39
Vous recevez aux urgences Pierre âgé de 62 ans, adressé par sa famille pour troubles de la conscience. Sa femme vous signale avoir retrouvé son mari au domicile, inconscient, avec impossibilité de le réveiller. Le pa@ent a par ailleurs vomi à plusieurs reprises. Ses antécédents sont représentés par une hypertension artérielle et une fibrilla@on atriale. Son traitement comporte : APROVEL, COUMADINE. A l’examen, le pa@ent ouvre les yeux et gémit à la s@mula@on nocicep@ve sans réponse motrice. Les pupilles sont symétriques et réac@ves. T°=39,3°C, PA=90/40 mmHg, FC=110/min, SpO2 à 91% en AA, FR=30/min. Les bruits du cœur sont réguliers, sans souffle. Il existe une raideur de nuque. L’ausculta@on thoracique est sans par@cularité. L’examen cutané retrouve des marbrures des genoux, Il n’y a pas de lésion purpurique. QUESTION 1 Quels diagnos@cs suspectezvous ? Cas clinique N°2, Pierre 62 ans

Cas clinique N°2, -‐ Pierre 62 ans

  • Upload
    voxuyen

  • View
    236

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Cas clinique N°2, -‐ Pierre 62 ans

Vous   recevez   aux   urgences   Pierre   âgé   de   62   ans,   adressé   par   sa   famille   pour  troubles   de   la   conscience.   Sa   femme   vous   signale   avoir   retrouvé   son  mari   au  domicile,  inconscient,  avec  impossibilité  de  le  réveiller.  Le  pa@ent  a  par  ailleurs  vomi  à  plusieurs  reprises.    Ses   antécédents   sont   représentés   par   une   hypertension   artérielle   et   une  fibrilla@on  atriale.  Son  traitement  comporte  :  APROVEL,  COUMADINE.      A  l’examen,  le  pa@ent  ouvre  les  yeux  et  gémit  à  la  s@mula@on  nocicep@ve  sans  réponse   motrice.   Les   pupilles   sont   symétriques   et   réac@ves.   T°=39,3°C,  PA=90/40   mmHg,   FC=110/min,   SpO2   à   91%   en   AA,   FR=30/min.   Les   bruits   du  cœur  sont  réguliers,  sans  souffle.  Il  existe  une  raideur  de  nuque.  L’ausculta@on  thoracique  est  sans  par@cularité.  L’examen  cutané  retrouve  des  marbrures  des  genoux,  Il  n’y  a  pas  de  lésion  purpurique.    

QUESTION  1  Quels  diagnos@cs  suspectez-­‐vous  ?    

Cas  clinique  N°2,  -­‐  Pierre  62  ans  

Page 2: Cas clinique N°2, -‐ Pierre 62 ans

QUESTION  1  Quels  diagnos@cs  suspectez-­‐vous  ?    

Ø   Méningite  bactérienne  :    

Ø Syndrome  infec@eux  avec  sepsis  sévère  -­‐  Fièvre  -­‐  hypotension  artérielle,  tachycardie,  marbrures  

 Ø Une  adeinte  méningée  

-­‐         Raideur  de  nuque  -­‐         Vomissements  

 Ø   Une  adeinte  encéphali@que  

-­‐           Coma  (Score  de  Glasgow=5)  

Mr  G.  Pierre  âgé  de  62  ans  

Page 3: Cas clinique N°2, -‐ Pierre 62 ans

Score de coma de Glasgow

Ouverture des yeux score Réponse motrice score Réponse verbale score

volontaire, spontanée 4 aux ordres 6 paroles orientées 5

sur ordres, au bruit 3 vers zone stimulée 5 paroles confuses 4

à la douleur 2 évitement 4 délire 3

pas de réponse 1 flexion MS-extension MI

3 capable deréponse simple/incompréhensible

2

extension MS etMI

2 pas de réponse 1

nulle 1

Page 4: Cas clinique N°2, -‐ Pierre 62 ans

QUESTION  2  Détaillez   votre   prise   en   charge   diagnos@que   et   thérapeu@que   concernant   la  méningite  au  cours  de  la  première  heure  ?    

Ø   An@biothérapie  en  urgence  :    -­‐   Après  réalisa@on  d’hémocultures  -­‐   Après  administra@on  de  Dexaméthasone  10mg   (0,15  mg/kg)  puis   toutes          les  6  heures  -­‐   Céphalosporine  de  3ème  généra@on  à  dose  méningée  :  

-­‐   Cekriaxone  :  100mg/kg/j  (en  2  injec@ons  à12  heures)    -­‐   Cefotaxime  :  bolus  50mg/kg  en  une  heure  puis  300mg/kg/j  IVSE  

Ø   Imagerie  cérébrale  (TDM)  -­‐  Recherche  d’une  contre-­‐indica@on  à  la  ponc@on  lombaire  

Ø     

Méningite  bactérienne  :    

Page 5: Cas clinique N°2, -‐ Pierre 62 ans

Etiologie des méningites purulentes en fonction de l’âge

Page 6: Cas clinique N°2, -‐ Pierre 62 ans
Page 7: Cas clinique N°2, -‐ Pierre 62 ans
Page 8: Cas clinique N°2, -‐ Pierre 62 ans

QUESTION  2  Détaillez   votre   prise   en   charge   diagnos@que   et   thérapeu@que   concernant   la  méningite  au  cours  de  la  première  heure  ?    

 Ø   Imagerie  cérébrale  (TDM)  normale  

 

Ø   Ponc@on  lombaire  :  -­‐   Après  antagonisa@on  de  la  Coumadine  (PPSB  +  vitamine  K1)*  -­‐   Examen  Cyto-­‐bactériogique  +  Biochimique  (protéinorachie  et  Glycorachie)  -­‐   Glycémie  capillaire  concomitante    

Page 9: Cas clinique N°2, -‐ Pierre 62 ans

QUESTION  3  Détaillez  votre  prise  en  charge  symptoma@que  ?    

Ø   Hospitalisa@on  en  réanima@on    Ø   Intuba@on  et  ven@la@on  mécanique  Ø   Expansion  volémique    +/-­‐  support  vasopresseur  Ø   Neuroprotec@on  –  lude  contre  l’HTIC:  

-­‐   Séda@on    -­‐   Posi@on  demi  assise  (30°C)  -­‐   Préven@on  des  ACSOS  -­‐   Monitorage  éventuel  de  la  PIC  -­‐   Isolement  neuro-­‐sensoriel  

NB  :  hypothermie  thérapeu@que  délétère  !  

Mr  G.  Pierre  âgé  de  62  ans  

Page 10: Cas clinique N°2, -‐ Pierre 62 ans
Page 11: Cas clinique N°2, -‐ Pierre 62 ans

Traitements  associés  •  An@épilep@que  en  cas  de  crise  convulsive  

–  Clonazepam  ou  Rivotril  (1  ou  2  injec@ons)  -­‐  Réanima@on    –  Phenytoine  ou  phenobarbital  IV,  éventuellement  mais  risque  hypotension  

artérielle  et  hypoperfusion  cérébrale    

•  Traitement  de  l’hypertension  intracrânienne  –  correc@on  d’une  PA  basse  :  remplissage  vasculaire,  drogues  inotropes    –  réduc@on  de  la  pression  intracrânienne.  Dans  les  formes  sévères  :  suréléva@on  de  

la  tête  à  20-­‐30°,  séda@on,  ven@la@on  mécanique.    –  Le  mannitol  en  bolus  unique  peut  être  proposé  en  situa@on  immédiatement  

menaçante.    

•  Lude  contre  les  désordres  hydro-­‐électriques,  la  fièvre  et  l’hyperglycémie  (ACSOS)  :  –  Apports  hydrosodés  conven@onnels  et  surveillance  natrémie  et  diurèse  –  Abaissement  de  la  température  si  HIC  sévère  ou  fièvre  mal  tolérée  –  Abaissement  de  la  glycémie  au  dessous  de  8,3  mmol/l  après  stabilisa@on  de  

l’hémodynamique  d’un  sepsis  sévère  de  l’adulte  par  insuline  IV  –  PCO2  entre  35  et  40  mmHg,  oxygène  correcte  

Page 12: Cas clinique N°2, -‐ Pierre 62 ans

QUESTION  4  A  Vous   recevez   le   résultat  de   la  ponc@on   lombaire   :   liquide   trouble,  3500  éléments  (98%  PNN),  protéinorachie=3g/l,  glycorachie=0,1  mmol/l,      ED  :  CGP  diplocoques  Recherche  an@gène  soluble  pneumocoque  (ou  PCR)  posi@ve.  Modifiez-­‐vous  votre  an@biothérapie  ini@ale  ?    

Mr  G.  Pierre  âgé  de  62  ans  

Ø   NON  Ø   Car  probable  méningite  à  pneumocoque    

 -­‐  Poursuite  C3G  :  Cefotaxime  300mg/kg/j  IVSE    -­‐  Poursuite  dexaméthasone  10mg/6h  pendant  4  jours  

Page 13: Cas clinique N°2, -‐ Pierre 62 ans

QUESTION  5A  Quel   est   l’intérêt   d’injecter   des   cor@coïdes   avant   ou   même   temps   que   les  an@bio@ques  dans  la  méningite  à  pneumocoque  de  l’adulte  ?        Ques@on  5B  Vous  voyez  le  pa@ent  deux  heures  après  l’injec@on  d’an@bio@que,  au  retour  du  scanner.  Il  n’y  a  pas  eu  d’injec@on  de  cor@coïdes  :  que  faites-­‐vous  ?    

Mr  G.  Pierre  âgé  de  62  ans  

Page 14: Cas clinique N°2, -‐ Pierre 62 ans

Efficacité  de  la  dexaméthasone  

•  DXM  :  –  î Prod.  cytokines  pro  

inflammatoires  par  monocytes,  cellules  dendri@ques,  astrocytes,  PN  

–  ì Prod.  Cytokines  an@-­‐inflammatoires  ,  IL-­‐10  

–  Inhibe  prod.  ROS  par  les  leucocytes  

–  î Adhérence  leucocytaire  –  î Prod.  TNF-­‐α  et  IL-­‐1  cellules  

endothéliales  microvasculaires  et  î expression  ICAM-­‐1   Modèle expérimental :

î TNF-α, lactate, NO î oedème cérébral et GB

B. Mook-Kanamori et al Clin Microbiol. Rev 2011,24:557

Page 15: Cas clinique N°2, -‐ Pierre 62 ans

•  Plan de l’étude •  Randomisée

•  301 adultes avec méningite bactérienne

•  Dexamethasone –  10 mg qid, 4j vs placebo

–  Débutée avant ou lors de l’injection antibiotique •  amoxicilline 2g x 6 (77 %)

•  C3G injectable (8%)

The New England

Journal

of

Medicine

Copyr ight © 2002 by the Massachusett s Medical Society

VOLUME 347

N

OVEMBER

14, 2002

NUMBER 20

N Engl J Med, Vol. 347, No. 20

·

November 14, 2002

·

www.nejm.org

·

1549

DEXAMETHASONE IN ADULTS WITH BACTERIAL MENINGITIS

J

AN

DE

G

ANS

, P

H

.D.,

AND

D

IEDERIK

VAN

DE

B

EEK

, M.D.,

FOR

THE

E

UROPEAN

D

EXAMETHASONE

IN

A

DULTHOOD

B

ACTERIAL

M

ENINGITIS

S

TUDY

I

NVESTIGATORS

*

A

BSTRACT

Background

Mortality and morbidity rates are highamong adults with acute bacterial meningitis, espe-cially those with pneumococcal meningitis. In studiesof bacterial meningitis in animals, adjuvant treatmentwith corticosteroids has beneficial effects.

