47
Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 1 Plan du cours d’électrochimie L3 Chimie-Physique et M1 materiaux concours 2006/2007 - I) Introduction et rappels : Rappel des liens fondamentaux entre électrochimie et thermodynamique: affinité chimique et électrochimique, degrés d’avancement et vitesse de réaction - II) Systèmes hors d’équilibre - Création d’entropie et Surtension , Loi empirique de Tafel, Etude de la vitesse d’un processus électrochimique (faradique) simple (modèle fondé sur les courbes d’enthalpie libre), Loi de Butler-Volmer, réaction lente et rapide - III) Interface Electrode/Solution Processus non faradique, double couche et couche diffuse, Représentation de l'interface par un circuit RC équivalent et cinétique de relaxation associée, Réactions contrôlées par le transfert de masse: courant limite, Spectrométrie d’Impédance Complexe : un outil de choix pour étudier les phénomènes interfaciaux. - IV) Electrochimie appliquée I : accumulateurs primaires (piles) et secondaires (batteries) L'accumulateur électrochimique: une machine (complexe) pour transformer l'énergie chimique en énergie électrique, et vice versa, Principe de fonctionnement et architectures, Caractéristiques et critères de performance, Cas des piles : piles salines et alcalines, Electrodes à gaz : couples Zn/air et piles à combustible, Cas des accumulateurs rechargeables: batteries au plomb, Ni(OH) 2 , Li-ions - V) Electrochimie appliquée II : corrosion La corrosion : un phénomène thermodynamiquement inévitable (conséquence sur notre économie), Corrosion sèche, Corrosion humide, Piles de corrosion/corrosion différentielles, Facteurs thermodynamiques (diagramme potentiel/pH –Pourbaix), Facteurs cinétiques (diagrammes d’Evans)

cours electro en ligne

Embed Size (px)

Citation preview

Page 1: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 1

Plan du cours d’électrochimie

L3 Chimie-Physique et M1 materiaux concours 2006/2007

- I) Introduction et rappels :

Rappel des liens fondamentaux entre électrochimie et thermodynamique: affinité chimique et électrochimique, degrés d’avancement et vitesse de réaction

- II) Systèmes hors d’équilibre - Création d’entropie et Surtension , Loi empirique de Tafel, Etude de la vitesse d’un

processus électrochimique (faradique) simple (modèle fondé sur les courbes d’enthalpie libre), Loi de Butler-Volmer, réaction lente et rapide

- III) Interface Electrode/Solution

Processus non faradique, double couche et couche diffuse, Représentation de l'interface par un circuit RC équivalent et cinétique de relaxation associée, Réactions contrôlées par le transfert de masse: courant limite, Spectrométrie d’Impédance Complexe : un outil de choix pour étudier les phénomènes interfaciaux.

- IV) Electrochimie appliquée I : accumulateurs primaires (piles) et secondaires (batteries) L'accumulateur électrochimique: une machine (complexe) pour transformer l'énergie chimique en énergie électrique, et vice versa, Principe de fonctionnement et architectures, Caractéristiques et critères de performance, Cas des piles : piles salines et alcalines, Electrodes à gaz : couples Zn/air et piles à combustible, Cas des accumulateurs rechargeables: batteries au plomb, Ni(OH)2, Li-ions

- V) Electrochimie appliquée II : corrosion

La corrosion : un phénomène thermodynamiquement inévitable (conséquence sur notre économie), Corrosion sèche, Corrosion humide, Piles de corrosion/corrosion différentielles, Facteurs thermodynamiques (diagramme potentiel/pH –Pourbaix), Facteurs cinétiques (diagrammes d’Evans)

Page 2: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 2

Chapitre I: Introduction et Rappels

A) Introduction Générale On aborde généralement l’électrochimie en associant réaction d'oxydo-reduction et thermodynamique des états d'équilibre. Cette approche conduit à la loi de Nernst qui relie le potentiel d'une électrode à la concentration des espèces impliquées. (nb: c'est une façon de mesurer des constantes d'équilibre!). On applique alors cette électrochimie des états d'équilibre à l’étude des potentiels d’électrode puis à l’analyse des solutions ioniques diluées (et aux différentes méthodes de titration). Si ces aspects sont très importants, ils ne représentent qu’une partie de l’électrochimie; cette science va bien au-delà. Voici quelques exemples :

- études des sels fondus (milieux ioniques en fusion) et/ou des milieux fortement concentré: étude des systèmes réels (mesure des coefficients d'activité)

- réactivité en milieux aqueux/non aqueux : catalyse, synthèse organique et toute réaction faisant intervenir des transferts d’électrons

- application aux solides : - 1) corrosion (nouveaux alliages dans l’aéronautique, l’automobile, le

bâtiment, l’électronique,..…..) (sera vue au chapitre V) - 2) accumulation électrochimique de l’énergie (piles et batteries):

développement récent miniaturisation (éléments portables), véhicules électriques ou hybrides (sera vue au chapitre IV)

- 3) capteur (miniaturisation : micro-électrodes pour application médicale ou environnementale –détection de certains ions dans les eaux, les sols….)

Toutes ces applications mettent en jeu des réactions d’oxydoréduction, c’est à dire de transfert électronique entre composés d'affinité électronique (ou d'électronégativité) différente. On peut donc appliquer toutes les notions thermodynamiques connues à ce type de réaction chimique : définition des conditions d’équilibre, loi d’action de masse, ..etc.. Nous comprenons très facilement, à travers les exemples suscités, que l’électrochimie est une science pluridisciplinaire qui nécessite également des compétences en : cinétique, électricité, science des interfaces, phénomène de transport de matière, mécanismes réactionnels (transfert d’électron)….Notons aussi que le développement récent des nanotechnologies joue un rôle important en électrochimie (nano-ressource d’énergie, nano-capteur(électrodes), nano-réacteurs…) Arrêtons-nous, dans un premier instant, sur l’aspect thermodynamique (que vous connaissez mieux). Vous avez étudié l’électrochimie des états d’équilibre (ex loi de Nernst et diagramme Potentiel/pH). Mais pour comprendre les phénomènes qui ont cours dans la plupart des domaines d’application de l’électrochimie, cela ne suffit pas. Tant que l’on mesure des

retour plan

Page 3: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 3

échanges d’électrons (c’est à dire du courant = flux de charges), cela signifie que des réactions ont lieu et que l’on est par conséquent dans des conditions hors d’équilibre. La notion de potentiel d’électrode est intimement liée à la notion d’équilibre. Les conditions hors d’équilibre se caractérisent (2ème principes de la thermo) par la production constante d’entropie interne. En électrochimie, cette croissance d’entropie est caractérisée par des surtensions, c'est à dire par l'écart qui apparaît entre le potentiel au repos (i=0) donné par la loi de Nernst et le potentiel de fonctionnement (i≠0). Nous reviendrons en détails sur cette notion fondamentale de surtension. Une partie importante de l'électrochimie fondamentale essaie de modéliser le phénomène de surtension. Nous verrons dans la suite de ce cours que cela fait intervenir un grand nombre de processus différents et complexes qui se superposent les uns aux autres: cinétique de transfert électronique, effet joule, transfert de matière, effets non faradiques (capacitif). La plupart de ces phénomènes ne sont pas linéaires ; c'est-à-dire qu’ils ne dépendent pas linéairement du courant qui circule dans la cellule électrochimique.

B) Rappels : liens avec la thermodynamique des états d’équilibres

Electrochimie : Etude des réactions d’oxydo-réduction lorsqu'il y a échange de charges électroniques à l’interface d'une électrode 1

Red Ox +nF e-

On peut considérer l’électron comme une espèce chimique et exprimer alors le degrés d’avancement ξ à partir des relations déjà définies en thermodynamique:

nF

dnd e=ξ

où ne est le nombre d’électrons échangé par unité de surface, F ( Faraday : charge d’une mole d’électron) et n le coefficient stœchiométrique associée à cette espèce. Alors la vitesse de réaction v devient :

nF

i

nFdt

dn

dt

dv e === 1

et ξdnFdti .. =

i est une densité de courant (par unité de surface A/m2). Le courant passant dans le circuit est donc directement lié à la vitesse de la réaction. Notons aussi que i et dξ sont de même signe.

1 Si l'échange de charge électronique s'effectue directement d'une espèce à l'autre au sein d'une solution (liquide ou solide), la reaction d'oxydo-reduction est alors traitée comme toute réaction chimique (ex acide/base) et le recours à la mesure des potentiels n'est pas necessaire (autant passer par le ∆∆∆∆G de la réaction et les constantes d'équilibre)

Page 4: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 4

Affinité Electrochimique d’une cellule galvanique2 Schéma : Métal/matière active/électrolyte//électrolyte/matière active/Métal Cas de la pile Daniell : Zn/Zn2+//Cu2+/Cu/Zn (avec E0(Zn/Zn2+)= -0.76eV E0(Cu/Cu2+)=0.34V) Naturellement le système évoluera dans le sens d'une oxydation du zinc et d'une réduction du cuivre. (Rappel: le courant circule dans le sens des cations et dans le sens opposé a celui des électrons) Zn/Zn2+ constitue donc l'anode et Cu/Cu2+ la cathode L’énergie interne U d’une telle cellule (plusieurs phases en contact) peut être définie de la manière suivante :

dtiEEpdVdQdtiEdWdQdU acee )( −+−=∆++=

où ac EE − est la tension ∆E au borne de la cellule et edQ la chaleur échangée.

Le système est hors d’équilibre :

QdQdTdS ie += d’où QdTdsQd ie −=

Sachant que la fonction enthalpie libre G=U+PV+TS, on aboutit à : dtiEQdVdpsdTdG i ∆+−+−=

ou

ξdnFEQdVdpsdTdG i ∆+−+−=

qui finalement en conditions isobare et isotherme se réduit à : ξdnFEQddG i ∆+−=

or nous savons que A (l’affinité) est égale à T,p)G( ξ∂∂− .

