88
UNIVERSITE D’ANTANANARIVO FACULTE DES SCIENCES DEPARTEMENT DE BIOCHIMIE FONDAMENTALE ET APPLIQUEE HABILITATION A DIRIGER DES RECHERCHES EN SCIENCES DE LA VIE PRODUCTIONS SCIENTIFIQUES Présentée par RAMANANKIERANA Heriniaina Maître de Recherches Soutenue devant la commission d’examen composée de Président : Professeur JEANNODA Victor Rapporteur interne : Professeur RAHERIMANDIMBY Marson Rapporteur externe : Professeur RAZANAKA Samuel Examinateurs : Professeur RAZAFINJARA Lala Professeur ANDRIANARISOA Blandine Date de soutenance : 02 Novembre 2012

PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

  • Upload
    vudang

  • View
    238

  • Download
    0

Embed Size (px)

Citation preview

Page 1: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

UNIVERSITE D’ANTANANARIVO

FACULTE DES SCIENCES DEPARTEMENT DE BIOCHIMIE

FONDAMENTALE ET APPLIQUEE

HABILITATION A DIRIGER DES RECHERCHES

EN SCIENCES DE LA VIE

PRODUCTIONS SCIENTIFIQUES

Présentée par RAMANANKIERANA Heriniaina

Maître de Recherches

Soutenue devant la commission d’examen composée de

Président : Professeur JEANNODA Victor

Rapporteur interne : Professeur RAHERIMANDIMBY Marson

Rapporteur externe : Professeur RAZANAKA Samuel

Examinateurs : Professeur RAZAFINJARA Lala

Professeur ANDRIANARISOA Blandine Date de soutenance : 02 Novembre 2012

Page 2: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

UNIVERSITE D’ANTANANARIVO

FACULTE DES SCIENCES DEPARTEMENT DE BIOCHIMIE

FONDAMENTALE ET APPLIQUEE

HABILITATION A DIRIGER DES RECHERCHES

EN SCIENCES DE LA VIE

PRODUCTIONS SCIENTIFIQUES

Présentée par RAMANANKIERANA Heriniaina

Maître de Recherches

Soutenue devant la commission d’examen composée de

Président : Professeur JEANNODA Victor

Rapporteur interne : Professeur RAHERIMANDIMBY Marson

Rapporteur externe : Professeur RAZANAKA Samuel

Examinateurs : Professeur RAZAFINJARA Lala

Professeur ANDRIANARISOA Blandine

Page 3: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

1

CURRICULUM VITAE

Dr RAMANANKIERANA Heriniaina

IM 321 637

Maître de recherches

Né le 16 octobre 1974 à Andramasina

Marié – deux enfants

-----------------------------------------------------------------------------------------------------------------

Adresse professionnelle :

Laboratoire de Microbiologie de l’Environnement du Centre National de Recherches sur

l’Environnement (CNRE)

BP 1739 Fiadanana – Antananarivo Madagascar

E-mail : [email protected]

Tél : +261 32 40 614 57

FORMATIONS :

25 – 26 janvier 2012 : Formation sur le format des enregistrements du BCH

(Biosecurity Clearing House) et les procédures d’enregistrement et de publication des

décisions liées à la biosécurité. ONE (Office National de l’Environnement)

Antananarivo-Madagascar.

Janvier – Mai 2009 : Formation sur l’utilisation des outils biomoléculaires modernes

dans l’identification et caractérisation de souches fongiques et dans le conditionnement

et suivi des inocula fongiques et leurs microorganismes associés (Bourse d’Echange

Scientifique de Courte Durée – IRD).

- Laboratoire des Symbioses Tropicales et Méditerranéennes – Montpellier

France

2006 – 2008 : Perfectionnement post doctoral

Sujet : Gestion des communautés de champignons ectomycorhiziens par les espèces

arbustives pionnières et ectotrophes des formations forestières Malagasy : impact sur la

succession végétale et sur le développement des arbres endémiques de Madagascar

(Bourse post doctorale AUF et Bourse d’Echange Scientifique de Courte Durée – IRD)

- Laboratoire des Symbioses Tropicales et Méditerranéennes – Montpellier

France

Page 4: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

2

- Laboratoire Commun de Microbiologie : IRD/ISRA/UCAD Dakar Sénégal

- Laboratoire de Microbiologie de l’Environnement – CNRE Antananarivo

Madagascar

Novembre – Décembre 2007 : Ecole Thématique en Ecologie Tropicale « Insularité et

Biodiversité » - Morondava Madagascar

2005 : Doctorat de 3e cycle en Biochimie

Sujet de thèse : La symbiose mycorhizienne dans la domestication d’Uapaca bojeri,

une plante ligneuse endémique de Madagascar (Bourse de formation à la recherche –

AUF)

- Faculté des Sciences, Université d’Antananarivo Madagascar

- Laboratoire de Biologie du sol – IRD Burkina Faso

28 avril - 29 Mai 2005 : Ecole Thématique « Ecologie microbienne des sols tropicaux :

biodiversité microbienne et dérèglements environnementaux » - Dakar Sénégal

Juin 2000 : Diplôme d’Etude Approfondie (DES) en Sciences Biologique Appliquée,

Option Biotechnologie – Microbiologie

- Faculté des Sciences, Université d’Antananarivo Madagascar

1997 : Maîtrise de recherche en Sciences Biologiques Appliquées, Option

Biotechnologie – Microbiologie

1996 : Licence ès-Sciences, Université d’Antananarivo Madagascar

1992 : Baccalauréat Série D, délivré par l’Université d’Antananarivo Madagascar

Connaissances diverses :

Ayant une maîtrise importante de l’outil microinformatique (WinWord, Microsoft

Excel, Power Point) et de l’analyse statistique (STATISTICA, ADE 4, SPAD, SPSS,

Logiciel R)

Ayant une bonne connaissance de la langue Malagasy, Française et Anglaise

o Intermediate level in English language (London Business Academy)

Ayant une forte motivation pour le travail d’équipe

PARTICIPATION A DES RESEAUX DE RECHERCHE :

Depuis février 2011 : Point focal du réseau AFRINOM pour Madagascar et la région de

l’océan indien

Depuis décembre 2009 : Membre fondateur du réseau SYMETROP associant des

scientifiques africains francophones travaillant dans le domaine de champignons

mycorhiziens

Page 5: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

3

Depuis 2008 : Membre de l’Académie des Sciences du Tiers monde

Depuis avril 2006 : Membre du réseau Biotechnologie végétale, amélioration des

plantes et sécurité alimentaire (BIOVEG) – Agence Universitaire de la Francophonie

Depuis mars 2007 : Membre de l’association « African Mycology Association »

Depuis décembre 2004 : Président fondateur de l’association « Jeunes Chercheurs

Associés » à Madagascar

Depuis août 2002 : Membre du Collège des chercheurs Associés UNU/INRA

(Université des Nations Unies/Institut de Recherche sur les Ressources Naturelles en

Afrique)

ACTIVITES PROFESSIONNELLES :

De juin 2009 à ce jour : Maître de recherches au Laboratoire de Microbiologie de

l’Environnement (LME) du Centre National de Recherches sur l’Environnement

(CNRE), Antananarivo Madagascar

Chercheur Enseignant et Responsable de l’Unité de Recherche

« Microbiologie en milieux naturels » au sein du LME/CNRE

Encadreur d’étudiants préparant des mémoires de Diplôme d’Etudes

Approfondies en microbiologie et en écologie microbienne

De 2006 à ce jour : Enseignant vacataire au Département de Biochimie Fondamentale et

Appliquée de la Faculté des Sciences, Université d’Antananarivo

Enseignant de la matière « Valorisation de la biomasse » pour les

étudiants en M2, Option Biotechnologie – Microbiologie

De 2009 à ce jour : Enseignant à la Formation GRENE de l’Université de Toamasina

Enseignant de la matière « Ecologie générale et Ecologie microbienne »

pour les étudiants de la première année

Encadreur d’étudiants préparant des mémoires de Maîtrise Spécialisée et

de Diplôme d’Etudes Supérieurs Spécialisées

EXPERIENCES D’ENCADREMENT :

Mémoires de DEA :

M. ANDRIANANDRASANA Doret Martial. Effets mycorhizosphériques d’Acacia

mangium : impacts sur la structure et l’activité de la population microbienne du sol et sur le

développement d’une essence ligneuse autochtone, Intsia bijuga. Mémoire de Diplôme

d’Etudes Approfondies, Département de Biochimie Fondamentale et Appliquée - Faculté des

Page 6: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

4

Sciences - Université d’Antananarivo, Madagascar. Soutenu le 20 novembre 2009.

(Rapporteur)

M. RAZAKATIANA Tsoushima. Algues marines et microorganismes du sol

termitière : source potentielle de fertilisant biologique. Mémoire de Diplôme d’Etudes

Approfondies, Département de Biochimie Fondamentale et Appliquée - Faculté des Sciences -

Université d’Antananarivo, Madagascar. Soutenu le 15 décembre 2010. (Rapporteur)

Mlle RAKOTONIAINA Henintsoa Volatiana. Caractère invasif de Grevillea banksii et

ses impacts sur la régénération de Dalbergia trichocarpa : implication de la composante

microbienne du sol. Mémoire de Diplôme d’Etudes Approfondies, Département de Biochimie

Fondamentale et Appliquée - Faculté des Sciences - Université d’Antananarivo, Madagascar.

Soutenu le 08 avril 2010. (Rapporteur)

Mlle ANDRIAMBOAVONJISOA Harimino. Performance de la roche volcanique en

tant que substrat dans la production d’inoculum de champignons ectomycorhiziens. Mémoire

de Diplôme d’Etudes Approfondies, Département de Biochimie Fondamentale et Appliquée -

Faculté des Sciences - Université d’Antananarivo, Madagascar. Soutenu le 05 Août 2011.

(Rapporteur)

M. RANAIVORADO Tojo Heritiana. 2012. Activité antimicrobienne des

actinomycètes du sol forestier d’Ibity. Mémoire de Diplôme d’Etudes Approfondies,

Département de Biochimie Fondamentale et Appliquée - Faculté des Sciences - Université

d’Antananarivo, Madagascar. Soutenu le 13 mars 2012. (Rapporteur)

Mémoires de Maîtrise Spécialisée :

M. TODISOA Edmond Mamonjy. 2009. Etude de la composition de la communauté de

poisson du canal des Pangalanes (région Atsinanana). Maîtrise spécialisée en Gestion de

Ressources Naturelles et de l’Environnement Université de Toamasina. Soutenu au mois de

mai 2009. (Encadreur pédagogique et Rapporteur)

M. RASOLOFOMANANA Robert. 2011. Implication de la symbiose mycorhizienne

sur le développement de trois essences (Intsia bijuga, Uapaca louvelii et Harunga

madagascariensis) natives de la station forestière d’Ivoloina. Maîtrise spécialisée en Gestion

de Ressources Naturelles et de l’Environnement Université de Toamasina. Soutenu au mois

d’octobre 2011. (Encadreur pédagogique et Rapporteur)

Mémoire de Licence professionnelle :

Mlle MICHEL BENANGO Anne marie. 2010. Analyse de peuplements aquatiques au

large de Fénérive-Est : cas observé de Nosin-dRatsimilaho. Mémoire de fin d’étude

Page 7: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

5

pour l’obtention du diplôme de Licence professionnelle en Gestion de Ressources

Naturelles et de l’Environnement, Université de Toamasina. Soutenu au mois de

juillet 2010. (Encadreur pédagogique et Rapporteur)

PARTICIPATION AU JURY DE SOUTENANCE

A la fois enseignant à l’Université et chercheur au sein du Laboratoire de Microbiologie de

l’Environnement (CNRE), j’ai eu la chance de participer au jury de la soutenance de plusieurs

mémoires dont cinq (5) mémoires de DEA, cinq (5) mémoires de DESS, quatre (4) mémoires

de Maîtrise spécialisée et deux (2) mémoires de Licence professionnelle.

Mémoire de DEA

1. M. ANDRIANANDRASANA Doret Martial. 2009. Effets

mycorhizosphériques d’Acacia mangium : impacts sur la structure et l’activité de la population

microbienne du sol et sur le développement d’une essence ligneuse autochtone, Intsia bijuga.

Mémoire de Diplôme d’Etudes Approfondies, Département de Biochimie Fondamentale et

Appliquée - Faculté des Sciences - Université d’Antananarivo, Madagascar : Rapporteur

2. M. RAZAKATIANA Tsoushima. 2010. Algues marines et microorganismes du

sol termitière : source potentielle de fertilisant biologique. Mémoire de Diplôme d’Etudes

Approfondies, Département de Biochimie Fondamentale et Appliquée - Faculté des Sciences -

Université d’Antananarivo, Madagascar : Rapporteur

3. Mlle RAKOTONIAINA Henintsoa Volatiana. 2011. Caractère invasif de

Grevillea banksii et ses impacts sur la régénération de Dalbergia trichocarpa : implication de

la composante microbienne du sol. Mémoire de Diplôme d’Etudes Approfondies, Département

de Biochimie Fondamentale et Appliquée - Faculté des Sciences - Université d’Antananarivo,

Madagascar : Rapporteur

4. Mlle ANDRIAMBOAVONJISOA Harimino. 2011. Performance de la roche

volcanique en tant que substrat dans la production d’inoculum de champignons

ectomycorhiziens. Mémoire de Diplôme d’Etudes Approfondies, Département de Biochimie

Fondamentale et Appliquée - Faculté des Sciences - Université d’Antananarivo, Madagascar :

Rapporteur

5. M. RANAIVORADO Tojo Heritiana. 2012. Activité antimicrobienne des

actinomycètes du sol forestier d’Ibity. Mémoire de Diplôme d’Etudes Approfondies,

Département de Biochimie Fondamentale et Appliquée - Faculté des Sciences - Université

d’Antananarivo, Madagascar : Rapporteur

Page 8: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

6

Mémoire de DESS

1. M. MAHEFA Robert. 2010. Analyse de l’importance des usages coutumiers des

plantes en relation avec la conservation des ressources naturelles d’Analalava (Foulpointe).

Mémoire de fin d’étude pour l’obtention du Diplôme d’Etude Supérieure Spécialisée (DESS)

en Gestion des Ressources Naturelles et de l’Environnement. Université de Toamasina,

Madagascar. Examinateur

2. Mlle RAZANAKOLONA Antinone. 2010. Plan de gestion et de conservation de

l’espèce : Dioscorea orangeana dans la forêt de la nouvelle Aire Protégée (NAP) Oronjia

Commune Rurale de Ramena, District d’Antsiranana II. Mémoire de fin d’étude pour

l’obtention du Diplôme d’Etude Supérieure Spécialisée (DESS) en Gestion des Ressources

Naturelles et de l’Environnement. Université de Toamasina, Madagascar. Examinateur.

3. M. TODISOA Edmond Mamonjy. 2010. Etude de l’écologie et de la

reproduction de trois espèces de poissons endémiques de Madagascar à la station piscicole et

au Parc Ivoloina : cas de Paretroplus polyactis, Paratilapia sp et Ptychochromis grandidierie

(région Atsinanana). Mémoire de fin d’étude pour l’obtention du Diplôme d’Etude Supérieure

Spécialisée (DESS) en Gestion des Ressources Naturelles et de l’Environnement. Université

de Toamasina, Madagascar. Examinateur.

4. M. ANDRIAMALALA Heritiana. 2010. Pratique d’agroforesterie (aspect socio-

économique), cas du village d’Ambonivato, Commune Rurale d’Antetezambaro, Région

Atsinanana. Mémoire de fin d’étude pour l’obtention du Diplôme d’Etude Supérieure

Spécialisée (DESS) en Gestion des Ressources Naturelles et de l’Environnement. Université

de Toamasina, Madagascar. Examinateur

5. M. MAHEFA Christian Olivier. 2010. Promotion et développement des activités

écotouristiques du Parc marin Masoala (03 parcelles marines : Tampolo, Ambodilaitry,

Tanjona). Mémoire de fin d’étude pour l’obtention du Diplôme d’Etude Supérieure Spécialisée

(DESS) en Gestion des Ressources Naturelles et de l’Environnement. Université de

Toamasina, Madagascar. Examinateur

Mémoire de Maîtrise spécialisée

(1) M. TODISOA Edmond Mamonjy. 2009. Etude de la composition de la

communauté de poisson du canal des Pangalanes (région Atsinanana). Maîtrise spécialisée en

Gestion de Ressources Naturelles et de l’Environnement Université de Toamasina :

Rapporteur

Page 9: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

7

(2) M. BESIRY Martino. 2011. Considérations générales sur l’exploitation des

crevettes dans la zone de Sahamalaza : niveau d’exploitation et dynamique de la population de

crevettes à Antafiantambalaka et Antsiraka. Maîtrise spécialisée en Gestion de Ressources

Naturelles et de l’Environnement Université de Toamasina : Président

(3) M. RASOLOFOMANANA Robert. 2011. Implication de la symbiose

mycorhizienne sur le développement de trois essences (Intsia bijuga, Uapaca louvelii et

Harunga madagascariensis) natives de la station forestière d’Ivoloina. Maîtrise spécialisée en

Gestion de Ressources Naturelles et de l’Environnement Université de Toamasina :

Rapporteur

(4) M. RANDRIANASOLO Arcatia. 2011. Contribution à l’élaboration d’un

schéma d’aménagement pour la pérennisation de la gestion d’une forêt artificielle : cas de la

forêt de Fanalamanga (Moramanga), Région alaotra Mangoro. Maîtrise spécialisée en Gestion

de Ressources Naturelles et de l’Environnement Université de Toamasina : Examinateur

Mémoire de Licence

(1) Mlle MICHEL BENANGO Anne marie. 2010. Analyse de peuplements

aquatiques au large de Fénérive-Est : cas observé de Nosin-dRatsimilaho. Mémoire de fin

d’étude pour l’obtention du diplôme de Licence professionnelle en Gestion de Ressources

Naturelles et de l’Environnement, Université de Toamasina. Rapporteur

(2) M. ANDRIANAVONJIHASINA Nirina Zo Michel. 2010. Essai d’utilisation

des produits locaux pour l’alimentation des poissons (Oreochromis niloticus, Cichlidae) à

Ambila Lemaitso. Mémoire de fin d’étude pour l’obtention du diplôme de Licence

professionnelle en Gestion de Ressources Naturelles et de l’Environnement, Université de

Toamasina, Madagascar. Président

GESTION DE PROJET ET/OU CONTRIBUTION A LA REALISATION DE PROJET :

2000 - 2002 : Projet de valorisation des plantes médicinales et aromatiques de

Madagascar, Projet financé par le Gouvernement Malagasy

Responsabilité : Responsable du volet « Micropropagation des espèces d’orchidées

aromatiques »

2001 - 2005 : Maîtrise de la symbiose ectomycorhizienne pour améliorer le

développement d’essences ligneuses endémiques de Madagascar, Projet CORUS 1

financé par le Ministère Français des Affaires Etrangères

Page 10: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

8

Responsabilité : Responsable du volet « Etablissement d’une collection de souches

ectomycorhiziennes »

2006 - 2009 : Maîtrise de la symbiose mycorhizienne pour la régénération et

conservation de quelques essences ligneuses des forêts sclérophylles de la haute et

moyenne altitude de Madagascar, Projet financé par International Foundation for

Science

Responsabilité : Porteur du projet

2006 - 2009: Ectomycorrhizal host shrubs as an important nurse plant to tree

successional processes and ecology restoration in highland of Madagascar, Projet

financé par British Ecological Society (BES).

Responsabilité : Porteur du projet

2009 - 2013 : Analyses des paramètres biotiques et abiotiques déterminant l’évolution

spatio-temporelle du potentiel infectieux ectomycorhizogène des sols à Madagascar,

Projet financé par l’Institut de Recherche pour le Développement (IRD) à travers le

programme « Jeunes Equipes Associées à l’IRD »

Responsabilité : Porteur du projet

2009 - 2014 : Production de champignons comestibles à Madagascar, Projet financé

simultanément par l’Institut de Recherche pour le Développement (IRD) à travers le

programme « Maturation de projet innovant » du Département Expertise et

Valorisation et par le programme « Bond’innov »

ORGANISATION DES MANIFESTATIONS SCIENTIFIQUES :

Décembre 2009 : Atelier SYMETROP « La symbiose mycorhizienne et les

champignons comestibles en Afrique francophone », décembre 2009, Dakar Sénégal

Responsabilité : Membre du comité d’organisation et participant

Décembre 2010 : Atelier de restitution à mi-parcours du programme « Madasym -

Fonctionnement symbiotiques des écosystèmes forestiers de Madagascar » le 09

décembre 2010 à la Résidence d’Ankerana, Antananarivo Madagascar

Responsabilité : Coordinateur de l’atelier

Novembre 2011 : Premier congrès international sur les mycorhizes organisé dans la

région de l’océan indien « Symbioses mycorhiziennes : écosystèmes et environnement

des Etats insulaires de l’Océan Indien » 21 – 23 novembre 2011 Antananarivo

Madagascar

Responsabilité : Coordinateur du congrès.

Page 11: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

9

PARTICIPATION A DES MANIFESTATIONS SCIENTIFIQUES :

Au niveau national et régional:

19 – 21 octobre 2011 : Atelier régional sur le thème « Exploitation des acquis de la

recherche pour améliorer la gestion des forêts ». 25e Anniversaire du SNGF. Ecole

Supérieur des Sciences Agronomiques. Université d’Antananarivo – Madagascar.

Octobre 2011 : Atelier de validation du rapport national sur les ressources

phylogénétiques forestières de Madagascar. CNEAGR Nanisana. Antananarivo

Madagascar

22 – 23 juillet 2010 : Atelier d’évaluation « fin phase de construction du projet

Ambatovy ». Ankorondrano Antananarivo – Madagascar

13 – 15 octobre 2009 : Symposium « Biodiversité et substances naturelles –

BIOMAD ». Antananarivo – Madagascar

Décembre 2008 : Forum de la Recherche Nationale. MESupRES. Université

d’Antsiranana – Madagascar

Mai 2007 : International Foundation for Sciences Workshop. Pretoria – South Africa

Octobre 2007 : Célébration du XXe Anniversaire du SNGF. Antananarivo –

Madagascar

Au niveau international :

14 – 15 décembre 2011 : Atelier de restitution du programme « La biodiversité des îles

de l’Océan indien ». Paris – France

21 – 23 février 2011 : International Workshop « Mycorrhizae : a biological tool for

sustainable development in Africa ». Dakar – Sénégal.

11 – 13 octobre 2010 : International congress on Mycorrhizal symbiosis, Ecosystems

and Environment of Mediterranean area. Marrakech – Maroc.

7 – 10 décembre 2009 : Atelier de création du réseau « Symbioses mycorhiziennes en

Afriques francophones ». Dakar – Sénégal.

28 – 30 octobre 2009 : Atelier-rencontre du programme Jeunes Equipes Associées à

l’IRD. Marseille – France.

14 – 18 septembre 2009 : International Symposia on Environmental Biochemestry.

University of Hamburg – Germany.

3 – 6 novembre 2008 : Atelier de restitution « Groupement de Recherches

Internationales - Madagascar, South Africa, France ». Montpellier – France

Page 12: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

10

PUBLICATIONS DANS DES REVUES A COMITE DE LECTURE :

Baohanta R.H., Thioulouse J, Ramanankierana H., Prin Y, Rasolomampianina R,

Baudoin E, Rakotoarimanga N, Galiana A, Randriambanona H & Lebrun M. (2012). Restoring

native forest ecosystems after exotic tree plantation in Madagascar: combination of the local

ectotrophic species Leptolaena bojeriana and Uapaca bojeri mitigates the negative influence

of the exotic speciea Eucalyptus camaldulensis and Pinus patula. Biological Invasions, In

press. DOI 10.1007/s10530-012-0238-5

Andrianandrasana M.D., Rakotoniaina H.V., Raherimandimby M, Ramanankierana H,

Baohanta R.H. & Duponnois R. (2011). Propagation of Grevillea banksii, an invasive exotic

plant species: impacts on structure and functioning of mycorrhizal community associated with

natives tree species in eastern part of Madagascar. Procceding of 3rd International

Symposium on Weeds and Invasive Plants. Ascona Switzerland.

Ducousso, M., Ramanankierana, H., Duponnois, R., Rabevohitra, R., Randriahasipara,

L., Vincelette, M. Dreyfus, B. & Prin, Y. (2008). The mycorrhizal status of native trees and

shrubs from eastern Madagascar littoral forests with special emphasis on one new

ectomycorrhizal endemic family, the Asteropeiaceae. New Phytologist. 178 : 233 - 238.

Ramanankierana, H. Prin, Y., Rakotoarimanga, N., Thioulouse, J. Randrianjohany, E.,

Ramaroson, L.& Duponnois, R. (2007). Arbuscular mycorrhizas and ectomycorrhizas in

Uapaca nojeri (Euphorbiaceae) : patterns of root colonization and effects on seedling growth

and soil microbial functionalities. Mycorrhiza. 17 : 195 – 208.

Ramanankierana, H., Rakotoarimanga, N., Thioulouse, J., Kisa, M., Randrianjohany,

E., Ramaroson, L. & Duponnois, R. (2006). The ectomycorrhizosphere effect influences

functional diversity of soil microflora. International Journal of Soil Science. 1. (1) : 8 – 19

Duponnois, R., Assiegbetse, K., Ramanankierana, H., Kisa, M., Thioulouse, J. &

Lepage, M. (2005). Litter-forager termite mounds enhance the ectomycorrhizal symbiosis

between Acacia holosericea A. Cunn. Ex G. Don and Scleroderma dictyosporum isolates.

FEMS. Microbiel Ecology

Ramanankierana, H. (2005). La symbiose mycorhizienne dans la domestication de

Uapaca bojeri (Euphorbiaceae) plante ligneuse endémique de Madagascar. Doctorat en

Biochimie. Université d’Antananarivo - Madagascar

Page 13: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

11

AUTRES PUBLICATIONS :

Articles scientifiques :

Ramanakierana H., Baohanta R. H, Razafimiaramanana H., Raherimandimby M. &

Duponnois R. (2011). Amélioration de la régénération d’Uapaca bojeri par la gestion des

communautés arbustives ectotrophes et la symbiose ectomycorhizienne . Acte de l’Atelier

régional. 25eme anniversaire du SNGF. Antananarivo – Madagascar.

Ramanankierana, H., Baohanta, R., H., Rakotoarimanga N., Rasolomampianina, R.,

Randriambanona H., Duponnois, R.. (2011). La communauté mycorhizienne associée aux

plantes cibles du projet d’exploitation minière Ambatovy. Monographie d’Ambatovy. Edition

Recherches et Développement, CIDST. Madagascar (Accepté pour publication).

Ramanankierana, H., Rasolomampianina, R., Rakotoarimanga, N., Randrianjohany, E.,

Ramaroson, L. & Duponnois, R. (2010). Des plantules munies de leurs partenaires

symbiotiques : Une technologie nouvelle pour la bonne réussite de reboisement et de

restauration écologique à Madagascar. Acte du forum de la Recherche Nationale 2010.

MESupRES. Madagascar

Chapitre de livre :

Ramanankierana H., Baohanta R.H., Thioulouse J., Prin Y., Baudoin E.,

Rakotoarimanga N., Galiana A., Randriambanona H., Lebrun M. & Duponnois R. (2012).

