCl à 1.1M ou 1.2M les quantités de

cellules mortes sont beaucoup plus importantes que les cellules viables dans notre échantillon.

Ce taux de mortalité est provoqué par le stress salin.

L’observation de l’état physiologique des cellules sous microscope à fluorescence, nous a

permis de déduire que les cellules stressées sont rassemblées en agrégats avec une association

en chainettes par rapport aux cellules non stressées qui sont plutôt isolées. On relève aussi

l’allongement de cellules stressées, cet allongement est l’une des modifications

morphologiques connus lors des stress hypothermique, acide et hyper osmotique.

Page 95: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Conclusion et perspectives  

 

83

Les perspectives de ce travail consistent à mettre en évidence les systèmes de transport

impliqués dans l’accumulation des solutés compatibles (proline et glycine betaine). En

altérant leur croissance, la plupart des stress modifient également le comportement

métabolique des cellules. L’utilisation de techniques de dosage chromatographique (gaz ou

liquide) est un excellent moyen de mettre en évidence l’accumulation de produits toxiques

mais surtout de révéler quels substrats sont consommés et à la formation de quels produits ils

aboutissent.

La purification et l’identification des protéines impliquées dans la résistance au sel par une

électrophorèse bidimensionnelle est indispensable pour caractériser les protéines spécifiques a

ce stress et ces souches.

L’étude des mécanismes moléculaires impliqués dans la réponse au stress salin en particulier

la perception des signaux de stress est également un volet d’étude intéressant qu’il faudra

développer.

Page 96: Page de garde - Université d'Oran 1 Ahmed Ben Bella

REFERENCES

BIBLIOGRAPHIQUES

Page 97: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Références bibliographiques  

 

84

A

Abdel-rahim A.G. (1987). The chemical composition and nutritional value of camel (Camelus

dromedarius) and goat (Capra hircus) milk. World Rev. Anim. Prod., 23, 9-11. Abee T. et Wouters, J.A.(1999). Microbial stress response in minimal processing. International journal of food microbiology, 50, 65-91. Albers E., Larsson C., Andlid T., Walsh M. C. and Gustafsson L. (2007). Effect of nutrient

starvation on the cellular composition and metabolic capacity of Saccharomyces cerevisiae. Appl Environ Microbiol 73: 4839-48.

Anthoni U., Chisthersen C., Hougaar L. and Nielson P.H. (1991). Quaternary ammonium compounds in the biosphere- an exemple of a versatile strategy. Comp Biochem Physio. 99:1-18.

Arnau J., Sorensen, K.I., Appel, K.F., Vogensen, F.K. and Hammer, K. (1996). Analysis of heat shock gene expression in Lactococcus lactis MG1363. Microbiology. 142 (7): 1685-1691.

Avinash M., Amit M. and Bhavanath J. (2008). Physiological characterization and stress-induced metabolic responses of Dunaliella salina isolated from salt pan; Society for Industrial Microbiology.

B

Baliarda A. (2003). Evaluation de la réponse au stress chez les bactéries lactiques appartenant aux

genres Pediococcus et Tetragenococcus approches physiologiques et génétiques. Thèse de doctorat université de bordeaux1 France.

Bernhardt J., Weibezahn J., Scharf C. and Hecker M. (2003). Bacillus subtilis during feast and famine: visualization of the overall regulation of protein synthesis during glucose starvation by proteome analysis. Genome Res. 13: 224-237.

Blount P. and Moe P.C. (1999) .Bacterial mechanosensitive channels: integrating physiology, structure and function. Trends in Microbiol. 7: 420-424.

Blunden G., Patel A.V., Armstrong N.J., and Gorham J.(1982). Bétaïne distribution in the Malvaceae Phytochemistry. 58( 3): 451-454.

Boch J., Kempf B., Schmid R. and Bremer E. (1996). Synthesis of the osmoprotectant glycine bétaïne in bacillus subtilis ; caracterization of the gbsAB genes. J Bacteriol. 178(17):5121-8.

Boublenza F. (2003). Résistance au sel et osmoprotection chez les souches de Lactococcus lactis. Mémoire de magister. Université d’Oran.

Bourot S., Sire O., Trautwetter A., Touze T., Wu L. F., Blanco C. and Bernard. T. (2000). Glycine betaine–assisted protein folding in a lysA mutant of Escherichia coli .J Biol Chem. 275(2):1050-6.

Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantifies of protein utilizing the principle of protein-dye binding. Annals of biochemistry. 169:4845-4847.

Brown A. D. and Edgley J. R. (1980) .Water relations of sugar tolerant yeast: the role of intracellular polyols. J Gen Microbiol .72(3):589-91.

Bunthof C. J., van den Braak S., Breeuwer P., Rombouts F. M. and Abee T. (1999). Rapid fluorescence assessment of the viability of stressed Lactococcus lactis .Appl Environ Microbiol. 65(8):3681-9.

Page 98: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Références bibliographiques  

 

85

Bunthof C. J., Bloemen K., Breeuwer P., Rombouts F.M., Abee T. (2001). Flow cytmetric assessment of viability of lactic acid bacteria. Applied and environmental microbiology. 67, 2326-2335.

C

Caldas T., Demont-Caulet N., Ghazi A. and G. Richarme.(1999).Thermoprotection by glycine betaine and choline.Microbiology.149(pt9):2543-8.

Caplice E. and Fitzgerald G. F. (1999) .Food fermentations: role of microorganisms in food production and preservation .Int J Food Microbiol. 50 (1-2):131-149.

Carpita N. C.(1985). Tensile strength of cell walls of living cells. Plant physiol. 79: 485-488.

Chambers S.A., Wagener T.J. and Weaver J.H. (1987) .Formation and structure of Fe/Cu(001) interfaces, sandwiches, and superlattices Phys. Rev. 36 :8992–9002 .