Si l’on divise l’expression de dG par dξ, on arrive à :

nFEd

dG

d

Qdi ∆+−=ξξ

on en déduira l’affinité électrochimique à comme :

nFEAd

QdA i ∆+==

ξ~

à joue le même rôle que A (cas d’un système purement chimique) Les conditions de repos (i=0) (partie électrochimique de la réaction) imposent Ã=0 soit :

)( rr GnFEEnFA ∆=∆−=∆−=

2 Il existe 2 types de cellules électrochimiques (constituées de 2 couples redox) : galvaniques et électrolytiques

1) Galvanique : la réaction entre les 2 systèmes est spontanée : cas des piles primaires, piles à combustible, des protections galvaniques (anti-corrosion)

2) Electrolytique : le courant passe dans le circuit parce qu’on applique un potentiel aux électrodes (on place le système de manière à ce qu’il s’écarte de l’équilibre). Electrolyse de l’eau, dépôt de revêtement métallique

Nb : les piles secondaires (ou rechargeables) se comportent comme des cellules galvaniques en décharge (on récupère spontanément l’énergie du système) ou comme des cellules électrolytiques lorsqu’on les recharge

Page 5: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 5

où rE∆ est le potentiel aux bornes du système lorsqu'il est au repos i=0 . Il en découle

directement : nF

AEEE a

rcrr −=−=∆ (cathode/anode)3

avec arE potentiel de l'anode (siège de l'oxydation) et c

rE potentiel de la cathode (siège de la réduction) On peut ainsi écrire que l’affinité A du système est la somme des affinités de 2 sous systèmes correspondant respectivement à l’anode et la cathode tel que A=Ac+Aa

C’est de cette manière que l’on relie l’évolution du système à la différence de potentiel entre les deux couples et que l’on peut calculer le potentiel d’équilibre (ou de repos - en circuit ouvert-) Loi de Nernst.

retour plan

3 C'est une autre forme de la relation de Nernst

Page 6: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 6

Chapitre II : Système hors d’équilibre

retour plan

A) Entropie et surtension Nous avons vu en introduction que lorsqu’un courant circule dans la cellule galvanique, le système est nécessairement hors d’équilibre. La tension d’équilibre Er=-A/nF . Hors d’équilibre la tension sera E.

L’affinité électrochimique s’écrit , nFEAA~ += , c’est à dire : )EE(nFA

~r−= (puisque A=-

nFEr) A l’équilibre E=Er et Ã=0. L’affinité électrochimique est donc directement liée à la différence entre le potentiel en fonctionnement (un courant circule) et le potentiel de repos. Cette différence E-Er est appelée surtension. On la note ηηηη. On peut maintenant démontrer sans difficulté que ηηηη est directement associée à la création d’entropie interne par l’équation:

ηnFEEnFA r =−= )(~

d’où

ξξη

d

Sd

nF

T

nFd

Qd

nF

A ii .~

===

Sdi est toujours positive (2nd principe de la thermodynamique) ηηηη est de même signe que dξξξξ,

qui lui est de même signe que le courant i. dξ>0 en charge (fonction electrolyseur), dξ<0 en décharge (fonction générateur)

On peut aussi écrire : ac EEE −= et ar

crr EEE −= , et ainsi séparer la surtension globale en

une somme de surtensions anodique et cathodique ηa et ηc ac ηηη −=

Sachant que η est négatif si le système libère des électrons et positif dans le cas opposé, alors ηa>0 et ηc<0 seront toujours de signe opposé. Leurs valeurs s'ajoutent donc en valeur absolue et on peut écrire:

ac ηηη +=

----- E (en charge dξ>0 et η>0) ----- Er ----- E (en décharge dξ<0 et η<0)

Page 7: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 7

Chute Ohmique Lorsqu’un courant circule dans la cellule, une partie de la surtension peut être directement reliée au fait que cette cellule présente une résistance, dite interne, Rint non nulle. Une différence de potentiel EΩ égale à Rint.i apparaît nécessairement. La chute de potentiel ou surtension, ηηηη, contient alors un terme qui n’est pas directement dépend des processus irréversibles électrochimiques. Ce terme Rint.i n’est du qu’au montage. Ce terme correspond à de l’énergie (chaleur) dissipée par effet joule qui est toujours positive et irréversible. On écrira donc de la manière la plus générale :

iRca .int++= ηηη

On suppose implicitement que Rint n’est pas une fonction de i (Rint=cste) ce qui n’est pas le cas de ηηηηa* et de ηηηηc*. Autrement dit Rint est une résistance ohmique pure. Avec cette définition ηηηηa* et de ηηηηc* ne sont associés qu’aux phénomènes irréversibles directement liés aux réactions redox. ηηηηa* et de ηηηηc* sont aussi appelées polarisation d’électrodes (anodique ou cathodique).

B) Cinétique d’un processus électrochimique simple Nous avons vu que la vitesse des réactions électrochimiques est directement reliée au courant i. Nous savons aussi qu’une réaction ne peut se produire que dans un domaine de potentiel. Il doit donc exister une relation entre la vitesse et le potentiel, ou entre le courant et le potentiel. C’est sur l’étude des courbes intensité/potentiel qu’une très grande partie de l’électrochimie repose. Ces courbes donnent des informations sur les potentiels de réaction (autrement dit les paramètres thermodynamiques) et sur les cinétiques. C’est un moyen très puissant pour appréhender les mécanismes réactionnels, mais aussi pour comprendre, par exemple, les performances des couples redox qui sont utilisés dans les accumulateurs. Revenons aux notions élémentaires de cinétique B-1) cinétique homogène (rappels) Soit la réaction :

−+⇔ enFOxdox

red

k

k.Re

A l’équilibre la vitesse nette (ou globale) est nulle, donc : vox=vred=v0. v0 est la vitesse d’échange (très important en électrochimie). Les constantes de vitesses sont thermiquement activées (modèle du complexe activé) telle que :

)exp(.kT

GAk

act

x∆−=

où ∆Gact est la différence d’enthalpie libre entre l’état initial et l’état activé.

Page 8: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 8

(nb : cette expression dérive en réalité de la loi d’action de masse) B-2) Elément de cinétique électrochimique le potentiel d’équilibre de la réaction décrite plus haut est donné par la relation de Nernst :

+=

red

ox

ra

a

nF

RTEE ln0

La question fondamentale à laquelle nous devons répondre est : Comment i varie avec le potentiel (ηηηη≠0; E≠Er ) appliquée à l’électrode ? On va, dans un premier temps considérer que le courant n’est pas limité par les phénomènes de transport de matière au sein de la solution -> concentration faible et agitation de la solution. Alors le courant i ne sera limite que par les phénomènes interfaciaux, c’est à dire par la cinétique de la réaction redox considérée. On constate expérimentalement que le courant croit avec la surtension :

iba ln+=η

Cette loi est connue sous le nom de loi de Tafel (1905). a et b sont des paramètres caractéristiques de la réaction et de l’électrode. Elle est analogue à la loi d'Ohm (η=Ri) qui relie aussi la surtension (η=E , puisque dans ce cas Er=0) au courant i. Cette loi expérimentale montre cependant que le comportement d'une électrode siège d'une réaction électrochimique est plus complexe que le comportement d'un résistance ohmique. Comment retrouver cette loi à partir de la théorie cinétique ? On pose l'hypothèse d’une cinétique du 1er ordre. Alors, si aox(x,t) est l’activité de l’oxydant au temps t et à la distance x de l’électrode, la vitesse de réduction s’écrit :

nFi

)t,O(a.kdtad

vred

oxredox

red ===

x=0 car on considère que seule les espèces présentent à la surface de l’électrodes réagissent de la même manière on écrira :

nF

i)t,O(a.k

dt

adv

oxredox

redox ===

(nb : ired est aussi appelé courant cathodique (il est par définition négatif), iox courant anodique par definition positif) Le courant global, i sera égale à i= iox + ired

, d’où

Page 9: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 9

)),0(.),0(.( taktaknFnFvi oxredredoxnet −== si la forme réduite est un métal, ared=1 et si la forme oxydée est un ion en solution diluée idéale :

)),0(.( tCkknFnFvi oxredoxnet −== Ce courant est le courant maximum délivrée à l’électrode. Rien ne le limite sinon la cinétique propre de la réaction. Tout l’intérêt de l’électrochimie est que l’on peut contrôler le potentiel (ou η) imposé à l’électrode (potentiel de fonctionnement) et qu’on peut agir sur les courants, en sachant qu’il y aura toujours une limite. B-3) Modèle fondé sur la représentation de l’enthalpie libre (parce qu’on travaille en contrôlant P et T qui sont souvent maintenus constants) (voir schéma distribué en cours) Si on impose un potentiel E différent de Er, l’énergie libre des électrons devient nFE si bien que la nouvelle énergie libre du système ox+nFe- devient

η+=−+=−−− +++ nFG)EE(nFGG nFeox

rrnFeox

rnFeox

et celle du système red n'est pas modifiée:

redr

red GG =

On pose un paramètre α telle que l’énergie libre du complexe activé Gact devient :

ηα−+= nF)1(GG actr

act

α est appelé coefficient de transfert. Il caractérise la symétrie des puits de potentiel. Il n'a pas de signification physique particulière. C'est un paramètre phénoménologique.

Les barrières d’énergie libre correspondant à l’activation de la réaction sont donc :

η−−ηα−+=η−−=−=∆−−− +++ nFGnF)1(GnFGGGG)red(G nFeOx

ractr

nFeOxr

actnFeOxactact

d'où ηα−∆=∆ nFG)red(G act

ract

de la même manière on démontre:

ηα−+∆=∆ nF)1(G)ox(G actr

act

Si on applique ces relations aux constantes de vitesse, on arrive à :

Page 10: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 10

−=RT

nFkk ox

rox ηα )1(

exp. et

−=RT

nFkk red

rred ηα

exp.

et le courant i associé à la réaction redox ( redox iii += ):

−−

−= ),0(.exp.),0(.)1(

exp. taRT

nFkta

RT

nFknFi oxred

rredox

rηαηα

Si nous considérons le cas d’un système maintenu à l’équilibre ( 0=i ) dans les conditions

standards et homogènes telle que 1),0(),0( == tata oxred et 0EEE r == , on aboutit alors à:

0=− redr

oxr kk d’où 0kkk red

roxr ==

On peut ainsi re-écrire l’équation du courant en fonction du nouveau potentiel E :

−−

−=RT

nFta

RT

nFtanFki oxred ηαηα

exp).,0()1(

exp).,0(0

Cette relation est très importante, très souvent utilisée et connue sous le nom de Butler-Volmer (BV) (une des formes, elle peut s’exprimer de façon différente). Elle donne la relation entre le courant, c’est à dire la cinétique de la réaction et le potentiel appliquée E.