Improvement of the early growth of endemic tree species by soil mycorrhizal management in

Madagascar. In : Seedlings : growth, ecology and environmental influence. Eds Nova Science

Publisher Inc. Enfield, Hampshire 03748 USA

Ramanankierana H., Randriambanona H., Baohanta R.H., Sanon A.,

Andrianandrasana D.M., Rajaonarimamy E. & Duponnois R. (2012). Structure et

fonctionnement de la symbiose mycorhizienne au sein des écosystèmes forestiers du haut

plateau et de la région Est de Madagascar. In Les acquis du SYMETROP. Eds IRD

Baohanta R.H., Ramanankierana H., Thioulouse J., Prin Y., Rasolomampianina

R., Baudoin E., Rakotoarimanga N., Galiana A., Randriambanona H., Lebrun M. & Duponnois

R. (2012). Mycorrhizal fungi diversity and their importance on the establishment of native

species seedlings within Madagascarian degraded sclerophyllous forest”. (2012). In:

Ectomycorrhizal Symbioses in Tropical and Neotropical forests. Eds Nova Science Publisher

Inc. Enfield, Hampshire 03748 USA (Soumis)

Page 14: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

12

Sanon A., Ndoye F., Ramanankierana H., Duponnois R. (2012). Implication of

mycoprrhizal symbiosis in the trajectory of plant invasion process: How do they matter? In

Mycomed Book. Eds Nova Science Publisher Inc. Enfield, Hampshire 03748 USA (Soumis).

Ramanankierana H., Baohanta R., Rakotoarimanga N., Rasolomampianina R.,

Randriambanona H. & Duponnois R. (2012). La communauté mycorhizienne associée aux

plantes cibles du projet d’exploitation minière Ambatovy. In : Monographie d’Ambatovy.

Eds : Recherches et Développement CIDST. Antananarivo, Madagascar. (Accepté pour

publication).

Communication orales :

Ramanankierana H. & Duponnois R. (2011). Lutte biologique intégrée contre Striga

asiatica à Madagascar par la valorisation de la biodiversité microbienne et de la diversité de

semis direct sur couverture végétale permanente. Communication orale. Atelier de

restitution du programme « La biodiversité des Îles de l’Océan Indien », 14 et 15

décembre 2011. Paris, France.

Ramanakierana H., Baohanta R. H, Razafimiaramanana H., Raherimandimby M. &

Duponnois R. (2011). Amélioration de la régénération d’Uapaca bojeri par la gestion des

communautés arbustives ectotrophes et la symbiose ectomycorhizienne . Communication

orale. Atelier régional. 25eme anniversaire du SNGF. Antananarivo – Madagascar

Ramanankierana H., Baohanta R., Razafimiaramanana H., Raherimandimby M. &

Duponnois R. (2011). Impact of two shrub species (Sarcolaena oblongifolia, Leptolaena

baujeriana) on soil microbial functioning and on seedling growth of Uapaca bojeri in

Madagascarian sclerophyllous forest. Communication orale. International Worshop

“Mycorrhizae: a biological tool for sustainable development in Africa”, 21 – 23 février

2011. Dakar, Senegal

Ramanankierana H., Ouhamane L., Baohanta R. H., Raherimandimby M., Mouhamed

H. & Duponnois R. (2010). Some established shrub species facilitate the early growth of tree

species in Madagascarian highland and in high Atlas of Morocco. Communication orale.

International congress on Mycorrhizal symbiosis, Ecosystems and Environment of

Mediterranean area. October 11 – 13, 2010.Marrakech, Maroc

Ramanankierana H., Rasolomampianina R. Baohanta R. & Rakotoarimanga N. (2010).

Les aspects microbiologiques de la régénération et conservation des espèces sensibles du projet

Page 15: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

13

Ambatovy. Communication orale. Atelier d’évaluation fin phase de construction. 22 – 23

juillet 2010. Antananarivo – Madagascar

Ramanankierana H., Rasolomampianina R., Rakotoarimanga N., Baohanta R.H.,

Ramamonjisoa D., Ramaroson L. & Duponnois R. (2009). Connaissances et valorisation de la

diversité microbienne du sol : quel avenir pour Madagascar. Communication orale.

Symposium Biodiversité et Substances Naturelles – BIOMAD. 13 au 15 octobre 2009.

Antananarivo/Madagascar

Ramanankierana H., Baohanta R.H., Raherimandimby M. & Duponnois R., (2009).

Impact of ectomycorrhizal inoculation on soil microbial activity and seedling growth of

Leptolaena bojeriana, an early established shrub species at forest edge. Oral communication.

International Symposia on Environmental Biochemestry. 14 – 18 September 2009.

University of Hamburg – Germany

Ramanankierana H. (2009). Fonctionnement symbiotique des écosystèmes forestiers à

Madagascar. Communication orale. Atelier-rencontre du programme Jeunes Equipes Associées

à l’IRD. 28 – 30 octobre 2009. Marseille – France.

Ramanankierana H. (2009). Production de champignons comestibles à Madagascar.

Communication orale. Atelier sur la création du réseau « Symbioses mycorhiziennes en

Afriques ». 7 au 10 décembre 2009. Dakar – Sénégal

Ramanankierana H., Rasolomampianina R. & Rakotoarimanga N., (2008). Mycorrhizal

symbiosis as a key strategy in the regeneration and conservation of Madagascarian endemic

trees. Communication. Communication orale. Colloque “Groupement de Recherches

Internationales” Madagascar – South Africa – France. Montpellier 3 – 6 novembre 2008.

Ramanankierana H. , Raherimandimby M. & Duponnois R. (2007). The

ectomycorrhizal symbiosis as a key factor in regeneration strategies of Madagascarian highland

sclerophyllous forest. Oral communication. IFS Workshop. University of Pretoria – South

Africa

Ramanankierana H. & Raherimandimby M. (2007). La symbiose mycorhizienne dans la

conservation et valorisation d’essences ligneuses endémiques de Madagascar. Communication

orale. XXth Anniversary of SNGF Workshop. Antananarivo – Madagascar.

Page 16: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

14

Brevet :

European Patent. Reforestation of a soil area with co-culture of tree species and nurse plants.

Patent n° 12305223. 5 – 2313 Février 2012

Article dans la presse :

Autour de la biodiversité : portrait d’une jeune équipe « MADASYM » par

Ramanankierana H. Sciences au Sud n° 55- juin – juillet – août 2010

Autour de la biodiversité : portrait d’une jeune équipe « MADASYM » par

Ramanankierana H. La Gazette de la Grande île. Mercredi 25 Août 2010

Les microorganismes au service des grands arbres : la preuve de l’ingéniosité de la

nature par les chercheurs par Ramanankierana H. et Randriambanona H. Journal de

l’économie du 23 au 29 août 2010

Plantes forestières : l’absence de bactérie affecte leur croissance par Ramanankierana

H. La Gazette de la Grande île. Jeudi 09 décembre 2010

Page 17: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

15

SYNTHESE DES ENSEIGNEMENTS DISPENSES, DES PROJETS

de recherche MENES ET PRODUCTIONS SCIENTIFIQUES

Page 18: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

16

INTRODUCTION

Cette partie développe les responsabilités techniques et scientifiques que j’ai prises après avoir

soutenu ma thèse de doctorat en novembre 2005 ainsi que les activités de valorisation des

résultats obtenus. La grande partie de ces activités ont été menées au Laboratoire de

Microbiologie de l’Environnement du CNRE où je travaille en étroite collaboration aussi bien

avec des collègues Malagasy qu’étrangers. Que ce soit l’enseignement, l’organisation de

rencontre scientifique ou l’encadrement des étudiants préparant des mémoires de fin d’études,

les thèmes abordés tournent toujours autour de la symbiose mycorhizienne et ses applications

pour la gestion durable des ressources naturelles et de la fertilité des sols cultivés. Ces activités

d’enseignement et d’encadrement ont été menées en collaboration avec plusieurs partenaires

dont entre autre la Faculté des Sciences, l’Ecole Supérieure des Sciences Agronomiques

(Département Forêt) et l’Ecole Supérieur Polytechnique de l’Université d’Antananarivo, la

Formation GRENE de l’Université de Toamasina (Madagascar), l’Ecole doctorale

« Biotechnologie végétale et microbienne » de l’Université Cheik Anta Diop de Dakar

(Sénégal), l’Institut de Biologie Intégrative et des Systèmes de l’Université de Laval (Canada),

la Faculté des Sciences de l’Université de Marrakech (Maroc) et le Laboratoire des Symbioses

Tropicales et Méditerranéennes de Montpellier (France). Les activités de formations menées

avec ces partenaires ont permis de créer différentes plates formes regroupant les scientifiques

selon leur domaine de recherche (Réseau SYMETROP, AFRINOM…) et d’intégrer certains

étudiants Malagasy dans des équipes scientifiques reconnues au niveau mondial (Université de

Laval, LMI-Laboratoire de Biotechnologie Microbienne et Végétale à Rabat, Maroc…). Au

niveau national, je dirige actuellement une équipe d’une dizaine de jeunes scientifiques en

début de leur carrière scientifique ou en phase finale de leur étude doctorale. Les membres de

cette équipe sont principalement issus de la Faculté des Sciences de l’Université

d’Antananarivo et ont été formés dans le cadre de partenariat avec les partenaires étrangers

cités ci-dessus.

ENSEIGNEMENT

Depuis l’année universitaire 2006 – 2007, j’ai dispensé des cours théoriques et/ou des

travaux pratiques dans deux universités publiques (Université d’Antananarivo et Université de

Toamasina) et un institut privé de formation supérieur (EPSA Bevalala). En décembre 2009,

j’ai participé à l’animation de l’école doctorale « Biotechnologie végétale et microbienne » à

l’Université Cheick Anta Diop de Dakar, Sénégal.

Page 19: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

17

II.1. Enseignant du cours de « Valorisation de la biomasse » pour la deuxième année

de maîtrise

Option Biotechnologie – Microbiologie du Département de Biochimie Fondamentale

et Appliquée de la Faculté des Sciences Antananarivo, Madagascar (Depuis l’année

universitaire 2006 – 2007).

Résumé et grandes lignes du cours

L’U.E. biomasse vise à fournir aux étudiants des connaissances plus approfondies relatives aux

différentes sources pérennes et renouvelables de production alimentaire, de matériaux et

d’énergie. Elle permettra, par la suite, aux étudiants de se familiariser aux caractéristiques de

ces sources ainsi que d’évaluer l’importance de ces dernières par rapport aux autres. Toutes ces

connaissances constitueront une base solide de développement durable

Enseignement théorique Les différents types de biomasse

- Biomasse végétale

- Biomasse animale

- Biomasse microbienne

Les biomasses valorisables - Caractéristiques

- Disponibilité en quantité et en qualité

- Importance socio-économique et environnementale

- Stratégies de valorisation et externalités

- Intérêts et limites de la valorisation

La biomasse et les filières de transformation - Adaptabilité de la source à la filière de transformation

- Compétitivité et concurrence

Notion d’agriculture biologique Enseignement dirigé et Enseignement pratique

Technique d’évaluation de la qualité de la biomasse

Analyse et commentaire des caractéristiques de la biomasse et ses produits

de valorisation

Compétences acquises Aptitude à identifier des sources durables de production et à décrire des

approches de valorisation

Capacité à établir des approches de gestion durable des ressources

Secteur d'activité concerné : Energies renouvelables

Dépollution de l’environnement

Page 20: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

18

Bio séquestration du carbone

Production alimentaire et de matériaux

II.2. Responsable du cours d’ « Ecologie Générale » pour les étudiants en premier

année au sein de la formation en Gestion des Ressources Naturelles et de l’Environnement

Université de Toamasina, Madagascar (Depuis l’année universitaire 2006 – 2007)

Résumé et grandes lignes du cours

Ce cours est articulé au tour de trois axes : (1) les notions de base en écologie permettant de

mettre à la disposition des étudiants les éléments fondamentaux constituant les écosystèmes,

(2) les interactions, dans un premier temps, entre ces différents éléments et puis entre ces

éléments et les différents facteurs du milieu et (3) les apports de connaissances sur l’écologie

en matière de conservation et de valorisation de la biodiversité et des ressources naturelles.

L’objectif étant d’apporter aux étudiants des connaissances élémentaires mais largement

suffisantes pour qu’ils puissent comprendre facilement, à la fin de la première année, le

fonctionnement écologique de différents types d’écosystème. Ces connaissances seront par la

suite renforcées par des séries de travaux dirigés et d’exposé dont les sujets visent à étudier

différents types d’écosystème Malagasy ou à comprendre l’importance des connaissances

écologiques sur la gestion durable des ressources naturelles. Au terme de cet enseignement, les

étudiants devront avoir une vue d’ensemble des différents éléments des écosystèmes, leur

interrelations et leur importance et être capables d’entamer des études plus approfondies

relatives aux aspects fonctionnels et analytique de l’écologie.

II.3. Responsable du cours d’ « Ecologie microbienne et fonctionnement des

écosystèmes » pour les étudiants en second cycle au sein de la formation en Gestion des

Ressources Naturelles et de l’Environnement

Université de Toamasina, Madagascar (Depuis l’année universitaire 2010 – 2011)

Résumé et grandes lignes du cours

L’écologie microbienne aborde globalement la dynamique et la place des

microorganismes dans leurs habitats ainsi que les différentes voies de valorisation des

microorganismes pour le bien être de l’Homme. L’objectif principal de ce cours est d’inculquer

aux étudiants la diversité des microorganismes au sein des différents écosystèmes (marin,

aquatique et terrestre), notamment ceux des écosystèmes humides de Madagascar, et leur

interaction avec les autres composantes du milieu. Ce cours qui sera composé de séances de

cours théorique ainsi que des travaux dirigés sera divisé en 3 parties comprenant i)

Page 21: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

19

l’introduction à l’écologie microbienne, ii) les différents types d’interaction microbienne au

sein d’un écosystème et iii) les principaux secteurs d’exploitation des microorganismes. A la

fin de ce cours, les étudiants devraient être capables, d’une part, de décrire la composante

microbienne d’un écosystème comme étant une biodiversité toute entière, de comprendre le

fonctionnement microbiologique d’un écosystème et ses importances pour la conservation de

celui-ci et d’autre part d’identifier les différentes approches de valorisation des

microorganismes et de mettre en place des stratégies écologiques visant à mieux gérer les

ressources naturelles (stratégies de restauration écologique et/ou de valorisation de la biomasse,

traitement des déchets ou des eaux usées…).

II.4. Responsable du cours de « Microbiologie et qualité de l’environnement » pour

les étudiants en second cycle au sein de la formation en Gestion des Ressources Naturelles et

de l’Environnement

Université de Toamasina, Madagascar (Depuis l’année universitaire 2010 – 2011)

Résumé et grandes lignes du cours

Ce cours concernera l’importance de la microbiologie dans la gestion de la qualité de

l’environnement (l’air, l’eau, le sol, les produits alimentaires ou biologiques, les surfaces et les

matériaux etc.). Les objectifs principaux seront d’inculquer aux étudiants les méthodes de

recherche et d’analyse de la qualité microbiologique de l’environnement ainsi que les

approches descriptives des principaux microorganismes impliqués directement dans les

phénomènes conduisant à la modification de la qualité de l’environnement. A la fin de ce

cours, les étudiants devraient avoir la capacité de décrire la qualité microbiologique de

différents produits (aliments, eaux…) ou des milieux (milieux de préparation, de

transformation, de prélèvement…), d’interpréter les résultats d’analyses microbiologiques ainsi

que d’établir des stratégies de gestion de la qualité des produits ou des milieux. Au centre du

cours est situé le système HACCP (« Hazard Analysis Critical Control Point » ou méthode et

principes de gestion de la sécurité sanitaire des produits finis) et les mécanismes de sa mise en

place et de suivi dans les différentes chaines de production. Le cours sera divisé en quatre

parties : (i) les risques liés à la contamination de l’environnement et les approches de leur

identification, (ii) les différentes sources de contamination, (iii) les stratégies et méthodes de

suivi de la qualité de l’environnement et (iv) les approches pour limiter la propagation des

contaminants.

Page 22: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

20

II.5. Responsable du cours théorique sur la « Microbiologie du sol et ses

applications en agriculture » pour la troisième année Filière Agriculture

Ecole Supérieure Professionnelle Bevalala, Antananarivo, Madagascar (2007 – 2010)

Résumé et grandes lignes du cours

Ce cours est articulé autour de trois axes : (1) les notions fondamentales de la microbiologie

du sol permettant de situer l’importance des microorganismes du sol au sein de l’écosystème

terrestre, (2) les approches d’étude des microorganismes du sol avec une attention particulière

sur les microorganismes connus pour leur importance en agriculture, en élevage et en

conservation de l’environnement et (3) les différentes applications de la microbiologie du sol

pour les besoins socio-économiques et environnementaux de l’humanité. L’objectif étant

d’apporter aux étudiants des connaissances élémentaires suffisantes du monde des

microorganismes du sol et leur relation avec les facteurs environnants. Ces connaissances

seront, par la suite, renforcées par la deuxième et troisième partie du cours consacrées à

l’exploitation rationnelle de ces microorganismes et leur importance. L’étude de ces

exploitations, depuis l’identification et la mise en culture de ces microorganismes jusqu’à la

maîtrise de leur utilisation, sera appuyée par des exemples étudiés en cours et pratiqués au

laboratoire et en milieu naturel. Les technologies de pointe utilisées pour l’étude des

microorganismes du sol seront largement exploitées en cours pour donner aux étudiants une

vue plus développée de la microbiologie. Au terme de cet enseignement, les étudiants devront

avoir une vue d’ensemble de la population microbienne du sol et ses fonctionnements, être

capables d’identifier les aspects positifs et négatifs de l’exploitation des microorganismes du

sol et devront avoir la capacité de mener des études prospectives et préliminaires sur terrain

relatives à l’analyse microbiologique d’un type de sol.

II.6. Mission d’enseignement

Animation de conférence scientifique pour les étudiants en master en Biotechnologie végétale

et microbienne et pour les thésards à l’Ecole doctorale de la Faculté des Sciences de

l’Université Cheik Anta Diop Dakar – Sénégal (Décembre 2009 et 2010)

Thème : Importance de la communauté de champignons ectomycorhiziens associés

aux espèces arbustives pionnières des zones forestières dégradées sur la régénération

d’essences endémiques de Madagascar

Page 23: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

21

PROJETS DE RECHERCHE

Après mes études universitaires, j’ai participé au montage, à la soumission et à la réalisation

de six (6) projets de recherche pour lesquels, j’ai été porteur du projet pour quatre (4) projets.

2000 - 2002 : Projet de valorisation des plantes médicinales et aromatiques de Madagascar

Projet financé par le Gouvernement Malagasy

Porteur du projet : Dr RAMAROSON Luciano, LME/CNRE

Ce projet financé par le Gouvernement Malagasy constitue la suite des activités menées

auparavant dans le cadre du programme PLARM. L’objectif principal du projet a été d’isoler

des molécules biologiquement actives à partir des plantes aromatiques ou médicinales

préalablement identifiées suite aux enquêtes ethnobotaniques effectuées auprès des tradi-

praticiens dans plusieurs régions de Madagascar. La région Est (Moramanga - Bekorakaka et

Sud (Ifotaka) de Madagascar ont été particulièrement concernée par les activités du

programme. Ce projet constitue également un des premiers programmes réalisés au sein du

LME, nouvellement construit à l’époque, à l’issu desquels, il a été constaté que peu d’attention

ont été portées sur la gestion rationnelle et la conservation des plantes aromatiques et

médicinales de Madagascar. Ainsi, ma responsabilité dans le programme a été orientée sur la

préservation des plantes à haute valeur ajoutée et menacées de disparition via l’exploitation de

la potentialité des techniques de micropropagation.

2001 - 2005 : Maîtrise de la symbiose ectomycorhizienne pour améliorer le développement

d’essences ligneuses endémiques de Madagascar

Projet CORUS 1 financé par le Ministère Français des Affaires Etrangères.

Porteurs du projet : Dr RAMAROSON Luciano, LME/CNRE

Dr DUPONNOIS Robin, LSTM/IRD

C’est au cours de la réalisation de ce projet que nous avons commencé à travailler sur les

mycorhizes associées aux arbres autochtones et/ou endémiques de Madagascar. Les résultats de

ce projet nous ont permis d’avoir des idées préliminaires sur l’importance de la symbiose

ectomycorhizienne dans la conservation et la régénération d’essences endémiques. Ainsi, le

statut mycorhizien d’une dizaine d’essences ligneuses endémiques de Madagascar a été décrit.

De plus, la technique d’ectomycorhization contrôlée mise au point pour la première fois avec

une essence ligneuse endémique de Madagascar (Uapaca bojeri) a donné des résultats

Page 24: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

22

intéressants aussi bien sur le développement de la plante en pépinière que sur la reprise de sa

croissance après transplantation en milieu naturel. Ce projet a été mené en collaboration avec le

Département d’Ecologie et Biologie Végétale de la Faculté des Sciences de l’Université

d’Antananarivo et le Laboratoire des Symbioses Tropicales et Méditerranéennes de l’IRD

Montpellier.

2006 – 2009 : Maîtrise de la symbiose mycorhizienne pour la régénération et conservation

de quelques essences ligneuses des forêts sclérophylles de la haute et moyenne altitude de

Madagascar

Projet financé par International Foundation for Science.

Porteur du projet : Dr RAMANANKIERANA Heriniaina, LME/CNRE

Résumé : Ce projet proposait la gestion de la symbiose mycorhizienne et son interaction avec

les microorganismes de la rhizosphère dans l'objectif d'améliorer le développement des arbres

autochtones et/ou endémiques en vue d'une revégétalisation des zones nues et restaurer ainsi la

fertilité du sol. La gestion de cette symbiose est d'un interêt fondamental pour la réussite des

programmes de reboisement, d'association arbres et cultures annuelles dans le cadre d'un

système d’agroforesterie et dans la réactivation des sols nus abandonés. Ce programme

concernait deux sites situés sur le haut plateau de Madagascar à savoir la forêt sclérophylle

d’Arivonimamo et d’Ambohimanjaka (col à Tapia). Dans cet esprit, le projet a été divisé en

quatre volets : (i) Description du statut mycorhizien in situ des essences autochtones formant

la strate arborée des sites d'étude, (ii) Determination du cortège mycorhizien associé aux

espèces ligneuses pendant les premiers mois de développement de l'arbre (iii) Isolement,

purification et étude du spectre d'hôte des isolats fongiques les plus représentatifs de la

communauté fongique récoltée dans chaque site (iv) Description des modifications induites par

la gestion de cette symbiose mycorhizienne au niveau du biofonctionnement du sol et de la

croissance de la plante. Cette approche a fait appel à plusieurs disciplines allant de l'écologie

des microorganismes du sol et des champignons mycorhiziens, passant par des caractérisations

des souches microbiennes et leur rôle dans la régénération des plantes et la fertilité du sol,

jusqu'à la production et suivi des plantules inoculées en péninière et en condition contrôlée. Les

résultats du projet ont permis dans un premier temps d’apprécier la grande diversité de

champignons ectomycorhiziens associés aux essences ligneuses de ces deux formations

sclérophylles. Ces résultats ont été pourtant obtenus en considérant seulement la population

épigée de ces champignons (carpophores). C’est pourquoi et pour pouvoir exploiter ces

Page 25: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

23

résultats, tous les carpophores appartenant au groupe de champignons précoces (early stage)

ont fait l’objet d’isolement de souche. Ces souches constituent les premiers éléments de la

collection de souches ectomycorhiziennes au sein du LME. Utilisant ces souches fongiques

pour la mycorhization de Uapaca bojeri sur le sol stérilisé et non stérilisé, nous avons pu

décrire l’influence de la mycorhization sur la structure et le fonctionnement des

microorganismes dans différents compartiments du sol rhizosphérique.

2007 – 2009: Ectomycorrhizal host shrubs as an important nurse plant to tree successional

processes and ecology restoration in haighland of Madagascar

Projet financé par British Ecological Society.

Porteur du projet : Dr RAMANANKIERANA Heriniaina, LME/CNRE

Résumé : La régénération des plantules pourrait être inhibée ou stimulée par des plantes

préexistantes dans le milieu. En milieu tropical, les connaissances relatives aux potentialités

des plantes pionnières à faciliter l’établissement des plantules des essences ligneuses restent

encore fragmentaires. L’objectif principal de ce projet a été de décrire la contribution des

arbustes ectotrophes pionnières des zones dégradées à la succession végétale et à la

régénération d’essences ligneuses. Le projet a concerné deux sites d’étude situé au sein de la

formation sclérophylle du haut plateau de Madagascar à savoir à Ambohimanjaka et

Ambatofinandrahana. Dans les deux sites d’étude, la communauté de champignons

ectomycorhiziens associés aux arbustes ectotrophes a été décrite et comparée avec celle

associée aux essences ligneuses dont principalement Uapaca bojeri. La capacité de chaque

espèce arbustive ectotrophe et dominante dans chaque site à stimuler la régénération d’Uapaca

bojeri a été évaluée sous condition de serre et de pépinière. Les résultats ont montré que la

présence préalable de Leptolaena bojeriana et Sarcolaena oblongifolia, respectivement

dominante à Ambohimanjaka et Ambatofinandrahana, a facilité l’établissement des plantules

d’Uapaca bojeri et a stimulé leur développement sous condition de serre et de pépinière. Les

approches adoptées lors de ce projet ont permis de démontrer que certains arbustes pionniers

des zones dégradées tiennent des rôles importants dans le phénomène de succession secondaire

ou de l’établissement des plantules d’essences ligneuses. Ce phénomène de facilitation plante-

plante, peu considéré dans les opérations de reboisement ou de restauration écologique, est

d’un intérêt fondamental pour sauvegarder les essences ligneuses endémiques de Madagascar.

Abstract: The establishment of seedlings may be both inhibited and facilitated by established

plants. In tropical ecosystem, little is known about the potentiality of early-established plant to

Page 26: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

24

facilitate seedling establishment of tree. The main objective of this research project is to

advance understanding of the contribution of early-established ectomycorrhizal shrubs to tree

successional and forest regeneration processes. This research project will be conducted in two

study sites located in disturbed sclerophyllous forest areas in the highland of Madagascar. In

each of two study sites, ecology of ectomycorrhizal communities associated with these shrubs

species will be investigated with an emphasis on their implications on the establishment of

native tree seedling. Then, relationship between dominant ectomycorrhizal shrubs species in

disturbed area and ecology restoration processes will be assessed. This ecological approach

was never considered in regeneration strategies and in protection program of important or rare

endemic tree species in Madagascar

2009– 2013 : Analyses des paramètres biotiques et abiotiques déterminant l’évolution

spatio-temporelle du potentiel infectieux ectomycorhizogène des sols à Madagascar.

Projet financé par l’Institut de Recherche pour le Développement (IRD) à travers le

programme « Jeunes Equipes Associées à l’IRD »

Porteur du projet : Dr RAMANANKIERANA Heriniaina, LME/CNRE

Résumé : L’écosystème terrestre malagasy est connu pour être un des plus riches et divers de

la planète avec de nombreuses espèces végétales et animales endémiques de la Grande Ile.

Cette diversité végétale a été particulièrement recherchée et exploitée au cours de ces dernières

décennies (production de bois précieux, d’huiles essentielles, etc). La dégradation et la

surexploitation de ces ressources n’ont cessé de progresser au cours de ces dernières décennies

aboutissant à une dégradation spectaculaire du paysage originel. Il a été estimé que moins de

15% de la forêt naturelle malagasy subsiste encore dans son état plus ou moins originel. Le

reste a été exploité par les populations locales ou a été dégradée par le bétail ou par les

incendies (Ex : culture sur brulis).