Champomier-Verges M.C., Maguin E., Mistou M.Y., Anglade P. and Chich J.F. (2002). Lactic acid bacteria and proteomics: current knowledge and perspectives. J Chromatogr B Analyt Technol Biomed Life Sci. 771: 329-342.

Colmer T.D., Fan T.W.M., Lauchli A. and Higashi R.M. (1996). Interactive effects of salinity nitrogen and sulfure on organic solutes in Spatina alterniflora leaf blads. J.Exp. Bichem. 47:369-375.

Colombie V., Bideaux C., Goma G. and Uribelarrea J. L. (2005). Effects of glucose limitation on biomass and spiramycin production by Streptomyces ambofaciens. Bioprocess Biosyst Eng 28: 55-61.

Condon S. (1987). Response of lactic acid bacteria to oxygen. FEMS Microbiol Rev.46:269-280. Csonka L.N. (1981). The role of proline in osmoregulation in Salmonella typhimurium and

Escherichia coli. Basic Life Sci. 18:533-42.

Csonka L.N. (1989). Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 53 : 121-147.

Csonka L. N. and Hanson A. D. (1991). Prokaryotic osmoregulation: genetics and physiology .Annu Rev Micrbiol. 45:569-606.

Csonka L.N., keda T.P., Fletcher S.A. and Kustu S.(1994 ).the accumulation of glutamate is necessary for optimal growth of Salmonella typhimurium in media of high osmolarity but not induction of the proU operon. J Bacteriol 176, pp6324-6333.

D

Denich T. J., Beaudette L. A., Lee H. and Trevors J. T. (2003). Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J Microbiol Methods .52:149-82.

Dressaire C. (2009). Comprendre l’adaptation des Lactococcus lactis par une approche de biologie intégrative à l’échelle du génome. Thèse de doctorat. Institut national des sciences appliquées de Toulouse.

Duwat P., Ehrlich, S.D., and Gruss, A. (1995) .The recA gene of Lactococcus lactis: characterization and involvement in oxidative and thermal stress. Mol Microbiol 17: 1121-1131.

Page 99: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Références bibliographiques  

 

86

E

Eaton T., Shearman C. and Gasson, M. (1993) .Cloning and sequence analysis of the dnaK gene region of Lactococcus lactis subsp. lactis. J Gen Microbiol 139: 3253-3264.

Enfors S. O. (1991). Modes of operation in fermentation: batch, fed-batch and continuous processes. In "Bioreactors engineering course notes" (M. Bervovic, and T. Koloini, Eds.), pp. 1-40, Kridic, B.

Eymann C., Homuth G., Scharf C. and Hecker M. (2002). Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J Bacteriol 184: 2500-2520.

F

Facklam R. and J.A Elliott (1995) . Identification, classification, and clinical relevance of catalase-negative, Gram-positive cocci, excluding the streptococci and enterococci. Clin. Microbiol. Rev.8: 479-495.

Folgering J.H., Moe P.C., Schuurman-Wolters G.K., Blount P. and Poolman B. (2005). Lactococcus lactis uses MscL as its principal mechanosensitive channel. J. Biol. Chem. 280:8784-8792.

Frees D. and Ingmer H. (1999) .ClpP participates in the degradation of misfolded protein in Lactococcus lactis. Mol Microbiol 31: 79-87.

Frees D., Vogensen F.K. and Ingmer H. (2003). Identification of proteins induced at low pH in Lactococcus lactis. Int J Food Microbiol 87: 293-300.

Fujihama S. and Yoneyama T. (1994). Response of rhizobium freda to osmotic shock inter relationships between K+, Mg2+ glutamate and homospermidine . Microbiology. 140:1909-1916.

Fuller R. (1992) .Probiotics in man and animals .J Appl Bacteriol. 66(5):365-78

G

Galinski E. A. and Truper H. G. (1994). Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol . Rev. 15:95-108.

Giard J-C., Verneuil N., Auffray Y., Hartke A. (2002). Characterisation of genes homologous to the general stress-inducible gene gls24 in Enterrococcus faecalis and Lactococcus lactis. FEMS Microbiol. Let. 206: 235-239.

Glaasker E., Koning W.N. and Poolman B. (1993).Osmotic regulation of intracellular solute pools in Lactococcus plantarum .J .Bactreriol . 178:575-582.

Page 100: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Références bibliographiques  

 

87

Glaasker E., Koning W.N. and Poolman B. (1996a).Glycine betaine fluxes in Lactobacillus plantarum during osmostasis and hyper and hypo osmotic shock. J Biol Chem.271(17):10060-5.

Glaasker E., Koning W.N. and Poolman B. (1996b).Osmotic regulation of intracellular solute pools in Lactobacillus plantarum. J Bacteriol. 178(3):575-82.

Glaasker E., Heuberger E. H., Konings W. N. and Poolman B. (1998). Mechanism of osmotic activation of the quaternary ammonium compound transporter (QacT) of Lactobacillus plantarum . J Bacteriol. 180(21): 5540-6.

Gordin B.R. and Gorbach S.L. (1992). Probiotics for humans. Probiotics, the scientific basis, 355-376.

Gouffi Belhabich Kamila. (1998). Osmoprotection sans accumulation de l'osmoprotecteur : caractérisation du phénomène chez Sinorhizobium meliloti Thèse doctorat. Université de Rennes

Guedon E., Jamet E. and Renault P. (2002) .Gene regulation in Lactococcus lactis: the gap between predicted and characterized regulators. Antonie Van Leeuwenhoek 82: 93-112.

Guillot A., Obis D. and Mistou M.Y. (2000) .Fatty acid membrane composition and activation of glycine bataine transport in Lactococcus lactis subjected to osmotic stress. International Journal of Food Microbiology. 55:47-51.