Methods

We conducted a prospective, randomized,double-blind, multicenter trial of adjuvant treatmentwith dexamethasone, as compared with placebo, inadults with acute bacterial meningitis. Dexametha-sone (10 mg) or placebo was administered 15 to 20minutes before or with the first dose of antibiotic andwas given every 6 hours for four days. The primaryoutcome measure was the score on the Glasgow Out-come Scale at eight weeks (a score of 5, indicating afavorable outcome, vs. a score of 1 to 4, indicating anunfavorable outcome). A subgroup analysis accordingto the causative organism was performed. Analyseswere performed on an intention-to-treat basis.

Results

A total of 301 patients were randomly as-signed to a treatment group: 157 to the dexametha-sone group and 144 to the placebo group. The base-line characteristics of the two groups were similar.Treatment with dexamethasone was associated witha reduction in the risk of an unfavorable outcome (rel-ative risk, 0.59; 95 percent confidence interval, 0.37 to0.94; P=0.03). Treatment with dexamethasone wasalso associated with a reduction in mortality (relativerisk of death, 0.48; 95 percent confidence interval, 0.24to 0.96; P=0.04). Among the patients with pneumo-coccal meningitis, there were unfavorable outcomesin 26 percent of the dexamethasone group, as com-pared with 52 percent of the placebo group (relativerisk, 0.50; 95 percent confidence interval, 0.30 to 0.83;P=0.006). Gastrointestinal bleeding occurred in twopatients in the dexamethasone group and in five pa-tients in the placebo group.

Conclusions

Early treatment with dexamethasoneimproves the outcome in adults with acute bacterialmeningitis and does not increase the risk of gastroin-testinal bleeding. (N Engl J Med 2002;347:1549-56.)

Copyright © 2002 Massachusetts Medical Society.

From the Department of Neurology, Academic Medical Center, Amster-dam. Address reprint requests to Dr. de Gans at the Academic Medical Cen-ter, University of Amsterdam, Department of Neurology H2, P.O. Box 22660,1100 DD Amsterdam, the Netherlands, or at [email protected].

*The investigators who participated in the European Dexamethasone inAdulthood Bacterial Meningitis Study are listed in the Appendix.

HE mortality rate among adults with acutebacterial meningitis and the frequency ofneurologic sequelae among those who sur-vive are high, especially among patients with

pneumococcal meningitis.

1,2

Unfavorable neurologicoutcomes are not the result of treatment with inappro-priate antimicrobial agents, since cerebrospinal fluidcultures are sterile 24 to 48 hours after the start of an-tibiotic therapy.

3

Studies in animals have shown thatbacterial lysis, induced by treatment with antibiotics,leads to inflammation in the subarachnoid space, whichmay contribute to an unfavorable outcome.

4,5

Thesestudies also show that adjuvant treatment with antiin-flammatory agents, such as dexamethasone, reducesboth cerebrospinal fluid inflammation and neurologicsequelae.

4,5

Many controlled trials have been performed to de-termine whether adjuvant corticosteroid therapy isbeneficial in children with acute bacterial meningitis.The results, however, do not point unequivocally to abeneficial effect. A meta-analysis of randomized con-trolled trials performed since 1988 showed a beneficialeffect of adjunctive dexamethasone therapy in terms ofsevere hearing loss in children with

Haemophilus influ-enzae

type b meningitis and suggested a protective ef-fect in those with pneumococcal meningitis if the drugwas given before or with parenteral antibiotics.

6

Thereare few data on the use of adjunctive dexamethasonetherapy in adults with bacterial meningitis. One large,prospective, randomized trial (neither placebo-con-trolled nor double-blind) showed a benefit of dex-amethasone therapy in a subgroup of patients withpneumococcal meningitis.

7

The paucity of data pre-cludes a recommendation that dexamethasone be ad-

T

The New England Journal of Medicine Downloaded from nejm.org on May 12, 2013. For personal use only. No other uses without permission.

Copyright © 2002 Massachusetts Medical Society. All rights reserved.

de Gans & van de Beek N Engl J Med 2002

Page 16: Cas clinique N°2, -‐ Pierre 62 ans

de Gans & van de Beek N Engl J Med 2002

The New England

Journal

of

Medicine

Copyr ight © 2002 by the Massachusett s Medical Society

VOLUME 347

N

OVEMBER

14, 2002

NUMBER 20

N Engl J Med, Vol. 347, No. 20

·

November 14, 2002

·

www.nejm.org

·

1549

DEXAMETHASONE IN ADULTS WITH BACTERIAL MENINGITIS

J

AN

DE

G

ANS

, P

H

.D.,

AND

D

IEDERIK

VAN

DE

B

EEK

, M.D.,

FOR

THE

E

UROPEAN

D

EXAMETHASONE

IN

A

DULTHOOD

B

ACTERIAL

M

ENINGITIS

S

TUDY

I

NVESTIGATORS

*

A

BSTRACT

Background

Mortality and morbidity rates are highamong adults with acute bacterial meningitis, espe-cially those with pneumococcal meningitis. In studiesof bacterial meningitis in animals, adjuvant treatmentwith corticosteroids has beneficial effects.

Methods

We conducted a prospective, randomized,double-blind, multicenter trial of adjuvant treatmentwith dexamethasone, as compared with placebo, inadults with acute bacterial meningitis. Dexametha-sone (10 mg) or placebo was administered 15 to 20minutes before or with the first dose of antibiotic andwas given every 6 hours for four days. The primaryoutcome measure was the score on the Glasgow Out-come Scale at eight weeks (a score of 5, indicating afavorable outcome, vs. a score of 1 to 4, indicating anunfavorable outcome). A subgroup analysis accordingto the causative organism was performed. Analyseswere performed on an intention-to-treat basis.

Results

A total of 301 patients were randomly as-signed to a treatment group: 157 to the dexametha-sone group and 144 to the placebo group. The base-line characteristics of the two groups were similar.Treatment with dexamethasone was associated witha reduction in the risk of an unfavorable outcome (rel-ative risk, 0.59; 95 percent confidence interval, 0.37 to0.94; P=0.03). Treatment with dexamethasone wasalso associated with a reduction in mortality (relativerisk of death, 0.48; 95 percent confidence interval, 0.24to 0.96; P=0.04). Among the patients with pneumo-coccal meningitis, there were unfavorable outcomesin 26 percent of the dexamethasone group, as com-pared with 52 percent of the placebo group (relativerisk, 0.50; 95 percent confidence interval, 0.30 to 0.83;P=0.006). Gastrointestinal bleeding occurred in twopatients in the dexamethasone group and in five pa-tients in the placebo group.

Conclusions

Early treatment with dexamethasoneimproves the outcome in adults with acute bacterialmeningitis and does not increase the risk of gastroin-testinal bleeding. (N Engl J Med 2002;347:1549-56.)

Copyright © 2002 Massachusetts Medical Society.

From the Department of Neurology, Academic Medical Center, Amster-dam. Address reprint requests to Dr. de Gans at the Academic Medical Cen-ter, University of Amsterdam, Department of Neurology H2, P.O. Box 22660,1100 DD Amsterdam, the Netherlands, or at [email protected].

*The investigators who participated in the European Dexamethasone inAdulthood Bacterial Meningitis Study are listed in the Appendix.

HE mortality rate among adults with acutebacterial meningitis and the frequency ofneurologic sequelae among those who sur-vive are high, especially among patients with

pneumococcal meningitis.

1,2

Unfavorable neurologicoutcomes are not the result of treatment with inappro-priate antimicrobial agents, since cerebrospinal fluidcultures are sterile 24 to 48 hours after the start of an-tibiotic therapy.

3

Studies in animals have shown thatbacterial lysis, induced by treatment with antibiotics,leads to inflammation in the subarachnoid space, whichmay contribute to an unfavorable outcome.

4,5

Thesestudies also show that adjuvant treatment with antiin-flammatory agents, such as dexamethasone, reducesboth cerebrospinal fluid inflammation and neurologicsequelae.

4,5

Many controlled trials have been performed to de-termine whether adjuvant corticosteroid therapy isbeneficial in children with acute bacterial meningitis.The results, however, do not point unequivocally to abeneficial effect. A meta-analysis of randomized con-trolled trials performed since 1988 showed a beneficialeffect of adjunctive dexamethasone therapy in terms ofsevere hearing loss in children with

Haemophilus influ-enzae

type b meningitis and suggested a protective ef-fect in those with pneumococcal meningitis if the drugwas given before or with parenteral antibiotics.

6

Thereare few data on the use of adjunctive dexamethasonetherapy in adults with bacterial meningitis. One large,prospective, randomized trial (neither placebo-con-trolled nor double-blind) showed a benefit of dex-amethasone therapy in a subgroup of patients withpneumococcal meningitis.

7

The paucity of data pre-cludes a recommendation that dexamethasone be ad-

T

The New England Journal of Medicine Downloaded from nejm.org on May 12, 2013. For personal use only. No other uses without permission.

Copyright © 2002 Massachusetts Medical Society. All rights reserved.

The New England

Journal

of

Medicine

Copyr ight © 2002 by the Massachusett s Medical Society

VOLUME 347

N

OVEMBER

14, 2002

NUMBER 20

N Engl J Med, Vol. 347, No. 20

·

November 14, 2002

·

www.nejm.org

·

1549

DEXAMETHASONE IN ADULTS WITH BACTERIAL MENINGITIS

J

AN

DE

G

ANS

, P

H

.D.,

AND

D

IEDERIK

VAN

DE

B

EEK

, M.D.,

FOR

THE

E

UROPEAN

D

EXAMETHASONE

IN

A

DULTHOOD

B

ACTERIAL

M

ENINGITIS

S

TUDY

I

NVESTIGATORS

*

A

BSTRACT

Background

Mortality and morbidity rates are highamong adults with acute bacterial meningitis, espe-cially those with pneumococcal meningitis. In studiesof bacterial meningitis in animals, adjuvant treatmentwith corticosteroids has beneficial effects.