Sens physique du paramètre k0:

k0 est directement relié à la vitesse de transfert des électrons entre le red et l’ox.

Certains couples sont caractérises par k0 des élevés (1-10-1cm.s-1) (couple rapide) d’autres par des valeurs beaucoup plus faibles (couples lents) (10-10cm.s-1). Les premières sont généralement des réactions élémentaires et les secondes font intervenir des mécanismes complexes (succession des réactions élémentaires avec re-arrangement moléculaire)

B-4) Application de la relation courant-potentiel

A l’équilibre électrochimique ( )0=+= redox iii et en conditions standard de concentration, on peut écrire :

0iii redox =−=

et d’après l’équation de BV

1),0(),0( == tata redox

D’où finalement une nouvelle forme de BV:

Page 11: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 11

−−−

−−=RT

EEnF

RT

EEnFii

)(exp

)()1(exp 00

0αα

Courant anodique (oxi ) courant cathodique ( )redi

avec 00 nFki =

Cette équation qui donne la relation entre le courant et le potentiel appliqué E. Elle est composée respectivement d’un terme cathodique (associé à la réduction) et d’un autre anodique (associé à l’oxydation).

Si l’on considère maintenant des conditions non standard, on aura toujours :

0iii redox =−=

D’où, par exemple,

−−=RT

EEnFtanFki rox )(

exp).,0( 000

α

et d’après Nernst :

+=

),0(

),0(ln0

ta

ta

nF

RTEE

red

ox

r c'est-à-dire :

= RT

EEnF

red

ox r

ea

a)( 0

qui permet d’écrire :

( ) ( )ααα

),0(.),0(.),0(

),0().,0(

)1(000 tatanFk

ta

tatanFki redox

red

oxox −

=

=

Puis finalement dans les conditions d’un système homogène :

αα),0(..

)1(00 taanFki redox −

=

Simplification des équations : cas des systèmes homogènes

Sous agitation énergique et lorsque les concentrations sont faibles, alors l’équation précédente se réduit à :

−−

−=RT

nF

RT

nFii

ηαηαexp

)1(exp0

qui est la forme la plus usitée de la relation de Butler-Volmer.

Page 12: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 12

On vérifie que lorsque η tend vers 0, i tend vers zéro aussi. Pour les valeurs de η>0 , c’est le terme anodique qui est prépondérant (i>0), et inversement pour η<0, le terme cathodique (i<0)

Liens avec les équations de Tafel

Considérons uniquement le courant anodique (iox). Pour les valeurs de η très faibles, i peut s’écrire :

)1)1(

(0 +−≈RT

nFiiox ηα

puisque xx +≈ 1)exp( . Cela démontre qu’un comportement linéaire

du courant avec la surtension η c'est-à-dire avec le potentiel E.

Pour les valeurs de η plus importantes iox ou ired dominent, on montre alors très facilement, dans le cas de iox que:

−≈RT

nFii

ηα )1(exp0 ce qui est strictement équivalent à :

RT

nFiiLn

ηα )1()ln()( 0

−+= d’où nF

RTi

nF

RTi

ααη ).ln().ln( 0+−=

ce qui permet de donner aux paramètres a et b de l’équation de Tafel :

)ln(iba +=η

la signification physique suivante :

nF

RTia

)1(

).ln( 0

α−= et

nF

RTb

)1( α−−=

L’examen des courbes de Tafel permet donc de déterminer les 2 paramètres fondamentaux qui caractérise la réaction redox : α le coefficient de transfert et i0 (ou k0) le courant d’échange. Le premier caractérise le comportement hors d’équilibre, l’autre l’équilibre.

Rappel : c’est à partir de ces courbes I-E que l’on définit toutes les méthodes d’analyses

Page 13: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 13

i (cas d'un systèm e lent)

i

E (ou η )

Er

0

ic

ia

i=ia+ic

(cas d'un système rapide)

retour plan

Page 14: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 14

retour plan

Chapitre III) : Interface Electrode/Solution. Phénomènes non Faradiques

A) Introduction Que se passe-t-il à l’interface Electrode/Solution ? Comment s’effectue globalement la réaction redox ? Quels sont les mécanismes physiques qui contrôlent la cinétique de ce phénomène ? Pour qu’il y ait transfert de charges il faut :

1) une « matière », le collecteur de courant, qui apporte/transporte les électrons vers les reactifs (elle doit être conducteur d’électron (métal, graphite ou SC a très faible gap); elle doit aussi être insoluble (ou presque Ks=0), elle ne doit pas se passiver (ne pas former d’interface isolante qui bloquerait tout transfert d’électron)

2) que l’espèce réactive soit au contact du collecteur (elle peut être le collecteur lui même; ex: Zn/Zn2+)

3) que les différences de potentiel chimique des électrons soit en « accord » (∆G de la réaction).

Conséquences :

1) choix du matériau du collecteur : aspect premier 2) il faut un transport de masse (des matières réactives) de la solution vers l’électrode.

Agitation de la solution ou déplacement de l’électrode. Les espèces réactives sont soumises à une somme de force (force de transport, de diffusion…) qui peut évoluer de manière à tendre vers 0 (état stationnaire) –si les contraintes sont constantes.

3) Il faut imposer le potentiel des électrons (nFE) de l’électrode de manière à rendre possible le transfert d’électron dans le sens choisi (red ou ox). Transfert entre les électrons des niveaux les plus élevés vers la bande de conduction du collecteur ou transfert des électrons du collecteur vers le niveau vacant le plus bas de l’espèce considérée.

B) Processus faradique et non faradique

Page 15: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 15

Un processus faradique est un processus qui fait intervenir un transfert l’électron entre l’électrode et l’espèce réactive : il y a réaction redox. Par opposition, un processus non faradique correspond à aucun transfert d’électron à l’interface. Att : il peut y avoir transfert de charge et création d’un courant sans transfert d’électron

B-1) Processus Faradiques

Si le système étudié ne présentait aucun processus non faradique, il n’y aurait aucune surtension due au phénomène d’interface et on pourrait appeler alors l’électrode idéalement non polarisée. La cinétique serait alors uniquement gouvernée par la réaction redox : celle que nous avons déjà vue au chapitre précèdent (lois de Tafel, Butler-Volmer)

B-2) Processus non Faradiques

Les processus faradiques sont toujours associés à des processus non faradiques : soit parce que le système est dans des conditions de potentiel qui ne permettent pas le transfert (instantané) d'électron soit parce que la cinétique de la réaction est très lente. Ces derniers peuvent constituer une grande partie de l’irréversibilité, c’est à dire qu’ils sont responsables de la surtension.

En absence de processus Faradique, on dira que l’électrode est idéalement polarisée. Le système se comporte alors comme un circuit qui associe un condensateur et une résistance: La double couche :

Collecteur de courant

-

-

-

-

-

-

-

-

- -

-

-

-

-

-

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

En absence de champ électrique : répartition homogène des charges

Electrolyte

-

-

-

-

-

-

-

-

- -

-

-

-

-

-

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

-

-

-

-

-

+

+

+

+

+

+

+

+ -

+

En présence d’un champ électrique : répartition inhomogène des charges aux

interfaces collecteur/électrolyte : Force=Eqr

Double couche

Page 16: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 16

La couche diffuse:

L’épaisseur de la couche diffuse dépend de la concentration, de l’ensemble des forces qui s’applique aux charges. Elle est de l’ordre de quelques dizaines d’Angstrom.

Les espèces solvatées sur le plan externe d’Helmotz ne voient pas le potentiel réellement imposé (effet d'écrantage). Le plan interne se comporte comme une résistance et provoque une chute de potentiel. Voilà par exemple une cause de surtension.

solution homogènecouche diffuse

Φ+

po

ten

tiel "

ress

en

ti" p

ar

les

esp

ece

s ch

arg

ée

s

distance

ΦM

double couche

Comment i ou E varient dans un tel système ? On peut représenter le système double couche/plan d’Helmotz/couche diffuse par un circuit RC en série.

-

-

-

-

-

-

-

+ +

+

+

+

+

+

-

+

Couche diffuse :

0≠∂∂

x

Ci

Plan d’Helmotz

Zone homogène :

0=∂∂

x

Ci +

diffusionmigration FFrr

/

Page 17: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 17

α) Etudions la réponse de ce circuit à un créneau de potentiel

RC

tq

R

E

dt

tdq

RC

tq

R

Eti

C

tqtiRE

ddd

)()()()(

)()(. −=⇔−=⇔+=

Equation différentielle du 1er ordre dont la solution conduit à :

= dRCt

eR

Ei .

temps

E(t

)

E/R

t=0

E

i(t)

β) Réponse à un créneau de courant

dd C

tiiRE

C

qiRE

... +=⇔+=

temps

i(t)

i/Cd

t=0

E(t)

R.i

i

R

Cd

dCR EEE +=

iRER .=

dC C

qE

d=

Page 18: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 18

χ) Réponse à une rampe de potentiel

ddi C

tq

dt

tdqR

C

tqtiRtvEtE

)()(.

)()(..)( +=+=+=

Equation dont la solution est :

−+=

dRCt

di

d eCvR

ECvti ...)(

temps

i(t)

v.Cd

v

t=0

E(t)

Ei

Ei/R

B-3) Cas réels4

Les surtensions (et les cinétiques) associées à chacun des processus dépendent de tous les phénomènes que nous venons d’exposer. Ils se superposent

iR*Ω+η=η avec 4321

* **** η+η+η+η=η

où η1 est la surtension de transfert de charge, celle liée à la couche diffuse,…..etc… Pour chaque valeur de courant i, chacune des étapes et des surtensions associées peut

être représentée par une résistance non linéaire.