Gyaneshwar P., Paliy O., McAuliffe J., Popham D. L., Jordan M. I. and Kustu S. (2005). Sulfur and nitrogen limitation in Escherichia coli K-12: specific homeostatic responses. J Bacteriol 187: 1074-90.

H

Hartke A., Bouche S., Gansel X., Boutibonnes,P. and Auffray Y. (1994). Starvtion-induced stress resistance in Lactococcus lactis subsp. lactis IL1403. Appl Environ Microbiol 60: 3474-3478.

Hartke A., Bouche S., Giard J.C., Benachour A., Boutibonnes P., Auffray Y. (1996) The lactic acid stress response of Lactococcus lactis subsp. lactis. Cur. Microbiol. 33: 194-199.

Hartke A., Frere J., Boutibonnes P. and Auffray Y. (1997).Differential induction of the chaperonin GroEL and the Co-chaperonin GroES by heat, acid, and UV-irradiation in Lactococcus lactis subsp. lactis. Curr Microbiol 34: 23-26.

Hecker M., Schumann W. and Volker U. (1996). Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol 19: 417-428.

Hengge-Aronis R. (2002) .Recent insights into the general stress response regulatory network in Escherichia coli. J. Mol. Microbiol. Biotechnol. 4(3):341-6.

Hoefel, D., Grooby, W.L., Monis, P.T., Andrews, S. et Saint , C.P. (2003) A comparative study of carboxyfluorescein diacetate and carboxyfluorescein diacetate succinimidyl ester as indicators of bacterial activity. Journal of Microbiological Methods 52: 379-388.

I

Ingmer H., Vogensen F.K., Hammer K. and Kilstrup M. (1999). Disruption and analysis of the clpB, clpC, and clpE genes in Lactococcus lactis: ClpE, a new Clp family in gram-positive bacteria. J Bacteriol .181: 2075-2083.

Isom L.L., Khambatta Z.S., Moluf J.L., Akers D.F. and Martin S.E. (1995) .Filament formation in Listeria monocytogenes .J. Food Protect. 9: 1031-1033.

Page 101: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Références bibliographiques  

 

88

K

Kappes R.M., Kempf B., Bremer E. (1996).Three transport systems for the osmoprotectantGlycine betaine operate in Bacillus subtilis: characterization of OpuD, J. Bacteriol. 178:5071-5079.

Karam N-E. (1995). Constitution d’un souchier de bactéries lactiques à intérêtbiotechnologique : étude biochimique et moléculaire. Thèse de doctorat d’état. Université d’Oran.

Karam N.E. and Zadi-Karam H. (2006). Bactéries lactiques du lait de chamelle d’Algérie : mise en évidence de souches de Lactococcus résistantes au sel. Tropicultura. 24 :153-156

Kell D. B., Kaprelyants A. S., Weichart D. H., Harwood C. R. and Barer M. R.(1998). Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie Leeuwenhoek. 73:169–187.

Kempf B. and Bremer E. (1998) .Uptake and synthesis of compatible solutes as microbial stress response to high-osmolality environments.Arch Microbiol. 170(5):319-30.

Kets E.P.W. and de Bont J.A.M. (1996). Protective effect of betaine on survival of Lactobacillus plantarum subjected to drying .FEMS Microbiol.Lett. 116:251-256.

Kilstrup M., Jacobsen S., Hammer K. and Vogensen F.K. (1997).Induction of heat-shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis. Appl. Environ. Microbiol. 63 : 1826-1837.

Kim S.G. and Batt C.A. (1993). Cloning and sequencing of the Lactococcus lactis subsp. lactis groESL operon. Gene .127: 121-126.

Kinne R.K. (1993). The role of organic osmolytes in osmoregulation: from bacteria to mammals. The Journal of experimental zoology .265(4):346-55.

Klaenhammer R. and O’Sulliver D.J.(1993). Rapid Mini-prep Isolation of High-quality plasmid DNA from Lactococcus and Lactobacillus. Appl environmental Microbiology.59: pp 2730-2733.

Ko R., Smith L. T. and G. M. Smith.(1994).Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J Bacteriol. 176 (2):426-31;

Koch A.L. (1984). Shrinkage of growing Escherichia coli cells by osmotic challenge. J Bacteriol. 159(3): 919-24.

Koch B., Kilstrup M., Vogensen F.K. and Hammer K. (1998). Induced levels of heat shock proteins in a dnaK mutant of Lactococcus lactis. J Bacteriol 180: 3873-3881.

Knoess K.H.; Makhudum A.J., Rafiq M. and Hafeez M. (1986). Potentiel laitier de la chamelle, Rev. Mond de Zoot. n.g 57 :11-21.

Kunji E.R.S., Ubbink T., Matin A., Poolman B. and Konings, W.N. (1993). Physiological responses of Lactococcus lactis ML3 to alterning conditions of growth and starvation. Arch Microbiol 159: 372-379.

L

Laemmeli U.K. (1970) .Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature .227:680-685.

Larsen P.I., sydnes L.k., Landflad B. et Strom A.R. (1987) .osmoregulation in Escherichia coli by accumulation of organic solutes: betaines, glutamic acid and trehalose. Arch.Microbial. 147, pp1-7.

Page 102: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Références bibliographiques  

 

89

Lavermicocca P., Valerio F., Evidente A., Lazzaroni S., Corsetti A. and Gobbetti M. (2000). Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B .Appl Environ Microbiol. 66(9): 4084-90.

Lemay M.J., Rodrigue N., Gariepy C. and Saucier L. (2000). Adaptation of Lactobacillus alimentarius to environmental stresses . Int J Food Microbiol .55 (1-3) :249-53.