Methods

We conducted a prospective, randomized,double-blind, multicenter trial of adjuvant treatmentwith dexamethasone, as compared with placebo, inadults with acute bacterial meningitis. Dexametha-sone (10 mg) or placebo was administered 15 to 20minutes before or with the first dose of antibiotic andwas given every 6 hours for four days. The primaryoutcome measure was the score on the Glasgow Out-come Scale at eight weeks (a score of 5, indicating afavorable outcome, vs. a score of 1 to 4, indicating anunfavorable outcome). A subgroup analysis accordingto the causative organism was performed. Analyseswere performed on an intention-to-treat basis.

Results

A total of 301 patients were randomly as-signed to a treatment group: 157 to the dexametha-sone group and 144 to the placebo group. The base-line characteristics of the two groups were similar.Treatment with dexamethasone was associated witha reduction in the risk of an unfavorable outcome (rel-ative risk, 0.59; 95 percent confidence interval, 0.37 to0.94; P=0.03). Treatment with dexamethasone wasalso associated with a reduction in mortality (relativerisk of death, 0.48; 95 percent confidence interval, 0.24to 0.96; P=0.04). Among the patients with pneumo-coccal meningitis, there were unfavorable outcomesin 26 percent of the dexamethasone group, as com-pared with 52 percent of the placebo group (relativerisk, 0.50; 95 percent confidence interval, 0.30 to 0.83;P=0.006). Gastrointestinal bleeding occurred in twopatients in the dexamethasone group and in five pa-tients in the placebo group.

Conclusions

Early treatment with dexamethasoneimproves the outcome in adults with acute bacterialmeningitis and does not increase the risk of gastroin-testinal bleeding. (N Engl J Med 2002;347:1549-56.)

Copyright © 2002 Massachusetts Medical Society.

From the Department of Neurology, Academic Medical Center, Amster-dam. Address reprint requests to Dr. de Gans at the Academic Medical Cen-ter, University of Amsterdam, Department of Neurology H2, P.O. Box 22660,1100 DD Amsterdam, the Netherlands, or at [email protected].

*The investigators who participated in the European Dexamethasone inAdulthood Bacterial Meningitis Study are listed in the Appendix.

HE mortality rate among adults with acutebacterial meningitis and the frequency ofneurologic sequelae among those who sur-vive are high, especially among patients with

pneumococcal meningitis.

1,2

Unfavorable neurologicoutcomes are not the result of treatment with inappro-priate antimicrobial agents, since cerebrospinal fluidcultures are sterile 24 to 48 hours after the start of an-tibiotic therapy.

3

Studies in animals have shown thatbacterial lysis, induced by treatment with antibiotics,leads to inflammation in the subarachnoid space, whichmay contribute to an unfavorable outcome.

4,5

Thesestudies also show that adjuvant treatment with antiin-flammatory agents, such as dexamethasone, reducesboth cerebrospinal fluid inflammation and neurologicsequelae.

4,5

Many controlled trials have been performed to de-termine whether adjuvant corticosteroid therapy isbeneficial in children with acute bacterial meningitis.The results, however, do not point unequivocally to abeneficial effect. A meta-analysis of randomized con-trolled trials performed since 1988 showed a beneficialeffect of adjunctive dexamethasone therapy in terms ofsevere hearing loss in children with

Haemophilus influ-enzae

type b meningitis and suggested a protective ef-fect in those with pneumococcal meningitis if the drugwas given before or with parenteral antibiotics.

6

Thereare few data on the use of adjunctive dexamethasonetherapy in adults with bacterial meningitis. One large,prospective, randomized trial (neither placebo-con-trolled nor double-blind) showed a benefit of dex-amethasone therapy in a subgroup of patients withpneumococcal meningitis.

7

The paucity of data pre-cludes a recommendation that dexamethasone be ad-

T

The New England Journal of Medicine Downloaded from nejm.org on May 12, 2013. For personal use only. No other uses without permission.

Copyright © 2002 Massachusetts Medical Society. All rights reserved.

Page 17: Cas clinique N°2, -‐ Pierre 62 ans

Pas  d’intérêt  de  la  dexaméthasone  au  cours  de  la  méningite  bactérienne  au  Malawi  

•  Double  aveugle,  randomisée    •  Déxaméthasone  

–  16  mg  2x/j  x4  jours    

•  +  cekriaxone  •  Adultes  

–  90%  HIV  +  –  Score  de  Glasgow  moyen  =10,4  

+/-­‐2,8  

•  Pneumocoque  =  61  %  –  Cryptocoque  5%,  –  Pas  de  méningite  bactérienne  8  %  

•  Mortalité  globale  =  54  %  

Corticosteroids for Bacterial Meningitis in Sub-Sahar an Africa

n engl j med 357;24 www.nejm.org december 13, 2007 2447

at day 40 in the corticosteroid group becomes 1.09 (95% CI, 0.64 to 1.83).

The results of the intention-to-treat analysis and the predefined analyses for patients with proven and probable bacterial meningitis, proven bacte-rial meningitis, and pneumococcal meningitis in the corticosteroid trial are shown in Table 3. There were no differences in the rates of death, disability and death, or clinically detectable hearing loss at 40 days or in mortality at 10 days or at 6 months. Further exploratory analyses showed no evidence that corticosteroids were effective in any subgroup (Table S2 in the Supplementary Appendix). Pat-terns of hearing loss and of disability among sur-vivors are shown in Tables S3A and S3B in the Supplementary Appendix. As compared with pa-tients who received placebo, the temperatures of patients in the corticosteroid group were lower during treatment (mean difference, 0.49°C at day 4; P<0.001) (Fig. S1 in the Supplementary Appendix).

In the trial concerning the route of antibiotic administration, mortality at 40 days was 121 of 230 patients in the intravenous group (52.6%) and 128 of 229 patients in the intramuscular group (55.9%) (odds ratio, 0.88; 95% CI, 0.61 to 1.26) (Table 4). An on-treatment analysis, censoring events after premature discontinuation of ceftri-axone, shows a similar mortality of 119 of 225 patients in the intravenous group (52.9%) and 124 of 219 patients in the intramuscular group (56.6%). Given the actual 80% power of this study, a two-sided test excludes an increase or decrease in 40-day mortality in the intramuscular group of 25% and 24%, respectively. When an interaction term for the comparison of corticosteroid and pla-cebo administration is included, the odds ratio for mortality at 40 days in the intravenous group becomes 0.84 (95% CI, 0.5 to 1.14). In seven pa-tients, pain during intramuscular injection was sufficiently distressing for clinicians to switch to intravenous treatment. Only one isolate (S. pneu-moniae) showed reduced susceptibility to ceftriax-one (Table S4 in the Supplementary Appendix).

There were no differences in the rates of ad-verse events potentially related to corticosteroid therapy and none resulted in withdrawal of pa-tients from the trial (Table S5 in the Supplemen-tary Appendix). Nineteen patients had adverse events that were more likely to be due to antibi-otics than corticosteroids; nine patients had late fever (including seven patients in the corticoste-roid group), five had rash (including two in the

corticosteroid group), three had diarrhea (includ-ing one in the corticosteroid group), and two had jaundice (both of whom were in the corticosteroid group).

Discussion

The greatest burden of bacterial meningitis in adults occurs in developing countries where mor-tality rates are high. If effective, corticosteroids as adjuvant therapy would represent an affordable and appropriate intervention. The results of our study show that, in a setting where the majority of patients are likely to have advanced HIV infec-tion, where presentation tends to be late, and where S. pneumoniae is the predominant pathogen, adju-vant therapy with dexamethasone for bacterial meningitis in adults confers no advantage with re-gard to mortality or morbidity at 40 days.

In our study, mortality was substantially higher than in it is in industrialized settings, but it was typical for a low-resource setting in sub-Saharan Africa. It was lower than in previous studies in Malawi,3,5 probably due to the use of ceftriaxone (rather than penicillin plus chloramphenicol) and the effect of improved care as a result of the pa-tients’ inclusion in a clinical trial.

The negative findings from this study, pre-dominantly in patients with advanced HIV disease, contrast with those of a European trial of corti-costeroids involving 301 adults with meningitis.7 The European trial showed an overall reduction of mortality from 15% to 7% at 8 weeks (P=0.04), and the benefit of corticosteroids was most marked in patients with pneumococcal meningitis. The current findings are similar to those of a large

100

75

50

25

00 2010 30 40

Placebo

Corticosteroid

AUTHOR:

FIGURE:

JOB:

4-CH/T

RETAKEICM

CASE

EMail LineH/TCombo

Revised

REG F

Enon

1st2nd3rd

Scarborough

2 of 2

12-13-07

ARTIST: ts

35724 ISSUE:

22p3

Figure 2. Kaplan–Meier Estimates of Survival for 459 Patients through Day 40.

Copyright © 2007 Massachusetts Medical Society. All rights reserved. Downloaded from www.nejm.org by CHRISTOPHE CAMUS MD on January 26, 2008 .

T h e n e w e ng l a nd j o u r na l o f m e dic i n e

n engl j med 357;24 www.nejm.org december 13, 2007 2441

original article

Corticosteroids for Bacterial Meningitis in Adults in Sub-Saharan Africa

Matthew Scarborough, M.R.C.P., Stephen B. Gordon, M.D., Christopher J.M. Whitty, F.R.C.P., Neil French, Ph.D., Yasin Njalale, Dip.Med.Sci.,

Alex Chitani, Dip.Med.Sci., Timothy E.A. Peto, Ph.D., David G. Lalloo, F.R.C.P., and Eduard E. Zijlstra, Ph.D.

From the College of Medicine (M.S., S.B.G., C.J.M.W., N.F., Y.N., A.C., E.E.Z.) and the Malawi–Liverpool–Wellcome Pro-gramme of Clinical Tropical Research (S.B.G., N.F.) — both in Blantyre, Mala-wi; the Nuffield Department of Clinical Laboratory Science (M.S.) and the Nuf-field Department of Medicine (T.E.A.P.) — both at the University of Oxford, Oxford, United Kingdom; the Liverpool School of Tropical Medicine, Liverpool, United King-dom (M.S., S.B.G., N.F., D.G.L.); and the London School of Hygiene and Tropical Medicine, London (C.J.M.W.). Address re-print requests to Dr. Scarborough at the Nuffield Department of Clinical Labora-tory Science, John Radcliffe Hospital, Ox-ford OX3 9DU, United Kingdom, or at [email protected].

N Engl J Med 2007;357:2441-50.Copyright © 2007 Massachusetts Medical Society.

A bs tr ac t

BackgroundIn sub-Saharan Africa, bacterial meningitis is common and is associated with a high mortality. Adjuvant therapy with corticosteroids reduces mortality among adults in the developed world, but it has not been adequately tested in developing countries or in the context of advanced human immunodeficiency virus (HIV) infection.

Methods We conducted a randomized, double-blind, placebo-controlled trial of dexametha-sone (16 mg twice daily for 4 days) and an open-label trial of intramuscular versus in-travenous ceftriaxone (2 g twice daily for 10 days) in adults with an admission diag-nosis of bacterial meningitis in Blantyre, Malawi. The primary outcome was death at 40 days after randomization.