4 (Rappel: Il existe 2 types de cellules électrochimiques (constituées de 2 couples redox) : galvaniques et électrolytiques

3) Galvanique : la réaction entre les 2 systèmes est spontanée : cas des piles primaires, piles à combustible, des protections galvaniques (anti-corrosion)

4) Electrolytique : le courant passe dans le circuit parce qu’on applique un potentiel aux électrodes (on place le système de manière à ce qu’il s’écarte de l’équilibre). Electrolyse de l’eau, dépôt de revêtement métallique

Nb : les piles secondaires (ou rechargeables) se comportent comme des cellules galvaniques en décharge (on récupère spontanément l’énergie du système) ou comme des cellules électrolytiques lorsqu’on les recharge)

Page 19: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 19

C) Réaction contrôlée par transfert de matière On comprend aisément que tous ces processus agissent comme des résistances en série. (les surtensions s’ajoutent !). Comme pour tout circuit de résistances en série, c’est la résistance la plus grande qui joue un rôle prédominent. On observe experimentalement que plus le potentiel E est éloigné du potentiel de repos, plus la vitesse à laquelle les espèces sont transférées de la solution à l’interface devient l’étape la plus lente, alors :

faradiqelim

tmglobale vnF

ivv <=≈

Dans ce cas, il apparaît un courant limite i lim. Cette vitesse, donc le courant, dépend de trois facteurs :

1) la migration : force due à la différence de potentiel entre les électrodes : EqFrr

= (n’agit que sur les espèces chargées)

2) la diffusion : force due au gradient de concentration (loi de Fick) 3) la convection : transport hydrodynamique (dépend de la viscosité du milieu). Il

peut être turbulent, laminaire….

L’équation qui permettra de calculer le flux de particule arrivant à l’interface sera donnée par la relation de Nernst-Plank (cas d’un système linéaire- en réalité on est en 3D ! ! !):

)()(

)( xvCx

xCD

RT

Fq

x

CDxJ iii

iiii +

∂Φ∂−

∂∂−=

La résolution de cette équation aux dérivées partielles n’est pratiquement jamais réalisable de manière analytique. Il faut avoir recours au calcul numérique par ordinateur (méthode des éléments finis). Le résultat montre que lorsque l’on fait varier le potentiel E au borne du système (tous les autres paramètres étant fixés par ailleurs -C, v, T-), il existera des conditions limites au delà desquelles il sera impossible d’augmenter le flux de particules. Il apparaîtra un courant limite directement lié à J(x) et l’allure que courbe intensité/potentiel sera la suivante

(*):

diffusion migration Vitesse de déplacement d'un élément de volume

Page 20: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 20

* courant mesuré experimentalement

(avec courant limite)

ilim

ilim

i

E (ou η)

Er

0

ic

ia

i=ia+ic

(en absence de courant limite)

D) Caractérisation des phénomènes interfaciaux : utilisation de l’impédance complexe La spectroscopie d’impédance complexe (appelée parfois par les électrochimistes EIS : electrochemical impedance spectroscopy) est une technique fondée sur l’étude des circuits électriques en mesurant leur réponse à une sollicitation sinusoïdale (courant *i ou tension

*E alternatifs tieEtE ω.)( 0= où fπω 2= est la pulsation). L’impédance est alors définie par:

)(*

)(*)(*

ωωω

i

EZ = . )(* ωZ est une grandeur initialement définie pour des systèmes (ou

circuit électriques) linéaires. Elle possède des parties reélle et imaginaire : )(")(')(* ωωω iZZZ += dont l’évolution en fonction de la fréquence du champ ou courant

électrique appliqué permet de remonter à des grandeurs caractéristiques du circuit étudié. (nb : est très couramment utilisée dans l’industrie électronique pour vérifier l’état d’un circuit). Nous avons vu dans le chapitre précédent que le comportement d’une électrode idéalement polarisable pouvait être schématisé par un circuit équivalent RC, donc relativement simple. Nous avons alors montré que l’on pouvait remonter au valeur de R et de C en soumettant ce circuit (cette électrode) à un créneau de tension ou de courant. Il est en fait beaucoup plus simple de remonter à ces valeurs non pas en appliquant ce type de sollicitations continues mais en utilisant des signaux alternatifs sinusoïdaux. Ceci est d’autant plus vrai que l’électrode n’est ni idéalement polarisée ni idéalement non polarisée mais qu’elle est le plus souvent le siège d’une combinaison de processus faradique et non faradique. Dans ce cas « réel », la représentation par un circuit électrique équivalent simple n’est plus possible. Il convient alors d’utiliser des circuits beaucoup plus compliqués dont la réponse en fonction du temps (ex I=f(t)) n’est pas facilement analysable. Une étude en fonction de la fréquence (ex : Z*=f( ω)) apporte beaucoup plus d’information. Montrons sur deux cas simples la réponse attendue en fonction de la fréquence. D-1) cas des circuits élémentaires RC série et parallèle

Page 21: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 21

I

R=1/G

C

idc

ip

(a)

Source de tension et analyseur

I

R=1/G C

~

(b)

Source de tension et analyseur

Modèles de circuit équivalent en parallèle (a) et en série (b). Dans les deux cas les éléments dcC et dcR sont

strictement identiques. Une résistance R n’introduit aucun déphasage entre la tension et le courant; l’impédance

complexe )(* ωRZ correspondant est donc égale uniquement à la composante réelle R:

RZR =)(* ω La capacitance C répond systématiquement avec un déphasage de 90° entre le champ et le courant. Elle n’est donc caractérisée que par une composante purement imaginaire :

CjZC ω

ω 1)(* =

Il suffit ensuite de combiner ces impédances en sachant (suivant les lois simples de l’électricité) qu’elles s’additionnent quand elles sont montées en série alors que ce sont leur

valeur inverse, ou admittance ( 1*)(* −= ZY ) qui s’additionnent en parallèle :

Circuit en série : Cj

RZZZ CRsérie ωωωω 1

)()()( *** +=+=

Circuit parallèle : CjRYYY CRpara ωωωω +=+= −1*** )()()(

Dans le premier cas, la mesure de )(* ωsérieZ (en pratique le spectromètre mesure la norme de

l’impédance *Z et le déphasage ϕ entre la tension et le courant), c’est à dire de ses parties

réelles et imaginaires conduit directement à la mesure de R et C.

RZ série =)(' ω et C

Z série ωω 1

)(" −=

Dans le second, un calcul simple montre que :

222' )(

CG

GZ para

ωω

+= et

222" )(

CG

CZ para

ωωω+

=

Page 22: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 22

On montre alors que RGZ para == −→

1'

0)(lim ω

ω et la partie imaginaire passe par un maximum

pour une valeur de ω correspondant à τ

ω 11 ==RCresonance . Cela se repère très facilement

sur les diagrammes d’impédance complexe (parfois appelés digrammes de Nyquist) :

Z"(

ω)

)

Z'(ω) (Ω)

Z'(ω)==>R

Z"(ω) max pour la valeur de ω=(RC)-1

D-2) cas des cellules électrochimiques simples Dans les systèmes réels, il existe en toute rigueur une superposition de courants faradique et non faradique. On imagine aussi que ces deux contributions ne sont pas indépendantes l’une de l’autre. Elles ne sont pas séparables (d’un point de vue strictement théorique). Il faut, pour simuler de façon très précise ce type de comportement complexe, avoir recours aux calculs par ordinateur. On peut cependant, en première approximation, faire l’hypothèse que le courant total observé est la somme des deux contributions :

faradiquenonfaradique iii −+=

Dans de telles conditions, on peut déduire que la représentation la plus simple et la plus probable d’une cellule électrochimique est la suivante :

Capacité double couche: Cd

Impédance Faradique: ZF

Résistance de l’électrolyte: Re

Page 23: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 23

Il reste donc pour avoir une représentation totale du système, à définir la nature exacte de l’Impédance Faradique (celle qui caractérisera la réaction redox, cad le transfert de charge à la surface de l’électrode). Pour aboutir à ce calcul, il est nécessaire de repartir de BV qui donne

la relation entre i et E, puis de la différencier : E

i

∂∂

pour connaître l’effet d’une perturbation

de nature sinusoïdale sur l’évolution temporelle du courant et de la tension. Nous ne donnerons pas ici ce calcul, mais sachez qu’il conduit à mettre en évidence 2 concepts fondamentaux : la résistance de transfert de charge tR et l’impédance de Warburg notée W.

Le premier, tR , définie par : ,....,Tcfaradique

t

iI

ER

∂∂= correspond à la résistance équivalente

au transfert de charge électronique entre les espèces red et ox si l’on suppose que les activités de celles-ci sont constantes. Cette résistance informe donc sur les cinétiques redox. Le deuxième, appelé impédance de Warburg, caractérise l’évolution du courant faradique en fonction des variations de concentration (ou d’activité) des espèces. Il traduit en quelque sorte l’influence du transport de matière vers l’électrode. Le schéma précédent est alors transformé :

Capacité double couche: Cd

Résistance de transfert Rt

Résistance de l’électrolyte: Re

Impédance de Warburg: W

La solution mathématique du problème conduit à une équation qui donne l’évolution du gradient de concentration ic∆ de l’espèce considérée (ox ou red) en fonction de la distance x

à l’électrode et de son coefficient de diffusion iD :

).exp(.).exp(.)(ii

i D

jxB

D

jxAxc

ωω −+=∆

Où les constantes d’intégration A et B dépendent des conditions limites et d’une hypothèse sur l’épaisseur de la couche de diffusion. L’expression de l’impédance de Warburg dépend donc de 2 hypothèses : la couche de diffusion est soit infinie soit finie. Dans le premier cas (couche infinie et processus de diffusion lent), les calculs conduisent à :

Page 24: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 24

ωω

j

yRRZ t

tF.

)(* +=

où red

ox

ox

red

D

k

D

ky +=

le terme complexe ω

ωj

yRW t .)(* = est l’impédance de Warburg.