Le Rudulier D., Strom A.R., Dandekar A.M., Smith L.T. and Valentine R.C. (1984). Molecular biology of osmoregulation.Science. 224:1064-1068.

Le Rudulier D. and Bouillard L. (1993) .Glycine betaine, an osmotic effector in Klebsiella pneumoniae and other members of the Enterobacteriaceae. Appl Environ Microbiol. 46(1):152–159.

Le Rudulier D. (1993). L’osmoregulation chez les bactéries : aspect génétique et physiologique. Bull. Soc. Fr. Microbiol. 8(3):167-169.

Lindgren S.E. and Dobrogosz W.J. (1998). Antagonistic activities of lactic acid bacteria in food and feed fermentation. FEMS MICROBIOL REV. 7( 1-2) :149-63.

Lipper K. and Galinski E. A. (1992) .Enzyme stabilization by ectoine-type compatible solutes: protection against heating , freezing and drying.

Lopez-Garcia P. and Forterre P. (2000). DNA topology and the thermal stress response, a tale from mesophiles and hyperthermophiles. Bioessays 22: 738-46.

Lorca G. L. and G. Font de Valdez (1999) .The effect of suboptimal growth temperature and growth phase on resistance of Lactobacillus acidophilus to environmental stress .Cryobiology 39 (2):144-9.

Lozach E. (2001) .Le sel et les micro-organismes. Thèse de doctorat, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 98p.

M

Magnusson J., Strom K., Roos S., Sjogren J. and Schnurer J. (2003). Broad and complexe antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiol Lett. 219 (1): 129-35

Marceau A., Zagorec M. and Champomier-Verges M. C. (2003). Positive effect of growth at suboptimal temperature and high salt concentration on long term survival of Lactobacillus sakei .Res Microbiol .154(3): 37-42.

Martinez-Murcia A. J., Acinas S. G. and Rodriguez-Valera F. (1995). Evaluation of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hypersaline environments. FEMS Microbiology Ecology. 17(4):247-255.

Mary I. (2003). Mécanismes moléculaires de la réponse aux stress environnementaux chez la cyanobactérie marine Prochlorococcus. Thèse de Doctorat Université de Rennes.

Measures J.C (1975). Role of amino acids in osmoregulation in non-halophilic bacteria. Nature. 257, 398–400.

Mehaia M.A. (1995). The fat globule size distribution in camel, goat, ewe and cow milk. Milchwisenschaft. 50, 260-263.

Meury J. (1988). Glycine betaine reverses the effects of osmotic stress on DNA replication and cellular division in Escherichia coli. Arch. Microbiol. 149: 232-239.

Page 103: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Références bibliographiques  

 

90

Mofredj A., Balhoul H. and Chamet C. (2007). Lactococcus lactis: non pathogène opportuniste Médecine et maladie infectieuse. 37: 200-207.

Mogk A., Homuth G., Scholz C., Kim L., Schmid F.X. and Schumann W. (1997). The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. Embo J. 16: 4579-4590.

Mogk A., Volker A., Engelmann S., Hecker M., Schumann W. and Volker U. (1998). Nonnative proteins induce expression of the Bacillus subtilis CIRCE regulon. J Bacteriol 180: 2895-2900.

Molenaar D., Hagting A., Alkema H., Driessen A.J. and Konings W.N. (1993). Characteristics and osmoregulatory roles of uptake systems for proline and glycine betaine in Lactococcus lactis. J. Bacteriol. 175 : 5438-5444.

Monnet V. (1993). Les peptidases des lactocoques. Le lait .73:97-108.

Moritz B., Striegel K., de Graaf A. A. and Sahm H. (2002). Changes of pentose phosphate pathway flux in vivo in Corynebacterium glutamicum during leucine-limited batch cultivation as determined from intracellular metabolite concentration measurements. Metab Eng. 4: 295-305.

Moslah m. (1994). La production laitière du dromadaire en Tunisie. Actes du Colloque : "Dromadaires et chameaux animaux laitiers", 24-26-octobre, Nouakchott, Mauritanie.

Motlagh A. M., Johson M. C. and Ray B. (1991). Viability loss of food born pathogens by starter cultures metabolites. FEMS Microbiol Rev. 2 :131-149.

Mykytczuk N. C., Trevors J. T., Leduc L. G. and Ferroni G. D. (2007). Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Prog Biophys Mol Biol 95: 60-82.

N

Nebe-Von-Caron G., S. P. J., Hewitt C.J., Powell J.R., Badley R.A. (2000). Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. Journal of microbiological methods. 42, 97-114.

Neidhardt F.C., Ingraham J.L. and Schaechter M. (1994). La régulation de l'expression des gènes: systèmes multigéniques et régulation globale (chapitre XIII). In Physiologie de la cellule bactérienne - Une approche moléculaire. Masson (ed). Paris, pp. 325-358.

Nikolaev Y.A., Mulyukin A.L., Stepanenko I.Y. and Registan G.I. (2006). Autoregulation of stress response in microorganisms. Microbiol 75(4):420–426.

O

O’Byrne C.P. and Booth I.R. (2002) .Osmoregulation and its importance to food –borne microorganisms . Int JFood Microbiol 74 (3): 203- 16.

Obis D., Guillot A., Gripon J. C., Renault P., Bolotin A. and Mistou M. Y. (1999). Genetic and biochemical caracterisation of high-affinity betaine uptake system (BusA) in Lactococcus lactis reveals a new functional organization within bacterial ABC transporters. J Bacteriol. 181(20): 6238-46.

Page 104: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Références bibliographiques  

 

91

Obis D., Guillot A. and Mistou M. Y. (2001). Tolerance to high osmolality of Lactococcus lactis ssp. Lactis and cremoris is related to the activity of a betaine transport system. FEMS Microbiol. Lett. 202: 39-44.