Results A total of 465 patients, 90% of whom were HIV-positive, were randomly assigned to receive dexamethasone (233 patients) or placebo (232 patients) plus intramuscular cef-triaxone (230 patients) or intravenous ceftriaxone (235 patients). There was no sig-nificant difference in mortality at 40 days in the corticosteroid group (129 of 231 patients) as compared with the placebo group (120 of 228 patients) by intention-to-treat analysis (odds ratio, 1.14; 95% confidence interval [CI], 0.79 to 1.64) or when the analysis was restricted to patients with proven pneumococcal meningitis (68 of 129 patients receiving corticosteroids vs. 72 of 143 patients receiving placebo) (odds ratio, 1.10; 95% CI, 0.68 to 1.77). There were no significant differences between groups in the outcomes of disability and death combined, hearing impairment, and adverse events. There was no difference in mortality with intravenous ceftriaxone (121 of 230 patients) as compared with intramuscular ceftriaxone (128 of 229 patients) (odds ratio, 0.88; 95% CI, 0.61 to 1.27).

Conclusions Adjuvant therapy with dexamethasone for bacterial meningitis in adults from an area with a high prevalence of HIV did not reduce mortality or morbidity. In this setting, intramuscular administration was not inferior to intravenous administra-tion of ceftriaxone for bacterial meningitis. (Current Controlled Trials number, ISRCTN31371499.)

Copyright © 2007 Massachusetts Medical Society. All rights reserved. Downloaded from www.nejm.org by CHRISTOPHE CAMUS MD on January 26, 2008 .

N. Engl. J Med 2007;357:2441

Page 18: Cas clinique N°2, -‐ Pierre 62 ans

Efficacité  de  la  déxaméthasone  au  cours  de  la  méningite  bactérienne  au  Vietnam  

•  Double  aveugle,  randomisée  •  >  14  ans  •  DXM  :  0,4  mg/kg  x  2/j  X  4j  •  +  CRO  2g  x  2  x  10  à  14j  •  Évalua@on  à  30  jours  •  Glasgow  score  médian  13  •  HIV  +  0,5  %  •  Pneumocoque  13  %  

–  S.  Suis  26  %    –  S.  aureus  =  2%  

•  Mortalité  globale  11  %  (10,1%  DXM  versus  12,4%  en  ITT)  

T h e n e w e ng l a nd j o u r na l o f m e dic i n e

n engl j med 357;24 www.nejm.org december 13, 20072436

and 21 placebo) were treated with a combina-tion of ceftriaxone and vancomycin, and 26 pa-tients (11 receiving dexamethasone, and 15 pla-cebo) with a combination of ceftriaxone and rifampin. Of 55 S. pneumoniae isolates, 50 (90.9%) were susceptible to ceftriaxone (minimal inhibi-tory concentration [MIC], ≤0.5 µg per milliliter) and 5 (9.1%) had intermediate resistance to cef-triaxone (MIC, >0.5 to 1.0 µg per milliliter). The rest of the bacterial isolates, with the exception of Pseudomonas aeruginosa (in 1 patient), S. aureus (in 1), and Escherichia coli (in 1), were susceptible to cef-triaxone.

All but four patients were tested for HIV in-fection; only three were infected (Table 1). One of these three had tuberculous meningitis, one had cryptococcal meningitis, and one had S. pneu-moniae meningitis (the first two received dexa-methasone, and the third placebo).

Intention-to-Treat Analysis of Primary Outcome

Thirty days after randomization, 22 of the 217 patients in the dexamethasone group (10.1%) and 27 of the 218 patients in the placebo group (12.4%) had died (relative risk of death in the dexametha-sone group, 0.79; 95% confidence interval [CI], 0.45 to 1.39) (Fig. 2A). The study drug was with-drawn early in 10 patients in each group, in most cases because a diagnosis other than bacterial meningitis was made. Among these patients, all but one (who had received dexamethasone) sur-vived. The results of per-protocol analyses were similar to the results of intention-to-treat analy-ses for all primary and secondary outcomes.

Prespecified Subgroup AnalysisThe primary outcome was compared among sub-groups of patients defined according to the diag-nosis (definite bacterial meningitis, probable bac-terial meningitis, or a different diagnosis) (Table 2). There was significant heterogeneity of the treat-ment effect across these diagnostic groups, but

1.00

0.90

0.95

0.85

0.80

0.75

1.00

0.90

0.95

0.85

0.80

0.75

1.00

0.90

0.95

0.85

0.80

0.75

0.000 5 10 15 20 25 30

Placebo

Placebo

Dexamethasone

Dexamethasone

Dexamethasone

Placebo

P=0.42

0.000 5 10 15 20 25 30

P=0.03

DexamethasonePlacebo

217218

DexamethasonePlacebo

143157

210204

140146

208200

138143

202196

136142

201196

136142

200192

135139

199192

135139

0.000 5 10 15 20 25 30

P=0.14

DexamethasonePlacebo

6954

6552

6551

6149

6149

6049

6049

AUTHOR:

FIGURE:

JOB:

4-CH/T

RETAKEICM

CASE

EMail LineH/TCombo

Revised

REG F

Enon

1st2nd3rd

Mai (Farrar)

2 of 2

12-13-07

ARTIST: ts

35724 ISSUE:

22p3

Figure 2. Kaplan–Meier Survival Estimates According to Study Group.

Panel A shows survival estimates for all patients who underwent randomization (intention-to-treat analysis). Panel B shows survival estimates for patients with def-inite bacterial meningitis, and Panel C estimates for patients with probable bacterial meningitis. P values are based on the log-rank test.

Copyright © 2007 Massachusetts Medical Society. All rights reserved. Downloaded from www.nejm.org by CHRISTOPHE CAMUS MD on January 26, 2008 .

n engl j med 357;24 www.nejm.org december 13, 2007 2431

The new england journal of medicineestablished in 1812 december 13, 2007 vol. 357 no. 24

Dexamethasone in Vietnamese Adolescents and Adults with Bacterial Meningitis

Nguyen Thi Hoang Mai, M.D., Tran Thi Hong Chau, M.D., Guy Thwaites, M.D., Ly Van Chuong, M.D., Dinh Xuan Sinh, M.D., Ho Dang Trung Nghia, M.D., Phung Quoc Tuan, M.D., Nguyen Duy Phong, M.D., Nguyen Hoan Phu, M.D., To Song Diep, M.D., Nguyen van Vinh Chau, M.D., Nguyen Minh Duong, M.D.,

James Campbell, Constance Schultsz, M.D., Chris Parry, M.D., M. Estee Torok, M.D., Nicholas White, F.R.C.P., Nguyen Tran Chinh, M.D., Tran Tinh Hien, M.D., Kasia Stepniewska, Ph.D., and Jeremy J. Farrar, F.R.C.P.

A bs tr ac t

From the Hospital for Tropical Diseas- es (N.T.H.M., T.T.H.C., L.V.C., D.X.S., H.D.T.N., N.H.P., T.S.D., N.V.C., N.M.D., N.T.C., T.T.H.); Oxford University Clinical Research Unit, Hospital for Tropical Dis-eases (G.T., P.Q.T., J.C., C.S., C.P., M.E.T., K.S., J.J.F.); and the University of Medi-cine and Pharmacy (N.D.P., N.W.) — all in Ho Chi Minh City, Vietnam; and the De-partment of Infectious Disease, Imperial College, London (G.T.); the Nuffield De-partment of Clinical Medicine, John Rad-cliffe Hospital, Oxford (C.S., M.E.T., K.S., J.J.F.); and the Department of Medical Microbiology, University of Liverpool, Liver-pool (C.P.) — all in the United Kingdom. Address reprint requests to Dr. Farrar at the Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 190 Ben Ham Tu, Quan 5, Ho Chi Minh City, Vietnam, or at [email protected].

N Engl J Med 2007;357:2431-40.Copyright © 2007 Massachusetts Medical Society.

BackgroundIt is uncertain whether all adults with bacterial meningitis benefit from treatment with adjunctive dexamethasone.

MethodsWe conducted a randomized, double-blind, placebo-controlled trial of dexametha-sone in 435 patients over the age of 14 years who had suspected bacterial meningi-tis. The goal was to determine whether dexamethasone reduced the risk of death at 1 month and the risk of death or disability at 6 months.

ResultsA total of 217 patients were assigned to the dexamethasone group, and 218 to the placebo group. Bacterial meningitis was confirmed in 300 patients (69.0%), prob-able meningitis was diagnosed in 123 patients (28.3%), and an alternative diagno-sis was made in 12 patients (2.8%). An intention-to-treat analysis of all the patients showed that dexamethasone was not associated with a significant reduction in the risk of death at 1 month (relative risk, 0.79; 95% confidence interval [CI], 0.45 to 1.39) or the risk of death or disability at 6 months (odds ratio, 0.74; 95% CI, 0.47 to 1.17). In patients with confirmed bacterial meningitis, however, there was a signifi-cant reduction in the risk of death at 1 month (relative risk, 0.43; 95% CI, 0.20 to 0.94) and in the risk of death or disability at 6 months (odds ratio, 0.56; 95% CI, 0.32 to 0.98). These effects were not found in patients with probable bacterial men-ingitis. Results of multivariate analysis indicated that dexamethasone treatment for patients with probable bacterial meningitis was significantly associated with an increased risk of death at 1 month, an observation that may be explained by cases of tuberculous meningitis in the treatment group.

ConclusionsDexamethasone does not improve the outcome in all adolescents and adults with suspected bacterial meningitis; a beneficial effect appears to be confined to patients with microbiologically proven disease, including those who have received prior treat-ment with antibiotics. (Current Controlled Trials number, ISRCTN42986828.)

Copyright © 2007 Massachusetts Medical Society. All rights reserved. Downloaded from www.nejm.org by CHRISTOPHE CAMUS MD on January 26, 2008 .

n engl j med 357;24 www.nejm.org december 13, 2007 2431

The new england journal of medicineestablished in 1812 december 13, 2007 vol. 357 no. 24

Dexamethasone in Vietnamese Adolescents and Adults with Bacterial Meningitis

Nguyen Thi Hoang Mai, M.D., Tran Thi Hong Chau, M.D., Guy Thwaites, M.D., Ly Van Chuong, M.D., Dinh Xuan Sinh, M.D., Ho Dang Trung Nghia, M.D., Phung Quoc Tuan, M.D., Nguyen Duy Phong, M.D., Nguyen Hoan Phu, M.D., To Song Diep, M.D., Nguyen van Vinh Chau, M.D., Nguyen Minh Duong, M.D.,

James Campbell, Constance Schultsz, M.D., Chris Parry, M.D., M. Estee Torok, M.D., Nicholas White, F.R.C.P., Nguyen Tran Chinh, M.D., Tran Tinh Hien, M.D., Kasia Stepniewska, Ph.D., and Jeremy J. Farrar, F.R.C.P.