Le tracé de l’impédance complexe totale du circuit équivalent :

On voit sur ce schéma qu’il est alors « facile » de remonter aux grandeurs caractéristiques du circuit ( tR , DC , intR ) et plus particulièrement que le paramétrage de l’impédance de Warburg

qui domine le signal à basse fréquence peut permettre de déterminer les coefficients de diffusion des espèces considérés. Dans le second (couche finie et processus de diffusion rapide), on obtient ce type de comportement (en considérant le modèle de Nernst ou la concentration des espèces varie linéairement avec la distance):

Où l’on retrouve l’impédance de Warburg à haute fréquence ( ∞→ω ) ou à basse fréquence si

Dδ l’épaisseur de la couche de diffusion tend vers aussi vers ∞ (cas 1).

Page 25: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 25

Lorsque Diffδ est suffisamment petit (qq °Α ) alors l’arc de cercle observé est très déformé et

il devient possible de remonter à basse fréquence à la valeur du produit D

k Diffox δ. et, par

conséquent, à Diffδ si oxk et D sont connues par ailleurs.

retour plan

Page 26: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 26

retour plan

Chapitre IV) :

Accumulateurs primaires (piles) et secondaires (batteries)

Définition : Systèmes qui transforment l’énergie chimique en énergie électrique (et vice versa).

A) Introduction Les accumulateurs électrochimiques sont des « machines » (comme toute machine, ils

transforment l’énergie). Ils seront caractérisés par un ensemble de critères techniques : énergie, capacité, rendement (=pertes d’énergie=surtension) Nomenclature: • Cellule : unité regroupant 2 sous-ensembles associés chacun à 1 électrodes (un couple

redox). Le potentiel de la cellule, Er, est donné par la différence Erc-Er

a. Il est caractéristique des 2 couples

exemple d’une cellule (Pb/acide) Er=2,1V

• Batterie : ensemble associant en série des cellules. Le potentiel d’une batterie est Er*nb de cellules.

La batterie Pb/Acide : 6 cellules montées en série (Er=12,6V)

Page 27: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 27

• Matière active : matière capable de stocker ou de délivrer l’énergie sous forme électrochimique – la matière associé au couple redox

• Matière inactive : (tout le reste) le collecteur de courant, l'électrolyte, la boite, le séparateur, les additifs divers et variés. L’électrode est constituée de matière active et inactive aussi. (nb : les matières inactives ne sont pas forcement inertes ! ! ! ! ex : réactions parasites comme l’électrolyse de l’eau! ! !)

Bien que les piles et les batteries aient été l’objet de nombreux développements industriels

et commerciaux constants depuis plus d’un siècle, les besoins en stockage performant d’énergie et plus particulièrement en miniaturisation se sont considérablement accrus ces dernières années : électronique, téléphonie portable, ordinateurs, véhicules électriques….

Les batteries peuvent répondre à l’ensemble des besoins : de qq µWh (courants très faibles pour maintenir les mémoires sur les cartes mères, défibrillateurs cardiaques), à plusieurs dizaine de MWh (sous-marins –200 tonnes de batteries au plomb-, régulation en sortie de centrale électrique) en passant par les batteries plus répandues de qq Wh ou KWh (automobile, aviation, sécurité des bâtiments, applications militaires –ogive nucléaire-).

Projet futuriste d’une station capable de stocker l’énergie (plusieurs MWh) d’une centrale électrique (régulation

des capacités de production/consommation) Paramètres de choix en fonction de l’application:

- besoins en énergie et/ou en puissance ? - privilégier le poids ou le volume ? - durée de vie - application sédentaire (sécurité électrique)/mobile? - coût : en matière première et en maintenance - environnement : recyclage des matières actives et inactives (qui sont souvent

dangereuses): métaux lourds, acide/base, solvant organique Pour répondre à tous ces critères (c’est à dire pour trouver le meilleur compromis),

l’utilisateur a le choix entre différents couples et différentes technologies.

USABC - oobbjjeeccttiiff àà lloonngg tteerrmmee

Pu

issa

nce

sp

écif

iqu

e [W

/kg]

0

100

200

300

400

500

0 50 100 150 200 250

PPlloommbbNNii--MMHH

LLii--IIoonnss

Densité d’énergie [Wh/kg]

DDiiaaggrraammmmee ddee RRaaggoonnee

Diagramme qui représente l’énergie massique en fonction de l’énergie volumique pour les 3 couples rechargeables les plus répandus.

Page 28: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 28

Nous allons vous présenter dans la suite de ce chapitre les différentes familles de batterie : quels couples, quels principes de fonctionnement, avantages/désavantages : lien avec les propriétés électrochimiques que nous avons évoquées jusqu’à présent. Mais commençons par quelques généralités relatives au fonctionnement des accumulateurs électrochimiques.

B) Caractéristiques et critères de performances électrochimiques

Les accumulateurs vont être caractérisés selon leur capacité, leur énergie, leur puissance et finalement leur aptitude à la recharge (cyclabilité ; cas des accumulateurs rechargeables)

B-1) Capacité

La capacité théorique délivrée par une électrode Cthéo est :

∫== dt.inF.xC théo (Coulomb)

où x est le nombre de mole de matière active et n le nombre d’électron échangé théoriquement par mole de matière active

La capacité théorique n’est pas souvent utilisée, puisqu’en pratique l’utilisateur sera intéressé par la capacité réelle susceptible d’être fournie par l’accumulateur. Pourquoi la capacité réelle diffère-t-elle de la théorique (parfois jusqu’à un facteur ½) ?

1) tous les électrons ne sont pas toujours extractibles : nextra<nthéo 2) les matières actives sont très souvent des solides sous forme de grain et il n’est pas

toujours possible de faire réagir le cœur du grain par exemple (une couche passivante se forme en cours de réaction et constitue une barrière qui bloquent soit le transfert des e- soit celui des ions !) : xutil<xthéo

Ce qui peut s’exprimer de la façon suivante :

∫== dtiFnxC extrautilréel .. .

Comment détermine-t-on Créel? Dans la plus grande majorité des cas, on fera débiter l’électrode dans un circuit de résistance variable, de manière à ce que le courant soit constant. On mesure alors le potentiel de l’électrode en fonction du temps et on considère l’expérience terminée lorsque celui chute brutalement. C’est une mesure en condition galvanostatique. Si i est constant, alors Créel devient :

tiCréel .=

Page 29: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 29

tfin

mise en place des surtensions électrochimiques η∗

temps0

i=csteE

r

chute ohmique ηΩ

(instantanée)

Etravail

Courbe de décharge « idéale » en condition galvanostatique: finréel tiC .=

La capacité délivrée dépend fortement du régime de décharge i. Plus les courants

demandés sont importants, plus les surtensions sont élevées et plus la capacité est faible.

i1<i

2<i

3 ==> C

réel1>C

réel2<C

réel3

et ==> η1<η

2<η

3

tfin 3

tfin 1

i3

i1

tfin 2

temps0

i2

Er

Evolution des courbes de décharge en fonction du régime imposé

La capacité réelle d’un accumulateur ou d’une pile est toujours donnée pour un régime

précis. On écrit : I=C/5, C/10, C/20. Cela signifie que la valeur C affichée correspond à la valeur obtenue lorsqu’on fait débiter l’accumulateur à un courant équivalent à 1/5, 1/10, 1/20ème de la capacité. Cette capacité est souvent appelée capacité nominale. Ex : C/5 = 20Ah, cela signifie que l’accumulateur sera capable de délivrer un courant de 4A pendant 5h.

Comme une cellule est composée de 2 électrodes, il faut ajuster la capacité réelle des 2 électrodes. La capacité de l'accumulateur sera imposée par le couple en defaut. D’une manière générale, plus on utilise la totalité de la capacité nominale, plus on accélère le vieillissement de l’électrode. Il est souvent recommandé de n’utiliser que 80% de cette capacité.

Page 30: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 30

Les utilisateurs ne s’intéressent pas beaucoup à la valeur brute de la capacité. En fonction de l’application, le facteur prépondérant sera soit la capacité massique (Ah//kg) soit la capacité volumique (Ah/l) de la batterie considérée. Il faut alors prendre en compte le poids ou le volume des matières actives, mais aussi le poids et le volume de l’ensemble des matières inactives. La fabrication d’un accumulateur nécessite par conséquent, tout un ensemble d’études matériaux qu’il faut systématiquement optimiser.

On définit les capacités de recharge de la même manière. La cellule est alors une cellule électrolytique. Ce qui importe dans ce cas, c’est d’abaisser le coefficient de recharge, autrement dit le rendement de l’accumulateur eargdécheargch C/C . Ce rapport est toujours

supérieur à 1. Pourquoi ? Parce qu’il existe des réactions redox parasites qui ne se produisent pas en fonctionnement galvanique, mais qui apparaissent toujours en fonctionnement électrolytique (le système est forcé hors de l’équilibre !). Ces réactions redox sont :

- L’oxydoréduction de l’électrolyte ( H2O H2+ 1/2 O2) - L’oxydoréduction des matériaux inactifs et plus particulièrement l’oxydation des

métaux qui servent de collecteurs de courant. - Les phénomènes de recombinaison gazeuse

Toutes ces réactions consomment des électrons qui ne sont pas « rendus » en décharge.

De façon identique, lorsque le système est maintenu hors d’équilibre ( ex : aucun lien électronique entre les 2 couples redox- batterie chargée en circuit ouvert), un certain nombre de réaction d’oxydoréduction peuvent se produire entre les différents éléments des électrodes et consommer ainsi des électrons. On dit qu’il y a dans ce cas des phénomènes de court-circuit électrochimique interne. Ils conduisent à une diminution de la capacité disponible. L’ensemble de ces phénomènes s’appelle « auto-décharge ». Comme n’importe quelle autre cinétique, elle augmente très rapidement avec la température.