O'Connell-Motherway M., van Sinderen D., Morel-Deville F., Fitzgerald G. F., Ehrlich S. D. and Morel P. (2000). Six putative two-component regulatory systems isolated from Lactococcus lactis subsp. cremoris MG1363. Microbiology 146 (Pt 4): 935-47.

Oliver J.D. (1993). Formation of viable but nonculturable cells. In Starvation in bacteria. Kjeileberg, S. (ed). New York and London: Plenum press, pp. 239-272.

Orla-Jensen S. (1919) .The lactic acid bacteria. Fred Host and Son, Copenhague. P

Patchet R.A., Kelly A.F., Kroll R.G. (1992). Effet of sodium chloride on the intracellular solute pools of Listeria monocytogenes. Appl. Environ. Microbiol., 58,3959-3963.

Perroud B. and Le Rudulier D. (1985) .Glycine betaine transport in Escherichia coli: osmotic modulation. J Bacteriol. 161(1): 393-401

Poolman B., Driessen A.J.M. and Konings W.N. (1987). Regulation of solute transport in streptococci by external and internal pH values. Microbiol. Rev. 51 : 498-508.

Poolman B., and Glaasker E. (1998). Regulation of compatible solute accumulation in bacteria. Mol Microbiol. 29(2):397-407.

Poolman B., Blount P., Folgering J.H., Friesen R.H., Moe P.C., van der Heide T. (2002) How do membrane proteins sense water stress? Mol. Microbiol. .44: 889-902.

Pot B. (2008). The taxonomy of lactic acid bacteria. In Corrieu, G. et Luquet, F.-M. (ed.). Bactéries lactiques, de la génétique aux ferments. Tec&Doc Lavoisier, Paris, 1-152.

Prorot A., C. Eskicioglu,. R. Droste, C. Dagot et P. Leprat (2008). Assessment of physiological state of microorganisms in activated sludge with flow cytometry: application for monitoring sludge production minimization, Journal of Industrial Microbiology and Biotechnology. 35: 1261-1268.

Potts M. (1994). Dessication tolerance of prokaryotes. Microbiol Rev .58 (4):755-805.

R

Ragoonanan V., Malsam J., Bond D. R. and Aksan A. (2008). Roles of membrane structure and phase transition on the hyperosmotic stress survival of Geobacter sulfurreducens. Biochim Biophys Acta 1778: 2283-90.

Rallu F. (1999). Etude de la résistance au stress acide de Lactococcus lactis. Thèse doctorale, Université Paris 6, Paris, France.

Ramet J.P. (1993). La technologie des fromages au lait de dromadaire (Camelus dromedarius).Etude F.A.O., Production et santé animales, 113.

Ramet J. P. (2003). Aptitude à la conservation et à la transformation fromagère du lait de chamelle. Actes de l'Atelier International sur : "Lait de chamelle pour l'Afrique", 5-8 novembre, Niamey, Niger. Rault A., Béal C., GhorbaL S., Ogier J.C., Bouix M. ( 2007). Multiparametric flow

cytometry allows rapid assessment and comparison of lactic acid bacteria viability after freezing and during frozen storage. Cryobiology, 55, 35-43.

Page 105: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Références bibliographiques  

 

92

Redon E. (2005). Identification des déterminants de l’expression génétique lors de l’adaptation de Lactococcus lactis au stress : intégration des données de transcriptome et de stabilité des ARN messagers. Thèse de doctorat. Université de Toulouse.

Richard D. et Gerald D. (1989). La production laitière des dromadaires Dankali (Ethiopie).Rev. Elev. Méd. Vét. Pays Trp., 42, 97-103.

Rius N., Sole M. and Lore J.G. (2008). Notion stress Acid-base response of bacterial suspensions. Journal of Industrial Microbiology & Biotechnology. 35(2):1093–1101.

Romeo Y., Bouvier J. and Gutierrez C. (2001). La réponse au stress osmotique des bactérieslactiques Lactococcus lactis et Lactobacillus plantarum. Le Lait. 81 : 49-55.

Romeo, Y, Bouvier, J., Gutierrez C. et Bouvier I. (2003). La réponse au stress osmotique des bactéries lactiques. pp. 645-661. in Minéraux et produits laitiers, F.Gaucheron ed, Tech & Doc.

Rosetti G. and Congiu S. (1955). Zootechnical and veterinary investigations on the domestic animals of Somalia. Mogadishu: Ispettorato Veterinario,. Amministrazione Fiduciaria Italiana della Somalia. 207 pp., 1955.

Ryu Y. G., Kim E. S., Kim D. W., Kim S. K., and Lee K. J. (2007). Differential stringent responses of Streptomyces coelicolor M600 to starvation of specific nutrients. J Microbiol Biotechnol 17: 305-12. 

S

Saad D. (1997) Mise en évidence de Lactococcus lactis résistantes à 7.5% de NaCl . Mémoire de D.E.S. Université d’Oran.

Sanders J.W., Venema G., Kok J. and Leenhouts K. (1998) .Identification of sodium chloride-regulated promoter in Lactococcus lactis by single-copy chromosomal fusion with a reporter gene. Mol.Gen.Genet., 257: 681-685.

Sandine W.E., Radich P.C. and Elliker P.R. (1972) .Ecology of the lactic streptococci. J. Milk Food Technol. 35 : 176-184.

Santoro M. M., Liu Y., M. Khan S., Hou L. X. and Bolen D. W.(1992). Increased thermal stability of proteins in the presence of naturally occurring osmolytes. Biochemestry. 31(23):5278-83.

Sawaya W.N,Khalil J.K.,Al-Shalhat A.F and Al-Mohammed H.(1984). Chemical composition and nutritional quality of camel milk. Journal of Food Science.49: 744-747.