A bs tr ac t

From the Hospital for Tropical Diseas- es (N.T.H.M., T.T.H.C., L.V.C., D.X.S., H.D.T.N., N.H.P., T.S.D., N.V.C., N.M.D., N.T.C., T.T.H.); Oxford University Clinical Research Unit, Hospital for Tropical Dis-eases (G.T., P.Q.T., J.C., C.S., C.P., M.E.T., K.S., J.J.F.); and the University of Medi-cine and Pharmacy (N.D.P., N.W.) — all in Ho Chi Minh City, Vietnam; and the De-partment of Infectious Disease, Imperial College, London (G.T.); the Nuffield De-partment of Clinical Medicine, John Rad-cliffe Hospital, Oxford (C.S., M.E.T., K.S., J.J.F.); and the Department of Medical Microbiology, University of Liverpool, Liver-pool (C.P.) — all in the United Kingdom. Address reprint requests to Dr. Farrar at the Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 190 Ben Ham Tu, Quan 5, Ho Chi Minh City, Vietnam, or at [email protected].

N Engl J Med 2007;357:2431-40.Copyright © 2007 Massachusetts Medical Society.

BackgroundIt is uncertain whether all adults with bacterial meningitis benefit from treatment with adjunctive dexamethasone.

MethodsWe conducted a randomized, double-blind, placebo-controlled trial of dexametha-sone in 435 patients over the age of 14 years who had suspected bacterial meningi-tis. The goal was to determine whether dexamethasone reduced the risk of death at 1 month and the risk of death or disability at 6 months.

ResultsA total of 217 patients were assigned to the dexamethasone group, and 218 to the placebo group. Bacterial meningitis was confirmed in 300 patients (69.0%), prob-able meningitis was diagnosed in 123 patients (28.3%), and an alternative diagno-sis was made in 12 patients (2.8%). An intention-to-treat analysis of all the patients showed that dexamethasone was not associated with a significant reduction in the risk of death at 1 month (relative risk, 0.79; 95% confidence interval [CI], 0.45 to 1.39) or the risk of death or disability at 6 months (odds ratio, 0.74; 95% CI, 0.47 to 1.17). In patients with confirmed bacterial meningitis, however, there was a signifi-cant reduction in the risk of death at 1 month (relative risk, 0.43; 95% CI, 0.20 to 0.94) and in the risk of death or disability at 6 months (odds ratio, 0.56; 95% CI, 0.32 to 0.98). These effects were not found in patients with probable bacterial men-ingitis. Results of multivariate analysis indicated that dexamethasone treatment for patients with probable bacterial meningitis was significantly associated with an increased risk of death at 1 month, an observation that may be explained by cases of tuberculous meningitis in the treatment group.

ConclusionsDexamethasone does not improve the outcome in all adolescents and adults with suspected bacterial meningitis; a beneficial effect appears to be confined to patients with microbiologically proven disease, including those who have received prior treat-ment with antibiotics. (Current Controlled Trials number, ISRCTN42986828.)

Copyright © 2007 Massachusetts Medical Society. All rights reserved. Downloaded from www.nejm.org by CHRISTOPHE CAMUS MD on January 26, 2008 .

Page 19: Cas clinique N°2, -‐ Pierre 62 ans

Ne  pas  remedre  en  cause  les  recommanda@on  de  la  conférence  de  consensus  2008,  mais  

Données pharmacocinétiques modèle lapin CS î CRO pénétration dans les méninges

Paris MM et al . AAC 1994; 38: 1320-4

Augmentation des lésions neuronales hippocampe par DXM Modèle rat NN + Altération des fonctions cognitives, mais non retrouvées chez l’adolescent, adulte, enfant

dexamethasone in patients with bacterial meningitis, thisprompted us to study the effect of the drug in our model ofpneumococcal meningitis in infant rats. Specifically, we exam-ined whether dexamethasone influenced apoptotic injury in thedentate gyrus and whether this was associated with an effect onlearning capacity after recovery from acute meningitis.

MATERIALS AND METHODS

Model of meningitis. The animal studies were approved bythe Animal Care and Experimentation Committee of the Can-ton of Bern, Switzerland, and followed National Institutes ofHealth guidelines for the performance of animal experiments.Nursing Sprague-Dawley rat pups were infected on postnatalday 11 (n ! 142) by intracisternal injection with 10 !L ofsaline containing an inoculum of log10 6.5 " 0.6 cfu/mLStreptococcus pneumoniae (17, 19, 24, 25). Uninfected ani-mals (n ! 62) were injected intracisternally with 10 !L ofsterile, pyrogen free saline. At 18 h after infection, animalswere weighed and assessed clinically. To document meningitis,10 !L of cerebrospinal fluid was obtained by puncture of thecisterna magna and cultured quantitatively.Treatment. All infected animals (n ! 142) received antibi-

otic treatment (ceftriaxone 100 mg/kg s.c. bid; Roche Pharma,Reinach, Switzerland) following CSF collection at 18 h. An-tibiotic treatment was continued for 2 doses in infected animalssubsequently examined histopathologically (n ! 38) and for5 d in animals subjected to learning testing (n ! 104). Animalsto be assessed histopathologically (n ! 38 for meningitis; n !14 for uninfected controls) were randomized for treatment withdexamethasone (0.7 mg/kg s.c. q8h from 18 to 34 h afterinfection; n ! 16 for meningitis; n ! 8 for controls) or vehicle(n ! 22 for meningitis; n ! 6 for controls). Animals to beassessed for learning performance were randomized for treat-ment with dexamethasone (0.7 mg/kg s.c. q8h for 4 d; n ! 34)or vehicle (n ! 70) concomitant with the first antibiotic dose.Data presented here combine two separate experiments usingthe same protocol. In the first trial, normal saline was admin-istered as vehicle to control animals (infected controls, n ! 31;uninfected controls, n ! 31). In the second trial, control

animals received PBS containing 1% Tween 80 (0.2 mL s.c.)as vehicle (infected controls, n ! 52; uninfected controls, n !32) because in this trial another drug was tested concomitantlywith dexamethasone, which had to be dissolved in PBS/Tween(17). Treatment with NaCl versus PBS/Tween did not result insignificant differences in hippocampal histopathology or learn-ing performance either in uninfected or in infected controlanimals. However, for both the infected and uninfected controlgroup, animals treated with NaCl or PBS/Tween had to becombined to make the differences between the three treatments(uninfected; infected vehicle treated; infecteddexamethasone treated) statistically significant.Effect of treatment on bacterial killing in CSF. In eleven

infected animals (dexamethasone, n ! 5; PBS/Tween, n ! 6)repeated cisternal punctures were performed at 18, 22, and 30 hpost-infection. CSF bacterial titers were determined quantita-tively by serial dilution to assess the influence of dexametha-sone therapy on the decline of bacterial titers in CSF followinginitiation of antibiotic therapy.Histopathology. At 34 h post-inoculation, infected animals

treated with dexamethasone (n ! 10), uninfected animalstreated with dexamethasone (n ! 8) and infected (n ! 19) anduninfected controls (n ! 6) were killed with an overdose ofpentobarbital. Animals dying spontaneously before 34 h (n !9) were not evaluated. Immediately after euthanasia, animalswere perfused via the left ventricle with 15 mL of 4% para-formaldehyde in PBS (pH 7.4). Brains were removed, post-fixed and snap-frozen at #60°C in methylbuthane and cut at45–60 !m intervals on a cryotome to obtain four coronalsections of the hippocampal region. Sections were mounted ongelatinized glass slides for staining. After dehydration, sectionswere Nissl stained with cresyl violet and coverslips were fixedwith Entellan® (Merck, Darmstadt, Germany). Neuronal in-jury in the dentate gyrus was evaluated as described previously(24). Apoptosis in the granule cell layer of the hippocampus,defined as cells showing markedly shrunken, condensed orfragmented nuclei (Fig. 1) was counted at 400x in 3 visualfields for each of the four blades of the dentate gyrus. Anaverage per dentate gyrus (six visual fields) per animal was

Figure 1. Hippocampal dentate gyrus histology of infant rats suffering from pneumococcal meningitis at 34 h after infection. A) In the dentate gyrus ofuninfected controls physiologic occurrence of neuronal apoptosis is sporadically visible by the formation of condensed and fragmented nuclei (arrowhead). B)In infected vehicle treated rats formation of apoptotic bodies is characteristically observed in the inner rim of the dentate gyrus (arrowheads) at 34 h afterinfection. C) Treatment with dexamethasone markedly increased the occurrence of apoptotic bodies (arrowheads) in the hippocampal dentate gyrus. Cresyl violet;original magnification $ 300; bar 50 !m.

354 LEIB ET AL.

dexamethasone in patients with bacterial meningitis, thisprompted us to study the effect of the drug in our model ofpneumococcal meningitis in infant rats. Specifically, we exam-ined whether dexamethasone influenced apoptotic injury in thedentate gyrus and whether this was associated with an effect onlearning capacity after recovery from acute meningitis.

MATERIALS AND METHODS

Model of meningitis. The animal studies were approved bythe Animal Care and Experimentation Committee of the Can-ton of Bern, Switzerland, and followed National Institutes ofHealth guidelines for the performance of animal experiments.Nursing Sprague-Dawley rat pups were infected on postnatalday 11 (n ! 142) by intracisternal injection with 10 !L ofsaline containing an inoculum of log10 6.5 " 0.6 cfu/mLStreptococcus pneumoniae (17, 19, 24, 25). Uninfected ani-mals (n ! 62) were injected intracisternally with 10 !L ofsterile, pyrogen free saline. At 18 h after infection, animalswere weighed and assessed clinically. To document meningitis,10 !L of cerebrospinal fluid was obtained by puncture of thecisterna magna and cultured quantitatively.Treatment. All infected animals (n ! 142) received antibi-

otic treatment (ceftriaxone 100 mg/kg s.c. bid; Roche Pharma,Reinach, Switzerland) following CSF collection at 18 h. An-tibiotic treatment was continued for 2 doses in infected animalssubsequently examined histopathologically (n ! 38) and for5 d in animals subjected to learning testing (n ! 104). Animalsto be assessed histopathologically (n ! 38 for meningitis; n !14 for uninfected controls) were randomized for treatment withdexamethasone (0.7 mg/kg s.c. q8h from 18 to 34 h afterinfection; n ! 16 for meningitis; n ! 8 for controls) or vehicle(n ! 22 for meningitis; n ! 6 for controls). Animals to beassessed for learning performance were randomized for treat-ment with dexamethasone (0.7 mg/kg s.c. q8h for 4 d; n ! 34)or vehicle (n ! 70) concomitant with the first antibiotic dose.Data presented here combine two separate experiments usingthe same protocol. In the first trial, normal saline was admin-istered as vehicle to control animals (infected controls, n ! 31;uninfected controls, n ! 31). In the second trial, control