B-2) La Puissance Elle est donnée par le produit I.U à chaque instant t. Pour qu’une batterie soit capable de délivrer beaucoup de puissance, il lui faut pouvoir délivrer des courants forts et sous des tensions les plus élevées possibles. La recherche de puissance ne concerne pas toutes les applications Comment optimiser ces facteurs ? - courants forts : il faut deux couples aux cinétiques rapides et ne présentant pas de courant limite trop faible. Il faut maximiser la surface des électrodes pour pouvoir extraire des courants forts sans augmenter la valeur des densités de courant. - Tension élevée : potentiel en circuit ouvert (repos) le plus élevé possible et réduction maximale des surtensions (ohmique et non-ohmique)

Il s’agit encore de trouver des compromis. Par exemple, l’augmentation de la surface permet d’accroître le courant délivré (pt positif) mais peut contribuer à l’augmentation des surtensions (la capacité de double couche est une fonction directe de la surface ! !)

B-3) L’énergie

Page 31: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 31

Ce facteur est bien évidemment le facteur le plus important d’un point de vue

thermodynamique. Il est relié à la puissance par : dtPdW .=

Et par consequence:

∫∫ =='

0

'

0...

ttdtIEdtPW

Ce qui dans en condition galvanostatique (i=cste) revient à ∫='

0.

tdtEiW ou en condition

potentiostatique :

reel

tCEdtiEW ..

'

0== ∫

Cette dernière équation montre que les raisonnements déjà évoqués au sujet de la capacité sont directement transposables à l’énergie . A ces paramètres vont s’ajouter les considérations associées à E, c'est-à-dire un potentiel de fonctionnement le plus haut possible : Er grand et η faible. Pour augmenter ces facteurs, il faut trouver des couples dont les différences de potentiel sont les plus élevés possibles (batterie Li+), les plus légers et dont les surtensions seront minimum : minimum de baisse de tension en décharge, minimum de hausse en charge. Une fois encore c’est l’énergie massique (Wh/kg) ou énergie volumique (Wh/l) qui sera prise en compte par l’utilisateur.

C) Systèmes primaires et secondaires les plus répandus

C-1) Les accumulateurs primaires

1) Pile Leclanché (1866) (Er≈1,5V) (2 millions de cellules produites au début du siècle)

)s(C,MnO/)aq(ClNH),aq(ZnCl/)s(Zn 242

fonctionne sur les réactions suivantes :

−+ +→ e2)aq(Zn)s(Zn 2 et −− +→++ OH2)s)(OH(MnO2e2OH2)s(MnO 22

Page 32: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 32

En réalité les réactions globales sont plus complexes puisque le zinc en solution forme des complexes plus ou moins solubles avec les ligands chlorure et l’ammoniac : 223 Cl)Zn(NH

La formation de ce complexe est aussi un exemple de réactions « parasites » d’autodécharge :

OH)s(Cl)Zn(NHO 1/2Cl 2(aq)2NHZn(s) 22232-

4 +→+++ + (oxydation du zinc par l’oxygène dissous dans l’électrolyte)

(le chlorure d’amonium est donc utile car il limite la solubilisation du Zn et les phénomènes d’autodécharge…) La présence d’oxygène dissous dans l’électrolyte est un facteur très important dans beaucoup de systèmes électrochimiques. Il existe aussi des « réactions » parasites conduisant à la production d’hydrogène :

)g(HCl)Zn(NHCl 2(aq)2NHZn(s) 2223-

4 +→++ +

augmentation de la pression dans la cellule et risque d’explosion autre facteur d’autodécharge : présence d’impuretés métalliques (plus oxydantes que le zinc) comme le Fe, Ni, Cu…

)s(Fe)aq(Zn)aq(FeZn(s) 22 +→+ ++ Il existe des piles uniquement au chlorure de Zn (élimination du chlorure d’ammonium) Inconvénient : pb d’autodécharge la fabrication doit être plus soignée Avantage : densité de courant plus élevée (plus de puissance possible) car résistance de l’électrolyte est plus faible et absence de couche passivante ( 223 Cl)Zn(NH ).

2) Piles alcalines : a) Idem Leclanché mais en milieu alcalin (KOH 30%)) Avantages : supporte beaucoup mieux les différents régimes de décharge

b) Zn/Hg (1,3V) cas d’une pile ou les 2 couples sont à l’état solide potentiel beaucoup plus stable en décharge

Zn/ZnO(s)/KOH/HgO(s),C(s) Première pile bouton Même principe de fonctionnement pour Zn/Ag

Page 33: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 33

3) Metal-Air (oxygène) La plupart des métaux sont oxydables par l’oxygène de l’air. Beaucoup de piles fonctionnent sur ce principe :

-1 électrode « classique »M(s)/M+x(OH)x(s) (on est la plupart du temps en milieu alcalin)

-1 électrode à air : ½ O2/O2-. Cette réaction se fait à l’aide d’un catalyseur supporté

sur du graphite)

Avantage : l’électrode à air est très légère, le comburant est inépuisable ! permet d’obtenir des densités d’énergie très élevé(200Wh/kg) 4) Piles à combustible 1 électrode à air + 1 électrode à hydrogène (le combustible) (½H2/H

+) (fonctionne sur le même principe) Le produit de réaction est l’eau si on utilise l'hydrogène (bon pour l’environnement) Les piles à combustibles peuvent fonctionner soit avec un électrolyte alcalin, soit en milieu acide (H3PO4 ou H2SO4) (il faut assurer le transport des charges ioniques dans l’électrolyte soit par conduction protonique (H+) soit par conduction OH-. L'électrolyte peut aussi être un solide: à basse température membrane polymère conductrice (Nafion) ou à haute temperature oxyde de type perovskite (conduction protonique en présence d'eau). L'inconvénient des membranes polymères est leur longévité (recherche actuelle sur des membranes hybrides organique/minérale) Avantages: capacité illimitée tant qu’on fournit du carburant et du comburant Inconvénients:

- stockage des gaz (H2 ou autre: inflammabilité) peut aussi fonctionner avec du méthanol, du méthane de l’ammoniaque…. (mais dans ce cas production de gaz CO2, NOx,…)

Page 34: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 34

- nécessite l’emploi de catalyseurs (métaux nobles = très chers) qui s’empoisonnent au contact de l’électrolyte.

- on obtient des densité de courant intéressantes si les gaz sont sous haute pression : montage très complexe et très onéreux.

L’avantage est si grand malgré tout qu’un nombre excessivement important d’études et de développements industriels est en cours.

5) Piles au lithium Pourquoi le lithium ? Parce qu’il est l’élément dont le potentiel standard 0E est le plus élevé

tension de fonctionnement élevée (pile jusqu'à 4V) beaucoup d’énergie par électron

1 électrode de Li (anode) + 1 cathode (il en existe de nombreuse)

Page 35: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 35

ex : CuO, MnO2, FeS (la plus répandue commercialement), (CFx)n (solide/solide) ou SOCl2/SO2Cl2

La présence de Li empêche toute utilisation d’électrolyte aqueux (formation de Li(OH)). Ces systèmes doivent impérativement fonctionner en milieu anhydre (solvant organique) et de surcroît capable de solubiliser des ions lithium sous forme de sels (LiPF6)(il faut un solvant organique très polaire : diméthyl carbonate)

C.2) Les accumulateurs secondaires (rechargeable) Il faut, dans ce cas, que le système puisse être « renversable » : la cellule devient cellule électrolytique à la recharge. Ce n’est pratiquement possible que si les 2 couples redox sont à l’état solide quel que soit leur degré d’oxydation. On les caractérisera de la même façon que les systèmes primaires, auxquels s'ajoutent deux autres critères fondamentaux : la rechargeabilité et la cyclabilité 1) la batterie au plomb acide (2,2V) Le plus vieux système est la batterie au Pb. Il est encore très largement utilisé (démarrage véhicule, sécurité, action motrice –tous les engins de levage et/ou de déplacement sur de courtes distance (aéroports…). Son atout : le rapport prix/performance (10 fois moins cher/ 2 à 3 fois moins performant –densité d’énergie et cyclabilité) Principe :

)s(Pb/)poudre(2PbO/)aq(4SO2H/)poudre(Pb/)s(Pb (état chargé) )s(Pb/)poudre(4PbSO/)aq(4SO2H/)poudre(4PbSO/)s(Pb (état déchargé)

Avantage : système très rapide = densité de courant élevé ; excellente rechargeabilité à faible profondeur de décharge ; excellent rapport qualité/prix Inconvénient : se détériore rapidement à l’état déchargé (dissolution des matières actives dans l’électrolyte)= cyclabilité faible en décharge profonde ; faible densité volumique/massique d’énergie. 2) les accumulateurs alcalins (1,2V) Ni/Cd (plus efficace que le plomb) et durée de vie plus importante, Ni/MH encore plus efficace (surtout développée pour les petites capacités –téléphonie portable, ordinateur) mais on ne sait pas encore faire de batterie de grosse capacité pour le véhicule électrique par exemple. Utilisation en véhicule hybride (Prius–Toyota) (voir site toyota: http://www.toyota.com/prius/)

Le Zn/Mn02 (vue dans les piles primaires) peut être rechargé dans certaines conditions : encore plus performant que les autres, souffre cependant de pb de rechargeabilité (solubilisation des espèces Zn2+)

Page 36: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 36

3) batteries Li-ion (jusqu’ 4,5V) Le problème pour recharger les piles aux lithium est la recharge de l’anode Li+

Li…création de dendrites, risque de court circuit. (Nb :Le pb a été réglé en utilisant un composé d’insertion du Li : Li/C(graphite) que l’on trouve sur le marché actuellement)

Schéma de principe d’une batterie li-ion avec une anode en graphite le potentiel dépendra de la cathode choisie Les cathodes les plus couramment utilisées sont à base d’oxyde de cobalt, de nickel ou de Manganèse Avantage : densité d’énergie très élevée, se recharge bien, cyclabilité correcte (jusqu’à 400-500 fois) Inconvénients : coût plus important, danger (ne doit pas voir l’air ! ! !)