Schleifer K.H., Kraus J., Dvorak C., Kilpper-Balz R., Collins M.D. and Fischer W. (1985). Transfer of Streptococcus lactis and related streptococci to the genus Lactococcus. gen. nov. Appl. Microbiol. 6 :183-195.

Schleifer K.H. (1987). Recent changes in the taxonomy of lactic acid bacteria. FEMS Microbiol. Rev. 46: 201-203.

Schulz A. and Schumann W. (1996). hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. J Bacteriol 178: 1088-1093.

Sleator R. D. and Hill C.(2002). Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev. 26(1):49-71.

Selkh A. (1995) .Contribution à l’étude des protéines et des bactéries lactiques du lait de chamelle de Timimoun. Mémoire de DES. Université d’Oran. Seruto S., Chillemi R., Morone R., Patti A. and Fiatteli M. (1989). Dragendroff positive

compounds of mediterranean red algae . Biochem Systematic Ecol. 17: 5610.

Page 106: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Références bibliographiques  

 

93

Smelt J. P. P. M., Otten G.D. and Bos A.P. (2002). Modelling the effect of sublethal injury on the distribution of the lag times of individual cells of Lactobacillus plantarum. International journal of food microbiology, 73, 207-212.

Smith L.T., Pocard J.A, Bernard T. and Le Rudulier D. (1988). Osmotic/control of glycine betaine biosynthesis and degradation in Rhizobium meliloti. J Bacteriol. 170: (7):3143-9.

Stiles M.E. (1996) .Biopreservation by lactic acid bacteria. Antonie van Leeuw. 70: 331-340.

Stiles M. E. and W. H. Holzapfel (1997) .Lactic acid bacteria of food and their current taxonomy .Int J food Microbiol .36.(1): 1-29.

Stuart M.R., Chou L.S. and Weimer B.C. (1999). Influence of carbohydrate starvation and arginine on culturability and amino acid utilization of Lactococcus lactis subsp. lactis. Appl. Env. microbiol. 65: 665-673.

Sugimoto S., Abdullah Al M. and Sonomoto K. (2008). Molecular chaperones in lactic acid bacteria: physiological consequences and biochemical properties. J Biosci Bioeng 106: 324-36.

Sukharev S. (1999) .Mechanosensitive channels in bacteria as membrane tension reporters. The FASEB J., 13: 55-61.

Svensater G., Sjogreen B. and Hamilton I.R. (2000). Multiple stress responses in Streptococcus mutans and the induction of general and stress-specific proteins. Microbiology. 146 ( Pt 1): 107-117.

T

Tatzelt J., Prusiner S. B. and Welch W. J.(1996). Chemical chaperones interfere with the formation of scrapie prion protein. EMBO J. 15:6363–6373.

Terzaghi B.E. and Sandine W.E.(1975). Improved medium for lactic streptococci and their bacteriophages. Applied Microbiology. 29:807-813.

Touze T. (2000).Osmoregulation chez Erwinia chrysanthemi: mise en évidence de la spécificité d’action des osmoprotecteurs Thèse de doctorat, Université de Rennes, France.

Troll W. and Lindsley J. (1955) .A photometric method for the determination of proline. J .Bio

chem.215: 655-660. Timasheff S. N. (1993) .The controle of protein stability and association by weak interactions with

water : how do solvents affect these processes . Annu Rev Biomol Struc . 22:67-97.

V

Vandamme P., Pot B., Gillis M., de Vos P., Kersters K. and Swings J. (1996). Polyphasictaxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60: 407-438.

Van Der Heide T. and B. Poolman (2000). Glycine bétaïne transport in Lactococcus lactis is osmotically regulated at the level of expression and translocation activity .J Bacteriol . 182(1): 203-6.

Van Asseldonk M., Simons A., Visser H., de Vos W.M. and Simons G. (1993). Cloning, nucleotide sequence, and regulatory analysis of the Lactococcus lactis dnaJ gene. J Bacteriol 175: 1637-1644.

Page 107: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Références bibliographiques  

 

94

Vijaranakul U., Nadakavukaren M. J., de Jonge B. L., Wilkinson B. J., and Jayaswal R. K. (1995) .Increased cell size and shortened peptidoglycan interpeptide bridge of NaCl-stressed Staphylococcus aureus and their reversal by glycine bétaïne .J Bacteriol. 177(17): 5116-21.

W

Wangoh J., Farah Z. and Puhan Z. (1998 ). Composition of Milk from 3 Camels(Camelus dromedarius) Breeds in Kenya during Lactation. Milchwissenschaft, 53, 136-139.

Whitaker R.D. and Batt C.A. (1991) .Characterization of the heat shock response in Lactococcus lactis subsp. lactis. Appl Environ Microbiol 57: 1408-1412.

Wouters J.A., Jeynov B., Rombouts F.M., de Vos W.M., Kuipers O.P., Abee T. (1999) Analysis of the role of 7 kDa cold-shock proteins of Lactococcus lactis MG1363 in cryoprotection. Microbiology. 145: 3185-3194.

Wouters J.A., Mailhes M., Rombouts F.M., de Vos W.M., Kuipers O.P., Abee T. (2000a) Physiological and regulatory effects of controlled overproduction of five cold shock proteins of Lactococcus lactis MG1363. Appl. Environ. Microbiol. 66: 3756-3763.

Wouters J.A., Rombouts F.M., Kuipers O.P., de Vos W.M., Abee T. (2000b) The role of cold-shock proteins in low-temperature adaptation of food-related bacteria. Syst. Appl. Microbiol. 23: 165-173.

Wouters J.A., Frenkiel H., de Vos W.M., Kuipers O.P., Abee T. (2001) Cold shock proteins of Lactococcus lactis MG1363 are involved in cryoprotection and in the production of cold-induced proteins. Appl. Environ. Microbiol. 67: 5171-8.