animals received PBS containing 1% Tween 80 (0.2 mL s.c.)as vehicle (infected controls, n ! 52; uninfected controls, n !32) because in this trial another drug was tested concomitantlywith dexamethasone, which had to be dissolved in PBS/Tween(17). Treatment with NaCl versus PBS/Tween did not result insignificant differences in hippocampal histopathology or learn-ing performance either in uninfected or in infected controlanimals. However, for both the infected and uninfected controlgroup, animals treated with NaCl or PBS/Tween had to becombined to make the differences between the three treatments(uninfected; infected vehicle treated; infecteddexamethasone treated) statistically significant.Effect of treatment on bacterial killing in CSF. In eleven

infected animals (dexamethasone, n ! 5; PBS/Tween, n ! 6)repeated cisternal punctures were performed at 18, 22, and 30 hpost-infection. CSF bacterial titers were determined quantita-tively by serial dilution to assess the influence of dexametha-sone therapy on the decline of bacterial titers in CSF followinginitiation of antibiotic therapy.Histopathology. At 34 h post-inoculation, infected animals

treated with dexamethasone (n ! 10), uninfected animalstreated with dexamethasone (n ! 8) and infected (n ! 19) anduninfected controls (n ! 6) were killed with an overdose ofpentobarbital. Animals dying spontaneously before 34 h (n !9) were not evaluated. Immediately after euthanasia, animalswere perfused via the left ventricle with 15 mL of 4% para-formaldehyde in PBS (pH 7.4). Brains were removed, post-fixed and snap-frozen at #60°C in methylbuthane and cut at45–60 !m intervals on a cryotome to obtain four coronalsections of the hippocampal region. Sections were mounted ongelatinized glass slides for staining. After dehydration, sectionswere Nissl stained with cresyl violet and coverslips were fixedwith Entellan® (Merck, Darmstadt, Germany). Neuronal in-jury in the dentate gyrus was evaluated as described previously(24). Apoptosis in the granule cell layer of the hippocampus,defined as cells showing markedly shrunken, condensed orfragmented nuclei (Fig. 1) was counted at 400x in 3 visualfields for each of the four blades of the dentate gyrus. Anaverage per dentate gyrus (six visual fields) per animal was

Figure 1. Hippocampal dentate gyrus histology of infant rats suffering from pneumococcal meningitis at 34 h after infection. A) In the dentate gyrus ofuninfected controls physiologic occurrence of neuronal apoptosis is sporadically visible by the formation of condensed and fragmented nuclei (arrowhead). B)In infected vehicle treated rats formation of apoptotic bodies is characteristically observed in the inner rim of the dentate gyrus (arrowheads) at 34 h afterinfection. C) Treatment with dexamethasone markedly increased the occurrence of apoptotic bodies (arrowheads) in the hippocampal dentate gyrus. Cresyl violet;original magnification $ 300; bar 50 !m.

354 LEIB ET AL.

dexamethasone in patients with bacterial meningitis, thisprompted us to study the effect of the drug in our model ofpneumococcal meningitis in infant rats. Specifically, we exam-ined whether dexamethasone influenced apoptotic injury in thedentate gyrus and whether this was associated with an effect onlearning capacity after recovery from acute meningitis.

MATERIALS AND METHODS

Model of meningitis. The animal studies were approved bythe Animal Care and Experimentation Committee of the Can-ton of Bern, Switzerland, and followed National Institutes ofHealth guidelines for the performance of animal experiments.Nursing Sprague-Dawley rat pups were infected on postnatalday 11 (n ! 142) by intracisternal injection with 10 !L ofsaline containing an inoculum of log10 6.5 " 0.6 cfu/mLStreptococcus pneumoniae (17, 19, 24, 25). Uninfected ani-mals (n ! 62) were injected intracisternally with 10 !L ofsterile, pyrogen free saline. At 18 h after infection, animalswere weighed and assessed clinically. To document meningitis,10 !L of cerebrospinal fluid was obtained by puncture of thecisterna magna and cultured quantitatively.Treatment. All infected animals (n ! 142) received antibi-

otic treatment (ceftriaxone 100 mg/kg s.c. bid; Roche Pharma,Reinach, Switzerland) following CSF collection at 18 h. An-tibiotic treatment was continued for 2 doses in infected animalssubsequently examined histopathologically (n ! 38) and for5 d in animals subjected to learning testing (n ! 104). Animalsto be assessed histopathologically (n ! 38 for meningitis; n !14 for uninfected controls) were randomized for treatment withdexamethasone (0.7 mg/kg s.c. q8h from 18 to 34 h afterinfection; n ! 16 for meningitis; n ! 8 for controls) or vehicle(n ! 22 for meningitis; n ! 6 for controls). Animals to beassessed for learning performance were randomized for treat-ment with dexamethasone (0.7 mg/kg s.c. q8h for 4 d; n ! 34)or vehicle (n ! 70) concomitant with the first antibiotic dose.Data presented here combine two separate experiments usingthe same protocol. In the first trial, normal saline was admin-istered as vehicle to control animals (infected controls, n ! 31;uninfected controls, n ! 31). In the second trial, control

animals received PBS containing 1% Tween 80 (0.2 mL s.c.)as vehicle (infected controls, n ! 52; uninfected controls, n !32) because in this trial another drug was tested concomitantlywith dexamethasone, which had to be dissolved in PBS/Tween(17). Treatment with NaCl versus PBS/Tween did not result insignificant differences in hippocampal histopathology or learn-ing performance either in uninfected or in infected controlanimals. However, for both the infected and uninfected controlgroup, animals treated with NaCl or PBS/Tween had to becombined to make the differences between the three treatments(uninfected; infected vehicle treated; infecteddexamethasone treated) statistically significant.Effect of treatment on bacterial killing in CSF. In eleven

infected animals (dexamethasone, n ! 5; PBS/Tween, n ! 6)repeated cisternal punctures were performed at 18, 22, and 30 hpost-infection. CSF bacterial titers were determined quantita-tively by serial dilution to assess the influence of dexametha-sone therapy on the decline of bacterial titers in CSF followinginitiation of antibiotic therapy.Histopathology. At 34 h post-inoculation, infected animals

treated with dexamethasone (n ! 10), uninfected animalstreated with dexamethasone (n ! 8) and infected (n ! 19) anduninfected controls (n ! 6) were killed with an overdose ofpentobarbital. Animals dying spontaneously before 34 h (n !9) were not evaluated. Immediately after euthanasia, animalswere perfused via the left ventricle with 15 mL of 4% para-formaldehyde in PBS (pH 7.4). Brains were removed, post-fixed and snap-frozen at #60°C in methylbuthane and cut at45–60 !m intervals on a cryotome to obtain four coronalsections of the hippocampal region. Sections were mounted ongelatinized glass slides for staining. After dehydration, sectionswere Nissl stained with cresyl violet and coverslips were fixedwith Entellan® (Merck, Darmstadt, Germany). Neuronal in-jury in the dentate gyrus was evaluated as described previously(24). Apoptosis in the granule cell layer of the hippocampus,defined as cells showing markedly shrunken, condensed orfragmented nuclei (Fig. 1) was counted at 400x in 3 visualfields for each of the four blades of the dentate gyrus. Anaverage per dentate gyrus (six visual fields) per animal was

Figure 1. Hippocampal dentate gyrus histology of infant rats suffering from pneumococcal meningitis at 34 h after infection. A) In the dentate gyrus ofuninfected controls physiologic occurrence of neuronal apoptosis is sporadically visible by the formation of condensed and fragmented nuclei (arrowhead). B)In infected vehicle treated rats formation of apoptotic bodies is characteristically observed in the inner rim of the dentate gyrus (arrowheads) at 34 h afterinfection. C) Treatment with dexamethasone markedly increased the occurrence of apoptotic bodies (arrowheads) in the hippocampal dentate gyrus. Cresyl violet;original magnification $ 300; bar 50 !m.

354 LEIB ET AL.

Méningite PC

Méningite PC + DXM Leib S. Pediatric research 2003 ; 54:353-57

Page 20: Cas clinique N°2, -‐ Pierre 62 ans

Résultats de la méta-analyse 2007 DXM et MB chez l’enfant

Devenir Nb. études

Nb. sujets

RR CI 95%

Mortalité globale 15 2074 0,99 [0.81 ; 1.20]

Surdité sévère 13 1383 0.61 [0.44 ; 0.86] Surdité sévère / Hib 9 663 0.37 [0.20 ; 0.68]

Surdité sévère / autres germes

11 660 0.86 [0.57 ; 1.30]

Surdité sévère / autres germes Malawi exclu

10 0.42 [0.20 ; 0.89]

van de Beek D et al. Cochrane Library 2007

Page 21: Cas clinique N°2, -‐ Pierre 62 ans

Dexaméthasone  et  méningite  bactérienne  

Suspected  or  proven  community-­‐acquired  bacterial  meningi@s:  1.  Dexamethasone  10  mg  IV  before  or  with  first  dose  of  an@bio@c  2.  Low  dose  or  no  steroids  if:  

–  Sep@c  shock  3.  No  dexamethasone  if:  

–  Pre-­‐treatment  with  parenteral  an@bio@cs    –  HIV-­‐posi@ve  or  low-­‐income  countries  –  Recent  head  injury  –  CSF  shunt  

4.  4  day  treatment  –  40  mg/day  

5.  No  dexamethasone  if  not  HIB  or  pneumococcus  méningi@s  

van de Beek et al N Engl J Med 2006

Page 22: Cas clinique N°2, -‐ Pierre 62 ans

«  Timing  »  déxaméthasone  

•  20  minutes  avant  ou  en  même  temps  que  an@bio@ques  

•  Pneumocoque  – Effet  «  protecteur  »  maintenu  au  cours  de  l’expérimenta@on  de  l’animal  si  administrée  1  hr  après  celle  de  l’an@bio@que  

Aucune donnée chez l’adolescent, adulte

Page 23: Cas clinique N°2, -‐ Pierre 62 ans

•  Mis  sous  déxaméthasone  avant  l’injec@on  an@bio@que  

•  Pneumocoque,    –  CMI  à  la  pénicilline  <  0,1  mmol/l  :  

•  Switch  amoxicilline  16  g  IVSE  /24hr  +  poursuite  déxaméthasone  4  jours  –  Dosage  amoxicilline  ?  

•  Extuba@on  J4  •  Reste  confus  avec  des  périodes  d’agita@on    

–  Glasgow  13,  pas  de  signe  de  défaillance  hémodynamique  

Mr  G.  Pierre  âgé  de  62  ans  

Page 24: Cas clinique N°2, -‐ Pierre 62 ans

QUESTION  6  Malgré   votre   an@biothérapie,   l’évolu@on   est  marquée   par   une   aggrava@on   de  l’état   neurologique   au   7ème   jour   avec   mise   en   évidence   d’un   état   de   mal  épilep@que  traité  par  Thiopental.    Quelles  complica@ons  craignez-­‐vous  ?  Comment  les  recherchez-­‐vous  ?  