Parmi toutes les options techniques et scientifiques susceptibles de remédier à cette situation, la

gestion et la valorisation des ressources microbiennes telluriques pour améliorer les

performances des programmes de reboisement sont encore relativement ignorées. Or, il est

connu que les communautés microbiennes telluriques sont des composantes majeures dans le

développement des cycles biogéochimiques majeurs (Cycles du carbone, phosphore et azote).

Parmi tous ces groupes microbiens, les champignons mycorhiziens occupent une position

centrale dans ces phénomènes interactifs et complexes régissant l’évolution spatio-temporelle

des écosystèmes terrestres. En conséquence, la compréhension du rôle des paramètres

écologiques dans le fonctionnement durable de ce phénomène symbiotique et leur maîtrise,

Page 27: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

25

constituent des préalables indispensables à la conception d’itinéraires techniques susceptibles

d’assurer une réhabilitation durable de ces milieux dégradés.

2009 – 2014 : Production de champignons comestibles à Madagascar

Projet financé simultanément par l’Institut de Recherche pour le Développement

(IRD) à travers le programme « Maturation de projet innovant » du Département Expertise

et Valorisation, par l’Incubateur Bond’innov et par le Service International d’Appui au

Développement

Porteurs du projet : Dr RAMANANKIERANA Heriniaina, LME/CNRE

Dr DUPONNOIS Robin, LSTM/IRD

Description de la technologie valorisée

Les champignons comestibles saprophytes manifestent différentes activités enzymatiques

(cellulolytique, pectinolytique, chitinolytique, etc) qui leur permettent de se développer sur des

substrats organiques en catabolisant des molécules complexes (cellulose, pectine, etc) et/ou en

mobilisant des macroéléments inorganiques (micas, feldspath, etc).

Du fait du savoir faire technologique de l’équipe impliquée dans ce projet, des ressources en

champignons comestibles endémiques de la Grande Ile, du caractère innovant de la

méthodologie proposée (valorisation des souches de champignons pour leur fructification et en

tant que bio-fertilisants), les objectifs de ce projet ont été les suivants : (i) adoption d’une

technique culturale standard identifiée en fonction des résultats acquis, (ii) une diversification

de la production (élargissement de la gamme de produits), (iii) une protection de la technique

de production et de valorisation des produits et sous-produits de l’itinéraire cultural

(proposition de dépôt de brevet) et enfin une description plus précise des potentialités

économiques de ce type de production sur le marché national et international.

La technologie retenue dans ce projet vise (i) à multiplier le champignon sur des résidus de

culture (paille de riz) et des particules minérales (Podzollane) puis stimuler sa fructification par

un choc thermique et (ii) en fin de phase de fructification, à valoriser le substrat colonisé par la

souche fongique en tant que bio-fertilisant et bio-pesticide pour améliorer durablement la

productivité des cultures maraîchères à Madagascar.

Page 28: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

26

PRODUCTIONS SCIENTIFIQUES DANS DES JOURNAUX A FACTEUR D’IMPACT

Article (1) : Duponnois R., Assikbetse K., Ramanankierana H., Kisa M., Thioulouse J. & Lepage M.

(2005). Litter-forager termite mounds enhance the ectomycorrhizal symbiosis between Acacia

holosericea A. Cunn. Ex G. Don and Scleroderma dictyosporum isolates. FEMS Microbiol

Ecol. 56: 292 – 303.

Article (2) : Ramanankierana H., Rakotoarimanga N., Thioulouse J., Kisa M., Randrianjohany E.,

Ramaroson L. & Duponnois R. (2006). The ctomycorrhizosphere effect influences functional

diversity of soil microflora. International Journal of Soil Sciences. 1 (1): 8 - 19

Article (3) : Ramanankierana H., Ducousso M., Rakotoarimanga N., Prin Y., Thioulouse J.,

Randrianjohany E., Ramaroson L., Kisa M., Galiana A. & Duponnois R. (2007). Arbuscular

mycorrhizas and ectomycorrhizas of Uapaca bojeri L. (Euphorbiaceae) : sporophore diversity,

patterns of root colonization and effects on seedling growth and soil microbial catabolic

diversity. Mycorrhiza 17: 195 – 208

Article (4) : Ducousso M., Ramanankierana H., Duponnois R., Rabevohitra R., Randrihasipara L.,

Vincelette M., Dreyfus B. & Prin Y. (2008). Mycorrhizal status of native trees and shrubs from

eastern Madagascar littoral forests with special emphasis on one new ectomycorrhizal endemic

family, the Asteropeiaceae. New Phytologist 178: 233 – 238

Article (5) : Baohanta R., Thioulouse J., Ramanankierana H., Prin Y., Rasolomampianina R., Baudouin

E., Rakotoarimanga N., Galiana A., Randriambanona H. Lebrun M. & Duponnois R. (2012). Restoring native forest ecosystems after exotic tree plantation in Madagascar: contribution of

the local ectotrophic species Leptolaena bojeriana and Uapaca bojeri mitigates the negative

influence of the exotic species Eucalyptus camaldulensis and Pinus patula. Biol. Invasion. In

press. DOI 10.1007/s10530-012-0238-5

BREVET

Ramanankierana H., Baohanta R., Duponnois R. Prin Y. Reforestation of a soil area with co-

culture of tree species and nurse plant. European Patent Office. Avril 2012

Page 29: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

Litter-forager termitemoundsenhance the ectomycorrhizalsymbiosis betweenAcacia holosericea A.Cunn.ExG.DonandSclerodermadictyosporum isolatesRobin Duponnois1, Komi Assikbetse2, Heriniaina Ramanankierana3, Marija Kisa1, Jean Thioulouse4 &Michel Lepage5,6

1Institut de Recherche pour le Developpement, Laboratoire des Symbioses Tropicales et Mediterraneennes, Montpellier, France; 2Institut de Recherche

pour le Developpement, Dakar, Senegal; 3Laboratoire de Microbiologie de l’Environnement, Centre National de Recherches sur l’Environnement,

Antananarivo, Madagascar; 4Laboratoire de Biometrie et Biologie Evolutive, Universite Lyon 1, Villeubanne Cedex, France; 5Institut de Recherche pour le

Developpement, Ouagadougou, Burkina Faso; and 6Laboratoire d’Ecologie, Ecole Normale Superieure, Paris Cedex, France

Correspondence: Robin Duponnois, Institut

de Recherche pour le Developpement, UMR

113 CIRAD/INRA/IRD/AGRO-M/UM2,

Laboratoire des Symbioses Tropicales

et Mediterraneennes (LSTM), 34398

Montpellier, France. Tel.: (33) (0)4 67 59 38

82; fax: (33) (0)4 67 59 38 02;

e-mail: [email protected]

Received 31 August 2005; revised 14 October

2005; accepted 17 October 2005.

First published online 8 February 2006.

doi:10.1111/j.1574-6941.2006.00089.x

Editor: Ralf Conrad

Keywords

termitaria; fluorescent pseudomonads;

ectomycorrhizal symbiosis; Acacia holosericea.

Abstract

The hypothesis of the present study was that the termite mounds of Macrotermes

subhyalinus (MS) (a litter–forager termite) were inhabited by a specific microflora

that could enhance with the ectomycorrhizal fungal development. We tested the

effect of this feeding group mound material on (i) the ectomycorrhization

symbiosis between Acacia holosericea (an Australian Acacia introduced in the

sahelian areas) and two ectomycorrhizal fungal isolates of Scleroderma dictyospo-

rum (IR408 and IR412) in greenhouse conditions, (ii) the functional diversity of

soil microflora and (iii) the diversity of fluorescent pseudomonads. The results

showed that the termite mound amendment significantly increased the ectomy-

corrhizal expansion. MS mound amendment and ectomycorrhizal inoculation

induced strong modifications of the soil functional microbial diversity by

promoting the multiplication of carboxylic acid catabolizing microorganisms.

The phylogenetic analysis showed that fluorescent pseudomonads mostly belong

to the Pseudomonads monteillii species. One of these, P. monteillii isolate KR9,

increased the ectomycorrhizal development between S. dictyosporum IR412 and

A. holosericea. The occurrence of MS termite mounds could be involved in the

expansion of ectomycorrhizal symbiosis and could be implicated in nutrient flow

and local diversity.

Introduction

In recent decades, there has been increasing evidence that

soil microorganisms have an important effect on soil fertility

and plant health (Gianinazzi & Schuepp, 1994). Amongst

the microbial populations living in the rhizosphere, myco-

rrhizal fungi have been found to be essential components of

sustainable soil–plant systems (Amato & Ladd, 1988; Beth-

lenfalvay & Linderman, 1992; Hooker & Black, 1995; Van

der Hejden et al., 1998; Hart et al., 2003; Dickie & Reich,

2005). Over 80% of all land plants form some type of

symbiotic association with mycorrhizal fungi. By increasing

the absorptive surface area of their host plant, this fungal

symbiosis influences plant growth and the uptake of nu-

trients, particularly phosphorus, a highly immobile element

in the soil, which thus frequently limits plant growth in

tropical areas. In addition to this positive effect on plant

growth, the hyphae that grow outwards from the mycorrhizae

into the surrounding soil interact with other soil microorgan-

isms and constitute an important pathway for the transloca-

tion of energy-rich plant compounds to the soil. The

expanding mycorrhizal mycelium exploits a larger volume of

soil that would otherwise be inaccessible to plant roots. As

mycorrhizal symbiosis modifies the microbial communities of

its surrounding soil through changes in root exudation, this

microbial compartment is usually named the ‘mycorrhizo-

sphere’ (Linderman, 1988), rather than the rhizosphere. The

mycorrhizosphere includes the more specific term ‘hypho-

sphere’, which refers only to the zone surrounding individual

hyphae. Numerous studies have described the effect of the

mycorrhizosphere on bacterial communities, such as fluores-

cent pseudomonads (Frey et al., 1997; Founoune et al., 2002a)

or rhizobia (Duponnois & Plenchette, 2003). However, some

bacteria belonging to the mycorrhizosphere compartment may

FEMS Microbiol Ecol 56 (2006) 292–303c� 2006 Federation of European Microbiological SocietiesPublished by Blackwell Publishing Ltd. No claim to original French government works

Page 30: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

promote the development of mycorrhizal symbiosis (Garbaye,

1994). These bacterial strains have been named mycorrhiza

helper bacteria (MHB), and the MHB effect has been recorded

in different plant–fungus combinations (Dunstan et al., 1998;

Founoune et al., 2002b; Duponnois & Plenchette, 2003).

Mycorrhizal establishment usually depends on the plant

species, soil type, soil phosphorus and mycorrhizal fungal

species (Smith & Read, 1997). The mycorrhizosphere effect

will therefore be influenced by soil disturbance (grazing or

erosion) and by the impact of natural events in ecosystem

functioning. For instance, the structures produced by the

soil fauna strongly determine the diversity of the functional

groups in their spheres of influence, at specific space and

time scales (Lavelle, 1996). Termites, as ecosystem engineers,

modulate the availability of resources for other species, such

as microorganisms and plants (Lavelle, 1997). For example,

fruit bodies of the ectomycorrhizal fungus Scleroderma spp.

are regularly observed around the termite mounds of

Macrotermes subhyalinus (a litter–forager termite) in the

south of Burkina Faso (K. Sanon, pers. commun.) and

Australia (Spain et al., 2004). In order to explain this

positive effect of the termite mound on fungal fructification,

we hypothesized that the epigeal mound material was

inhabited by a specific microflora that enhanced ectomyco-

rrhizal fungal development.

In order to verify this hypothesis, we tested the effect of

the mound material of this feeding group on the ectomyco-

rrhizal symbiosis between Acacia holosericea (an Australian

Acacia introduced in sahelian areas) and two ectomyco-

rrhizal fungal isolates of Scleroderma dictyosporum (isolates

IR408 and IR412), which are known to form ectomyco-

rrhizae with A. holosericea seedlings in pot experiments. The

influence of mound material amendment on the functional

diversity of soil microflora was also assessed. As it has been

demonstrated previously that most MHB belong to the

fluorescent pseudomonad group (Frey-Klett et al., 1997),

and that termite mounds of M. subhyalinus are inhabited by

this bacterial genus (Duponnois et al., 2005), we investigated

their diversity and their effect on IR412 ectomycorrhizal

establishment.

Materials and methods

Chemical and microbiological analysis of thesampled epigeal mounds

Five termite mounds of Macrotermes subhyalinus were

collected in a shrubby savanna, 50 km north of Ouagadou-

gou, near the village of Yaktenga (Burkina Faso). The soil

was shallow and rich in gravel above the hardpan level. Large

hydromorphic spots intertwined with the deepest soils

characterized the landscape. Macrotermes mounds were

predominantly localized on deeper soils. Termite mounds

(about 5 kg each) were crushed and passed through a 2 mm

sieve before use.

The chemical and microbiological analyses have been

described in a previous study (Table 1) (Duponnois et al.,

2005). The NH41 and NO3

� contents were measured

according to the method of Bremner, 1965, whereas avail-

able phosphorus was determined according to Olsen et al.

(1954). The content of ergosterol was determined using the

method of Grant & West (1986). The fumigation–extraction

method was used to estimate the microbial biomass (Amato

& Ladd, 1988). The enumeration of colony-forming units

was carried out on King’s B agar medium for the fluorescent

pseudomonads (King et al., 1954) and on actinomycete

isolation agar medium (Difco Laboratories, Detroit, MI)

for the actinomycetes. The isolates of fluorescent pseudo-

monads were randomly selected (18 bacterial strains),

purified, subcultured on King’s B medium and cryopre-

served at � 80 1C in glycerol 60%-TSB (tryptic soy broth,

3 g L�1) culture [1/1, volume in volume (v/v)].

Molecular characterization of fluorescentpseudomonad isolates

Fluorescent pseudomonads were grown overnight on TSB

agar plates at 28 1C. For each strain, a single colony was

picked up and suspended in 50 mL of lysis buffer [0.05 M

NaOH, 0.25% sodium dodecylsulphate (SDS)], vortexed for

60 s, heated to 95 1C for 15 min and centrifuged at 2400 g.

for 10 min. The lysate cell suspensions were diluted (1/10, v/

v) with sterile distilled water. The primers rD1 (50-AAGCT-

TAAGGAGGTGATCCAGCC-30) and fD1 (50-AGAGTTT-

GATCCTGGCTCAG-30) were used to amplify the 16S

rDNA gene (Frey-Klett et al., 1997). PCR was performed in

a GeneAmp PCR System 2400 thermal cycler (Perking-

Elmer, Foster City, CA) using PureTaq Ready-To-Go PCR

beads (Amersham Biosciences, Orsay, France), 1 mM of each

primer and 3 mL of bacterial cell suspension in 25 mL

reaction mixtures. The mixture was submitted to 5 min of

initial denaturation, followed by 35 cycles at 94 1C for 1 min,

55 1C for 45 s and 72 1C for 1.5 min. A final elongation step

Table 1. Biological and chemical characteristics of Macrotermes sub-

hyalinus mound powder

Biological and chemical characteristics M. subhyalinus

NH41 (mg N g�1 of dry mound powder) 9.4

NO3� (mg N g�1 of dry mound powder) 3408.9

Available P (mg g�1 of dry mound powder) 3.5

Microbial biomass (mg C g�1 of dry mound powder) 22.5

Fluorescent pseudomonads

(�102 CFU g�1 of dry mound powder)

79.3

Actinomycetes (�102 CFU g�1 of dry mound powder) 39.5

Ergosterol (mg g�1 of dry mound powder) 0.316

FEMS Microbiol Ecol 56 (2006) 292–303 c� 2006 Federation of European Microbiological SocietiesPublished by Blackwell Publishing Ltd. No claim to original French government works

293Termite mounds enhance ectomycorrhizal symbiosis

Page 31: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

was performed at 72 1C for 5 min. PCR products (7mL) were

digested in a total volume of 20mL at 37 1C for 2 h using

10 U of the endonucleases HaeIII and MspI (Promega,

Charbonnieres, France), as described by the manufacturer.

Restriction fragments were separated by horizontal electro-

phoresis in a 2.5% (weight in volume, w/v) Metaphor gel

(FMC, Rockland, ME). After 2 h of running at 80 V, the gel

was stained for 30 min with ethidium bromide (1 mg L�1)

and integrated with the Image Analysis software BIOCAPT

(Vilbert Lourmat, Paris, France) under UV light.

The amplified DNA fragments were purified using a

Qiaquick PCR purification kit (Qiagen, Courtaboeuf, France),

and then ligated into the pGEM-T vector and transformed into

cells (Escherichia coli DH5a) according to the instructions of

the manufacturer (pGEM-T easy vector system, Promega).

PCR amplification with the primers T7 and Sp6 was per-

formed directly from the selected white colonies (presumed

transformants) to confirm the presence of the insert of the

correct size. The plasmid insert from a clone representing each

isolate was sent for sequencing (Genome Express, Montreuil,

France). The sequence data were compared with gene libraries

[GenBank and European Molecular Biology Laboratory

(EMBL)] using BLAST (Heinemeyer et al., 1989) and FASTA

(Pearson & Lipman, 1988) programs.

Twenty-eight different Pseudomonas species were re-

trieved from the Ribosome Database Project (RDP) (http://

www.cme.m-su.edu/RDP) for phylogenetic comparison

with our Pseudomonas isolates. The phylogenetic analysis

was performed using the MEGA (Molecular Evolutionary

Genetics Analysis) version 2.1 package (Kumar et al., 2001).

Multiple sequence alignments were carried out using the

CLUSTALW program (Thompson et al., 1994). Phylogenetic

analysis was performed by the neighbour-joining method,

and the relative support for groups was determined on the

basis of 1000 bootstrap trees.

The nucleotide sequence obtained in this study has been

deposited in the GenBank database and assigned Accession

number AY327816.

Glasshouse experiment

Fungal and bacterial inoculum

The ectomycorrhizal fungi, strains IR408 and IR412, have

been identified as Scleroderma dictyosporum on the basis of

rDNA internal transcribed spacer phylogeny (Sanon, 1999).

They were isolated from sporocarps under Uapaca guineen-

sis in the province of Houet (Burkina Faso). The fungal

isolates were maintained on modified Melin–Norkrans

(MMN) agar (Marx, 1969) at 25 1C. The ectomycorrhizal

fungal inoculum was prepared according to Duponnois &

Garbaye (1991). Glass jars were filled with 600 mL of a

vermiculite–peat moss mixture (4/1, v/v) and autoclaved

(120 1C, 20 min). This substrate was moistened to field

capacity with 300 mL of liquid MMN medium. The jars

were sealed with a cotton float and autoclaved (120 1C,

20 min). Finally, 10 fungal plugs were placed aseptically into

each glass jar and incubated for 6 weeks at 28 1C in the dark.

One strain of fluorescent pseudomonad (Pseudomonas sp.

KR9) was randomly chosen from the selected bacterial

isolates. It was grown in 0.3% TSB (Difco Laboratories)

liquid medium for 3 days at 28 1C on a rotary shaker,

centrifuged (2400 g, 20 min) and suspended in 0.1 M

MgSO4. The final concentration of the bacterial suspension

was about 108 CFU mL�1, estimated by enumeration on a

plate count agar medium (King’s B medium) (King et al.,

1954). This suspension was used as inoculum.

Effect of the mound powder on IR408 and IR412ectomycorrhizal development

Seeds of Acacia holosericea, originating in Ndioum/Podor

(Senegal), were surface sterilized with concentrated 18 M

sulphuric acid for 60 min. The acid solution was decanted

off and the seeds were washed for 12 h in four rinses of

sterile distilled water. The seeds were then transferred

aseptically to Petri dishes filled with 1% (w/v) agar–water

medium. These plates were incubated at 25 1C in the dark.

The germinating seeds were used when the rootlets were

1–2 cm in length.

Acacia holosericea seedlings were grown in 1 L pots filled

with soil collected from a millet field near Ouagadougou

(Burkina Faso). Before use, the soil was crushed, passed

through a 2 mm sieve and autoclaved for 40 min at 140 1C.

One week after autoclaving, its chemical and physical

characteristics were as follows: pH (H2O) 5.6; clay, 4.6%;

fine silt, 0.0%; coarse silt, 0.8%; fine sand, 25.5%; coarse

sand, 69.1%; carbon, 0.204%; nitrogen, 0.04%; carbon/

nitrogen, 5.2; soluble phosphorus, 0.0043 mg g�1; total

phosphorus, 0.116 mg g�1. The soil was mixed with 10%

(v/v) of mound powder and/or 10% (v/v) IR408 or IR412

fungal inoculum. The control treatment was not mixed with

either mound powder or fungal inoculum. There were six

treatments: control (C), fungal isolate inoculation (IR408

and IR412), termite mound amendment (MS) and fungal

inoculum and termite mound added together to the soil

(IR4081MS and IR412 1 MS). The plants were placed in a

glasshouse (25 1C by day, 15 1C by night, 10 h photoperiod)

and watered regularly with tap water without the addition of

fertilizer. They were arranged in a randomized complete

block design with eight replicates per treatment.

After 4 months of culture, the plants were collected and

their root systems were gently washed under running tap

water. The oven dry weight (1 week at 65 1C) of the shoot

was measured. Some nodules were detected along the root

systems despite disinfection of the soil and the seed surface.

FEMS Microbiol Ecol 56 (2006) 292–303c� 2006 Federation of European Microbiological SocietiesPublished by Blackwell Publishing Ltd. No claim to original French government works

294 R. Duponnois et al.

Page 32: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

The root nodules were counted. The root systems were cut

into 1 cm root pieces and mixed. The percentage of ectomy-

corrhizal colonization [(number of ectomycorrhizal short

roots/total number of short roots)� 100] was determined

under a stereomicroscope at �40 magnification on a

random sample of at least 100 short roots per root system.

The arbuscular mycorrhizal fungal colonization was assessed

after clearing and staining the root pieces according to the

method of Phillips & Hayman (1970). The root pieces were

placed on a slide for microscopic observations at � 250

magnification (Brundrett et al., 1985). About 50 1 cm root

pieces were observed per plant. Arbuscular mycorrhizal

colonization was expressed in terms of the fraction of the

root length with mycorrhizal internal structures (vesicles or

hyphae): [(length of colonized root fragments/total length

of root fragments)� 100]. The dry weight (65 1C, 1 week) of

the roots was then determined.

The soil from each pot was mixed and kept at 4 1C for the

assessment of the catabolic diversity of microbial commu-

nities.

Assessment of the catabolic diversity of microbialcommunities

The microbial functional diversity in soil treatments was

assessed by the determination of the in situ catabolic

potential patterns of microbial communities (Degens &

Harris, 1997). A range of amino acids, carbohydrates,

organic acids, amides and a polymer were screened for

differences in substrate-induced respiration (SIR) respon-

siveness between soil treatments (Table 2). The substrate

concentrations providing optimum SIR responses are in-

dicated in Table 2 (Degens & Harris, 1997). Four replicates

(soil samples) were randomly chosen from each treatment.

One gram equivalent of dry weight soil for each sample was

suspended in 2 mL of sterile distilled water in 10 mL bottles

(West & Sparling, 1986). CO2 production from basal

respiratory activity in the soil samples was also determined

by adding 2 mL of sterile distilled water to 1 g equivalent of

dry weight soil. The bottles were immediately closed and

kept at 28 1C for 4 h after the addition of the substrate

solutions to the soil samples. CO2 fluxes from the soils were

assessed using an infrared gas analyser (Polytron IR CO2,

Drager, Germany) in combination with a thermal flow

meter (Heinemeyer et al., 1989). Results were expressed as

micrograms of CO2 per gram of soil per hour.

Effect of the fluorescent pseudomonad isolateKR9 on IR412 ectomycorrhizal development

Seeds of A. holosericea were prepared as described above; A.

holosericea seedlings were individually grown in 1 L pots

filled with the same autoclaved sandy soil (140 1C, 40 min)

as used in the previous glasshouse experiment. The substrate

was mixed with 10% (v/v) IR412 fungal inoculum or with a

10% vermiculite–peat mixture (4/1, v/v) for treatments

without fungus. Immediately after planting, the young

seedlings from the experimental group were inoculated with

5 mL of fluorescent pseudomonad KR9 suspension (108

bacterial cells), whereas those from the control group were

inoculated with 5 mL of 0.1 M MgSO4 solution. The plants

were placed in a glasshouse (25 1C by day, 15 1C by night,

10-h photoperiod) and watered regularly with tap water

without the addition of fertilizer. The pots were arranged in

a randomized complete block design with eight replicates

per treatment.

After 4 months of culture, the shoot and root biomass,

the number of nodules and the percentage of ectomycor-

rhizal colonization were determined for each plant in each

treatment, as described above.

Statistical analysis

The data were treated with one-way analysis of variance.

Means were compared using Fisher’s protected least signifi-

cant difference test (Po 0.05). The percentages of myco-

rrhizal colonization were transformed by arcsin (sqrt) before

statistical analysis. Co-inertia analysis was performed for

plant growth, mycorrhizal colonization indices and SIR

responses. Co-inertia analysis (Chessel & Mercier, 1993;

Doledec & Chessel, 1994) is a multivariate analysis

Table 2. Organic compounds and their concentrations used to assess

patterns of ISCP of soil treatments

Organic substrates Organic substrates

Amino acids (15 mM) Carboxylic acids (100 mM)

L-Glutamine 2-Keto-glutaric acid

L-Arginine 3-Hydroxybutyric acid

L-Serine Ascorbic acid

L-Histidine D-quinic acid

Phenylalanine DL-malic acid

L-Asparagine Formic acid

L-Tyrosine Fumaric acid

L-Glutamic acid Gallic acid

L-Lysine Gluconic acid

L-Cystein Ketobutyric acid

Malonic acid

Carbohydrates (75 mM) Oxalic acid

D-Glucose Succinic acid

D-Mannose Tartaric acid

Sucrose Tri-sodium citrate

Uric acid

Amides (15 mM)

D-Glucosamine Polymer (100 mM)

N-methyl-D-Glucamine Cyclohexane

Succinamide

ICSP, in situ catabolic potential.

FEMS Microbiol Ecol 56 (2006) 292–303 c� 2006 Federation of European Microbiological SocietiesPublished by Blackwell Publishing Ltd. No claim to original French government works

295Termite mounds enhance ectomycorrhizal symbiosis

Page 33: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

technique that describes the relationships between two data

tables. Numerous methods have been suggested for this [e.g.

canonical analysis (Gittins, 1985), canonical correspondence

analysis (Ter Braak, 1986) and partial least squares regres-

sion Hoskuldsson, 1988], but one of the simplest, from a

theoretical point of view, is co-inertia analysis. Computa-

tions and graphical displays were prepared with free ADE-4

software (Thioulouse et al., 1997), available at http://pbil.

univ-lyon1.fr/ADE-4/.

Results

Genotypic fingerprinting of fluorescentpseudomonad strains isolated from termitemounds of Macrotermes subhyalinus

Eighteen randomly chosen fluorescent pseudomonad strains

were subjected to PCR/restriction fragment length poly-

morphism (RFLP) analysis. PCR conditions allowed the

amplification of a single DNA fragment of the 16S rDNA

gene with the same size of 1000 bp for all 18 Pseudomonas

isolates studied. Digestion of the PCR products with two

restriction enzymes (HaeIII and MspI) did not show any

polymorphism in the patterns of the 16S rDNA fragments

(Fig. 1).

Sequence analysis of the 16S rDNA of all the Pseudomonas

sp. isolates studied showed 100% identity, signifying that

they were all identical. Only one isolate (Pseudomonas sp.