X

Xu H. S., Roberts N., Singleton F. L., Attwell R. W., Grimes D. J. and Colwell R. R.(1982). Survival and viability of non culturable Escherichia coli and Vibrio cholerae in the marine environemment. Microbial Ecol.8:313-323.

Y

Yagil R. (1982). Camels and Camel Milk. FAO, Animal Production and Health, Paper N° 26, 1-69. Yagil R. and Etzion Z. (1980). Effect of drought conditions on the quality of camel milk. J. Dairy. Res., 47, 159-166.

Z

Zuber U. and Schumann W. (1994). CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J Bacteriol 176: 1359-1363.

Zadi-Karam H. (1998). Bactéries lactiques isolées du lait de Chamelus dromadarius. Etude microbiologique et biochimique, caractéristique technologique, élaboration de ferments lactiques mésophiles et fabrication de fromages. Thèse de Doctorat d’état. Université de Constantine.

Page 108: Page de garde - Université d'Oran 1 Ahmed Ben Bella

ANNEXE

Page 109: Page de garde - Université d'Oran 1 Ahmed Ben Bella

ANNEXE Milieu de culture M17 Milieu de base : � Peptone trypsique de caséine 2.50g � Peptone pepsine de viande 2.50g � Peptone papainique de soja 5.00g � Extrait de levure 2.50g � Extrait de viande 5.00g � Glycérophosphate de sodium 19.00g � Sulfate de magnésium 0.25g � Acide ascorbique 0.50g � Eau distillée qsp 950ml pH=7.2 Stérilisation à 120°C pendant 20mn Solution de lactose : � Lactose 5g � Eau distillée 50ml Stérilisation à 110°C pendant 15mn Lait écrémé : � Lait écrémé 10g � Extrait de levure 0.5g � Eau distillée 100ml Stérilisation à 110°C pendant 15mn Tampons Tampon de migration (pH=8.3) : � Tris 3.03g � SDS 14.4g � Glycérol 1g � Eau distillée 1000ml Tampon d’échantillon (pH=6.5) : � Tris 0.15g � SDS 0.4g � Glycérol 2g � Bleu de Bromophénol 0.01g � B-Mercaptoéthanol 0.05ml � Eau distillée qsp 100ml Tampon Tris- EDTA (pH=7.5) : � Tris HCl 50mM � EDTA 5mM Tampon TBE (pH=7.5) : � Tris HCl 0.09mM � EDTA 2.08mM � Acide Borique 0.09mM Tampon de charge � Bleu de Bromophénol 25% � Glycérol ou saccharose 40%

Page 110: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Solutions Solution de coloration : � Bleu de coomassie R250(Merk) 0.25g � Méthanol.H2O (V/V) 90ml � Acide acétique 10ml Solution de décoloration : � Méthanol.H2O (V/V) 900ml � Acide acétique 100ml Réactif Réactif de Bradford : � Bleu de coomasie G250(Merck) 10mg � Acide orthophosphorique 10ml � Ethanol 95% 5ml � Eau distillée qsp 100ml Solvant pour la chromatographie sur couche mince : � Butanol 80ml � Acide acétique 20ml � Eau distillée 20ml Composition du mélange utilisé en dosage de proline : � Acide acétique 30ml � Acide orthophosphorique 8ml � Eau distillée 12ml  

 

 

 

 

 

 

 

 

Page 111: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Résumé : Nous avons étudié l’effet du stress osmotique sur des lactocoques de la collection du laboratoire et qui proviennent du lait de chamelle de la région de Timimoun (Sud Ouest algérien). Le suivi de la croissance de 20 souches en présence de différentes concentrations de NaCl(1.1 ,1.2 ,1.4,1.6 et1.7M) dans le milieu M17 a montré que ces souches pouvaient croitre dans un milieu salé d’une concentration allons jusqu'à 1.6M .L’un des paramètres étudié dans ce travail est la survie des souches face à des concentrations croissantes de NaCl jusqu'à aboutir à la CMI(concentration minimale inhibitrice). L’étude de l’osmoprotection par la proline et la glycine betaine a montrée que les deux molécules apportent une osmoprotection en présence de la CMI de NaCl ; la proline été sélectionné comme l’osmoprotecteur le plus efficace pour ces souches à une concentration de 70mM, la cinétique de croissance des souches dans les différentes conditions a confirmée ces résultats. L’activité acidifiante des souches est affecté par ce stress après culture en fermenteur, cette activité étant la principale activité métabolique de ces bactéries qui caractérise aussi leur l’état physiologique. Dans la deuxième partie de la thèse, nous avons sectionné deux souches (CHT1 et CHT4) pour mettre en évidence l’un des mécanisme de lutte contre ce stress qui est la synthèse de protéine chaperonne par l’électrophorèse SDS-PAGE, les résultats montrent que le sel induit des modifications qualitatives et quantitatives dans la synthèse protéique, les profils protéiques ont été analysés par un logiciel (image j) qui nous a permis de mettre en évidence les différences entre les profils selon le temps d’incubation des cellules dans les différentes concentrations de NaCl (24h,48h et72h) ; le deuxième mécanisme qui a été mis en évidence est l’accumulation de la proline dans les conditions de stress par chromatographie en couche mince et quantifié par un dosage spectrophotométrique. Par ailleurs, une comparaison du profil plasmidique des deux souches suggère que le contenu en ADN plasmidique est susceptible de subir des variations qualitatives en fonction de la concentration saline. Sur la base de la cytométrie en flux et les résultats obtenus avec le double marquage par c FDA et PI a bien quantifié l’hétérogénéité physiologique dans la population des bactéries lactique testées. Par conséquent, on peut conclure que la cytométrie en flux multiparamétrique était un outil excellent pour l'évaluation rapide de la viabilité cellulaire après exposition au stress osmotique. L’observation de l’état physiologique des cellules sous microscope à fluorescence, a permis de déduire que les cellules stressées sont rassemblées en agrégats avec une association en chainettes, ceci représente une caractérisation morphologique des bactéries stressées. Mots clés : Lactococcus- stress salin- osmoprotection- proline- protéines du stress- plasmide-cytométrie en flux