Ø   Empyème,    Ø vascularite  cérébrale  Ø Hydrocéphalie  Ø Encéphalopathie  Bétalactamine,  métabolique  

Mr  G.  Pierre  âgé  de  62  ans  

Ø Réalisa@on  d’une  IRM  cérébrale  Ø   +/-­‐  Contrôle  du  LCR  

Page 25: Cas clinique N°2, -‐ Pierre 62 ans

Mr  G.  Pierre  âgé  de  62  ans  

Page 26: Cas clinique N°2, -‐ Pierre 62 ans

Mr  Pierre  –  C.R.  IRM    

•  présence  de  modifica@ons  de  signal  en  diffusion  en  faveur  d’une  adeinte  ischémique  récente,  images  compa@bles  avec  une  vascularite  infec@euse.  

Conduite à tenir ?

Page 27: Cas clinique N°2, -‐ Pierre 62 ans

•  Mul@ples  lésions  évocatrices  de  vascularite,    

•  diffuse  mais  prédominantes  en  territoire  cérébral  moyen  droite,    

•  comprenant  des  ischémies  récentes    

Michèle  49  ans  –  vascularite  au  cours  d’une  méningite  à  pneumocoque  

Page 28: Cas clinique N°2, -‐ Pierre 62 ans

Mr  Pierre  G..  Evolu@on  J9  –  J23  •  Traitement    

–  Céfotaxime  =    16g  IV  SE  5adeinte  infec@euse  ou  post-­‐infec@euse  ?)  –   +  cor@cothérapie    3  bolus  de  500  mg  puis  1  mg/kg  pendant  15  jours  et  

diminu@on  progressive  

•  Evolu@on  clinique  à  J  7  (cor@sone)  –  conscience  normale,    –  Mais  persistance  d’une    légère  altéra@on  du  fonc@onnement  cogni@f  

global  

•  La  ponc@on  lombaire  à  J7  :  –  230  éléments  nucléés/mm3  dont  99  %  de  lymphocytes,  –  glycorachie  et  protéinorachie  sont  normales  

•  Soins  de  suite  et  rééduca@on  à  J14  

Page 29: Cas clinique N°2, -‐ Pierre 62 ans

Vascularite  et  méningite  à  pneumocoque  

•  Très  peu  de  papiers  •  Au  cours  de  la  méningite  à  pneumocoque  

–  5-­‐  25  %  infarctus  cérébral*  –  9%  Thromboses  veineuses  –  9  %  hémorragies  cérébrales  

•  La  vascularite  –  Autopsie  :  infiltrats  inflammatoires  des  obstruc@on  des  artérioles  et  

veines  cérébrales    –  Angio  IRM  :  rétrécissement  artériels,  grêles    –  Quel  est  l’effet  de  la  dexaméthasone  ?    

•  Rare  appari@on  secondaire  de  l’expression  de  la  vascularite  

larite devant des sténoses artérielles multiples à l’artériogra-phie est une question délicate qui se pose fréquemment enpratique neurovasculaire. Si les données cliniques et paraclini-ques complémentaires ne permettent pas de trancher formel-lement, il faut alors envisager de répéter l’artériographie,l’évolutivité des lésions plaidant plutôt en faveur du diagnosticd’angéite, alors que les lésions athéromateuses sont fixées etstables dans le temps.

Examens de laboratoiresÀ ce jour, il n’existe aucun examen biologique spécifique devascularite cérébrale. Néanmoins, un bilan biologique de pre-mière intention est indispensable face à une suspicion de vas-cularite cérébrale et en l’absence d’éléments d’orientation(encadre 1). Ce bilan comprend une numération formule san-guine, un bilan d’hémostase, un ionogramme avec créatinine,une VS, une C-reactive protein (CRP), une électrophorèse desprotéines et un bilan hépatique. Le syndrome inflammatoireest inconstant et peut être absent. Une lymphopénie(CD4 notamment) doit être systématiquement cherchée, notam-ment lorsqu’une cause infectieuse opportuniste est suspectée.

D’autres examens sont effectués à la recherche de maladiesinflammatoires chroniques (connectivites, vascularites systé-miques), de maladies infectieuses, malignes et toxiques, quidoivent être écartées.Le bilan auto-immun de base comprend la recherche desanticorps antinucléaires (AAN), des anticorps anti-antigènesnucléaires solubles, des anticorps anti-DNA natifs, particulière-ment si le contexte évoque une connectivite. La recherched’anticorps anti-cytoplasme des polynucléaires neutrophiles(ANCA) est indispensable pour documenter une éventuellevascularite systémique associée aux ANCA. L’activité du facteurrhumatoïde est également explorée en première intention pourdépister un rhumatisme inflammatoire (polyarthrite rhuma-toïde, syndrome de Gougerot-Sjögren). Les explorationsimmunologiques doivent également comporter une recherched’anticorps antiphospholipides, de cryoglobulines, une analyse

1075

Miseau

point

Figure 4Artériographie cérébrale d’une patiente de 56 ans atteinte d’unevascularite cérébrale primitive, vue sagitale : multiples sténoses(flèches noires) des principales branches de division du polygonede Willis dont l’artère cérébrale antérieure droite

Encadre 1Bilan biologique minimal de première intention à effectuerdevant une suspicion de vascularite cérébrale et en l’absenced’élements d’orientation (liste non exhaustive établie par lesauteurs)

Biologie usuelle :! NFP, ionogramme sanguin, calcémie ;

! bilan hépatique ;

! CRP, électrophorèse des protéines plasmatiques ;

! TP, TCA, fibrinogène.Analyse urinaire :! protéinurie des 24 h.Bilan immunologique :

! FAN (avec anticorps anti-ADN et anti-antigènes nucléaires

solubles si positifs), ANCA, FR, ECA, anticorps anticardiolipine/

antiphospholipides ;

! complément (C3, C4, CH50), cryoglobulinémie.LCR :

! cytologie, biochimie et bactériologie ;

! PCR HSV, VZV ;

! recherche de bandes oligoclonales.Bilan infectieux :

! sérologies : VIH, Herpes virus (CMV, EBV, HSV, VZV), VHB, VHC,

VDRL-TPHA, Lyme ;

! hémocultures, ECBU ;

! IDR " Quantiferon.TP : taux de prothrombine ; TCA : temps de céphaline activée ; FAN :facteurs antinucléaires ; ANCA : anticorps anti-cytoplasme despolynucléaires neurtrophiles ; FR : facteur rhumatoïde ; ECA :enzyme de conversion de l’angiotensine ; IDR : intradermoréaction.‘

Vascularites cérébralesMedecine vasculaire/Medecine interne/Neurologie

tome 41 > n811 > novembre 2012

*Pfister et al, Durand et al. Dodge and scartz, Arditi et al

Page 30: Cas clinique N°2, -‐ Pierre 62 ans

Vascularite  et  méningites  bactériennes  

•  Méningites  «  purulente  »  –  Pneumocoque,  Méningocoque,  Hemophilus  influenzae  

•  Méningites  «    à  liquide  clair  »  –  Tuberculose  –  Syphilis  –  Lyme  –  Bartonellose,  rickedsiose,  leptospirose,  Whipple  

•  Endocardite  bactérienne    

Page 31: Cas clinique N°2, -‐ Pierre 62 ans

Complica@ons  cérébrales  secondaires  méningite  bactérienne  

For personal use. Only reproduce with permission from The Lancet Publishing Group.

THE LANCET Infectious Diseases Vol 2 December 2002 http://infection.thelancet.com 723

ReviewPneumococcal meningitis

of survivors have clinical sequelae,18,19

whereas the mortality and morbidityrates of this age group in industrialisedcountries are about 10% and 30%,respectively.13,16

These mortality and morbiditydata have prompted studies that have targeted the identification of risk factors for adverse outcome of bacterial meningitis.28,29 Therisk for sequelae or death is greatest for, but not confined to, those patients who had seizures,focal neurological signs, deterioratingconscious state in hospital,hypotension, and S pneumoniaeinfection.2,28 The high risk for adverse outcome of pneumococcalmeningitis may be, at least in part, due to a relatively low sterilisation of the cerebrospinal fluid (CSF). Inone study,30 with pneumococcalmeningitis, the first negative CSFcultures occurred at 4·3 h, whereas alllumbar punctures in patients withmeningococcal meningitis were sterileby 2 h. Likewise, delays in diagnosisand therapy are assumed to affect the prognosis adversely,31 but theclinical data are inconclusive. Morethan 20 such studies have beenpublished; in almost half, there was no correlation between the duration of symptoms and the outcome.32

By contrast, in a randomised trial comparing ceftriaxone withcefuroxime in the therapy of childrenwith bacterial meningitis, hearingimpairment was milder in theceftriaxone-treated group than in the cefuroxime-treated group. This beneficial effect wasassociated with a more rapid CSF sterilisation.33

Interpretation of these studies, however, is difficult because(1) remembered duration of symptoms may not exactlyindicate the actual duration of meningitis, and (2) the clinicaloutcome is affected by many variables (see above).31 To solvethis problem, appropriate multivariate analyses to assess theindependent effects of delayed diagnosis, therapy, andsterilisation are needed. Until these have been done, prompttherapy should be the standard of care.

The accuracy of reported mortality for bacterialmeningitis may be hindered by the crude measurement ofhospital mortality and by the assumption that all hospitaldeaths are attributable to the case of meningitis thatprompted admission. Incorrect determination of the cause of hospital death, however, is common.34 Recently,McMillan and colleagues35 published a study designed tocharacterise and correlate the causes and timing of hospitaldeath in a cohort of adults (n=74) hospitalised for bacterial

meningitis. In a substantial proportion (23%) of patientswith bacterial meningitis who died in the hospital,meningitis was not the cause of death. All these patientsdied after 14 days in the hospital. Of those patients inwhom meningitis was at least the underlying cause ofdeath, 50 of 57 (88%) patients died within 14 days of hospital admission. Thus, the 14-day survival time seems to be a good means of discriminating between deathsattributed to meningitis and those that have another cause.The spectrum of causes of deaths attributed to meningitis isknown to be broad,35–38 ranging from systemic (eg, septicshock) to several neurological complications (eg, brainoedema, hydrocephalus, cerebrovascular involvement, and intractable seizures) (figure 2). Thus, in future studiesof bacterial meningitis it should be checked whether use ofthe simple 14-day survival endpoint will facilitate greateraccuracy of epidemiological statistics and will be a goodmeasure in investigations of the effect of new therapeuticstrategies.