Potentiel des différents couples pouvant être associés au lithium (référence à 0V)

Page 37: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 37

retour plan

Chapitre V)

Electrochimie appliquée 2 : corrosion

A) Introduction On associe, dans le langage courant, le terme « corrosion » au phénomène d’attaque des métaux par les agents chimiques qui se trouvent dans leur environnement. Ce concept a été étendu aux phénomènes (en général) qui, induits par le milieu extérieur, engendrent la dégradation des matériaux et la modification de leurs propriétés physiques/chimiques. Même si l’on associe ce phénomène essentiellement aux matériaux métalliques, il faut savoir qu’il concerne l’ensemble des solides (polymères, verres, céramiques….). Les facteurs environnementaux de corrosion sont : i) l’air (oxygène principal agent oxydant/corrodant ; mais ne pas oublier également d’autres gaz, i.e. H2S, CO/CO2 (haute T), qui conduisent à la formation de sulfure, carbure, nitrure), ii) l’eau (pluie, rivières et mers) et toutes les substances qu’elle peut contenir (surtout les cations/anions dissous), iii) les rayonnements électromagnétiques (visibles, UV, IR, ionisants) –effet particulièrement important pour certains polymères-…et iv) les « corps » vivants : les bactéries (consomme de l’oxygène ! phénomène de corrosion par aération différentielle ou d’autres agents oxydants –composés azotés, souffrés-) ….et v) les interfaces matériau/matériau (effet d’un métal sur un autre métal : cas très courant de corrosion autour des soudures, ciment sur acier…..). Ajoutons à cette liste, les deux paramètres toujours présents soit dans notre environnement habituel soit dans des conditions d’utilisation très particulières (ex : aviation, narine): la température et la pression (corrosion sous contrainte !)…. Si l’on considère les matériaux concernés et les facteurs « responsables » de la corrosion, on comprend immédiatement l’étendue de ce problème, en termes aussi bien scientifique, technique et qu’économique. On constate très souvent que c’est la superposition de plusieurs facteurs (i.e. gaz oxydant + eau + impureté type Cl-) qui rend possible le phénomène (cette superposition accélère une évolution thermodynamiquement inévitable -mais qui cinétiquement n’est pas toujours rapide!). La corrosion est un phénomène inévitable. La raison est thermodynamique : les matériaux ne sont généralement pas dans l’état d’équilibre thermodynamique le plus stable ils sont « condamnés » à vieillir (à évoluer) ! (sauf certains oxydes métalliques, les métaux précieux et le graphite). L’Homme, qui n’a jamais cessé de développer des matériaux de plus en plus performants pour améliorer ses conditions de vie – et dans des domaines d’applications de plus en plus répandues-, est par conséquent contraint de lutter en permanence contre ce fléau ! Il a été, par exemple, estimé que plus de 3% du PIB d’un pays développé comme les Etats-Unis était consacré à la corrosion -2 1010 $ rien que pour le ministère de la défense !. « Consacrer » recouvre plusieurs aspects ; d’une part le coût des réparations engendrées par la

Page 38: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 38

corrosion (besoin curatif !) et d’autre part celui des moyens employés pour lutter contre elle (prévention!). Ne pouvant contrer thermodynamiquement la corrosion, les recherches se sont essentiellement orientées à trouver des moyens pour soit la ralentir soit minimiser ses effets. Les réactions physicochimiques mis en jeu dans les processus de corrosion ne sont pas toutes à mettre dans la rubrique « réaction électrochimique », puisqu’interviennent également des réactions de type acide/base, de complexation et/ou tout simplement des phénomènes de solubilisation (lixiviation des verres, des ciments…) Nous ne pourrons donc, dans ce cours, aborder tous les aspects qui viennent d’être énumérés. Nous nous « contenterons » d’étudier la corrosion métallique (domaine suffisamment complexe) dont le lien avec l’électrochimie est particulièrement explicite. Dans le cas de la corrosion électrochimique, comme pour toute réaction redox, il faut que 2 couples soient en contact direct pour échanger des électrons et éventuellement de la matière : un couple oxydant (souvent l’oxygène ou l’eau) et un réducteur (le métal). On parle souvent de pile en cours circuit ou d’électrode mixte ( 2 couples sur le même transporteur d’électron). On peut généraliser cette idée de pile en cours circuit en disant qu’à chaque fois que deux phases dont les potentiels électrochimiques sont différents (toujours le cas !) sont mis en contact direct (ou indirect par le biais d’un conducteur e-), il y a nécessairement réaction d’oxydoréduction. Comment agir pour bloquer, ou du moins limiter, les effets néfastes résultants de cette malheureuse rencontre?

- 1) on évite le contact en eux (ex : film protecteur) - 2) on modifie les potentiels redox de manière à ce que la réaction soit moins

favorable/moins rapide (limitation des transfert de charge) (nb : cas 1) et 2) peuvent être vu a travers le concept de surtension : cas 1) surtension ohmique –présence d’une couche isolante- cas 2) modification des caractéristiques propres à la cinétique réactionnelle)

- 3) on ajoute un troisième couple réducteur (plus réducteur que le premier) qui se sacrifiera (anode sacrificielle).

La corrosion (ou les propriétés associées) n’est pas nécessairement un « mal ». On peut tirer avantage, pour certaines application, de ce phénomène. Elle peut être utilisée par exemple pour

- modifier la composition d’un alliage métallique (traitement de surface) : une espèce est extraite d’un alliage par dissolution électrochimique (corrosion) sélective

- créer des structures poreuses également par dissolution électrochimique (corrosion) sélective

Pour agir, et ce quelle que soit la méthodologie (l’approche) employée, il faut comprendre les mécanismes électrochimiques mis en jeu mais aussi (et surtout !) pourvoir les lier aux propriétés physicochimiques des matériaux. Si l’on se limite au phénomène de corrosion le plus courant (effet conjoint de l’oxygène en présence d’eau sur un métal), on peut dire que la corrosion est une réaction redox en milieu hétérogène : les phases solides, liquides et gazeuses sont simultanément mis en interaction.

Page 39: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 39

Comme dans le cas des accumulateurs traités précédemment, l’étude des phénomènes de corrosion est pluridisciplinaire : électrochimie, sciences des matériaux (physique du solide) et sciences des transferts de matière. Il s’agit ainsi de relier les caractéristiques structurales (cristallographique, morphologie et inhomogénéités –mélange de phase-) et les propriétés de conduction (électronique et ionique) du matériau considéré aux conditions redox ainsi qu’a celles que l’on peut associer au transport de matière aux interfaces solide/liquide/gaz. B) Généralités Nous allons nous limiter ici à la corrosion de nature électrochimique, et plus particulièrement, à celle qui touche les métaux. Dans ce cas, la corrosion résulte d’une oxydation (ou carburation, nitruration, sulfuration) du métal. Le métal est l’agent réducteur (électropositif) ; l’agent oxydant étant très souvent une combinaison d’eau et l’oxygène. La corrosion est très sensible à la présence d’autres espèces qui peuvent jouer un rôle de catalyseur (par ex : ions chlorures en milieu aqueux) ou, en modifiant le pH, un rôle direct sur les conditions thermodynamiques (potentiel redox). On distingue 2 grands types de corrosion : les corrosions sèche et humide (absence ou présence d’eau, ou d’une façon plus générale d’un solvant liquide) B-1) La corrosion sèche (interface bi-phasique solide/gaz) La présence d’un gaz oxydant à la surface d’un métal entraîne la formation d’un d’oxyde suivant la réaction :

)()(2)( 2 sxgs MOOx

M ↔+

Cet oxyde se forme souvent sous la forme d’un film. Si ce film est continu (voir schéma 1), s’il adhère correctement à son support métallique et qu’il est, de surcroît, isolant et imperméable au gaz, la réaction d’oxydoréduction s’arrête (le métal « s’auto-protège »). On parle alors de phénomène de passivation. Cette passivation est réellement protectrice si tous ces facteurs sont réunis. Les cas rares mais utilisés dans notre quotidien sont ceux de l’aluminium, du zinc et des aciers inox (i.e. Fe + Ni + Cr) (dans les conditions normales d’utilisation). Une augmentation de la température, par exemple, limite souvent le phénomène de passivation puisqu’elle modifie les facteurs d’adhésion, de croissance cristalline, de conduction ionique et électronique : Conditions de croissance de la couche oxydée (cas d’un film continu, sans porosité mais conducteur)

Page 40: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 40

métal

Oxyde métallique uniforme et imperméable

½ O2(ads) + 2e- = O2-

O2 (gaz)

O2 (ads)

adsorption

réaction redox

M=M2++2e-

Transfert e-

+ O2- = MO(s)

Transfert O2-

Notion de corrosion différentielle (ou pile de corrosion) Imaginons que la surface du métal (souvent un alliage) ne soit pas homogène. 2 zones chimiquement distinctes seront associées à des potentiels électrochimiques différents. Dans une première étape, la corrosion sera privilégiée dans la zone ou le potentiel est le plus réducteur. Puis dans un second temps, l’oxyde ainsi formé en ce point va générer un domaine, à l’interface oxyde/métal, où la pression d’oxygène sera plus faible. Or, nous savons (loi de

Nernst) que le potentiel du couple 22 /OO − dépend de la pression d’oxygène. Ainsi, la zone

métallique en contact avec l’oxygène de l’air sera soumis à un potentiel 2E supérieur à celui

de la zone métal/oxyde ( )12 EE > . Cette différence de potentiel entre 2 électrodes reliées par un conducteur métallique entraînera un transfert de charge électronique entre les deux zones. Une pile de corrosion en court-circuit a ainsi été formée. La zone 2 jouera le rôle de la cathode, siège de la réduction de l’oxygène, et la zone 1 celui de l’anode, siège de l’oxydation du métal. La corrosion va donc être privilégiée en ce dernier point (voir schéma 2). Ce phénomène conduit à ce que l’on nomme souvent une « corrosion par piqûre ». Cela est très fréquent, très dommageable pour le métal car ses propriétés mécaniques s’en trouve altérées (rupture à interface zone corrodée/zone métallique). Pour que la zone oxydée croisse, il n’est pas nécessaire, dans ce cas, que l’oxyde soit poreux et/ou conducteur e-. Il doit cependant

toujours permettre le transfert des ions −2O .