KR9) was chosen for phylogenetic analysis. The rDNA

sequence demonstrated high identity (99.7%) with 16S

rDNA sequences of Pseudomonas monteillii HR13 (Acces-

sion no. AY032725), P. mosselii (Accession no. AF072688),

P. putida (Accession no. AB029257), P. plecoglossicida (Ac-

cession no. AB09457) and P. monteillii (Accession no.

AF064458).

Phylogenetic analysis with other selected Pseudomonas

species from RDP was performed with the neighbour-join-

ing method using Escherichia coli as outgroup. The sequence

of the Pseudomonas isolate KR9 clustered highly with the

sequences of P. monteillii HR13, P. mosselii, P. putida,

P. plecoglossicida, P. monteillii and P. mevalonii (Fig. 2).

Effect of termite mound amendment on IR408and IR412 ectomycorrhiza formation

After 4 months of culture, the shoot growth of Acacia

holosericea seedlings was significantly stimulated by both

ectomycorrhizal fungal strains in comparison with the

noninoculated treatment (control) (Table 3). The termite

mound amendment also significantly improved the shoot

biomass (Table 3). No significant differences were recorded

between the M. subhyalinus treatment and the termite

mound amendment/ectomycorrhizal fungal inoculation

(Table 3). Compared with the control, Scleroderma dictyos-

porum IR408 significantly enhanced the root growth of

A. holosericea seedlings, whereas no significant effects were

recorded with S. dictyosporum IR412 (Table 3). In the soil

amended with the termite mound, the root growth was

significantly higher than that recorded in the control (Table

3). This termite mound effect was significantly enhanced

when ectomycorrhizal fungi were inoculated (Table 3). No

significant differences were recorded between the treatments

with regard to the total number of nodules per plant. The

arbuscular mycorrhizal colonization indices were very low

and not significantly different between the soil treatments

(Table 3). No ectomycorrhizal short roots were detected in

the soil amended with the termite mound (Fig. 3). The

ectomycorrhizal colonization indices of A. holosericea seed-

lings inoculated with S. dictyosporum IR408 and IR412 were

not significantly different (13.5%). The termite mound

amendment significantly increased ectomycorrhizal forma-

tion, which reached around 25% (Fig. 3).

Catabolic diversity of microbial communities insoil treatments

Co-inertia analysis of the relationship between plant growth,

mycorrhizal formation and SIR responses is shown in Fig. 4.

The four figures (Fig. 4a–d) can be superimposed to allow

700

200100

M 1 2 3 4 5 6 7 8 9 10 11

800

500

100

M 1 2 3 4 5 6 7 8 9 10 11

(a)

(b)

Fig. 1. Gel electrophoresis of PCR-amplified 16S rDNA fragments of

fluorescent pseudomonad isolates digested with HaeIII (a) and MspI (b).

Lanes 1–11: fluorescent pseudomonads isolated from termite mounds of

Macrotermes subhyalinus. Lane M, 100 bp molecular size ladder.

FEMS Microbiol Ecol 56 (2006) 292–303c� 2006 Federation of European Microbiological SocietiesPublished by Blackwell Publishing Ltd. No claim to original French government works

296 R. Duponnois et al.

Page 34: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

the analysis of the relationships between these variables. The

Monte-Carlo test showed that there was a statistically

significant, although not extremely strong, relationship

(P = 0.025). Figure 4a and 4c shows the positive effect of

fungal inoculation on plant growth: the points correspond-

ing to the inoculated treatments (IR408 and IR412) are

shifted towards the right of the figures, which correspond to

higher root and shoot biomass. The positive effect of

Macrotermes subhyalinus mound powder amendment on

plant growth is also clearly visible: treatments MS, IR408 1

P. FLUORESCENS (AJ308308)

P. veronii (AY081814)

P. marginalis (AJ308309)

P. tolaasii (AJ308317)

P. mandeliia (F058286)

P. syringae (AJ308316)

P. chlororaphis (AJ308301)

P. aurantiaca (AJ308299)

P. taetrolens (D84027)

P. cichorii (AJ308302)

P. jessenii (F068259)

P. agarici (AJ308298)

P. gingeri (AF332511)

P. fulva (D84015)Pseudomonas sp. KR9

P. monteillii HR 13 (AY032725) P. mosselii (AF072688)

P. putida (AB029257)

P. plecoglossicida (AB009457)

P. monteilii (AF064458)

P. mevalonii (AJ299216)

P. flavescens (AJ308320)

P. mendocina (AJ308310)

P. stutzeri (AB126690)

P. fragi (AB021413)

P. denitrificans (AB021419)

P. alcaligenes (D84006)

P. resinovorans (AJ308314)

P. aeruginosa (AJ308297)

E. coli (AJ01859)

0.000.020.040.06

Fig. 2. Dendrogram showing neighbour-joining

analysis of 16S rDNA from some fluorescent pseu-

domonads retrieved from the Ribosome Database

Project. The sequence obtained in this study is

indicated in bold. Accession numbers are indicated

in parentheses.

Table 3. Effects of fungal inoculation and Macrotermes subhyalinus mound powder amendment on the Acacia holosericea growth, on the total

number of nodules per plant and on the arbuscular mycorrhizal colonization after 4 months of culturing in greenhouse conditions

Treatments

Shoot biomass

(mg dry weight)

Root biomass

(mg dry weight)

Arbuscular mycorrhizal

colonization index (%)

Total number of

nodules per plant

Control 261 a� 33 a 0 a 0.5 a

Scleroderma sp. IR408 1458 c 318 bc 0 a 2.3 a

S. dictyosporum IR 412 964 b 190 ab 0 a 2.5 a

M. subhyalinus (MS) 1288 bc 238 b 0.5 a 1.2 a

IR 4081MS 1051 b 432 cd 0.5 a 0.5 a

IR 4121MS 1140 bc 606 d 1.8 a 1.0 a

�Data in the same column followed by the same letter are not significantly different according to the one-way analysis of variance (Po 0.05).

FEMS Microbiol Ecol 56 (2006) 292–303 c� 2006 Federation of European Microbiological SocietiesPublished by Blackwell Publishing Ltd. No claim to original French government works

297Termite mounds enhance ectomycorrhizal symbiosis

Page 35: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

MS and IR412 1 MS are also shifted towards the right of the

figure. This positive effect seems to be stronger for the IR412

strain than for the IR408 strain. With regard to SIR

responses, Figs 4b and 4d clearly show that the positive

effect of M. subhyalinus mound powder amendment corre-

sponds to a strong modification of the functional microbial

diversity for the three treatments.

One-way analysis of variance confirmed these conclu-

sions (Table 4). Ectomycorrhizal establishment was mainly

characterized by higher SIR responses with L-arginine,

whereas termite mound amendment was indicated by high-

er SIR responses with sucrose, D-glucosamine, keto-glutaric,

hydroxy-butyric, ascorbic, quinic, gluconic, keto-butyric,

malonic, oxalic, succinic, tartaric and uric acids, trisodium

citrate and cyclohexane (Table 4). The SIR response with

gallic acid was significantly higher when termite mound and

ectomycorrhizal inoculum were both added to the soil

(Table 4). The highest catabolic richness was recorded in

the IR412 treatment, whereas the highest catabolic evenness

was recorded in the IR4081MS treatment (Table 4).

Effect of a fluorescent pseudomonad strain(isolate KR9) on IR412 ectomycorrhizaldevelopment

After 4 months of culture, S. dictyosporum IR412 had

colonized A. holosericea seedlings and had significantly

increased shoot and root growth (Table 5). By contrast, no

significant effect of the bacterial inoculant KR9 was recorded

on plant growth. When KR9 was co-inoculated with IR412,

plant growth was significantly higher than that measured

when IR412 was inoculated alone; ectomycorrhizal coloni-

zation was also significantly increased (from 28.3% to

48.5%) (Table 5). The total biomass of the plants correlated

significantly with the mycorrhizal rates (r2 = 0.78). Nodules

were observed in all treatments. Ectomycorrhizal inocula-

tion significantly enhanced the number and total weight of

nodules per plant. This fungal positive effect was signifi-

cantly increased when S. dictyosporum was co-inoculated

with KR9 (Table 5). The number and total biomass of

nodules per plant were significantly linked with the myco-

rrhizal rates (r2 = 0.76 and r2 = 0.79, respectively).

Discussion

The main objectives of this study were to test the effect of a

Macrotermes subhyalinus mound structure amendment on

the formation of ectomycorrhizae between Acacia holo-

sericea and two isolates of Scleroderma dictyosporum and to

evaluate the role of fluorescent pseudomonads inhabiting

the mound in these interactions.

In a previous study, spores of ectomycorrhizal fungi were

detected in the mounds of wood-, litter- and grass-feeding

termites (Spain et al., 2004). The authors showed that there

was a greater diversity and more concentrated populations

of ectomycorrhizal fungal spores in the mounds than in the

surrounding soil. They also detected basidiocarps of the

common genera Pisolithus and Scleroderma species on the

mound surfaces. This localization of fruit bodies indicated

that the hyphae in the mounds originated from the nearest

putative host plants. In our study, no ectomycorrhizal short

roots were detected in the M. subhyalinus treatment without

ectomycorrhizal fungal inoculation. This result seems to

contradict the conclusions of Spain et al. (Spain et al., 2004).

However, the termite mounds of M. subhyalinus were

collected in a shrubby savanna where all the plant species

were associated with arbuscular mycorrhizal fungi (Dupon-

nois et al., 2001). As no potential ectomycorrhizal host tree

species was present in these areas, termite mounds could be

overspread by ectomycorrhizal short roots. In addition, in a

previous study (Duponnois & Lesueur, 2005), the formation

of ectomycorrhizae was not observed after 4 months of

culture when spores of ectomycorrhizal fungi were inocu-

lated in the soil.

In the present study, termite mound amendment signifi-

cantly enhanced the ectomycorrhizal expansion of both

fungal isolates. This promoting effect could be attributed

to: (1) the enhancement of plant growth (particularly root

growth) induced by termite mound amendment; (2) inocu-

lation (via the termite mound) by a bacterial group (i.e.

fluorescent pseudomonads) that could act as MHB (Du-

ponnois & Plenchette, 2003); and (3) the development of

0

5

10

15

20

25

30

Con

trol

+ M

S

IR40

8

IR41

2

IR40

8+M

S

IR41

2+M

S

Ect

omyc

orrh

izal

col

oniz

atio

n (%

)

a a

b b

c c

Fig. 3. Ectomycorrhizal formation of Scleroderma sp. IR408 and Scle-

roderma dictyosporum IR412 on Acacia holosericea root systems in soil

amended and not amended with Macrotermes subhyalinus mound

powder after 4 months of culture in glasshouse conditions. Columns

indicated by the same letter are not significantly different according to

one-way analysis of variance (P o 0.05). MS, M. subhyalinus mound

powder amendment.

FEMS Microbiol Ecol 56 (2006) 292–303c� 2006 Federation of European Microbiological SocietiesPublished by Blackwell Publishing Ltd. No claim to original French government works

298 R. Duponnois et al.

Page 36: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

multitrophic interactions between the ectomycorrhizal sym-

biosis and the soil microflora.

Termite mounds (Isoptera) are a ubiquitous feature of

tropical ecosystems, especially in savanna environments.

Through termite activities, large amounts of soil are trans-

located from various depths of the soil profile (Holt &

Lepage, 2000). In some areas, such termitaria represent a

soil volume of more than 300 m3 above the ground. These

structures strongly influence their environment. In their

review, Lobry de Bruyn & Conacher (1990) reported a soil

quantity of up to 4.7 tonnes ha�1 year�1. This termite activity

has a considerable influence on soil physical and chemical

properties (Lee & Wood, 1971; Lobry de Bruyn & Conacher,

1990; Black & Okwakol, 1997; Holt & Lepage, 2000), and

largely explains the termite role as ecosystem engineers. In

the present study, termite mound amendment stimulated

root growth, probably through an enhanced supply of

nitrogen, which, in turn, increased the number of fungal

infection sites.

Recent studies have suggested that termite mounds could

be sites of great bacterial and fungal diversity. Termite nests

generally contain a diversity of fungi (Sannasi & Sundara-

Rajulu, 1967; Mohindra & Mukerji, 1982). In Macrotermes

bellicosus mound soil in Nigeria, Thomas (Thomas, 1987a)

found 21 species of fungi. Other authors have found large

populations of active bacteria in termite mounds, different

from those of the parent soil: eight functional bacterial

groups were found in a Macrotermes mound in Rhodesia

(Meiklejohn, 1965). The higher microbial diversity in ter-

mite mounds was attributed to higher organic matter levels

Table 4. Effect of ectomycorrhizal inoculation and Macrotermes subhyalinus mound powder amendment on in situ catabolic potential (ISCP) of

microbial communities and catabolic richness, catabolic evenness in soil treatments

Organic substrates

Treatments

Control IR 408 IR 412 M. subhyalinus (MS) IR 4081MS IR 4121MS

L-Glutamine 5.44 ab� 4.16 ab 4.13 ab 3.89 a 8.05 b 4.20 ab

L-Arginine 8.48 ab 14.14 c 15.45 c 6.09 a 16.53 c 11.96 bc

L-Serine 1.96 ab 3.24 bc 1.96 ab 1.96 ab 3.48 c 1.52 a

L-Histidine 0.0 a 0.0 a 0.87 b 0.22 ab 0.0 a 0.87 b

Phenylalanine 0.26 ab 0.70 ab 0.47 ab 0.02 a 1.79 b 0.89 ab

L-Asparagine 4.64 a 7.41 a 7.84 a 6.09 a 4.79 a 6.53 a

L-Tyrosine 3.79 c 3.58 bc 2.93 bc 0.94 a 2.93 bc 1.84 ab

L-Glutamic acid 4.76 a 4.15 a 3.72 a 3.89 a 5.11 a 4.19 a

L-Lysine 3.26 ab 2.61 ab 2.61 ab 3.92 b 1.96 a 3.05 ab

D-Glucose 5.44 a 6.96 ab 11.5 b 7.6 ab 9.13 ab 11.31 b

D-Mannose 2.61 a 3.48 a 3.26 a 2.61 a 3.26 a 2.83 a

Sucrose 2.39 a 3.26 a 3.26 a 6.09 b 7.18 b 6.75 b

D-Glucosamine 5.66 a 6.31 a 8.49 a 18.5 b 11.3 a 5.87 a

N-methyl-D-Glucamine 3.51 ab 3.72 b 3.50 ab 3.50 ab 2.89 a 3.94 b

Succinamide 3.26 abc 4.57 c 2.17 ab 2.83 abc 4.14 bc 1.52 a

2-Keto-glutaric acid 66.61 a 70.71 ab 75.74 ab 90.77 c 73.14 ab 84.05 bc

3-Hydroxybutyric acid 1.23 ab 0.87 a 1.09 a 4.57 c 3.92 bc 3.92 bc

Ascorbic acid 1.96 a 3.05 a 2.61 a 6.09 b 5.44 b 6.21 b

D-Quinic acid 1.52 a 1.74 a 4.13 a 13.49 b 14.81 b 15.01 b

DL-Malic acid 1.52 ab 3.05 b 2.39 b 0.0 a 2.87 b 2.39 b

Formic acid 7.35 b 9.74 c 6.69 b 2.34 a 10.46 c 4.09 b

Fumaric acid 0.65 a 1.31 a 0.43 a 4.13 b 2.61 ab 1.96 ab

Gallic acid 5.66 a 6.53 ab 5.88 a 5.22 a 10.01 c 9.36 bc

Gluconic acid 3.92 a 4.13 a 7.18 ab 10.88 b 10.01 b 9.58 b

Ketobutyric acid 59.86 a 65.3 a 62.47 a 87.72 b 65.08 a 82.28 b

Malonic acid 3.23 a 4.57 ab 4.78 ab 20.68 c 11.07 ab 12.61 bc

Oxalic acid 19.22 ab 18.94 a 26.34 ab 38.53 c 25.69 ab 28.08 b

Succinic acid 1.96 a 4.35 a 2.61 a 8.05 b 4.57 a 4.12 a

Tartaric acid 2.39 a 3.70 a 3.51 a 13.49 c 11.75 c 7.57 b

Tri-sodium citrate 3.71 a 3.27 a 3.71 a 9.79 c 6.96 b 9.36 c

Uric acid 5.88 a 8.05 ab 8.71 abc 11.10 bc 14.98 d 11.97 cd

Cyclohexane 4.35 a 4.79 a 3.71 a 6.96 b 6.96 b 7.18 b

Catabolic richness 30.7 ab 31.2 b 32.0 b 29.8 a 31.0 ab 30.8 ab

Catabolic eveness 2.55 a 2.65 a 2.62 a 2.62 a 2.84 b 2.66 a

Data are expressed as mg CO2 g�1 soil h�1.�Data in the same line followed by the same letter are not significantly different according to the one-way analysis of variance (Po 0.05).

FEMS Microbiol Ecol 56 (2006) 292–303 c� 2006 Federation of European Microbiological SocietiesPublished by Blackwell Publishing Ltd. No claim to original French government works

299Termite mounds enhance ectomycorrhizal symbiosis

Page 37: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

and a better supply of nitrogen (Meiklejohn, 1965; Mohin-

dra & Mukerji, 1982), and to higher moisture levels and

higher substrate availability (Holt, 1987; Abbadie & Lepage,

1989).

The population and composition of microbial groups

appear to vary according to the mound compartment

considered (Brauman, 2000). Increasing evidence demon-

strates that termites are able to control the number of

2

11

5

3

2122 7

166 10ECI

AMI

NN

SB

RB

−2 −1 2

826

17 23

28

30 25

19

141 4

27

9

12 20

1318 24

29

31

32

33

−0.8

1.1−0.8 1.1

IR 408

IR 408 + MSIR 412

IR 412 + MS

MS

C

−3

3−3 3

IR 408 IR 408 + MS

IR 412

IR 412 + MS

MS

C

−4

6−5 5

(a) (b)

(c) (d)

1

Fig. 4. Co-inertia analysis of substrate-induced respiration (SIR) responses of soils inoculated or not with Scleroderma dictyosporum isolates IR408 and

IR412 and amended or not with mound powder. In the four panels (a–d), the top-right inset gives the minimum and maximum of the horizontal and

vertical coordinates. (a) Factor map of plant growth. Mycorrhizal and rhizobial variables: SB, shoot biomass; RB, root biomass; AMI, arbuscular

mycorrhizal colonization index; ECI, ectomycorrhizal colonization index; NN, number of nodules per plant. (b) Factor map of SIR responses. 1,

L-glutamine; 2, L-arginine; 3, L-serine; 4, L-histidine; 5, phenylalanine; 6, L-asparagine; 7, L-tyrosine; 8, L-glutamic acid; 9, L-lysine; 10, L-cysteine; 11,

D-glucose; 12, D-mannose; 13, sucrose; 14, D-glucosamine; 15, N-methyl-D-glucamine; 16, succinamide; 17, 2-keto-glutaric acid; 18, 3-hydroxy-butyric

acid; 19, ascorbic acid; 20, D-quinic acid; 21, D,L-malic acid; 22, formic acid; 23, fumaric acid; 24, gallic acid; 25, gluconic acid; 26, keto-butyric acid; 27,

malonic acid; 28, oxalic acid; 29, succinic acid; 30, tartaric acid; 31, trisodium citrate; 32, uric acid; 33, cyclohexane. (c) Factor map of plant growth.

Microbial and soil sample variables: C, control; MS, soil amended with Macrotermes subhyalinus mound powder; IR408, soil inoculated with S.

dictyosporum strain IR408; IR412, soil inoculated with S. dictyosporum strain IR412; IR4081MS, soil inoculated with S. dictyosporum strain IR408 and

amended with M. subhyalinus mound powder; IR4121MS, soil inoculated with S. dictyosporum strain IR412 and amended with M. subhyalinus mound

powder. The star-like diagrams represent the four replicates of each treatment, and the dot inside each star is the mean of these replicates. (d) Factor

map of SIR responses of soil samples (for details, see c).

Table 5. Effect of Scleroderma dictyosporum IR412 and/or the fluorescent pseudomonad strain, isolate KR9, on mycorrhiza formation, rhizobial

development growth of Acacia holosericea after 4 months culture under glasshouse conditions

Treatments

Shoot biomass

(mg dry weight)

Root biomass

(mg dry weight)

Number of nodules

per plant

Total nodule weight

per plant (mg)

Ectomycorrhizal

colonization (%)

Control 532 a� 184 a 4.2 a 6.8 a 0 a

Isolate KR9 553 a 198 a 4.6 a 7.1 a 0 a

S. dictyosporum IR 412 1236 b 536 b 8.3 b 15.9 b 28.3 b

S. dictyosporum IR 4121Isolate KR9 1786 c 868 c 12.4 c 25.3 c 48.5 c

�Data in the same column followed by the same letter are not significantly different according to the one-way analysis of variance (Po 0.05).

FEMS Microbiol Ecol 56 (2006) 292–303c� 2006 Federation of European Microbiological SocietiesPublished by Blackwell Publishing Ltd. No claim to original French government works

300 R. Duponnois et al.

Page 38: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

microorganisms, and probably their diversity, in selected

parts of their mounds (Sannasi & Sundara-Rajulu, 1967;

Holt & Lepage, 2000). Previous microbiological studies of

termite mounds have been carried out to compare the

cultures of microbial communities in grass-, litter- and

soil-feeding termite mounds (Duponnois et al., 2005).

Fluorescent pseudomonads have been detected only in M.

subhyalinus mound powder. The phylogenetic analysis per-

formed in this study showed that these fluorescent pseudo-

monads mostly belonged to Pseudomonas monteillii species.

It has been demonstrated that one isolate of P. monteillii

(isolate HR13) can stimulate the establishment of ectomy-

corrhizal symbiosis in tropical conditions (Founoune et al.,

2002b) and is considered as an MHB. This MHB effect has

been recorded with different fungal isolates, such as S.

dictyosporum, S. verrucosum, Pisolithus albus and P. tinctor-

ius, on A. holosericea and other Australian Acacia species

(Duponnois & Plenchette, 2003). As P. monteillii isolate KR9

stimulated ectomycorrhizal formation between S. dictyos-

porum IR412 and A. holosericea, these bacterial strains

present in M. subhyalinus mounds could also be involved in

the enhancement of ectomycorrhizal formation recorded in

the present study.

Macrotermes subhyalinus mound amendment and ecto-

mycorrhizal inoculation induced strong modifications of

functional microbial diversity. In particular, important soil

microflora, able to use carboxylic acids, were detected

through high SIR responsiveness with these compounds.

Biological and biochemical weathering is mediated by

microorganisms that excrete organic acids, phenolic com-

pounds, protons and siderophores (Drever & Vance, 1994).

For instance, it is well known that many different fungal

species produce these organic acids as the strongest chelators

of trivalent metals (oxalate, malate and citrate) (Dutton &

Evans, 1996; Gadd, 1999). In addition, amongst termites,

the Macrotermitinae subfamily (also called ‘fungus-growing

termites’) plays a major role in African ecosystem function-

ing, mainly in arid and semi-arid areas. The effect of these

termites on soil microbiology is not only due to their

influence on nonmutualistic microorganisms, but also to

their specific exosymbiotic relationship with the fungus

Termitomyces, which is only found in special structures

within the mound, called ‘fungus combs’ (Sands, 1969;

Thomas, 1987b; Wood & Thomas, 1989; Rouland-Lefevre,

2000). It is suggested that these fungal communities (sapro-

phytic and ectomycorrhizal fungi) could exert a selective

influence on the soil microflora by promoting the multi-

plication of carboxylic acid catabolizing microorganisms.

Macrotermitinae-built structures constitute patches in the

landscape in which the availability of soil nutrients for plants

is improved (Jouquet, 2002). Associations between fungus-

growing nests and grasses have recently been found in West

African savanna (Jouquet et al., 2004). Mounds of grass- and

litter-feeding termites form fertile ‘islands’ in the savanna,

maintaining fertility in these, mostly highly weathered, soils

(Okello-Oloya et al., 1985, 1986; Lobry de Bruyn & Con-

acher, 1990). This positive effect is generally attributed to

the activity of termites, which translocate nutrient elements

in food into their mounds. However, another translocation

could be proposed, from the termite mound to the host

plant, mediated by ectomycorrhizal roots.

References

Abbadie L & Lepage M (1989) The role of subterranean fungus

comb chambers (Isoptera, Macrotermitinae) in soil nitrogen

cycling in a preforest savanna (Cote d’Ivoire). Soil Biol Biochem

8: 1067–1071.

Amato M & Ladd JM (1988) Assay for microbial biomass based

on ninhydrin-reactive nitrogen in extracts of fumigated soils.

Soil Biol Biochem 20: 107–114.

Bethlenfalvay GJ & Linderman RG (1992) Mycorrhizae in

Sustainable Agriculture, ASA Special Publication No. 54.

Agronomy Society of America, Madison, WI.

Black HIJ & Okwakol MJN (1997) Agricultural intensification,

soil biodiversity and agrosystem function in the tropics: the

role of termites. Appl Soil Ecol 6: 37–53.

Brauman A (2000) Effect of gut transit and mound deposit on

soil organic matter transformations in the soil feeding termite:

a review. Eur J Soil Biol 36: 117–125.

Bremner JM (1965) Inorganic forms of nitrogen. Methods of Soil

Analysis, Part 2. Agronomy Monographs, Vol. 9, (Black CA, ed.),

pp. 1179–1237. Agronomy Society of America and Soil Science

Society of America, Madison, WI.

Brundrett MC, Piche Y & Peterson RL (1985) A developmental

study of the early stages in vesicular–arbuscular mycorrhizal

formation. Can J Bot 63: 184–194.

Chessel D & Mercier P (1993) Couplage de triplets statistiques et

liaison espece-environnement. Biometrie et Environnement,

(Lebreton JD & Asselain D, eds), pp. 15–44. Masson, Paris.

Degens BP & Harris JA (1997) Development of a physiological

approach to measuring the catabolic diversity of soil microbial

communities. Soil Biol Biochem 29: 1309–1320.

Dickie IA & Reich PB (2005) Ectomycorrhizal fungal

communities at forest edges. J Ecol 93: 244–255.

Doledec S & Chessel D (1994) Co-inertia analysis: an alternative

method for studying species–environment relationships.

Freshwater Biol 31: 277–294.

Drever JL & Vance GF (1994) Role of soil organic acids in mineral

weathering processes. The Role of Organic Acids in Geological

Processes, (Lewan MD & Pittman ED, eds), pp. 138–161.

Springer-Verlag, New York.

Dunstan WA, Malajczuk N & Dell B (1998) Effects of bacteria on

mycorrhizal development and growth of container grown

Eucalyptus diversicolor F. Muell. seedlings. Plant Soil 201:

241–249.

FEMS Microbiol Ecol 56 (2006) 292–303 c� 2006 Federation of European Microbiological SocietiesPublished by Blackwell Publishing Ltd. No claim to original French government works

301Termite mounds enhance ectomycorrhizal symbiosis

Page 39: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

Duponnois R & Garbaye J (1991) Techniques for controlled

synthesis of the Douglas fir–Laccaria laccata ectomycorrhizal

symbiosis. Ann Sci For 48: 239–251.

Duponnois R & Lesueur D (2005) Sporocarps of Pisolithus albus

as an ecological niche for fluorescent pseudomonads involved

in Acacia mangium Wild–Pisolithus albus ectomycorrhizal

symbiosis. Can J Microbiol 50: 691–696.