Figure 2. Major CNS complications secondary to acute bacterial meningitis. (A) Brain oedema. (B)Hydrocephalus. (C) Cerebral vasculitis with multiple cerebral infarctions. (D) Sinus thrombosis withvenous infarction and mild cerebral haemorrhage (black arrow). Brain oedema and hydrocephalusoccur, respectively, in 5–15% and about 10% of patients with community-acquired bacterialmeningitis. About 5–25% of patients with meningitis have cerebral infarction. Data are from Pfister etal,37 Durand et al,38 Dodge and Swartz,39 Arditi et al,13 and Westrate et al.40

Œdème cérébral

Vascularite cérébrale avec de multiples infarctus

Hydrocéphalie

Thrombophlébite avec infarctus d’origine veineuse et microhémorragies

For personal use. Only reproduce with permission from The Lancet Publishing Group.

THE LANCET Infectious Diseases Vol 2 December 2002 http://infection.thelancet.com 721

Reviews

Until the introduction of antibiotics in the 1930s and 1940s,acute bacterial meningitis was fatal in most cases. Sincethen it has become curable with a variable mortality andmorbidity rate for individual pathogens and patients.Neuropathological and clinical studies have shown that afatal outcome of the disease is often due to central nervoussystem (CNS) complications including cerebrovascularinvolvement, brain oedema formation, and hydrocephalusresulting in increased intracranial pressure and seizureactivity. During recent years, experimental studies withanimal models have substantially increased our knowledgeof the interactions of bacterial pathogens with mammaliancells and their entry into the CNS, and the complexpathophysiological mechanisms of brain dysfunction duringacute bacterial meningitis. There is now a substantial body of evidence that cytokines, chemokines, proteolyticenzymes, and oxidants are involved in the inflammatorycascade that leads to tissue destruction in bacterialmeningitis. Genetic targeting and/or pharmacologicalblockade of these pathways was beneficial in experimentalbacterial meningitis. Apart from dexamethasone, thesetreatment strategies hold major promise for the adjunctivetherapy of acute bacterial meningitis in clinical practice.

Lancet Infect Dis 2002; 2: 721–36

From its first description by Vieusseux in 1806 up to the early20th century, acute bacterial meningitis was uniformlyconsidered to be a fatal disease. Although the introduction ofsulfonamides and penicillins made bacterial meningitiscurable, mortality and morbidity from the disease remainunacceptably high.1 Neurological and neuropsychologicalsequelae are reported to affect up to half of survivors.2 Whileendemic bacterial meningitis remains a relatively rare disease,especially in developed countries, the potential occurrence ofepidemic bacterial meningitis in any part of the worldheightens its profile as a major infectious disease. Explosiveepidemics of meningococcal meningitis have periodicallycontinued to devastate sub-Saharan territories of Africa, theso-called meningitis belt. The most recent meningococcalmeningitis epidemic began in 1996 and has resulted in morethan 300 000 cases and 30 000 deaths being reported to theWorld Health Organization.3 Apart from epidemics, at least1·2 million cases of bacterial meningitis are estimated tooccur each year; 135 000 of them are fatal.4 These numbershave made bacterial meningitis a top-ten infectious cause ofdeath worldwide.

Clinical and neuropathological studies have clearlyshown that a fatal outcome of the disease is often caused by neurological complications secondary to bacterialmeningitis (eg, cerebral ischaemia, brain oedema formation,

hydrocephalus, or increased intracranial pressure). Duringthe past 15 years investigation has, therefore, focused on thepathophysiology of meningitis-associated brain dysfunction.5

It became evident that the host defence mechanisms withinthe brain are notably ineffective in eliminating majormeningitis pathogens, and that the inflammatory reaction tothe pathogen, rather than the pathogen itself, is largelyresponsible for the damage that results from bacterialmeningitis.6 A complicated series of interactions amongimmune, vascular, and central nervous system (CNS) cells, aswell as cytokines, chemokines, proteolytic enzymes, andoxidants seems to be ultimately responsible for meningitis-associated brain dysfunction. As a result, the therapeuticapproach to bacterial meningitis has to be widened fromeradicating the pathogen with antibiotics to prevention of the detrimental effects of the host immune response. In this article we highlight epidemiological trends andessential clinical aspects of acute bacterial meningitis. Wefurther review current notions of the pathogenesis andpathophysiology of acute bacterial meningitis, with anemphasis on promising targets for adjunctive therapy in acutebacterial meningitis.

Changing epidemiology of acute bacterialmeningitisDuring the past 15 years we have witnessed significantchanges in the epidemiology of acute bacterial meningitis.The most important change is the marked decline in theincidence of meningitis due to Haemophilus influenzae incountries that have introduced programmes for theimmunisation of infants with conjugate Hib vaccines,especially in North America and western Europe.1,7 Inthese countries, Streptococcus pneumoniae and Neisseriameningitidis are the most common causes of acute bacterialmeningitis, and bacterial meningitis is now a diseasepredominantly of adults rather than of infants and children.Most developing countries, however, have not added the Hib vaccine to their routine childhood immunisationprogrammes. Consequently, an estimated 350 000–700 000children worldwide still die from invasive Hib disease eachyear. The main barrier to adopting the Hib vaccine is its highcost relative to other routine immunisations (at least US$6,

Pathogenesis and pathophysiology ofpneumococcal meningitis

Uwe Koedel, William Michael Scheld, and Hans-Walter Pfister

UK and H-WP are at the Department of Neurology, KlinikumGrosshadern, Ludwig-Maximilians-University, Munich, Germany.WMS is at the Division of Infectious Diseases, Department of InternalMedicine, University of Virginia School of Medicine, Virginia, USA.

Correspondence: Professor Hans-Walter Pfister, Department ofNeurology, Klinikum Grosshadern, Ludwig-Maximilians-University,Marchioninistrasse 15, D-81377 Munich, Germany. Tel +49 89 7095 3676; fax +49 89 7095 6673; email [email protected]

Uwe Knodel, the lancet Infect. Dis 2002:722-34

Page 32: Cas clinique N°2, -‐ Pierre 62 ans

Vascularite  et  méningite  bactérienne  :  traitement  

•  Cor@sone  1  mg/kg  avec  une  diminu@on  très  progressive  (plusieurs  mois)  – Mais  peu  de  données  dans  la  lidérature  

•  Place  des  immunosuppresseurs  ?  (cyclophosphamide)  

Page 33: Cas clinique N°2, -‐ Pierre 62 ans

QUESTION  7  L’évolu@on   neurologique   est   finalement   sa@sfaisante   après   ré-­‐intuba@on  cor@coïdes,  permedant  l’extuba@on  du  pa@ent  au  21ème  jour.    Quelles  pathologies  prédisposantes  recherchez-­‐vous  ?  

Ø   Ethylisme  chronique  Ø   Hémopathie  (Myélome)  Ø   Diabète  Ø   Cirrhose    Ø   VIH  

Ø   Bilan   :  NFS,  Calcémie,  électrophorèse  des  pro@des,  HbA1c,  Bilan  hépa@que,  sérologie  VIH  

Page 34: Cas clinique N°2, -‐ Pierre 62 ans

Méningite  à  Pneumocoque  :  recherche  de  facteurs  de  risque  en  fonc@on  âge  (2)  

•  Hypogammaglobulinémie  –  Recherche  de  Myélome  mul@ple  si  âge  >  50  ans  

•  Infec@on  par  le  VIH  –  A  rechercher  systéma@quement  en  cas  de  facteur  de  risque    ou  si  

infec@on  invasive  à  pneumocoque  récidivante  •  Chez  le  jeune  enfant  >  2  ans  •  Adolescent,  jeune  adulte  sans  facteur  de  risque  autre  d’infec@on  invasive  à  pneumocoque  

•  Polymorphismes  géné@ques  –  Mannose  Binding  lec@ne,  autre  …–  discuté  et  en  cours  d’explora@on  

Page 35: Cas clinique N°2, -‐ Pierre 62 ans

Facteurs  de  risque  évitables  de  méningite  à  bactérienne  

•  Méningites  à  pneumocoque  –  Implants  cochléaires  (Ree,uis  J  NEJM  2003,  Wei  BP.  CID  2008)  

•  Vaccina@on  an@-­‐pneumococcique    –  Vaccin  heptavalent  conjugué  si  âge    <  5  ans  –  Vaccin  polysaccharidique,  23  valences  si  âge    >  5  ans  

–  Splénectomie  ou  asplénie  fonc@onnelle  post-­‐radiothérapie  •  Préven@on  par  vaccina@on  et  pénicilline  orale      

•  Méningites   induites   à   par@r   de   la   flore   cutanée  (inocula@on)  –  Staphylocoques,  streptocoques  –  Préven@on   par   le   respect   des   règles   d’hygiène   de   base   et  d‘asepsie   lors   des   injec@ons   para   vertébrales   ou   intra  rachidiennes  

Page 36: Cas clinique N°2, -‐ Pierre 62 ans

Méningite  à  Pneumocoque  :  recherche  de  facteurs  de  risque  en  fonc@on  âge  

•  Asplénie  congénitale  ou  hémoglobinopathie  (drépanocytose)  –  Infec@ons  invasives  à  pneumocoque  dont  méningites  20  à  1000  fois  

plus  fréquentes  chez  l’enfant  <  5  ans.      

•  Déficit  immunitaire  congénitaux  –  Hypogammaglobulinémies  congénitales,  l’immunodéficience  

commune  variable,  syndrome  Wiskod-­‐Aldrich  –  Rarement  révélée  par  une  méningite  bactérienne  à  pneumocoque,  

méningocoque  ou  hémophilus  sp.  –  Evalua@on  immunologique  systéma@que  après  un  2e  épisode  

d’infec@on  invasive  à  pneumocoque  ou  Méningite  bactérienne?  

•  Traitement  préven@f  –  Apport  de  gammaglobulines,  vaccina@on,  penicilline  

Page 37: Cas clinique N°2, -‐ Pierre 62 ans

Méningite  à  Staphylocoque  ou  autres  Gram  +  

•  Chez  l’enfant  peut  être  associé  à  un  sinus  dermique  (dont  risque  méningite  =  11  à  60  %)  –  Communica@on  entre  la  peau,  ses  annexes  et  la  moelle  épinière  –  Anomalie  rare  de  l’embryogénèse  –  A  rechercher  surtout  si  

•  Hypertrichose  cutanée,  tâche  de  vin  postérieures  médianes  

–  IRM  rachidienne    •  Chez  l’adulte  

–  Méningite  «  d’inocula@on  »  :  6  %  des  méningites    bactériennes  (3/106  par  an)  –  infec@on  sévère  

Page 38: Cas clinique N°2, -‐ Pierre 62 ans

Selon Laurie L. Ackerman and Arnold H. Menezes Pediatrics 2003;112;641-647

Page 39: Cas clinique N°2, -‐ Pierre 62 ans

QUESTION  8  Le  pa@ent  vous  informe  qu’il  avait  été  vic@me  d’un  trauma@sme  crânien  grave  à  l'âge   de   50   ans.   L’imagerie   réalisée   confirme   la   présence   d’une   brèche  ostéodurale.    Quelle  est  votre  a�tude  thérapeu@que  ?