Page 112: Page de garde - Université d'Oran 1 Ahmed Ben Bella

Abstract: We studied the growth of 20 strains in saline M17 medium, M17 medium containing various concentrations of NaCl (1.1, 1.2, 1.4,1.6 et1.7M), these strains showed significant resistance to salt stress because they could grow in a medium salt concentration of 1.6M . We determined the minimal inhibitory concentration (MIC) for each strain. The study of osmoprotection by proline and glycine betaine has shown that the two molecules provide an osmoprotection in the presence of the MIC of NaCl, the proline was selected as the most effective osmoprotecteur these strains at a concentration of 70 mM. The growth kinetics of strains in different conditions has confirmed these results. The acidifying activity of the strains is affected by stress after culture in a fermenter, this activity is the main metabolic activity of the bacteria that also characterized their physiological state. In the second part of the thesis, we cut two strains (CHT1 and CHT4) to highlight one of the mechanism to fight against this stress is the synthesis of the chaperone protein by SDS-PAGE, the results show that salt induces qualitative and quantitative changes in protein synthesis, protein profiles were analyzed by software (image j) which allowed us to highlight the differences between the profiles according to time of incubation of cells in different concentration of NaCl (24, 48 et72h), the second mechanism that has been highlighted is the accumulation of proline in stress conditions by thin layer chromatography and quantified by a spectrophotometric assay. Furthermore, a comparison of plasmid profiles of two strains suggests that the plasmid DNA content is likely to undergo qualitative changes as a function of salt concentration. Based on flow cytometry and the results obtained with the double labeling with c FDA and PI has quantified the physiological heterogeneity in the population of lactic bacteria tested. Therefore, one can conclude that multiparameter flow cytometry was an excellent tool for rapid assessment of cell viability after exposure to osmotic stress. The observation of the physiological state of cells under a fluorescence microscope enabled us to deduce that the stressed cells are collected into aggregates with a silver chain association; this represents a morphological characterization of stressed bacteria. Keywords: Lactococcus-salt stress-proline- osmoprotection-stress protein-plasmid- flow cytometry

Page 113: Page de garde - Université d'Oran 1 Ahmed Ben Bella

:ملخص

حليب الإبل من منطقة المعزولة من lactococci بكثيرياالمن على جمع رثفاع فى ثرآىز الوسط الغدائى درسنا تأثير الإ، 1.2، 1.1(سلالات في وجود ترآيزات مختلفة من آلوريد الصوديوم 20رصد النمو ). جنوب غرب الجزائر(تيميمون 1.4،1.6 et1.7M (وسط في الM17 1.6 حتى ترآيز وسط ال هداهذه السلالات يمكن أن تنمو في أظهرت أنM . إحدى MICفي هذا العمل هو بقاء السلالات التي تواجه زيادة ترآيزات آلوريد الصوديوم للوصول إلى ثدرس الثىالمعلمات

).ترآيز المثبطة الحد الأدنى(في وجود osmoprotectionر أن الجزيئين توفالبرولين ومن البيتين جليكاين osmoprotectionوقد أظهرت دراسة

CMIين آما آلوريد الصوديوم ؛ تم اختيار البرول منosmoprotecteur 70ذه السلالات عند ترآيز هعلى الأآثر فعالية . mM هذا النشاط هو النشاط يعتبر،ثواجدها فى وسط غدائى مالح عند سلالات ى للر النشاط الحمضىتأث النتائجأآدت

.الفسيولوجية حالتهاتميز أيضاالتي ولرئيسي من هذه البكتيريا امن آلية مكافحة الإجهاد هو لتسليط الضوء على واحدة) CHT4و CHT1(سلالتين خثارحة، نفي الجزء الثاني من الأطرو

يسببها الملح ، البروتين انتاج تغييرات نوعية وآمية في ان هناك ، فقد بينت النتائجSDS-PAGEبواسطة البروتين انتاجفي ترآيزات البروثىنلت بين الموجودة سمح لنا لتسليط الضوء على الاختلافات بواسطة برنامج اثالبروتين وتحليل

هده وقد تم التعرف على الآلية الثانية هو تراآم البرولين فية مخثلفة المدحضانة الخلايا وعندمختلفة من آلوريد الصوديوم .الكروماتوغرافىا على الورق عن طرىقظروف ال

البلازميد من المرجح أن تخضع DNAمن سلالتين يشير إلى أن محتوى اثالبلازميدة لك، إن مقارنوعلاوة على ذ .لتغييرات نوعية بوصفها وظيفة من ترآيز الملح

. التي تم اختبارها كتريا الفسيولوجية للبعدم التجانس في نستنتج تم الحصول عليها بناء على التدفق الخلوي والنتائج التيخلية بعد التعرض آان أداة ممتازة للتقييم السريع للبقاء ال multiparametricيمكننا أن نستنتج أن التدفق الخلوي لذلك،

.ر الملحىتوتللخاصية من ، هذا يمثل لخلايا المجهدة ل في مجموعات البكتىريا تجميع نااستخلصللخلايا تحت المجهر ، بعد فحص

.المتؤترة بالتوتر الملحى لبكتيريالالخصائص المورفولوجية

قياس التدفق الخلوي-بلازميد -نيحلل البروتيالت -البرولين - osmoprotection الملح Lactococcus: آلمات البحث