Duponnois R & Plenchette C (2003) A mycorrhiza helper

bacterium enhances ectomycorrhizal and endomycorrhizal

symbiosis of Australian Acacia species. Mycorrhiza 13: 85–91.

Duponnois R, Plenchette C, Thioulouse J & Cadet P (2001) The

mycorrhizal soil infectivity and arbuscular mycorrhizal fungal

spore communities in soils of different aged fallows in Senegal.

Appl Soil Ecol 17: 239–251.

Duponnois R, Paugy M, Thioulouse J, Masse D & Lepage M

(2005) Functional diversity of soil microbial community, rock

phosphate dissolution and growth of Acacia seyal as influenced

by grass-, litter- and soil-feeding termite nest structure

amendments. Geoderma 124: 349–361.

Dutton MV & Evans CS (1996) Oxalate production by fungi: its

role in pathogenicity and ecology in the soil environment.

Can J Microbiol 42: 881–895.

Founoune H, Duponnois R, Ba AM, Sall S, Branget I, Lorquin J,

Neyra M & Chotte JL (2002a) Mycorrhiza helper bacteria

stimulate ectomycorrhizal symbiosis of Acacia holosericea with

Pisolithus alba. New Phytol 153: 81–89.

Founoune H, Duponnois R, Meyer JM, Thioulouse J, Masse D,

Chotte JL & Neyra M (2002b) Interactions between

ectomycorrhizal symbiosis and fluorescent pseudomonads on

Acacia holosericea: isolation of mycorrhiza helper bacteria

(MHB) from a Soudano-Sahelian soil. FEMS Microbiol Ecol

41: 37–46.

Frey P, Frey-Klett P, Garbaye J, Berge O & Heulin T (1997)

Metabolic and genotypic fingerprinting of fluorescent

pseudomonads associated with the Douglas fir Laccaria bicolor

Symbiosis. Appl Environ Microbiol 63: 1852–1860.

Frey-Klett P, Pierrat JC & Garbaye J (1997) Location and survival

of mycorrhiza helper Pseudomonas fluorescens during

establishment of ectomycorrhizal symbiosis between Laccaria

bicolor and Douglas fir. Appl Environ Microbiol 63: 139–144.

Gadd GM (1999) Fungal production of citric and oxalic acid:

importance in metal speciation, physiology and biochemical

processes. Adv Microbiol Physiol 41: 47–92.

Garbaye J (1994) Helper bacteria: a new dimension to the

mycorrhizal symbiosis. New Phytol 128: 197–210.

Gianinazzi S & Schuepp H (1994) Impact of Arbuscular

Mycorrhizas on Sustainable Agriculture and Natural Ecosystems.

Birkhauser Verlag, Basel.

Gittins R (1985) Canonical Analysis, a Review with Applications in

Ecology. Springer-Verlag, Berlin.

Grant WD & West AW (1986) Measurement of ergosterol,

diaminopimelic acid and glucosamine in soil: evaluation as

indicators of microbial biomass. J Microbiol 6: 47–53.

Hart MM, Reader RJ & Klironomos JN (2003) Plant coexistence

mediated by arbuscular mycorrhizal fungi. Trends Ecol Evol 18:

418–423.

Heinemeyer O, Insam H, Kaiser EA & Walenzik G (1989) Soil

microbial biomass and respiration measurements: an

automated technique based on infrared gas analysis. Plant Soil

116: 77–81.

Holt JA (1987) Carbon mineralization in Northeastern Australia:

the role of termites. J Trop Ecol 3: 255–263.

Holt JA & Lepage M (2000) Termites and soil properties.

Termites: Evolution, Sociality, Symbioses, Ecology, (Abe T,

Bignell DE & Higashi M, eds), pp. 389–407. Kluwer Academic

Publishers, Dordrecht.

Hooker JE & Black KE (1995) Arbuscular mycorrhizal fungi as

components of sustainable soil–plant systems. Crit Rev

Biotechnol 15: 201–212.

Hoskuldsson A (1988) PLS regression methods. J. Chemometr 2:

211–228.

Jouquet P (2002) De la structure biogenique au phenotype

etendu: le termite champignonniste comme ingenieur de

l’ecosysteme. PhD thesis, University of Paris 6, Paris.

Jouquet P, Boulain N, Gignoux J & Lepage M (2004) Association

between subterranean termites and grasses in a West African

savanna: spatial analysis shows a significant role for

Odontotermes n. pauperans. Appl Soil Ecol 27: 99–107.

King EO, Ward MK & Raney DE (1954) Two simple media for the

demonstration of pyocyanine and fluorescein. J Lab Clin Med

44: 301–307.

Kumar S, Tamura K, Jakobsen IB & Nei M (2001) MEGA2.2:

Molecular Evolutionary Genetics Analysis software.

Bioinformatics 17: 1244–1245.

Lavelle P (1996) Diversity of soil fauna and ecosystem function.

Biol Int 33: 3–16.

Lavelle P (1997) Faunal activities and soil processes: adaptative

strategies that determine ecosystem function. Adv Ecol Res 27:

93–132.

Lee KE & Wood TG (1971) Termites and Soils. Academic Press,

London.

Linderman RG (1988) Mycorrhizal interactions with the

rhizosphere microflora: the mycorrhizosphere effect.

Phytopathology 78: 366–371.

Lobry de Bruyn L & Conacher AJ (1990) The role of termites and

ants in soil modification: a review. Aust J Soil Res 28: 55–93.

Marx DH (1969) The influence of ectotropic mycorrhizal fungi

on the resistance of pine roots to pathogenic infections. I.

Antagonism of mycorrhizal fungi to root pathogenic fungi and

soil bacteria. Phytopathology 59: 153–163.

Meiklejohn J (1965) Microbiological studies on large termite

mounds. Rhodesia, Zambia and Malawi. J Agric Res 3: 67–79.

Mohindra P & Mukerji KG (1982) Fungal ecology of termite

mounds. Rev Ecol Biol Sol 19: 351–361.

Okello-Oloya T, Spain AV & John RD (1985) Selected chemical

characteristics of the mounds of two species of Amitermes

(Isoptera, Termitinae) and their adjacent surface soils from

northeastern Australia. Rev Ecol Biol Sol 22: 291–311.

FEMS Microbiol Ecol 56 (2006) 292–303c� 2006 Federation of European Microbiological SocietiesPublished by Blackwell Publishing Ltd. No claim to original French government works

302 R. Duponnois et al.

Page 40: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

Okello-Oloya T, Spain AV & John RD (1986) Comparative

growth of two pasture plants from northeastern Australia on

the mound materials of grass- and litter-feeding termites

(Isoptera: Termitidae) and on their associated surface soils.

Rev Ecol Biol Sol 23: 381–392.

Olsen SR, Cole CV, Watanabe FS & Dean LA (1954) Estimation of

available phosphorus in soils by extraction with sodium

bicarbonate. Circular, Vol. 939, p. 19. US Department of

Agriculture, Washington DC.

Pearson W & Lipman DJ (1988) Improved tools for biological

sequence comparison. Proc Natl Acad Sci USA 85: 2444–2448.

Phillips JM & Hayman DS (1970) Improved procedures for

clearing roots and staining parasitic and vesicular–arbuscular

mycorrhizal fungi for rapid assessment of infection. Trans Br

Mycol Soc 55: 158–161.

Rouland-Lefevre C (2000) Symbiosis with fungi. Termites:

Evoultion, Sociality, Symbioses, Ecology, (Abe T, Bignell DE &

Higashi M, eds), pp. 289–306. Kluwer Academic Publishers,

Dordrecht.

Sands WA (1969) The association of termites and fungi. Biology of

Termites, Vol. 1, (Krishna K & Weesner FM, eds), pp. 495–524.

Academic Press, London.

Sannasi A & Sundara-Rajulu G (1967) Occurrence of

antimicrobial substance in the exudates of physiogastric queen

termite, Termes redemanni Wasmann. Curr Sci India 16:

436–437.

Sanon K (1999) La symbiose mycorhizienne chez quelques

Cesalpiniacees et Euphorbiacees des forets du sud-ouest du

Burkina Faso. PhD thesis, University of Nancy 1, Nancy.

Smith SE & Read DJ (1997) Mycorrhizal Symbiosis. 2nd edn.

Academic Press, London.

Spain AV, Gordon V, Reddell P & Correll R (2004)

Ectomycorrhizal fungal spores in the mounds of tropical

Australian termites (isopteran). Eur J Soil Biol 40: 9–14.

Ter Braak CJF (1986) Canonical correspondence analysis: a new

eigenvector technique for multivariate direct gradient analysis.

Ecology 67: 1167–1179.

Thioulouse J, Chessel D, Doledec S & Olivier JM (1997) Ade-4: a

multivariate analysis and graphical display software. Stat

Comput 7: 75–83.

Thomas RJ (1987a) Distribution of Termitomyces and other fungi

in the nests and major workers of several Nigerian

Macrotermitinae. Soil Biol Biochem 19: 335–341.

Thomas RJ (1987b) Factors affecting the distribution and activity

of fungi in the nests of Macrotermitinae. Soil Biol Biochem 19:

343–349.

Thompson JD, Higgins DG & Gibson TJ (1994) CLUSTALW:

improving the sensitivity of progressive multiple sequence

alignment through sequence weighting, position-specific gap

penalties and weight matrix choice. Nucleic Acids Res 22:

4673–4680.

Van der Hejden MGA, Klironomos JN, Ursic M, Moutoglis P,

Streitwolf-Engel R, Boller T, Wiemken A & Sanders IR (1998)

Mycorrhizal fungal diversity determines plant biodiversity

ecosystem variability and productivity. Nature 396: 69–72.

West AW & Sparling GP (1986) Modifications to the substrate-

induced respiration method to permit measurements of

microbial biomass in soils of differing water contents. J

Microbiol Methods 5: 177–189.

Wood TG & Thomas RJ (1989) The mutualistic association

between Macrotermitinae and Termitomyces. Insect–Fungus

Interactions, (Wilding N, Collins NM, Hammond PM &

Webber JF, eds), pp. 69–92. Academic Press, London.

FEMS Microbiol Ecol 56 (2006) 292–303 c� 2006 Federation of European Microbiological SocietiesPublished by Blackwell Publishing Ltd. No claim to original French government works

303Termite mounds enhance ectomycorrhizal symbiosis

Page 41: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques
Page 42: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques
Page 43: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques
Page 44: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques
Page 45: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques
Page 46: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques
Page 47: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques
Page 48: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques
Page 49: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques
Page 50: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques
Page 51: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques
Page 52: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques
Page 53: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

ORIGINAL PAPER

Arbuscular mycorrhizas and ectomycorrhizas of Uapacabojeri L. (Euphorbiaceae): sporophore diversity, patternsof root colonization, and effects on seedling growthand soil microbial catabolic diversity

Naina Ramanankierana & Marc Ducousso &

Nirina Rakotoarimanga & Yves Prin & Jean Thioulouse &

Emile Randrianjohany & Luciano Ramaroson &

Marija Kisa & Antoine Galiana & Robin Duponnois

Received: 2 October 2006 /Accepted: 30 November 2006 / Published online: 13 January 2007# Springer-Verlag 2007

Abstract The main objectives of this study were (1) todescribe the diversity of mycorrhizal fungal communitiesassociated withUapaca bojeri, an endemic Euphorbiaceae ofMadagascar, and (2) to determine the potential benefits ofinoculation with mycorrhizal fungi [ectomycorrhizal and/orarbuscular mycorrhizal (AM) fungi] on the growth of thistree species and on the functional diversity of soil microflora.Ninety-four sporophores were collected from three survey

sites. They were identified as belonging to the ectomycor-rhizal genera Afroboletus, Amanita, Boletus, Cantharellus,Lactarius, Leccinum, Rubinoboletus, Scleroderma, Tricho-loma, and Xerocomus. Russula was the most frequentectomycorrhizal genus recorded under U. bojeri. AMstructures (vesicles and hyphae) were detected from theroots in all surveyed sites. In addition, this study showed thatthis tree species is highly dependent on both types ofmycorrhiza, and controlled ectomycorrhization of thisUapaca species strongly influences soil microbial catabolicdiversity. These results showed that the complex symbioticstatus of U. bojeri could be managed to optimize itsdevelopment in degraded areas. The use of selectedmycorrhizal fungi such the Scleroderma Sc1 isolate innursery conditions could be of great interest as (1) thisfungal strain is very competitive against native symbioticmicroflora, and (2) the fungal inoculation improves thecatabolic potentialities of the soil microflora.

Keywords Ectomycorrhizas . Arbuscular mycorrhizas .

Fungal diversity .Microbial functionalities .

Uapaca bojeri . Madagascar

Introduction

A high botanical diversity and a high degree of endemismcharacterize Madagascarian forests (Lowry et al. 1997), butthey are often deforested for their conversion to agriculture.Deforestation rates were estimated to be 0.11 Mha year−1

between 1950 (7.6 Mha) and 1985 (3.8 Mha; Green and

Mycorrhiza (2007) 17:195–208DOI 10.1007/s00572-006-0095-0

N. Ramanankierana :N. Rakotoarimanga : E. Randrianjohany :L. RamarosonLaboratoire de Microbiologie de l’Environnement,Centre National de Recherches sur l’Environnement,P.O. Box 1739, Antananarivo, Madagascar

M. Ducousso :Y. Prin :A. GalianaCIRAD, UMR 113 CIRAD/INRA/IRD/AGRO-M/UM2,Laboratoire des Symbioses Tropicales et Méditerranéennes(LSTM), TA10/J, Campus International de Baillarguet,34398 Montpellier Cedex 5, France

J. ThioulouseCNRS, Laboratoire de Biométrie et Biologie Evolutive,UMR 5558, Université Lyon 1,69622 Villeurbanne Cedex, France

M. Kisa :R. DuponnoisIRD, UMR 113 CIRAD/INRA/IRD/AGRO-M/UM2, Laboratoiredes Symbioses Tropicales et Méditerranéennes (LSTM), TA10/J,Campus International de Baillarguet,34398 Montpellier Cedex 5, France

R. Duponnois (*)IRD, Laboratoire Commun de Microbiologie IRD/ISRA/UCAD,Centre de Recherche de Bel Air,P.O. Box 1386, Dakar, Senegale-mail: [email protected]

Page 54: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

Sussman 1990). Disturbances of the vegetation cover areoften accompanied by rapid erosion of surface soil thatinduces a loss or reduction of major physicochemical andbiological soil properties (Vagen et al. 2006a,b). Inparticular, it has been shown that mycorrhizal soil potentialwas drastically reduced (Marx 1991; Jasper et al. 1991;Herrera et al. 1993; Dickie and Reich 2005). Hence, anincrease of this fungal inoculum potential is needed in bothnatural and artificial revegetation processes (McGee 1989).However, the mycorrhizal status of the Madagascarian florais poorly known. Typical ectomycorrhizal fungi werereported more than 60 years ago (Heim 1970). Morerecently, mycological surveys show the large diversity ofthe associated ectomycorrhizal fungi (Buyck et al. 1996;Ducousso et al. 2004). The mycorrhizal inoculation ofplants is very efficient in establishing plants on disturbedsoils (Estaun et al. 1997; Duponnois et al. 2001, 2005). Themanagement of mycorrhizal symbiosis needs to investigatethe presence, abundance, and community composition ofmycorrhizal fungi associated with plants. Furthermore,efficient fungal strains have to be selected to help treeestablishment and also to improve soil quality (Fransonand Bethlenfalvay 1989; Duponnois and Plenchette 2003;Diédhiou et al. 2005; Duponnois et al. 2005).

The benefits of mycorrhizal symbiosis to the host planthave usually been considered a result from the closerelationship between fungal symbionts and plant species.However, it has been demonstrated that mycorrhizalsymbiosis has a great influence on the soil bacterial andfungal communities in natural conditions (Frey et al. 1997;Founoune et al. 2002a,b; Mansfeld-Giese et al. 2002; Frey-Klett et al. 2005). This microbial compartment is common-ly named “mycorrhizosphere” (Linderman 1988) and isusually divided in two different zones: one is subjected tothe dual influence of the root and the mycorrhizalsymbionts (the mycorrhizosphere) and, the other, underthe influence of mycorrhizal hyphae (the hyphosphere).The microbial activities that occur in the hyphosphere aredifferent from those recorded in the mycorrhizosphere(Andrade et al. 1998). Hyphosphere microorganisms mayinfluence mycorrhizal functions such as nutrient and wateruptake carried out by the external hyphae of the mycorrhi-zal fungi (Duponnois, unpublished data). Hence, theassociation between the fungus and the host plant has beenenlarged to the soil microflora to form a multitrophicmycorrhizal complex (Frey-Klett et al. 2005). The micro-bial functional diversity of each soil compartment includesa vast range of activities (nutrient transformations, decom-position, etc.) and can be characterized by the measurementof catabolic response profiles (CRPs; Degens and Harris1997; Degens et al. 2001). The measurement of CRPsdirectly assesses the catabolic diversity of microbialcommunities involved in decomposition activities by add-

ing a range of simple organic substrates directly to the soiland measuring the short-term catabolic responses (Degensand Harris 1997). Catabolic evenness, a component ofmicrobial functional diversity is defined as the uniformityof substrate use and can be calculated from the CRPs(Degens and Harris 1997).

Mycorrhizal fungi are ubiquitous components of mostecosystems throughout the world and are considered keyecological factors in governing the cycles of major plantnutrients and in sustaining the vegetation cover (van derHejden et al. 1998; Requena et al. 2001; Schreiner et al.2003). Two major forms of mycorrhizas are usuallyrecognised: the arbuscular mycorrhizas (AM) and theectomycorrhizas (ECMs). AM symbiosis is the mostwidespread mycorrhizal association type with plants thathave true roots, i.e. pteridophytes, gymnosperms andangiosperms (Read et al. 2000). They affect about 80–90% land plants in natural, agricultural, and forestecosystems (Brundrett 2002). ECMs affect trees andshrubs, gymnosperms (Pinaceae) and angiosperms, andare usually the result of the association of Homobasidio-mycetes with about 20 families of mainly woody plants(Smith and Read 1997). These woody species are associ-ated with a larger (compared to the AM symbiosis)diversity of fungi, comprising 4,000 to 6,000 species,mainly Basidiomycetes and Ascomycetes (Allen et al.1995; Valentine et al. 2004).

The main objectives of this study were (1) to describethe diversity of mycorrhizal fungal communities associatedwith Uapaca bojeri, an endemic Euphorbiaceae of Mada-gascar and (2) to determine the potential benefits ofinoculation with mycorrhizal fungi (ectomycorrhizal and/or AM fungi) on the growth of this tree species and on thefunctional diversity of soil microflora.

Materials and methods

Site description and sporophore sampling

Three forests in Madagascar were visited at 2- to 3-weekintervals during the sampling seasons, mid-November toearly February 1993, July–August 1994, and July to mid-September 1995, to collect ectomycorrhizal fungi fruitingunder U. bojeri. The forests were located 50 km to the westof Antananarivo (Arivonimamo site as site A), 20 km to thesouth of Antsirabe (Ambositra site as site B), and 100 kmto the east of Toliara (Isalo site as site C). The mean annualrainfall varied from 912.4 mm (site C), 1,428.8 mm (siteA), to 1,554.4 mm (site B). The vegetation sampledincluded savannas (sites A and B) and deciduous forests(site C). The main chemical characteristics of the upper soillayer (0–20 cm) of these sites are shown in Table 1.

196 Mycorrhiza (2007) 17:195–208

Page 55: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

Sporophores of putative epigeous ectomycorrhizal fungiwere collected under U. bojeri, photographed, described asfresh material, preserved by oven-drying, and deposited atthe herbarium at Laboratoire de Microbiologie de l’Envi-ronnement (LME, Madagascar). In addition, roots of U.bojeri were collected in each site, and fine roots werestained for AM according to the procedure of Phillips andHayman (1970) and examined with light microscopy.

Time sequence of mycorrhizal colonization on U. bojeriin glasshouse conditions

Surface forest soil (0- to 20-cm depth) was collected fromthe native stand of U. bojeri in site A, crushed, passedthrough a 2-mm sieve, carefully mixed, and distributed in1-l pots. The seeds of U. bojeri collected in site A weresurface sterilized in hydrogen peroxide for 10 min, rinsedand soaked in sterile distilled water for 12 h, and ger-minated on 1% agar. After 1 week of incubation at 30°C inthe dark, one pre-germinated seed was planted per pot. Theseedlings were screened from the rain and grown undernatural light (daylight of approximately 12 h, average dailytemperature of 25°C). They were watered regularly withtap water without fertilizer.

During 5 months, four plants per month were randomlysampled, uprooted, and their root systems gently washed withtap water. About 30 lateral roots were randomly chosen alongthe tap root of each plant, cut into short pieces, and observedunder a stereomicroscope (magnification ×40). All ECMswere counted on each root fragment. Other root samples werecollected from each plant to detect AM structures using thesame procedure as before (Phillips and Hayman 1970).

Assessment of U. bojeri mycorrhizal dependency

A strain of Scleroderma sp. (strain Sc1) was isolated from asporocarp collected in site A. This fungal isolate waspreviously tested for its compatibility with U. bojeri inaxenic conditions (data not shown). The fungal strain wasmaintained in Petri dishes on modified Melin–Norkrans(MMN) agar medium at 25°C (Marx 1991). The fungal

inoculum was prepared according to Duponnois andGarbaye (1991).

The AM fungus Glomus intraradices (Schenk and Smith,DAOM 181602, Ottawa Agricultural Herbarium) wasmultiplied on leek (Allium porrum L.) on Terragreen (OilDri UK) in glasshouse conditions. The culture substrate wasan attapulgite (calcined clay; average particle size, 5 mm)from Georgia used for the propagation of AM fungi(Plenchette et al. 1996). After 12 weeks of culturing, theleek plants were uprooted and gently washed, and the rootswere cut into 0.5-cm pieces bearing around 250 vesicles percentimeter. Non-mycorrhizal leek roots prepared as abovewere used for the control treatment without AM inoculation.

The seeds of the U. bojeri were surface sterilized asdescribed above. The germinated seeds were individuallygrown in 1-l polythene bags filled with sterilized sandy soil(140°C, 40 min) in which G. intraradices and/or Scleroder-ma Sc1 were already inoculated. A control treatment withoutfungi was included. After autoclaving, the soil chemicalcharacteristics were as follows: pH 5.01 (H2O); total carbon,9.3%; total nitrogen, 0.06%; total phosphorus, 120.6 mgkg−1. For ectomycorrhizal inoculation, the soil was mixedwith fungal inoculum (10/1; v/v). The treatments withoutfungus received an autoclaved mixture of moistened (MMNmedium) vermiculite/peat moss at the same rate. Forendomycorrhizal inoculation, one hole (1×5 cm) was madein each pot and filled with 1-g fresh leek root (mycorrhizalfor the experimental treatment or non-mycorrhizal for thecontrol treatment without fungus). The holes were thencovered with the same autoclaved soil. They were wateredregularly with tap water without fertilizer. The pots werearranged in a randomized complete block design with 25replicates per treatment. The seedlings were screened fromthe rain and grown under natural light (daylight ofapproximately 12 h, average daily temperature of 25°C).

After 5 months of culture, the Uapaca plants wereuprooted, and the oven dry weight (1 week at 65°C) of theshoot was measured. The root systems were gently washed,cut into 1-cm root pieces, mixed, and the percentage ofectomycorrhizal short roots (number of ectomycorrhizalshort roots/total number of short roots) was determined ona random sample of at least 100 short roots under astereomicroscope (magnification ×40). Then these rootpieces were cleared and stained according to the method ofPhillips and Hayman (1970). The root pieces were placed ona slide for microscopic observation at 250× magnification(Brundrett et al. 1985). About 100 1-cm root pieces wereobserved per plant. The extent of mycorrhizal colonizationwas expressed in terms of the fraction of root length with theinternal fungal structures (vesicles and arbuscules). Therelative mycorrhizal dependency was determined by express-ing the difference between the shoot dry weight of themycorrhizal plant and the shoot dry weight of the non-

Table 1 Main-chemical characteristics of the upper soil layer (0–20 cm)

Site Site A Site B Site C

pH (H2O) 4.96 5.37 4.54pH (KCl) 4.75 5.23 4.45Total C (%) 1.12 3.09 1.33Total N (%) 0.07 0.15 0.91Total organic matter (%) 1.92 5.31 2.28C/N 16.0 21.0 14.6Total P (mg kg−1) 15.2 15.2 17.3Available P (mg g−1, Olsen et al. 1954) 3.42 7.01 5.24

Mycorrhiza (2007) 17:195–208 197

Page 56: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

mycorrhizal plant as a percentage of the shoot dry weight ofthe mycorrhizal plant (Plenchette et al. 1983).

Influence of ectomycorrhizal inoculation on soil microbialcatabolic diversity

The Uapaca seedlings were grown in 1-l pots filled withnatural soil collected in site A. One part of the soil wasautoclaved (140°C, 40 min) and the other part was notdisinfected before use. After autoclaving, its chemicalcharacteristics were as follows: pH 5.2 (H2O); total C,1.01%; total N, 0.08%; organic matter, 1.55%; C/N, 13.2;total P, 11.9 mg kg−1. The native chemical characteristics ofthis soil are indicated in Table 1. The ectomycorrhizalinoculation with the Scleroderma isolate Sc1 was per-formed as described above, and the same treatment wasperformed for the control treatment. They were wateredregularly with tap water without fertilizer. The pots werearranged in a randomized complete block design with tenreplicates per treatment. The seedlings were screened fromthe rain and grown under natural light (daylight ofapproximately 12 h, average daily temperature of 25°C).

After 5 months of culture, Uapaca plants were uprooted,the shoot biomass and the ectomycorrhizal colonizationwere measured as described before. Most of the soil from 3randomly chosen pots in each treatment was carefullymixed and kept at 4°C for further analysis.

The microbial catabolic diversity was measured by addinga range of simple organic compounds to the soil anddetermining the short-term respiration responses (Degensand Harris 1997; Degens et al. 2001). Each of the 31substrates suspended in 2-ml sterile distilled water wasadded to 1 g of moist soil in 10-ml bottles (West andSparling 1986). The CO2 production from the basalrespiratory activity in the soil samples was measured byadding 2-ml sterile distilled water to 1 g of the equivalentdry weight of soil. After the addition of the substratesolutions to the soil samples, the bottles were immediatelysealed with a vacutainer stopper and incubated at 28°C for4 h in darkness. After 4 h, respired CO2 in the headspace ofeach bottle was determined by taking a 1-ml syringe sampleand analysing the CO2 concentration using an infrared gasanalyser (Polytron IR CO2, Dräger™) in combination with athermal flow meter (Heinemeyer et al. 1989). The resultswere expressed as μg CO2 g−1 soil h−1. There were 10amino acids (L-glutamine, L-serine, L-arginine, L-asparagine,L-cystein, L-histidine, L-lysine, L-glutamic acid, L-phenylala-nine, L-tyrosine), 3 carbohydrates (D-glucose, D-mannose,sucrose), 2 amides (D-glucosamine and succinamide), and 16carboxylic acids (ascorbic acid, citric acid, fumaric acid, glu-conic acid, quinic acid, malonic acid, α-ketoglutaric acid,α-ketobutyric acid, succinic acid, tartaric acid, uric acid,oxalic acid, malic acid, hydroxybutyric acid). The amines

and amino acids were added at 10 mM, whereas thecarbohydrates were added at 75 mM and the carboxylicacids at 100 mM (Degens and Vojvodic-Vukovic 1999).The catabolic richness and catabolic evenness werecalculated to evaluate the catabolic diversity of both soiltreatments. The catabolic richness, R, expressed thenumber of substrates used by the microorganisms in eachsoil treatment. The catabolic evenness, E, representing thevariability of used substrates amongst the range of thesubstrates tested was calculated using the Simpson–Yuleindex E ¼ 1

�p2i with pi=respiration as the response to

individual substrates/total respiration activity induced byall substrates for a soil treatment (Magurran 1988).