Page 41: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 41

métal

Oxyde métallique uniforme

Schéma 1

Schéma 2

Oxyde métalliqueOxyde métallique

métal

Anode: oxydation du métal Cathode: réduction de l’agent oxydant

e-

Nous avons vu ici comment une différence de potentiel électrochimique due à des variations de composition chimique pouvait entraîner un phénomène de corrosion différentielle. D’une manière générale, nous pourrons rencontrer ce phénomène à chaque fois qu’un paramètre expérimental modifiera localement les potentiels (voir loi de Nernst) ou créera des gradients de potentiel sur de grandes échelles (gradient de T, de Pression, de contrainte). B-2) La corrosion humide (interface bi-phasique solide/liquide ou tri-phasique solide/liquide/gaz) Cette forme de corrosion est plus courante (présence d’eau, -d’humidité). Elle peut s’exprimer sous une forme simplifiée:

−+↔+

enMMn

aq

OH

s)(

2

)(

Le potentiel électrochimique du couple +naqs MM )()( / est le facteur thermodynamique qui

s’impose à la réaction. Nous savons (loi de Nernst) que ce potentiel dépend de la

concentration en espèce +naqM )( , mais également de la température, du pH de la solution et de

la présence d’autres espèces chimique qui, par exemple, peuvent déplacer les équilibres en

faisant précipiter les cations +naqM )( sous forme chlorures, nitrates, carbonates insolubles dans

les conditions expérimentales. Si le métal est totalement immergé dans la solution et que les conditions chimiques (pH,

concentration des autres espèces – notamment anions-) sont telles que la solubilité de +naqM )(

n’est pas limitée, alors le métal va se dégrader jusqu’à disparaître.

Si, par contre, ces conditions chimiques entraînent la précipitation des ions +naqM )( sous forme

par exemple d’hydroxyde, i.e. xOHM )( , alors un phénomène de passivation peut être

observé.

Page 42: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 42

Nous reviendrons sur ce point important au chapitre suivant (C) à travers l’étude des diagrammes de Pourbaix. Pour observer une passivation efficace, il faut à nouveau réunir les critères déjà évoqués dans le cas de la corrosion sèche, c'est-à-dire éviter tout contact physique et électrique entre l’agent oxydant et le métal. Vont, cependant, s’ajouter de nouveaux critères, car dans ce cas, le contact entre l’agent oxydant et le métal fait intervenir une interface liquide/solide. L’imprégnation de l’oxyde par le liquide (et donc de toutes espèces dissoutes) devient un paramètre important. Cette imprégnation dépend des forces capillaires (taille des porosités et mouillabilité- tension de surface) Rares sont les situations où le métal est totalement immergé dans l’eau. Il est souvent à la fois au contact de l’air et de l’eau ; il peut être en contact avec des zones sèches et humides ; des zones oxygénées et sèches et anaérobie et humide (cas des tuyauteries, des armatures de béton armé….). Rares sont également les situations où la surface du métal est parfaitement uniforme (en composition et structure).

La corrosion humide est, par conséquent, un facteur supplémentaire qui favorise les phénomènes de corrosion différentielle. C) Conditions Thermodynamiques de la corrosion (Diagramme de Pourbaix) C-1) Construction du diagramme de Pourbaix dans le cas du Fer Le diagramme de Pourbaix (ou diagramme Potentiel/pH) d’un couple redox donné, permet de prédire les espèces stables dans un domaine de potentiel électrochimique et de pH donné. Exemple de l’eau. L’eau peut être, selon le potentiel et le pH, oxydée ou réduite. Elle mets en jeu 2 couples redox :

1) )(2)(2 222 laqg OHeHO =++ −+ (couple )(2)(2 / lg OHO )

2) )(222 gaq HeH =+ −+ (couple

)(2/ gaq HH + )

Les équations de Nernst appliquées à ces deux couples conduisent à :

1) [ ] pHHPEE OOHOOHO 06,023,1.log2

06,0 20)/()/( 22222

−=

+= +

(nb : les conventions imposent que sur la ligne d’équilibre, la pression du gaz est de 1 bar et que l’activité d’une phase condensée est égale à 1)

2) [ ]pH

P

HEE

HHHHH06,0log

2

06,0

222

20

)/()/(−=

+=

+

++

Le tracé de ces fonctions (droites) est représenté sur la figure 1.

Page 43: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 43

0

E(V)

pH

-1

1

0 7 14

Stabilité de l’eau

Dégagement d’oxygène

Dégagement d’hydrogène

Figure 1 : diagramme potentiel/pH de l’eau

On peut maintenant construire sur le même graphe, les courbes qui représenteront cette fois-ci, les couples redox associés à l’élément fer. Il faut alors procéder en suivant 3 étapes : 1) La première consiste à énumérer (avec ou sans simplification) l’ensemble des espèces susceptibles d’être présentes. Dans le cas du Fer, il s’agit (cas simplifié) de :

)(3)(232

)( )()(,,, sss OHFeetOHFeFeFeFe ++

2) La deuxième (s’il y a lieu) permet de déterminer, à partir des pKs, les conditions de solubilisation des espèces (hydroxydes, complexes…) susceptibles de précipiter en fonction des conditions de pH. Dans notre cas, il s’agit des hydroxydes )(3)(2 )()( ss OHFeetOHFe .

On nous donne : 1,15))(( 2 =OHFepKs et 38))(( 3 =OHFepKs

On obtient alors le domaine de prédominance suivant:

3) La troisième étape conduit à établir les conditions de stabilité potentiel/pH des différents

couples redox considérés ; ici IIs FeFe /)( et IIIII FeFe / (en utilisant la même méthode que

celle détaillée pour les couples de l’eau) sous leurs différentes formes. L’ensemble de ces calculs permet de tracer le diagramme potentiel/pH suivant :

pH 2 7,5

++ 32 , FeFe )(32 )(, sOHFeFe +

)(3)(2 )(,)( ss OHFeOHFe

Page 44: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 44

Dégagement d’oxygène

Dégagement d’Hydrogène

(d’après F. Moriande et al “Electrochimie”, Dunod, Paris 2005)

C-2) Utilisation du diagramme de Pourbaix et prévision du comportement vis-à-vis de la corrosion Si l’on veut maintenant utiliser ce diagramme pour prédire comment se comportera un morceau de fer plongé dans l’eau, il faut superposer les résultats des 2 diagrammes (eau+ fer). On peut alors tracer la verticale correspondant au pH qui nous intéresse et déterminer ainsi les écarts de potentiel entre les différents couples. Par exemple, on remarquera qu’à pH=4, les

potentiels correspondant aux couples des deux espèces présentent ( +2)( / FeFe s et

+aqg HH /)(2 ) sont :

VpHEHH

24,006,0)/( 2

−=−=+ et VEFeFe

5,0)/( 2 −=+

La différence de potentiel implique qu’une réaction d’oxydoréduction est possible et que le

couple +2)( / FeFe s sera déplacé dans le sens de l’oxydation alors que +

aqg HH /)(2 le sera

dans le sens de la réduction (production d’hydrogène). Le diagramme que nous avons établi est une forme simplifiée car il existe en réalité d’autres

espèces associées aux degrés d’oxydations IIFe et IIIFe (au moins 16 oxydes, hydroxydes ou oxyhydroxydes connus !), et notamment les formes oxydes FeO, 43OFe (magnétite) et

32OFe (hématite par ex.).

Page 45: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 45

(nb : ce diagramme a été établi en considérant que la concentration de Fer était de 10-6 mol.l-1. ; d’après F.

Moriande et al “Electrochimie”, Dunod, Paris 2005)

(d’après F. Moriande et al “Electrochimie”, Dunod, Paris 2005)

Page 46: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 46

D) Conditions cinétiques (diagramme d’Evans) Les conditions cinétiques d’oxydation d’un métal soumis à un potentiel E sont données par la relation de Butler-Volmer. Si le courant n’est pas limité par le transfert de matière nous observons alors les courbes I=f(E) et )ln( I (comme celles déjà étudiées au chapitre 2):

(d’après F. Moriande et al “Electrochimie”, Dunod, Paris 2005)

Ces comportements correspondent à ceux d’un seul couple redox. Quand il y a corrosion, 2 couples (au moins) réagissent l’un sur l’autre. La présence de 2 couples en court-circuit constitue ce que nous avons déjà appelé une électrode mixte. Reprenons l’exemple du fer dans une solution acide. Le diagramme potentiel/pH nous indique que dans ces conditions, les 2

couples sont +2)( / FeFe s et +

aqg HH /)(2 ; et la réaction bilan s’écrit :

)(22

)()( 2 gaqaqs HFeHFe +⇔+ ++

Le potentiel d’équilibre de ce système est déterminé en considérant que : 1) les 2 couples étant en court-circuit et à l’équilibre, leur potentiel est le même (principe d’égalité des potentiels chimiques). Nous l’appellerons potentiel de corrosion corrE

2) il n’y a pas de courant qui circule dans un circuit extérieur : 0=i . Cela implique qu’il y a autant de moles de fer qui se dissolvent que de moles d’hydrogène qui se forment. En d’autres termes, cela signifie que le courant anodique )(Feai (oxydation du fer) doit être strictement

égal au courant cathodique )( +Hc

i (réduction des protons). Nous nommerons ce courant

courant de corrosion corri .

Page 47: cours electro en ligne

Cours d'électrochimie - L3 Chimie-Physique et M1 Matériaux concours François Henn Janvier 2006 47

On tire de ces deux conditions (thermodynamique et cinétique) que la valeur de corrE

correspond à la condition : corrHcFea iii == + )()(

Pour déterminer les valeurs de corri qui définit la cinétique de corrosion et de corrE son

potentiel d’équilibre, nous pouvons reprendre les lois de Tafel tirées de BV (cf Chap.2):

−=RT

nFii FeFe

FeFeaηα )1(

exp)(0)(

et

−=

++++

RT

nFii HH

HHc

ηαexp

)(0)(

Puis tracer ces 2 courbes en logarithme de i (courbe de Tafel) :

Ecorr

E(V)

icorr

Ln(i)

)( +Hci

)(Feai

Sur ce diagramme (parfois appelé diagramme d’Evans), on détermine le point d’intersection qui correspond aux conditions définies plus hauts. On voit ainsi très facilement que la modification des potentiels de repos (rE ) qui correspondent à la « hauteur » de la droite et des surtensions qui correspondent à leur pente aura un impact sur les valeurs de corrE et corri .

retour plan