Statistical analysis

The data were treated with one-way analysis of variance. Themeans were compared using the Newman and Keuls test (p<0.05). The percentages of the mycorrhizal colonization weretransformed by arcsin(sqrt) before the statistical analysis.

The between-group analysis (BGA, Dolédec and Chessel1987; Culhane et al. 2002) was used to analyse the surfaceinsulation resistance (SIR) responses in soil samplesinoculated with Scleroderma Sc1 and samples withoutinoculation. BGA is a multivariate analysis techniquederived from principal components analysis (PCA). Theaim of PCA is to summarize a data table by searchingorthogonal axes on which the projection of the samplingpoints (rows of the table) has the highest possible variance.

From a theoretical point of view, BGA is the particularcase of PCAwith respect to instrumental variables (principalcomponent analysis with instrumental variables, Rao 1964;Lebreton et al. 1991) where the instrumental variables tableis reduced to just one qualitative variable. This variabledefines groups of rows in the data table, and BGA consistsof the PCA of the table of the means by groups. This tablehas a number of rows equal to the number of groups, andthe same number of columns as the original table. The aimof this analysis is to separate the groups. This is also theaim of discriminant analysis (also called canonical variatesanalysis), but whilst discriminant analysis is limited totables that have a high number of samples compared to thenumber of variables, BGA can be used even when thenumber of rows is less than the number of variables. BGAcan, thus, be considered as a robust alternative todiscriminant analysis when the number of samples is low.

A Monte Carlo test (permutation test) can be used to checkthe significance of the differences between groups. Thismethod consists, in performing many times, a randompermutation of the rows of the table (but not of the qualitativevariable defining the groups) followed by the recomputationof the between-class inertia. By comparing the between-classinertia obtained in the normal analysis with the between-class

198 Mycorrhiza (2007) 17:195–208

Page 57: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

inertia obtained after randomization, we get an estimation ofthe probability of meeting a situation similar to the observedsituation without differences between groups (i.e. a signifi-cance test of the differences between groups).

The computations and graphical displays were made withthe free ADE-4 software (Thioulouse et al. 1997) available inthe Internet at http://www.pbil.univ-lyon1.fr/ADE-4/.

Results

Sporophore survey

We collected 94 sporophores in three survey sites (S 1).They were identified as belonging to the ectomycorrhizal

genera Afroboletus, Amanita, Boletus, Cantharellus, Lecci-num, Gyroporus, Rubinoboletus, Russula, Scleroderma,Suillus, Tricholoma, and Xerocomus (S 1). The highestfungal diversity of the above-ground sporophores wasrecorded in site A (40 species), whereas only 27 and 29fungal species were detected in sites B and C, respectively(S 1). Russula was the most frequent ectomycorrhizalgenus recorded under U. bojeri (32.9% of the above-ground sporophore diversity) followed by the generaAmanita (17.1%) and Cantharellus (Fig. 1a). Twenty-onedifferent species were recorded for Russula followed byAmanita (14 species) and the genera Cantharellus andBoletus (10 species; Fig. 1b). AM structures (vesicles andhyphae) were detected from the roots in all surveyed sites.

Gen

us r

elat

ive

freq

uenc

y (%

)

0

5

10

15

20

25

30

35

Russu

la

Amanita

Cantha

rellu

s

Boletu

s

Leccin

um

Tricho

loma

Sclero

derm

a

Afrobo

letus

Xeroco

mus

Rubino

bolet

us

Gyrop

orus

Suillus

0

5

10

15

20

25

Rus

sula

Am

anita

Can

thar

ellu

s

Bol

etus

Lecci

num

Tricho

lom

a

Scler

oder

ma

Afro

bole

tus

Xer

ocom

us

Rub

inob

oletus

Gyr

opor

us

Suillu

s

Num

ber

of

spec

ies

per

gen

us

a

b

Fig. 1 a Structure of theectomycorrhizal community(above-ground diversity)expressed as genus relativefrequency (b). Number ofspecies per genus

Mycorrhiza (2007) 17:195–208 199

Page 58: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

Time sequence of mycorrhizal colonization on U. bojeri

First, ECMs were recorded after 2 months (Fig. 2). Nativeectomycorrhizal fungi colonized approximately 50% of thelateral roots sampled after 5 months of culture (Fig. 2). AMstructures were also observed after 2 months of culturing(Fig. 2).

Mycorrhizal dependency of U. bojeri seedlings

The shoot dry weight of the plants inoculated with G.intraradices or Scleroderma sp. Sc1 was significantlyhigher than in the control treatment (Tables 2 and 3).Compared to the control treatment, the shoot growth ofectomycorrhized plants was stimulated 1.9 times, whereas itwas 1.7 times for plants inoculated with G. intraradices(Table 2). When both fungal symbionts were co-inoculated,the shoot dry weight significantly increased over the singleinoculation treatments (Table 2). The shoot dry weightincreased 2.1 times compared to the mean shoot dry weightof the single fungus treatments (G. intraradices alone orScleroderma sp. Sc1 alone). The dual fungal inoculationdid not significantly modify the establishment of ectomy-corrhizal and AM symbioses compared to the ectomycor-rhizal or AM colonization rates measured in the singleinoculation treatments (Table 2).

Influence of ectomycorrhizal inoculation on soil microbialcatabolic diversity

The growth of U. bojeri seedlings was significantly higherin the native soil than in the autoclaved soil (Table 3).Ectomycorrhizal fungal inoculation significantly increasedshoot biomass of U. bojeri seedlings. There were nosignificant interactions between the autoclaving and theinoculum treatments (Table 3).

Catabolic richness did not differ between the treatments(Table 3). However, catabolic evenness was significantlyinfluenced by the soil treatments (autoclaved or not) and bythe fungal inoculation (Table 4).

The BGA of the SIR responses for the four soiltreatments are presented in Fig. 3. The map of the soilsamples (Fig. 3b) shows that the four treatments (NDNI,NDI, DNI, and DI) were clearly separated. This resultindicates that the microbial communities were different (incomposition or at least in activity), according to the soiltreatment. The map of the substrates (Fig. 3a) shows that,on the first axis, the use of four organic acids was highest innon-autoclaved soil samples and in inoculated samples (leftpart of the figure: ketobutyric, ketoglutaric, oxalic, andcitric acids). The Monte Carlo test is significant (p=0.025).The soil autoclaving involved a lower rate of use of thesefour organic acids, whereas fungal inoculation led to ahigher rate. Moreover, the effect of inoculation seemedstronger in non-disinfected soil samples.

Discussion

The main results of this study show that (1) a largediversity of sporophores was recorded under U. bojeri, (2)U. bojeri formed AMs and ECMs in natural soils, (3) thistree species is highly dependent on both types of mycor-rhiza, and (4) controlled ectomycorrhization of U. bojeristrongly influences soil microbial catabolic diversity.

Our investigations show that forests dominated by U.bojeri contain a wide range of sporophores belonging to atleast four different fungal families: Russulaceae, Canthar-ellaceae, Boletaceae, and Amanitaceae. In tropical forests,these families of putative ectomycorrhizal fungi have been

0

20

40

60

80

100

0 1 2 3 4 5 6

AM

co

lon

izat

ion

(%

of

roo

t fr

agm

ents

) o

r

ecto

my

corr

hiz

al c

olo

niz

atio

n (

% o

f sh

ort

ro

ots

) (%

)

Time (months)

Fig. 2 Sequence of mycorrhizal colonization on U. bojeri seedlings inexperiment 1 (square, AM colonization; diamond, total ectomycor-rhizal colonization)

Table 2 Shoot growth, mycorrhizal development, and relativemycorrhizal dependency of U. bojeri seedlings 5 months after G.intraradices and/or Scleroderma sp. Sc1 inoculation in pot culture

Treatments Shootbiomass (mgper plant)

Ectomycorrhizalcolonization(%)

AMcolonization(%)

RMD(%)a

Control 91.1ab 0a 0a –Sclerodermasp. Sc1

181.2b 8.7b 0a 47.6a

G. intraradices 160.1b 0a 77.5b 42.7aSclerodermasp. Sc1 + G.intraradices

360.3c 11.5b 82.5b 70.7b

aRMD Relative mycorrhizal dependencyb Data in the same column followed by the same letter are notsignificantly different according to the one-way analysis of variance(p<0.05).

200 Mycorrhiza (2007) 17:195–208

Page 59: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

described under Afzelia africana, Monotes kerstingii,Uapaca guineensis, and U. somon in Africa (Thoen andBâ 1989; Sanon et al. 1997) and in Asia under dipterocarps(Lee 1998). It is also well known that Russulaceae are oftendominant in tropical rainforests of Africa, Asia, andMadagascar (Buyck et al. 1996; Lee et al. 1997; Watlingand Lee 1998; Riviere et al. 2006). The identification ofthis group in the tropics remains problematic as manyspecies are new and undescribed. A high diversity ofectomycorrhizal fungi was associated with U. bojeri. Withother tropical ectomycorrhizal tree species, Lee et al.(1997) recorded only 28 fungal species under Shorealeprosula, and Sanon et al. (1997) had identified 14 fungalspecies under U. guineensis and 11 species under U. somonin Burkina Faso. However, numerous studies in temperateareas indicate little correlation between above-ground(sporophores) and below-ground (ECMs) fungal diversity(Buscot et al. 2000; Horton and Bruns 2001). Furthermolecular-based studies are needed to determine the fungaldiversity of ECMs associated with U. bojeri in naturalconditions.

Most mycorrhizal species are generally associated withonly one type of mycorrhiza, usually either AMs or ECMs(Moyersoen and Fitter 1999). It has also been reported thatsome plant species formed both AM and ECM (Molina et al.1992). The dual symbiotic association is well documentedfor Populus (Lodge and Wentworth 1990), Salix (Dhillion1994), Eucalyptus (Lapeyrie and Chilvers 1985), Alnus(Molina et al. 1994), Acacia (Founoune et al. 2002a,b),Pinaceae (Cazares and Trappe 1993), Quercus (Egerton-Warburton and Allen 2001), and Casuarinaceae (Duponnoiset al. 2003), but it was unknown for U. bojeri, although itwas usually stated that this tree species was only colonizedby ectomycorrhizal fungi (Moyersoen and Fitter 1999). But

it has also been reported that roots of U. guineensis seedlingsgrowing in a forest soil were only colonized by AM fungi(Moyersoen and Fitter 1999). The results of the presentstudy confirmed the high occupancy of AM fungi recordedon young seedlings (3-month-old root systems) and that AMstructures appeared for the first time on the plant culturefollowed by ECM colonization (Chilvers et al. 1987).

A synergistic effect of dual AM/ECM inoculation wasdescribed for Acacia holosericea inoculated with G.fasciculatum and Pisolithus albus (Founoune et al. 2002a,b), but the involved mechanisms remained unknown. Incontrast, in 1-year-old field seedlings of Quercus agrifoliawith a high glomalean and ectomycorrhizal fungal load,coexistent mycorrhizal types constituted a cost during theestablishment of young oaks and potentially limited theirdevelopment (Egerton-Warburton and Allen 2001). Theseauthors suggested that the progressive shift to predomi-nantly ectomycorrhizal colonization with increasing plantage become beneficial over time as it has been recordedwith U. bojeri after AM/ECM inoculation in the presentstudy.

Pirozynski and Malloch (1975) hypothesised that theAM habitat was a prerequisite for the early development ofland flora. Soil nutrient distribution in natural environmentsis typically heterogenous (Farley and Fitter 1999), andmycorrhizas may allow plants growing in low nutrientpatches to access resources in adjacent rich nutrient patches(Casper and Cahill 1998). In addition, ectomycorrhizalfungi are not uniformly distributed in terms of theirpresence, abundance, or community composition (Dickieand Reich 2005), and a lack of ectomycorrhizal fungi mayslow the invasion of disturbed sites by ectomycorrhizalplants. Young seedlings of U. bojeri that form AM couldsurvive in sites with low availability of ectomycorrhizal

Table 3 Shoot growth, mycorrhizal development, and relative mycorrhizal dependency of U. bojeri seedlings 5 months after Scleroderma sp. Sc1inoculation in disinfected or nondisinfected soil

Treatments Shoot biomass (mg per plant) Ectomycorrhizal colonization (%) RMD (%)a Rb Ec

Disinfected soilControl 135ad 0a – 28.7a 4.7aScleroderma sp. Sc1 192c 62.1c 29.1a 30.3a 6.9cNondisinfected soilControl 165b 18.2b – 29.7a 6.1bScleroderma sp. Sc1 240d 58.6c 30.4a 30.7a 7.7dSoil Treatment (ST) Se NS NS SFungal inoculation (FI) S NS S SFI × ST NSf NS NS NS

aRMD Relative mycorrhizal dependencyb Catabolic richnessc Catabolic evennessd Data in the same column followed by the same letter are not significantly different according to the one-way analysis of variance (p<0.05).e Significant (p<0.05)f Nonsignificant (p<0.05)

Mycorrhiza (2007) 17:195–208 201

Page 60: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

Tab

le4

Descriptio

nof

putativ

eectomycorrhizal

fung

icollected

from

thethreestud

iedsitesbeneathU.bo

jeri

Species

Prominentfeatures

Habitat

Sites

Site

ASite

BSite

C

Amanitaceae

Aman

itarubescensGray

White

pink

ishcap(8-cm

diam

eter)coveredwith

white

powderedandflat

scales,remnant

veil

visibleat

themargin,

white

stem

redd

eningby

wou

nd,ofteneatenby

insect

larvae

Solitary,scarce

x

Aman

itavirosa

(Fr.)

Bertillon

White

yello

wishfruitin

gbo

dy(7-to

12-cm

diam

eter),white

andchinated

stem

(1.2-cm

diam

eter)with

ring

andcupat

thebase

Patch

of5to

6individu

als

xx

x

Aman

itaph

alloides

var.vernaBullWhite

fruitin

gbody

(5.5-to

11-cm

diam

eter),stem

(0.6

diam

eter

by9.5cm

high)with

alarge

pend

antring

andabu

lbou

scupat

thebase

Patch

of5to

7individu

als

xx

X

Aman

itastrobiliformisBertillon

White

andbigfruitin

gbo

dy(10to

12cm

diam

eter),fleecy

remnant

veilon

thecap,

club

-shapedstem

(2.2-cm

diam

eter)with

aring

Solitary,scarce

x

Aman

itacf.Baccata

(Fr.)

Gillet

Big

white

fruitin

gbo

dysimilarfeatures

than

previous

speciesbu

twith

noring

,stem

(2-cm

diam

eter

by7cm

high

)Solitary,scarce

x

Aman

itasp1

White

finely

scaled

fruitin

gbo

dy(4-to

6-cm

diam

eter)turningyello

wishwhenageing

orby

wou

nd,

concolou

redgills

andflesh

Solitary,scarce

x

Aman

itacf.Strobiloceovolvata

Beeli

White

fruitin

gbo

dy(8.5-to

11-cm

diam

eter),stem

(1.2-cm

diam

eter

by10

.5cm

high

)with

outring

,well-developedbu

lbou

scupat

thebase

Patch

of3to

4individu

als

xx

x

Aman

itasp2

White

andbigspecieswith

aconv

exscalycap(10-

to13

-cm

diam

eter

by9to

10cm

high

),strong

bulbou

sstem

(3-to

4-cm

diam

eter)with

apend

antring

Solitary,scarce

x

Aman

itasp3

Palegrey

cap(4.5-cm

diam

eter)with

few

veilremanenceson

surface,

bulbou

sstem

(0.7

to6cm

)with

grey

chinates

Solitary,scarce

x

Aman

itasp4

Yellow

conicalandmucronatedcap(2.5-to

3-cm

diam

eter),palerto

whitishgills

andstem

(0.5-cm

diam

eter

by12

cmhigh

),white

scalybasalcup

Solitary,scarce

x

Aman

itacf.cecilia

(Berk.

etBroom

e)Bas

Yellow

grey

cap(4-to

5-cm

diam

eter)with

risedscales,white

gills

andconcolou

redstem

(0.7-cm

diam

eter

to6cm

high

),bu

lbou

sbase

coveredby

grey

chinates

andveilremanences

Solitary,scarce

x

Aman

itasp5

Con

vexandgrey

purplish-blue

cap(4

to4.5cm

diam

eter)with

grey

flat

scales

atthecentre

andhairy

ones

atthemargin,

white

fleshandgills,white

bulbou

sstem

(0.9-cm

diam

eter

by6cm

high

)turning

togrey

bytouchwith

apend

antring

Solitary,scarce

x

Aman

itasp6

Smallwhite

species(2-to

3-cm

diam

eter)with

yello

wishscales,bu

lbou

sbasedstem

with

pend

ant

ring

Solitary,scarce

x

Aman

itasp7

Big

white

flat

capspecies(9-to

13-cm

diam

eter)with

veilremanencesat

themargin,

strong

bulbou

sstem

(3-to

4-cm

diam

eter)with

aring

Patch

of2to

3individu

als

xx

x

Boletaceae

Rub

inob

oletus

griseus

Big

red-pink

andgrey-brownish

dryandsm

ooth

cap(10-

to12

-cm

diam

eter

by8to

9cm

high

),white

flesh(1.8

cmthick)

partially

burnishing

aftersectioning

,pale

reticulated

hairyscaled

stem

,bu

rnishing

likepo

resby

touch

Patch

of5to

6individu

als

xx

x

Gyrop

orus

cf.cyan

escens

(Bulliard

Fr.)

Quélet

Big

white

yello

wishsm

ooth

cap(10-

to12

-diameter

by8–

9cm

high

),concolou

redtubesandstem

turningto

blue

bywou

ndPatch

of3to

4individu

als

xx

x

Boletus

sp1

Brownish

tobrow

ncap,

with

largedarker

flat

scales,cylin

drical

anddark

stem

,redreticulated,

becomingyello

wat

thebase

likerhizom

orph

,fleshandpo

resturningblue

bywou

ndPatch

of3to

4individu

als

x

202 Mycorrhiza (2007) 17:195–208

Page 61: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

Leccinu

msp1

Smallgrey

boletus(1.8-to

3-cm

diam

eter

by3to

4cm

high

),yello

wpo

res,redhairyscales

onthe

stem

,base

ofthestem

yello

wlik

etherhizom

ophs

Patch

of3to

4individu

als

xx

x

Boletus

sp2

Big

brow

nish-brownwet

cap(7-to

8-cm

diam

eter

to12

to15

cmhigh

),white

andsm

ooth

flesh

Patch

of5to

6individu

als

xXerocom

ussp1

Brownscalycap(8.5-cm

diam

eter)show

ingwhite

fleshbetweenscales,white

stem

(1.4-cm

diam

eter

by5to

6cm

high

)with

someredzone

Solitary,scarce

x

Leccinu

msp2

Yellow

grey

scaled

boletus(4.5-to

6-cm

diam

eter

by6to

7cm

high

),stem

yello

wat

thebase

and

redin

itsup

perpart,yello

wblueishing

pores

Solitary,scarce

x

Boletus

sp3

Browncap(7.5-cm

diam

eter)with

red-pink

pigm

ents,yello

wandredpo

res,greenishingand

blueishing

tubes,yello

wishstem

with

someredpigm

ents

Solitary,scarce

x

Leccinu

msp3

Red

purplish-blue

wet

cap(7-cm

diam

eter),yello

wbu

rnishing

stem

(0.8-cm

diam

eter

by6cm

high

),concolou

redyello

wfleshandpo

res,blueishing

afterairexpo

sure

Solitary,scarce

x

Boletus

sp4

Big

smoo

thandshinyredbo

letus(8-to

12-cm

diam

eter

by7to

8cm

high

),yello

wishstem

with

somepink

pigm

ents,concolou

redflesh(1.6

cmthick)

Patch

of2to

3individu

als

xx

x

Xerocom

ussp2

Paleto

dark

brow

nscalydrycap(5-cm

diam

eter),white

dirtystem

(0.8-cm

diam

eter

by4cm

high

)with

awhite-yellowishflesh,

yello

wgreenish

andpink

pores

Solitary,scarce

x

Boletus

sp5

Yellowishbrow

ncap(8-cm

diam

eter)with

flat

partially

pink

scales,yello

wpo

resandstem

(1.2-cm

diam

eter

by6cm

high

),white

flesh(1.6

cmthick)

Solitary,scarce

x

Boletus

sp6

Darkbrow

nscalycapshow

ingyello

wflesh,

pale

concolou

redpo

resandstem

Solitary,scarce

xBoletus

sp7

Brownbo

letuswith

dryandsilkycap(4.5-cm

diam

eter),concolou

reddark

stem

(2.2-cm

diam

eter

by5.2cm

high

),white

flesh(1.6

cmthick)

rapidlyturningto

red,

then

blackafterairexpo

sure

Solitary,scarce

x

Boletus

sp8

Palebrow

nbo

letuswith

silkycap(5-cm

diam

eter),white

stem

(1.5-cm

diam

eter

by5.2cm

high

)andflesh(1.3

cmthick)

turningpu

rplish-blue

afterairexpo

sure

Solitary,scarce

x

Leccinu

msp4

Yellow

andwet

cap(3.5

cm)with

hairygrey

scales,yello

wpo

res,yello

wandredstem

(0.5-cm

diam

eter)with

dark

scales

andanarrow

base

Solitary,scarce

x

Leccinu

msp5

Yellowish-brow

ndrycap(3.5-cm

diam

eter),redpo

resandlig

hter

stem

(0.6-cm

diam

eter

by4cm

high

)turningto

dark-brownish

insection,

white

fleshturningbu

rnishafterairexpo

sure

Solitary,scarce

x

Suillus

sp2

Yellow

andgrey

scalycap(5-cm

diam

eter),yello

wpo

rescoveredby

ayello

wpartialveilwhen

youn

g,yello

wstem

(1.4-cm

diam

eter

by4.5cm

high

)with

greenish

grey

scales,becomingvery

slim

y

Patch

of2to

3individu

als

x

Boletus

sp9

Yellow

brow

nish

boletus(7-to

8-cm

diam

eter)with

asticky

surface,

yello

wpo

resandstem

,yello

wishflesh(1.7

cmthick)

Solitary,scarce

x

Leccinu

msp6

Palebrow

ncap(5-to

4-cm

diam

eter)with

redbrow

nish

scales

atthecentre,white

poresandwhite

fleshturningrapidlyto

red,

then

blackby

wou

ndSolitary,scarce

x

Boletus

sp10

Yellow

brow

nbo

letus(4.5-to

5.7-cm

diam

eter)with

wet

andsm

ooth

surface,

yello

wpo

res,yello

wstem

(1.2

diam

eter

by3cm

high

),white

flesh(1

cmthick)

Solitary,scarce

x

Cantharellaceae

Can

tharellussp1

Tallthickandlobedfasciculatebright

yello

wcaps

(4-to

6-cm

diam

eter)form

ingpatchesof

4to

5individu

als(12cm

),grainedgills,pale

yello

wstem

(1.8

cm),white

flesh

Patch

of8to

10individu

als

xx

x

Can

tharellussp2

Smallorange-brownish

cap(2-to

2.2-cm

diam

eter),white

pink

ishgills,pink

stem

andwhite

flesh

Solitary,scarce

xCan

tharellussp3

Yellowishto

pale

brow

ncap(3.5-to

3.2-cm

diam

eter),yello

wgrainedgills,pale

yello

wstem

(0.6

to2.5cm

)Solitary,scarce

xx

x

Mycorrhiza (2007) 17:195–208 203

Page 62: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

Tab

le4

(con

tinued)

Species

Prominentfeatures

Habitat

Sites

Site

ASite

BSite

C

Can

tharellussp4

Red

orange

cap(3.2-to

3.5-cm

diam

eter),largelyspaced

yello

wishgrainedgills,pale

yello

wto

redd

ishstem

(0.9

cm)

Patch

of8to

10individu

als

xx

x

Can

tharellussp5

Palebrow

ncap(3.2-to

3.5-cm

diam

eter),pale

pink

grainedgills,white

stem

andflesh,

turningto

yello

wby

touchor

sectioning

Solitary,scarce

xx

x

Can

tharellussp6

Red

pink

ishfasciculatecaps

(2.5-cm

diam

eter)form

ingsm

allpatch(3.5

to4cm

),yello

wishgrained

gills,pink

orange

stem

andwhite

fibrou

sflesh

Patchy

x

Can

tharellussp7

Smallandfragile

bright

yello

wcap(2-to

3.2-cm

diam

eter),pale

yello

wgills,concolou

redshort

stem

(0.3

cm)

Solitary,scarce

x

Can

tharelluscf

decolorans

Eyss.

etBuy

ckSmallpink

orange

cap(0.7-to

1.5-cm

diam

eter,2.5to

3.5cm

high

),concolou

redgills

andshort

stem

(0.2

cm)

Patch

of5to

6individu

als

x

Can

tharelluscf.Cyano

xanthu

sR.Heim

Yellow

andpu

rple

cap(4-cm

diam

eter),pale

pink

grainedgills,pale

yello

wstem

(1.8

cm),fibrou

sflesh

Patch

of2to

3individu

als

x

Can

tharellusrubb

erR.Heim

Palepink

cap(3.5-to

4-cm

diam

eter),concolou

redstem

andgills

Patch

of2to

3individu

als

xRussulaceae

Russula

subfistulosa

Buy

ckWhite-greyish

(darkerat

thecentre)um

bilicated

cap(3-to

12-cm

diam

eter)

Solitary

topatchof

3individu

als

xx

x

Russula

ochraceorivulosa

Greyish

topu

rplish-blue

grey

cap(7-to

8-cm

diam

eter),conv

excapwith

anun

dulatin

gmargin

Solitary

xx

xRussula

patouiillardi

Paleyello

wandpu

rple

(darkerat

thecentre)dryscalycap,

white

andpu

rple

stem

Solitary

topatchof

5individu

als

xx

x

Russula

liberiensisBuy

ckWhite-greyish

fibrillosecap(3-to

12-cm

diam

eter)turningbrow

nwhenageing

,closelyspaced

decurrentgills

Solitary

topatchof

3individu

als

xx

x

Russula

cf.Cyano

xantha

Pinkto

purple-red

cap(5-to

15-cm

diam

eter),white

stem

Patch

of2to

3individu

als

xRussula

cellu

lata

Buy

ckBrownscalycap(3-to

9-cm

diam

eter),closelyspaced

decurrentgills

Patch

of2to

3individu

als

xRussula

cf.archae

R.Heim

White

smoo

thandflat

cap(4.5-to

6-cm

diam

eter)

Solitary

xRussula

cf.nigrican

sWhite-greyish

capturningto

brow

nwhenageing

,white

fleshturn

rapidlypink

toredby

air

expo

sure

Solitary

x

Russula

cf.subfistulosa

White-greyish

conv

excap(3-to

8-cm

diam

eter)

Solitary

topatchof

4individu

als

x

Russula

sp3

White

topale

yello

wglueyandconv

excap(3-to

13-cm

diam

eter)

Solitary

topatchof

3individu

als

x

Russula

sp5

Yellow

smoo

thum

bilicated

cap(6-to

12-cm

diam

eter),with

avery

regu

larmargin

Patch

of2to

3individu

als

xx

xRussula

sp6

White-yellowishflat

orslightly

umbilicated

cap(4-to

10-cm

diam

eter),white

fleshturningredd

ish

afterairexpo

sure

Patch

of3to

5individu

als

x

Russula

sp7

Darkgrey

tobrow

nconv

excap(3.5-to

8-cm

diam

eter),invo

lucrated

margin,

wet

surfacecovered

byorange

toyello

wlayers,white-yellowishflesh

Solitary,rarely

patchy

x

Russula

sp8

White

conv

exto

slightly

umbilicatecap(4-to

13-cm

diam

eter)turningbrow

nwhenageing

,sm

ooth

surfacewith

invo

lucrated

margin,

white

fleshturningredd

ishafterairexpo

sure

Solitary,scarce

x

204 Mycorrhiza (2007) 17:195–208

Page 63: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

Russula

sp10

Darkgrey

tobrow

nwhenfully

matureconv

exto

flat

cap(4-to

9-cm

diam

eter),white

flesh

Patch

of2to

4individu

als

xRussula

sp11

Smallpu

rple

topu

rple-reddish

umbilicatewhenyo

ungto

flat

whenageing

cap(2-to

7-cm

diam

eter),sticky

surface,

regu

larmargin,

adnate

white

toyello

wishcloselyspaced

gills,white

flesh

Solitary

topatchof

3individu

als

x

Russula

sp13

Brown-redd

ishconv

exandsm

ooth

glutinou

scap(6-to

15-cm

diam

eter),decurrentgills,white

flesh

turninggreyishby

airexpo

sure

Solitary

x

Russula

sp14

Darkyello

wto

brow

nconv

exto

flat

sticky

cap(4-to

10-cm

diam

eter),adnate

closelyspaced

gills

Patch

of3to

5individu

als

xRussula

sp15

Yellow

toorange-yellow

flat

slightly

umbilicated

with

aninvo

lucrated

yello

wmargincap(2-to

8-cm

diam

eter)with

asm

ooth

surfacewith

smallstrias

Patch

of2to

5individu

als

x

Russula

sp16

Pinkto

redd

ish(darkerat

thecentre)fragile

conv

exglutinou

scap,

(2-to

6-cm

diam

eter)with

asm

ooth

ordu

stysurface,

white

flesh

Patch

of2to

4individu

als

x

Russula

sp17

Slig

htly

umbilicated

conv

exandglutinou

scap(4-to

10-cm

diam

eter),dark

yello

wtend

ingto

brow

n,yello

wto

pale

orange

closelyspaced

gills

Solitary

topatchof

4individu

als

x

Strob

ilomycetacea

Afrob

oletus

sp1

Brown-pu

rple

scalycap(3-to12

-cm

diam

eter),fibrou

sstem

,pale

yello

wfleshturningpu

rplishby

airexpo

sure

Patch

of3to

5individu

als

x

Afrob

oletus

sp2

Flat-conv

exdu

stycap(3

to10

cmdiam

eter)with

dark-brownto

blackscales,fibrou

sstem

inflated

atthebase,greyish-yello

wflesh

Patch

of2to

3individu

als

x

Sclerod

ermataceae

Scleroderm

asp1

Whitishto

yello

wishsm

allpy

riform

icfruitbo

dies,size

below

3cm

indiam

eter,dark

grey

gleba

Solitary

topatchof

5individu

als

x

Scleroderm

asp2

Whitishto

yello

wish3-

to7-cm

diam

eter

fruitbo

dies

with

grey

spotsat

thetop,

dark

grey

gleba

Solitary,rarely

patchy

xTricho

lomasp2

Yellow

cap(3-to

9-cm

diam

eter),drysurface,

invo

lucrated

margin,

thickwidelyspaced

gills,

yello

wfleshkeepingyello

weven

afterexpo

sure

toair

Solitary

topatchof

4individu

als

x

Tricho

lomasp3

Yellow-greyish

cap(3-to

12-cm

diam

eter),drysurface,

white

yello

wishstalk,

white

flesh

Solitary

topatchof

4individu

als

x

Tricho

lomasp4

Dark-grey

cap(3-to

15-cm

diam

eter),sm

ooth

drysurface,

thickgills,white

flesh

Solitary

x

Mycorrhiza (2007) 17:195–208 205

Page 64: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

fungi and develop ectomycorrhizas later as roots contactresidual ECM communities. This mycorrhiza successionalprocess would promote the development of subsequent

ectomycorrhizal fungus communities and facilitate theestablishment or re-establishment of the seedlings ofectomycorrhizal tree species after the disturbance (Perry etal. 1989), thus, influencing plant succession from prairie orold field to savanna or woodland.

Scleroderma species are considered “early-stage” sym-bionts (Deacon et al. 1983; Bâ et al. 1991) and can formmycorrhizas with a wide range of tropical tree species suchas Afzelia africana (Bâ and Thoen 1990), A. quanzensis,Isoberlinia doka, I. dalziellii, and Brachystegia speciformis(Sanon et al. 1997). In the present study, Sclerodermaisolate Sc1 increased Uapaca growth in disinfected and innon-disinfected soil, suggesting that this fungal strain washighly competitive against the native ectomycorrhizalmycota at least under the conditions of this pot-basedexperiment. In addition, ectomycorrhizal inoculation in-duced strong modification of the soil microflora function-alities and increased its catabolic microbial diversity. Elliottand Lynch (1994) hypothesised that microbial communitieswith reduced catabolic evenness are less resistant to stressand disturbance. Microbial functional diversity is involvedin a large range of activities such as nutrient transforma-tion, decomposition, etc. (Wardle et al. 1999). In partic-ular, ectomycorrhizal fungi mobilize P and other essentialplant nutrients directly from minerals through the excre-tion of organic acids (Landeweert et al. 2001). Amongstthe total organic acids in the soil solution, low molecularweight organic acids are considered to be the mostimportant biological weathering agents (Ochs 1996).Oxalate, citrate, and malate produced by plant roots andsoil microorganisms are the strongest chelators of trivalentmetals (Landeweert et al. 2001). Oxalic acid, commonlyproduced by many different fungal species, has the highestacid strength (Dutton and Evans 1996). In the presentstudy, SIR responses with all oxalic and citric acidsincreased in the fungal inoculated soil, suggesting thatScleroderma Sc1 and its associated microflora excretedhigher amounts of such organic acids and induced amultiplication of microorganisms that utilize these avail-able organic resources than noninoculated soil.

In conclusion, this study showed that U. bojeri has acomplex symbiotic status that can be managed to optimizeits development in degraded areas. In addition, the use ofselected mycorrhizal fungi such the Scleroderma Sc1isolate in nursery conditions could be of great interest, as(1) this fungal strain appears competitive against nativesymbiotic microflora and (2) the fungal inoculationimproves the catabolic potentialities of the soil microflora.However, further studies are needed to describe the below-ground diversity of ectomycorrhizal fungi and to demon-strate the potential interest of controlled mycorrhization innatural conditions in afforestation programs with U. bojeriin Madagascar.

28 14 27 22 15 25 17 20 19

6

29

1

2

3

5

111021 24

16 12

9 26 23

17 13 18

8

7

4

-14

14 -26 2

DIDNI

NDI

NDNI

-90

60 -90 60

a

b

Fig. 3 BGA of the SIR responses with respect to the fungaltreatments and soil treatments (DNI disinfected soil without fungalinoculation, DI disinfected soil with fungal inoculation, NDNInondisinfected soil without fungal inoculation, NDI nondisinfectedsoil with fungal inoculation, NIND: 1 Ketobutyric acid, 2 ketoglutaricacid, 3 oxalic acid, 4 citric acid, 5 phenylalanine, 6 gluconic acid, 7glucose, 8 uric acid, 9 malic acid, 10 asparagine, 11 tartaric acid, 12malonic acid, 13 gallic acid, 14 formic acid, 15 cystein, 16 histidine,17 sucrose, 18 tyrosine, 19 glutamic acid, 20 succinic acid, 21glucosamine, 22 succinamide, 23 mannose, 24 glutamine, 25 quinicacid, 26 lysine, 27 ascorbic acid, 28 serine, 29 arginine, 30 fumaricacid, 31 hyroxybutyric acid

206 Mycorrhiza (2007) 17:195–208

Page 65: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

References

Allen EB, Allen MF, Helm DJ, Trappe JM, Molina R, Rincon E(1995) Patterns and regulation of mycorrhizal plant and fungaldiversity. Plant Soil 170:47–62

Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1998) Soilaggregation status and rhizobacteria in the mycorrhizosphere.Plant Soil 202:89–96

Bâ AM, Thoen D (1990) First synthesis of ectomycorrhizas betweenAfzelia africana Sm. (Caesalpinioideae) and native fungi fromWest Africa. New Phytol 114:99–103

Bâ AM, Garbaye J, Dexheimer J (1991) Influence of fungalpropagules during the early stage of the time sequence ofectomycorrhizal colonization on Afzelia africana seedlings. CanJ Bot 69:2442–2447

Brundrett MC (2002) Coevolution of roots and mycorrhizas of landplants. New Phytol 154:275–304

Brundrett MC, Piche Y, Peterson RL (1985) A developmental study ofthe early stages in vesicular-arbuscular mycorrhizal formation.Can J Bot 63:184–194

Buscot F, Munch JC, Charcosset JY, Gardes M, Nehls U, Hampp R(2000) Recent advances in exploring physiology and biodiversityof ectomycorrhizas highlight the functioning of these symbiosesin ecosystems. FEMS Microbiol Rev 24:601–614

Buyck B, Thoen D, Walting R (1996) Ectomycorrhizal fungi of theGuinea–Congo region. Proc R Soc Edinb 104:313–333

Casper BB, Cahill JF (1998) Population-level responses to nutrientheterogeneity and density by Abutilon theophrasti (Malvaceae): anexperimental neighbourhood approach. Am J Bot 85:1680–1687

Cazares E, Trappe JM (1993) Vesicular endophytes in roots of thePinaceae. Mycorrhiza 2:153–156

Chilvers GA, Lapeyrie FF, Horan DP (1987) Ectomycorrhizal vsendomycorrhizal fungi within the same root system. New Phytol107:441–448

Culhane AC, Perriere G, Considine EC, Cotter TG, Higgins DG (2002)Between-group analysis of microarray data. Bioinformatics18:1600–1608

Deacon JW, Donaldson SJ, Last FT (1983) Sequences and interactionsof mycorrhizal fungi on birch. Plant Soil 71:257–262

Degens BP, Harris JA (1997) Development of a physiologicalapproach to measuring the metabolic diversity of soil microbialcommunities. Soil Biol Biochem 29:1309–1320

Degens BP, Vojvodic-Vukovic M (1999) A sampling strategy toassess the effects of land use on microbial functional diversity insoils. Aust J Soil Res 37:593–601

Degens BP, Schipper LA, Sparling GP, Duncan LC (2001) Is themicrobial community in a soil with reduced catabolic diversityless resistant to stress or disturbance? Soil Biol Biochem33:1143–1153

Dhillion SS (1994) Ectomycorrhizae, arbuscular mycorrhizae, andRhizoctonia sp. of alpine and boreal Salix spp. in Norway. ArctAlp Res 26:304–307

Dickie IA, Reich PB (2005) Ectomycorrhizal fungal communities atforest edges. J Ecol 93:244–255

Diédhiou AG, Guèye O, Diabaté M, Prin Y, Duponnois R, Dreyfus B, BâAM (2005) Contrasting responses to ectomycorrhizal inoculation inseedlings of six tropical African tree species. Mycorrhiza 16:11–17

Dolédec S, Chessel D (1987) Rythmes saisonniers et composantesstationnelles en milieu aquatique I-Description d’un plan d’observa-tions complet par projection de variables. Acta Oecol 8:403–426

Ducousso M, Béna G, Bourgeois C, Buyck B, Eyssartier G, VinceletteM, Rabevohitra R, Randrihasipara L, Dreyfus B, Prin Y (2004) Thelast common ancestor of Sarcolonaceae and Asian dipterocarp treeswas ectomycorrhizal before the India–Madagascar separation,about 88 million years ago. Mol Ecol 13:231–236

Duponnois R, Garbaye J (1991) Techniques for controlled synthesisof the Douglas fir—Laccaria laccata ectomycorrhizal symbiosis.Ann For Sci 48:239–251

Duponnois R, Plenchette C (2003) A mycorrhiza helper bacteriumenhances ectomycorrhizal and endomycorrhizal symbiosis ofAustralian Acacia species. Mycorrhiza 13:85–91

Duponnois R, Plenchette C, Thioulouse J, Cadet P (2001) Themycorrhizal soil infectivity and arbuscular mycorrhizal fungalspore communities in soils of different aged fallows in Senegal.Appl Soil Ecol 17:239–251

Duponnois R, Diédhiou S, Chotte JL, Sy MO (2003) Relativeimportance of the endomycorrhizal and/or ectomycorrhizalassociations in Allocasuarina and Casuarina genera. Can JMicrobiol 49(4):281–287

Duponnois R, Founoune H, Masse D, Pontanier R (2005) Inoculationof Acacia holosericea with ectomycorrhizal fungi in a semiaridsite in Senegal: growth response and influences on the mycor-rhizal soil infectivity after 2 years plantation. For Ecol Manag207:351–362

Dutton MV, Evans CS (1996) Oxalate production by fungi: its role inpathogenicity and ecology in soil environment. Can J Microbiol42:881–895

Egerton-Warburton L, Allen MF (2001) Endo- and ectomycorrhizas inQuercus agrifolia Nee. (Fagaceae): patterns of root colonizationand effects on seedling growth. Mycorrhiza 11:283–290

Elliot LF, Lynch JM (1994) Biodiversity and soil resilience. In:Greenland DJ, Szabolcs I (eds) Soil resilience and sustainableland use. CAB International, Wallingford, UK, pp 353–364

Estaun V, Save R, Biel C (1997) AM inoculation as a biological tool toimprove plant re-vegetation of a disturbed soil with Rosmarinusofficinalis under semi-arid conditions. Appl Soil Ecol 6:223–229

Farley RA, Fitter AH (1999) The responses of seven co-occurringwoodland herbaceous perennials to localized nutrient-richpatches. J Ecol 87:849–859

Founoune H, Duponnois R, Bâ AM (2002a) Influence of the dualarbuscular endomycorrhizal/ectomycorrhizal symbiosis on thegrowth of Acacia holosericea in glasshouse conditions (A. Cunn.ex G. Don). Ann For Sci 59:93–98

Founoune H, Duponnois R, Bâ AM, Sall S, Branger I, Lorquin J,Neyra M, Chotte JL (2002b) Mycorrhiza helper bacteriastimulate ectomycorrhizal symbiosis of Acacia holosericea withPisolithus albus. New Phytol 153:81–89

Franson RI, Bethlenfalvay GJ (1989) Infection unit method ofvesicular-arbuscular mycorrhizal propagule determination. SoilSci Soc Am J 53:754–756

Frey P, Frey-Klett P, Garbaye J, Berge O, Heulin T (1997) Metabolic andgenotypic fingerprinting of fluorescent pseudomonads associatedwith the Douglas fir Laccaria bicolor Mycorrhizosphere. ApplEnviron Microbiol 63:1852–1860

Frey-Klett P, Chavatte M, Clausse ML, Courrier S, Le Roux C,Raaijmakers J, Martinotti MG, Pierrat JP, Garbaye J (2005)Ectomycorrhizal symbiosis affects functional diversity of rhizo-sphere fluorescent pseudomonads. New Phytol 165:317–328

Green GM, Sussman RW (1990) Deforestation history of the easternrain forests of Madagascar from satellite images. Science248:212–215

Heim R (1970) Particularités remarquables des Russules tropicalesPelliculariae lilliputiennes: Les complexes annulata et radicans.Bull Soc Mycol France 86:59–77

Heinemeyer O, Insam H, Kaiser EA, Walenzik G (1989) Soilmicrobial biomass and respiration measurements: an automatedtechnique based on infrared gas analysis. Plant Soil 116:77–81

Herrera MA, Salamanca CP, Barea JM (1993) Inoculation of woodylegumes with selected arbuscular mycorrhizal fungi and rhizobiato recover desertified Mediterranean ecosystems. Appl EnvironMicrobiol 59:129–133

Mycorrhiza (2007) 17:195–208 207

Page 66: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

Horton TR, Bruns TD (2001) The molecular revolution in ectomycor-rhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871

Jasper DA, Abbot LK, Robson AD (1991) The effect of soildisturbance on vesicular-arbuscular mycorrhizal fungi in soilsfrom different vegetation types. New Phytol 118:471–476

Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N(2001) Linking plants to rock: ectomycorrhizal fungi mobilizenutrients from minerals. Trends Ecol Evol 16:248–254

Lapeyrie FF, Chilvers GA (1985) An endomycorrhiza-ectomycorrhizasuccession associated with enhanced growth of Eucalyptus dumosaseedlings planted in a calcareous soil. New Phytol 100:93–104

Lebreton JD, Sabatier R, Banco G, Bacou AM (1991) Principalcomponent and correspondence analyses with respect to instrumen-tal variables: an overview of their role in studies of structure-activityand species-environment relationships. In: Devillers J, Karcher W(eds) Applied multivariate analysis in SAR and environmentalstudies. Kluwer, pp 85–114

Lee SS (1998) Root symbiosis and nutrition. In: Appanah S, TurnbullJMA (eds) Review of dipterocarps: taxonomy, ecology andsylviculture. CIFOR, Bogor, Indonesia, pp 99–114

Lee SS, Alexander IJ, Watling R (1997). Ectomycorrhizas andputative ectomycorrhizal fungi of Shorea leprosula Miq.(Dipterocarpaceae). Mycorrhiza 7:63–81

Linderman RG (1988) Mycorrhizal interactions with the rhizospheremicroflora: the mycorrhizosphere effect. Phytopathology78:366–371

Lodge DJ, Wentworth TR (1990) Negative associations among VA-mycorrhizal fungi and some ectomycorrhizal fungi inhabiting thesame root system. Oikos 57:347–356

Lowry PPII, Schatz GE, Phillipson PB (1997) The classification ofnatural and anthropogenic vegetation in Madagascar. In: Good-man SM, Patterson BD (eds) Natural change and human impactin Madagascar. Smithsonian Institute Press, Washington, DC, pp93–123

Magurran AE (1988) Ecological diversity and its measurement.Croom Helm, London

Mansfeld-Giese K, Larsen J, Bodker L (2002) Bacterial populationsassociated with mycelium of the arbuscular mycorrhizal fungusGlomus intraradices. FEMS Microbiol Ecol 41:133–140

Marx DH (1991) The practical significance of ectomycorrhizae inforest establishment. Ecophysiology of forest trees. MarcusWallenberg Found Symp Proc 7:54–90

McGee P (1989) Variation in propagule numbers of vesicular-arbuscular mycorrhizal fungi in a semi-arid soil. New Phytol92:28–33

Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena inmycorrhizal symbioses: community-ecological consequences andpractical applications. In: Allen MF (ed) Mycorrhizal function-ing. Chapman and Hall, New York, NY, USA, pp 357–423

Molina R, Myrold D, Li CY (1994) Root symbiosis of red alder:technological opportunities for enhanced regeneration and soilimprovement. In: Hibbs DE, DeBell DS, Tarrant RF (eds) Thebiology and management of red alder. Oregon State UniversityPress, Corvallis, OR, pp 23–46

Moyersoen B, Fitter A (1999) Presence of arbuscular mycorrhizas intypically ectomycorrhizal host species from Cameroon and NewZealand. Mycorrhiza 8:247–253

Ochs M (1996) Influence of humidified and non-humidified naturalorganic compounds on mineral dissolution. Chem Geol 132:119–124

Olsen SR, Cole, CV, Watanabe FS, Dean LA (1954) Estimation ofavailable phosphorus in soils by extraction with sodiumbicarbonate. Circular, vol 939. US Department of Agriculture,Washington, DC, p 19

Perry DA, Amaranthus MP, Borchers JG, Borchers SL, Brainerd RE(1989) Bootstrapping in ecosystems. Bioscience 39:230–237

Phillips JM, Hayman DS (1970) Improved procedure for clearingroots and staining parasitic and vesicular-arbuscular fungi forrapid assessment of infections. Trans Br Mycol Soc 55:158–161

Pirozynski KA, Malloch DW (1975) The origin of land plants: amatter of mycotropism. Biosystems 6:153–164

Plenchette C, Fortin JA, Furlan V (1983) Growth responses of severalplant species to mycorrhizae in a soil of moderate P-fertility. I.Mycorrhizal dependency under field conditions. Plant Soil70:199–209

Plenchette C., Declerck S, Diop T, Strullu DG (1996) Infectivity ofmonoaxenic subcultures of the AM fungus Glomus versiformeassociated with Ri-TDNA transformed root. Appl MicrobiolBiotechnol 46:545–548

Rao CR (1964) The use and interpretation of principal componentanalysis in applied research. Sankhya A 26:329–359

Read DJ, Duckett JG, Francis R, Ligrone R, Russell A (2000)Symbiotic fungal associations in “lower” land plants. PhilosTrans R Soc Lond Ser B-Biol Sci 355:815–830

Requena N, Perez-Solis E, Azcon-Aguilar C, Jeffries P, Barea JM(2001) Management of indigenous plant-microbe symbioses aidsrestoration of desertified ecosystems. Appl Environ Microbiol67:495–498

Riviere T, Natarajan K, Dreyfus B (2006) Spatial distribution ofectomycorrhizal basidiomycete Russula subsect. Foetentinaepopulations in a primary dipterocarp rainforest. Mycorrhiza16:143–148

Sanon K, Bâ AM, Dexheimer J (1997) Mycorrhizal status of somefungi fruiting beneath indigenous trees in Burkina Faso. For EcolManag 98:61–69

Schreiner RP, Mihara KL, McDaniel KL, Bethlenfalvay GJ (2003)Mycorrhizal fungi influence plant and soil functions andinteractions. Plant Soil 188:199–209

Smith S, Read J (1997) Mycorrhizal symbiosis, 2nd edn. Clarendon,Oxford

Thioulouse J, Chessel D, Dolédec S, Olivier JM (1997) ADE-4: amultivariate analysis and graphical display software. Stat Comput7:75–83

Thoen D, Bâ AM (1989) Ectomycorrhizae and putative ectomycor-rhizal fungi of Afzelia africana and Uapaca guineensis inSouthern Senegal. New Phytol 113:549–559

Vagen TG, Andrianorofanomezana MAA, Andrianorofanomezana S(2006a) Deforestation and cultivation effects on characteristics ofoxisols in the highlands of Madagascar. Geoderma 131:190–200

Vagen TG, Walsh MG, Shepherd KD (2006b) Stable isotopes forcharacterisation of trends in soil carbon following deforestaionand land use change in the highlands of Madagascar. Geoderma135:133–139

Valentine LL, Fieldler TL, Hart AA, Petersen CA, Berninghausen HK,Southworth D (2004) Diversity of ectomycorrhizas associatedwith Quercus garryana in southern Oregon. Can J Bot 82:123–135

van der Hejden MGA, Klironomos JN, Ursic M, Moutoglis P,Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998)Mycorrhizal fungal diversity determines plant biodiversityecosystem variability and productivity. Nature 396:69–72

Wardle DA, Giller KE, Barker GM (1999) The regulation andfunctional significance of soil biodiversity in agro-ecosystems.In: Wood D, Lenné JM (eds) Agrobiodiversity: characterisation,utilisation and management. CABI, London, pp 87–121

Watling R, Lee SS (1998) Ectomycorrhizal fungi associated withmembers of the Dipterocarpaceae in Peninsular Malaysia-II. JTrop For Sci 10:421–430

West AW, Sparling GP (1986) Modifications of the substrate-inducedrespiration method to permit measurements of microbial biomassin soils of differing water contents. J Microbiol Methods 5:177–189

208 Mycorrhiza (2007) 17:195–208

Page 67: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques
Page 68: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques
Page 69: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques
Page 70: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques
Page 71: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques
Page 72: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques
Page 73: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

ORIGINAL PAPER

Restoring native forest ecosystems after exotic treeplantation in Madagascar: combination of the localectotrophic species Leptolena bojeriana and Uapaca bojerimitigates the negative influence of the exotic speciesEucalyptus camaldulensis and Pinus patula

R. Baohanta • J. Thioulouse • H. Ramanankierana • Y. Prin • R. Rasolomampianina •

E. Baudoin • N. Rakotoarimanga • A. Galiana • H. Randriambanona •

M. Lebrun • R. Duponnois

Received: 5 July 2011 / Accepted: 28 April 2012

� Springer Science+Business Media B.V. 2012

Abstract The objectives of this study were to

determine the impact of two exotic tree species (pine

and eucalypts) on the early growth of Uapaca bojeri

(an endemic tree species from Madagascar) via their

influence on soil chemical, microbial characteristics,

on ectomycorrhizal fungal community structures in a

Madagascarian highland forest and to test the ability of

an early-successional ectomycorrhizal shrub, Lepto-

lena bojeriana, to mitigate the impacts of these exotic

species. Finally, we hypothesized that L. bojeriana

could act as a natural provider for ectomycorrhizal

propagules. Soil bioassays were conducted with

U. bojeri seedlings grown in soils collected under

the native tree species (U. bojeri and L. bojeriana) and

two exotic tree species (Eucalyptus camaldulensis and

Pinus patula) and in the same soils but previously

cultured by L. bojeriana seedlings. This study clearly

shows that (1) the introduction of exotic tree species

induces significant changes in soil biotic and abiotic

characteristics, (2) exotic-invaded soil significantly

reduces the early growth and ectomycorrhization of

U. bojeri seedlings and (3) L. bojeriana decreased

these negative effects of the exotic tree species by

facilitating ectomycorrhizal establishment and conse-

quently improved the U. bojeri early growth. This

study provides evidence that L. bojeriana can facilitate

the ectomycorrhizal infection of U. bojeri and miti-

gates the negative effects of the introduction of exotic

tree species on the early growth of the native tree

R. Baohanta � H. Ramanankierana �R. Rasolomampianina � N. Rakotoarimanga �H. Randriambanona

Laboratoire de Microbiologie de l’Environnement,

Centre National de Recherches sur l’Environnement,

BP 1739, Antananarivo, Madagascar

J. Thioulouse

Laboratoire de Biometrie et Biologie Evolutive,

CNRS, UMR 5558, Universite Lyon 1,

69622 Villeurbanne, France

Y. Prin � A. Galiana

CIRAD, Laboratoire des Symbioses Tropicales et

Mediterraneennes (LSTM), UMR 113 CIRAD/INRA/

IRD/SupAgro/UM2, Campus International de Baillarguet,

TA A-82/J, Montpellier, France

E. Baudoin � M. Lebrun � R. Duponnois (&)

IRD, Laboratoire des Symbioses Tropicales et

Mediterraneennes (LSTM), UMR 113 CIRAD/INRA/

IRD/SupAgro/UM2, Campus International de Baillarguet,

TA A-82/J, Montpellier, France

e-mail: [email protected]

Present Address:R. Duponnois

Laboratoire Ecologie & Environnement, Unite associee au

CNRST, URAC 32, Faculte des Sciences Semlalia,

Universite Cadi Ayyad, Marrakech, Morocco

123

Biol Invasions

DOI 10.1007/s10530-012-0238-5

Page 74: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

species. From a practical point of view, the use of

ectotrophic early-successional shrub species should be

considered to improve forest resaturation after exotic

invasion.

Keywords Ectomycorrhizas � Uapaca bojeri �Exotic tree species � Degraded forest ecosystems �Nurse plant � Restoration ecology � Revegetation

strategies

Introduction

Numerous agricultural practices lead to soil degrada-

tion and losses of biodiversity in tropical areas. These

anthropogenic impacts do not only degrade natural

plant communities (population structure and species

diversity) but also physico-chemical and biological

soil properties such as nutrient availability, microbial

activity, and soil structure (Styger et al. 2007). In order

to reverse this loss of fertility and to limit soil erosion,

some revegetation programmes have been undertaken

in Madagascar using fast-growing exotic trees. Refor-

estation with eucalyptus (E. robusta, E. rostrata,

E. camaldulensis) and later pine (P. khesya, P. patula)

provided wood for the region (Gade 1996). By the

1930s, plantations have been set out by local commu-

nities, institutions, and individuals (Parrot 1925).

However, exotic trees can threaten ecosystems or

habitats by altering ecological interactions among

native plants (Rejmanek 2000; Callaway and Ridenour

2004) that could compromise their role in sustainable

development. Exotic plants can act directly on native

plant communities by allelopathic effects or by higher

performance in an introduction site that influence

vegetation dynamics, community structure, and com-

position (del Moral and Muller 1970; Thebaud and

Simberloff 2001). They also can alter biochemical

cycling compared with native plants (Ashton et al.

2005). As exotic and native plants have different

evolutionary histories and traits, it has been also

suggested that plant introduction could affect below-

ground soil microbial communities (Hawkes et al.

2005; Batten et al. 2006; Kisa et al. 2007; Kivlin and

Hawkes 2011). Among soil microbial communities,

mycorrhizal fungi are considered as key components

of the sustainable soil–plant system (Johansson et al.

2004; Dickie and Reich 2005). This symbiotic process

influences soil development as well as plant growth

(Schreiner et al. 2003; Duponnois et al. 2007).

Numerous studies have shown that ectomycorrhizal

(ECM) vegetation is highly dependent on ECM fungi

for their growth and survival (Smith and Read 2008).

Limitation of the presence, abundance, and commu-

nity composition of ectomycorrhizal fungi can result

from natural (Terwilliger and Pastor 1999) or anthro-

pogenic disturbance (Jones et al. 2003) and the lack of

established ectomycorrhizal fungi in soils may limit

the establishment or re-establishment of ECM tree

species seedlings (Marx 1991). It has been well

demonstrated that exotic plant species could disrupt

mutualistic associations involved in native ecological

associations (Callaway and Ridenour 2004; Kisa et al.

2007; Remigi et al. 2008; Faye et al. 2009) that could

limit the natural regeneration of native tree species.

However, these negative impacts on soil microbiota

may be counterbalanced by utilizing mycorrhizal

native species that enhance the abundance, diversity,

and function of mycorrhizal propagules in soil (Kisa

et al. 2007; Faye et al. 2009). Recent studies have

shown that some early-successional shrubs can

preserve and/or increase the abundance and diversity

of mycorrhizal propagules of AM fungi (Ouahmane

et al. 2006) or ectomycorrhizal fungi (Dickie et al.

2004) and subsequently facilitate forest woody species

growth. Improvement of seedling growth by pioneer

shrubs, also called the ‘‘nurse plant effect’’, is a

general facilitative process (Niering et al. 1963).

Nurse plants facilitate vegetation growing beneath

their canopies by ameliorating the physical environ-

ment and by increasing soil fertility (Franco and Nobel

1988; Callaway and Pennings 2000; Scarano 2002).

In Madagascar, the impacts of exotic tree species

such as pine and eucalypts on diversity and abundance

of mycorrhizal fungal communities as well as on the

early growth of endemic tree species remain unknown.

The aims of the present study were to determine in situ

and under glasshouse conditions the impact of Euca-

lyptus camaldulensis and Pinus patula (two exotic tree

species) on soil chemical characteristics, microbial

activities and on ECM community structures. We

hypothesized that soil microbial activities and mycor-

rhizal communities will differentiate under these exotic

species leading to a decrease of the early growth of a

native tree species, Uapaca bojeri. We further hypoth-

esized that an enhancement of ectomycorrhizal diversity

provided by an early-successional ectomycorrhizal

R. Baohanta et al.

123

Page 75: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

shrub, Leptolena bojeriana, would minimize the neg-

ative effects of these exotic species and consequently

improve U. bojeri growth through a well-developed

ectomycorrhizal root colonization. Finally, we tested

the hypothesis that L. bojeriana could act as a natural

provider for ectomycorrhizal propagules and could

preserve the abundance and diversity of ectomycorrhi-

zal fungi in stressful environments.

Materials and methods

Study area

The field experiment was conducted within the central

part of Madagascarian highland sclerophyllous forest in

a forest located at 50 km to the west of Antananarivo

(Arivonimamo site). The average annual rainfall was

1,398 mm with a average monthly temperature of

26 �C. The vegetation is a mosaic of U. bojeri islands

and very scattered individuals of introduced tree species,

P. patula and E. camaldulensis. These trees dominate an

understorey mainly composed by early-successional

plant species such as Leptolaena bojeriana, Leptolaena

pauciflora, Erica sp., Helychrisum rusillonii, Aphloia

theaformis, Psiadia altissima, Rhus taratana, Vaccini-

um emirnensis, Rubus apelatus and Trema sp. L.

bojeriana was the most representative plant species in

this site with a cover contribution of about 43 %.

Analysis of the mycorrhizal status of trees

and early-successional plant species

Root samples were collected during the rainy season.

Root identity was ascertained by tracing from the

trunk to the fine root tips. Samples of 1–5 g (fresh

weight) of fine roots were washed under running water

and stored at 4 �C for further examination. Fine roots

were examined for ECM infection under a dissecting

microscope. Morphological parameters following

Agerer (1987–1996) such as mantle color and struc-

ture, branching pattern and characteristics of rhizo-

morphs were used to categorize ectomycorrhizas into

morphological type (morphotype) groups. For AM

infection, fine roots were stained following the method

of Phillips and Hayman (1970). The root pieces were

placed on a slide for microscopic observation under

250 magnification (Brundrett 1991). About fifty 1-cm

root pieces were randomly chosen from each root

sample collected from each plant species.

Bioassays of soils collected under exotic tree

species (E. camaldulensis and P. patula)

and the native tree species (U. bojeri)

Seven adult trees of each exotic species and of

U. bojeri were randomly chosen in an approximately

5 ha area in the Arivonimamo forest. In order to avoid

disruption of soil and more particularly changes in

mycorrhizal networks, seven intact blocks of soil were

collected near each adult tree (about 50 cm from the

trunk). Seven additional intact blocks were collected

at 10-15 m from any targeted tree species (E. camal-

dulensis, P. patula, and U. bojeri trees) or other known

ectomycorrhizal plants. Intact monoliths of soil were

cut with shovel and immediately transferred into

15 cm diameter, 16 cm height plastic pots.

In addition, soil samples were taken near each soil

block from the 0–10 cm layer and stored in sealed

plastic bags at field moisture content at 4 �C for further

measurements. For each soil sample, pH of a water soil

suspension was determined. The total organic carbon

(TOC) was measured according to the ANNE method

(Aubert 1978) and the total nitrogen by the Kjeldahl

method. The available and total phosphorus soil

contents were analyzed by colorimetry (Olsen et al.

1954). Acid and alkaline phosphatase activities were

measured using p-nitrophenol benzene as substrate

(Schinner et al. 1996), and production of the

p-nitrophenol product was determined colorimetri-

cally at 650 nm. Fluorescein diacetate (FDA) hydro-

lysis was assayed to provide a measurement of the

microbial global activity (Alef 1998).

Seeds of U. bojeri collected in the Arivonimamo

forest were surface sterilized in hydrogen peroxide for

10 min, rinsed and soaked in sterile distilled water for

12 h, and germinated on 1 % agar. The germinating

seeds were used when rootlets were 1–2 cm long. One

pre-germinated seed was planted per pot filled with

intact monolith of soil. The pots were randomized in

the greenhouse and seedlings grown under natural

light (daylight of approximately 12 h, average daily

temperature of 25 �C). They were watered regularly

with tap water without fertilizer.

After 5 months of culturing, U. bojeri seedlings

were gently uprooted from the pots in order to keep the

Restoring native forest ecosystems

123

Page 76: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

root systems intact and to avoid root disruption. Then,

they were gently washed with running water. The

percentage of ectomycorrhizal short roots (number of

ectomycorrhizal short roots/total number of short

roots) was assessed under a dissecting microscope

by counting all single root tips. Ectomycorrhizal or

non-ectomycorrhizal short roots were detected accord-

ing to the presence or absence of fungal mantle and

mycelium and to the presence or lack of root hairs. In

each treatment, ECM root tips were classified by

morphotypes based on characteristics of their mantle

and extra-matrical mycelium (branching, surface

color, texture, emanating hyphae, and rhizomorphs

(Agerer 1995). All morphological types of ectomy-

corrhizas were stored at -20 �C in 700 ll CTAB lysis

buffer (2 % cetylammoniumbromide; 100 mM Tris–

HCl, 20 mM EDTA, 1.4 M NaCl) before molecular

analysis. Three ectomycorrhizas randomly selected

from each morphotype groups were screened by RFLP

analysis and one sample of each unique RFLP patterns

was sequenced.

DNA was extracted from root tips using Qiagen

DNeasy Plant Mini Kits (Qiagen SA, Courtaboeuf,

France) following the manufacturer’s recommenda-

tions. Fungal mitochondrial rDNA extracts were

amplified with ML5 and ML6 primers (White et al.

1990) and restriction digested HaeIII or HinfI

enzymes. Then, one sample of each individual RFLP

type was sequenced with the ABI Prism BigDye

Terminator Cycle sequence kit (Applied Biosystems,

Foster City, CA, USA) and analyzed on an applied

Biosystems model 310 DNA sequencer (Perkin-

Elmer). Sequences were aligned by using Clustal X

1.80 (Thompson et al. 1997) and alignment was

subsequently manually corrected using Genedoc

(Nicholas and Nicholas 1997). All sequences were

identified according to BLAST analysis at the NCBI

page http://www.ncbi.nlm.nih.gov/blast/Blast.cgi, using

default settings. Sequences were deposited in

GenBank.

For each U. bojeri seedlings, the oven dry weight

(1 week at 65 �C) of the aerial and root part was then

measured. After drying, plant tissues were ground,

ashed (500 �C), digested in 2 ml HCl 6N and 10 ml

HNO3 N for nitrogen and then analyzed by colorim-

etry for P (John 1970). For nitrogen (Kjeldahl)

determination, they were digested in 15 ml H2SO4

(36N) containing 50 g l-1 of salicylic acid.

Impact of early-successional ectomycorrhizal

shrub, Leptolena bojeriana on the characteristics

of soils collected under exotic tree species

(E. camaldulensis and P. patula) and the native tree

species (U. bojeri) and on U. bojeri early growth

Seeds of L. bojeriana were collected from the

Arivonimamo forest. They were surface sterilized

and were pre-germinated for 1 week in Petri dishes on

humid filter paper. A germinated seed was then

transplanted into each of plastic pots filled with soil

monoliths sampled as described above under exotic

and native tree species. One set of pots was unplanted.

There were 3 replicates for the unplanted pots and 6 for

the planted pots. The pots were randomized in a

greenhouse under natural light (daylight of approxi-

mately 12 h, average daily temperature of 25 �C) and

watered daily with deionized water. After 4 months of

growth, half of the L. bojeriana seedlings were cut and

their aerial parts discarded without any disruptions of

the cultural soil and L. bojeriana root systems.

Removal of aerial parts allowed to test the capacity

of L. bojeriana seedlings to act as a provider of

ectomycorrhizal propagules without any competitive

processes between each plant species for C acquisition

and consequently to reduce symbiosis costs. Then, one

pre-germinated seed of U. bojeri (treated as previously

described) was planted per pot randomized in the

greenhouse and seedlings were cultivated under

natural light (daylight of approximately 12 h, average

daily temperature of 25 �C). They were watered

regularly with tap water without fertilizer. There were

3 treatments: (1) control (without pre-cultivation with

L. bojeriana), (2) pre-cultivation and dual cultivation

with L. bojeriana (L. bojeriana treatment), and (3) pre-

cultivation dual cultivation with L. bojeriana without

aerial parts (L. bojeriana WA treatment). After

5 months of cultivation, measurements of chemical

and enzymatic soil characteristics as well as U. bojeri

ectomycorrhizal status, growth, and leaf mineral

contents (N, P) were determined as described before.

Statistical analysis

Plant growth measurements and soil characteristics

were treated with one-way analysis of variance and

means were compared with the Newman–Keul multi-

ple range test (p \ 0.05). The fungal colonization

R. Baohanta et al.

123

Page 77: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

indexes were transformed by arcsin (ffiffiffixp

) before

statistical analysis. A principal component analysis

(PCA) was applied to the soil, plant, and microbial

parameters. The software used was the ade4 package

(Dray and Dufour 2007) for the R software for

statistical computing (R Development Core Team

2010).

Results

Mycorrhizal status of trees and early-successional

plant species in the Arivonimamo forest

All tree and shrub species recorded in the Arivonim-

amo forest formed mycorrhizas. Among these, 8

presented AM infections and 5 were found with both

AM and ECM (Table 1).

Impact of targeted tree species on soil chemical

characteristics, ectomycorrhizal colonization,

and growth of U. bojeri seedlings

The highest soil acidity was recorded with the

E. camaldulensis origin followed by P. patula,

U. bojeri, and the bulk soil (Table 2). For N and P

soil contents, the opposite ranking was found with the

highest values recorded with E. camaldulensis soil

(Table 2). The total organic matter in soil was

significantly higher in U. bojeri and the lowest value

was found in the bare soil whereas P. patula and

E. camaldulensis soils had intermediate TOC contents

(Table 2).

The acid phosphatase and FDA activities were

significantly higher in the soils collected under the

targeted tree species compared to the bulk soil but

these activities were higher in the soils sampled under

exotic tree species than in the U. bojeri origins

(Table 2). With the alkaline phosphatase activity, an

opposite pattern was found with a higher activity in the

U. bojeri soil followed by the P. patula soil and finally

by the bulk and E. camaldulensis soils (Table 2).

After 5 months of culturing, shoot and root bio-

mass, total biomass of U. bojeri seedlings were

significantly lower in the soil collected under

E. camaldulensis than in the other soil origins,

whereas the highest root and total growth were found

in the U. bojeri soil (Table 3). Compared with the

control (bulk soil), no significant effect of P. patula

origin was recorded for the root and total biomass

except for the shoot biomass (Table 3). According to

the soil origins, root/shoot ratios ranged as follows:

U. bojeri [ P. patula [ bulk soil (control) [ E. cam-

aldulensis (Table 3). Nitrogen leaf contents were not

significantly different among soil origins, whereas

phosphorus foliar content of U. bojeri seedlings was

significantly higher in the soil originating from around

U. bojeri compared with P. patula soil (Table 3).

Compared with the bulk soil, the extent of

ectomycorrhizal colonization was significantly higher

in the soil collected under U. bojeri (73.7 %) and

significantly lower in the E. camaldulensis soil

(16.3 %) (Table 3). Structures of ectomycorrhizal

Table 1 Mycorrhizal

status of trees and early-

successional plant species

in the Arivonimamo forest

ECM ectomycorrhizas, AMarbuscular mycorrhizas,

ECM & AM co-existence of

arbuscular mycorrhizas and

ectomycorrhizas

Shrub and tree species Family Mycorrhizal status

Leptolaena pauciflora Baker. Sarcolaenaceae ECM & AM

Leptolaena bojeriana (Baill.) Cavaco. Sarcolaenaceae ECM & AM

Trema sp. Cannabaceae AM

Vaccinium emirnense Hook. Ericaceae AM

Aphloia theaeformis (Vahl.) Benn. Aphloiaceae AM

Rhus taratana (Baker.) H. Perrier Anacardiaceae AM

Helychrysum rusillonii Hochr. Asteraceae AM

Psiadia altissima (D.C.) Drake Asteraceae AM

Rubus apetalus Poir. Rosaceae AM

Erica sp. Ericaceae AM

Eucalyptus camaldulensis Dehn. Myrtacea ECM & AM

Pinus patula Schiede ex Schtdl. & Cham. Pinaceae ECM & AM

Uapaca bojeri L. Euphorbiaceae ECM & AM

Restoring native forest ecosystems

123

Page 78: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

communities associated with U. bojeri root systems

in the different soil origins were significantly different

(Table 4; Fig. 1). The RFLP types UA1 (Russula

earlei), UA2 (Amanita sp.), UA3 (Thelephoroid

symbiont), and UA4 (uncultured ECM fungus)

were only recorded on U. bojeri seedlings grown in

U. bojeri soil, whereas in the soils collected under

exotic tree species, UD1 (Bondarcevomyces), UC3

(Russula exalbicans), and UB6 (Boletellus projectel-

lus) were found. In the bare soil, the RFLP type

UC3 was mainly detected and two other types,

UC2 (Boletus rubropunctus) and UB5 (Coltricia

perennis) at lower abundances (Fig. 1). The RFLP

type UB4 (Xerocomus chrysenteron) was only

recorded in the E. camaldulensis soil treatment

(Fig. 1).

Responses of soil characteristics and U. bojeri

growth to the L. bojeriana cultivation

A data table with 36 rows and 12 columns was

constructed with the soil, plant, and microbial activity

parameters. The 12 variables were: pH, soluble

phosphorus, total nitrogen and total organic matter,

total microbial activity, acid and alkaline phosphatase

activities, shoot and root biomass of U. bojeri

seedlings, ectomycorrhizal rate, leaf nitrogen and

phosphorus contents, and the Shannon diversity index

of the ectomycorrhizal fungal morphotypes. The 36

rows corresponded to three samples of the four soil

origins: soil collected under E. camaldulensis,

P. patula, U. bojeri, or bare soil. For each soil origin,

three treatments were considered: U. bojeri seedling

Table 2 Chemical and biochemical characteristics of rhizosphere soils collected under a native tree species (Uapaca bojeri), two

exotic tree species (Pinus patula and Eucalyptus camaldulensis) and from the bare soil (control) in the Arivonimamo forest

Soil origins

Control U. bojeri P. patula E. camaldulensis

pH (H2O) 5.26 (0.03)1 d2 4.94 (0.01) c 4.78 (0.01) b 4.52 (0.01) a

Total nitrogen (%) 0.09 (0.006) a 0.19 (0.003) c 0.15 (0.006) b 0.22 (0.006) d

Soluble P (mg kg-1) 1.45 (0.02) a 2.85 (0.02) c 2.14 (0.07) b 3.09 (0.02) d

Total organic matter (%) 1.76 (0.009) a 4.26 (0.038) d 3.23 (0.041) b 3.53 (0.026) c

Total microbial activity

(lg of hydrolyzed FDA h-1 g-1 of soil)

5.61 (0.05) a 6.69 (0.25) b 11.54 (0.65) c 15.33 (2.05) c

Acid phosphatase activity

(lg p-nitrophenol g-1 of soil h-1)

130.56 (31.8) a 314.01 (11.7) b 867.06 (50.7) c 586.51 (104.9) c

Alkaline phosphatase activity

(lg p-nitrophenol g-1 of soil h-1)

166.51 (6.91) a 302.54 (7.44) c 170.95 (8.47) b 82.54 (5.59) a

1 Standard error of the mean. 2 Data in the same line followed by the same letter are not significantly different according to the

Newman–Keuls test (p \ 0.05

Table 3 Response of U. bojeri seedling growth and ectomycorrhizal colonization in soils from different tree species (Uapaca bojeri,Pinus patula and Eucalyptus camaldulensis) and from the bare soil (control) after 5 months culturing in glasshouse conditions

Soil origins

Control U. bojeri P. patula E. camaldulensis

Shoot biomass (mg dry weight) 131 (11)1 b2 125 (15) b 85 (12) a 83 (9) a

Root biomass (mg dry weight) 113 (12) b 295 (35) c 119 (10) b 27 (4) a

Total biomass (mg dry weight) 244 (12) b 419 (48) c 205 (22) b 110 (8) a

Root:shoot ratio 0.88 (0.15) b 2.37 (0.16) d 1.42 (0.12) c 0.34 (0.08) a

N leaf mineral content (mg per plant) 0.89 (0.06) a 0.85 (0.1) a 0.65 (0.09) a 0.65 (0.07) a

P leaf mineral content (mg per plant) 71.1 (7.3) ab 94.1 (9.9) b 58.9 (8.7) a 62.3 (7.3) ab

Ectomycorrhizal colonization (%) 36.1 (2.08) b 73.7 (3.18) c 29.3 (5.55) ab 16.3 (2.40) a

1 Standard error of the mean. 2 Data in the same line followed by the same letter are not significantly different according to the

Newman–Keuls test (p \ 0.05)

R. Baohanta et al.

123

Page 79: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

was planted alone, with a L. bojeriana seedling, or

with a L. bojeriana seedling that aerial part was cut

after 4 months of cultivation, but keeping intact its

root system. The resulting data table was submitted to

a principal component analysis (PCA) to describe the

main structures of this data set.

The Fig. 2 showed the results of this PCA. The

upper part (Fig. 2a) graphic was the correlation circle

of all the parameters, and the lower part graphic

(Fig. 2b) was the map of sample scores on the first two

principal components. The correlation circle (Fig. 2a)

showed that the first principal component (PC1) was

well correlated to plant growth, with better growth

toward the right of the graphic (shoot biomass, leaf

phosphorus and leaf nitrogen contents) and also to the

microbial activities (total microbial activity, acid and

alkaline phosphatase activity), to the ectomycorrhizal

rate, and to the Shannon diversity index of ectomy-

corrhizal fungi. The second principal component

(PC2) was negatively correlated to root biomass

increase and soil total nitrogen (downward arrows)

and positively to organic matter and pH (upward

arrows).

The map of sample scores (Fig. 2b) showed on the

PC1 the very strong effect of the L. bojeriana plant

(solid arrows pointing right). This effect was positive,

as it corresponded to an increase of U. bojeri seedling

growth, of microbial activities, and of ectomycorrhizal

fungal diversity. This effect was highest when the

Table 4 Identification by ITS sequence of RFLP types for

ectomycorrhizas collected on U. bojeri seedling after 5 month

culturing in glasshouse conditions on soils collected under a

native tree species (Uapaca bojeri), two exotic tree species

(Pinus patula and Eucalyptus camaldulensis) and from the bare

soil (control) in the Arivonimamo forest

RFLP

types

GenBank

accession

number

Closest GenBank

species

BLAST

expected

value

UA1 AF518722 Russula earlei 2e-144

UD1 DQ534583 Bondarcevomyces taxi 3e-138

UA2 AM117659 Amanita sp. 0.0

UA3 AJ509798 Telephoroid

mycorrhizal sp.

1e-154

UC3 AY293269 Russula exalbicans 2e-170

UA4 AY157720 Uncultured ECM

homobasidiomycete

Clone E2

0.0

UB6 DQ534582 Boletellus projectellus 0.0

UC2 FJ480421 Boletus rubropunctus 2e-171

UB5 None Coltricia perennis 2e-141

UB4 AD001659 Xerocomuschrysenteron

4e-173

Fig. 1 Similarities in ectomycorrhizal communities between

U. bojeri seedlings growing in soils collected under Uapacabojeri, Eucalyptus camaldulensis, Pinus patula and from a bulk

soil (d). Values are expressed by RFLP type percentages with

regards to the soil treatments. UA1: Russula earlei, UD1:

Bondarcevomyces taxi, UA2: Amanita sp., UA3: Telephoroid

mycorrhizal sp., UC3: Russula exalbicans, UA4: Uncultured

ECM homobasidiomycete Clone E2, UB6: Boletellus projec-tellus, UC2: Boletus rubropunctus, UB5: Coltricia perennis,

UB4: Xerocomus chrysenteron

Restoring native forest ecosystems

123

Page 80: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

d = 1

EcaU EcaUL

EcaULc

PpaU

PpaUL PpaULc

BaSU

BaSUL BaSULc

UboU

UboUL UboULc

pH

P

N

OM

FDA

AcP

AlkP

SB

RB

ER

PN

PP PC1

PC2

H

A

B

Fig. 2 Results of the PCA

on the data table of soil,

plant, and microbial activity

parameters. a Correlation

circle of all the parameters.

The 12 variables are:

pH = pH, P = total

phosphorus (mg kg-1),

N = total nitrogen (%),

OM = total organic matter

(%), FDA = total

enzymatic activity,

AcP = acid phosphatase,

AlkP = alkaline

phosphatase, SB = shoot

biomass (g), RB = root

biomass (g),

ER = ectomycorrhizal rate

(%), PN = leaf nitrogen

(%), PP = leaf phosphorus

(mg.kg-1), H = Shannon

diversity index of

ectomycorrhizal fungi.

b Map of sample scores on

the first two principal

components. Samples are

coded as follows. The first

three characters correspond

to the soil origin: Eca = soil

collected under E.camaldulensis, Ppa = soil

collected under P. palida,

Ubo = soil collected under

U. bojeri, BaS = bare soil.

The treatment applied to the

U. bojeri seedlings is coded

as folows. U = Uapacaplant alone, UL = Uapacaplant ? L. bojeriana,

Ulc = Uapaca plant ?

L. bojeriana cut after

4 months cultivation. For

example, sample coded

‘‘EcaULc’’ is a U. bojeriseedling grown in soil

collected under

E. camaldulensis in which a

plant of L. bojeriana was

grown and cut after 4 month

cultivation

R. Baohanta et al.

123

Page 81: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

Leptolena plant was cut and only the root system was

left before planting U. bojeri seedlings. It was also

interesting to notice that this effect was the same for

bare soil, for soils collected under exotic tree species

or for soil collected under a Uapaca adult tree. On the

same graphic (Fig. 2b), the PC2 showed the soil origin

effect (dotted arrows pointing upward), corresponding

to the negative influence of exotic tree species

(E. camaldulensis, P. patula) on root biomass. Root

biomass was higher in soils collected under U. bojeri

adult tree and lower in soils collected under exotic tree

species. Bare soils have an intermediate position.

Conversely, pH and total organic matter are higher in

soils collected under exotic tree species.

For each soil origins, the impact of L. bojeriana

(with or without aerial parts) on soil characteristics,

U. bojeri growth, and ectomycorrhizal communities

was indicated in Tables 5, 6, and 7. For the bulk soil

origin and compared with the control, the treatment

with L. bojeriana without aerial parts provided the

highest positive effects on pH, soluble P, soil N

content, organic matter content and on microbial

enzymatic activities (Table 5). The dual cultivation of

L. bojeriana with or without aerial parts significantly

improved shoot and root biomass and mineral nutri-

tion of U. bojeri seedlings (N, P) (Table 6). Ectomy-

corrhizal colonization was significantly improved

when the dual cultivation was performed with

L. bojeriana without aerial parts (Table 6). Strong

modifications in the composition of ectomycorrhizal

communities occurred in the treatments with

L. bojeriana (Table 7). RFLP types, UC3 and UC2

recorded in the control treatment, were not found in

the dual cultivation treatments and replaced by the

RFLP types UA1, UA2, and UB4. The RFLP type

UB6 was only recorded in the treatment with entire

L. bojeriana seedlings (Table 7).

For the U. bojeri soil origin, dual cultivation with

entire L. bojeriana seedlings increased all the mea-

sured soil parameters except for pH (Table 5). Elim-

inating the aerial parts of L. bojeriana seedlings led to

higher increases of N, organic matter soil contents and

FDA activity but to a lower enhancement of soil

soluble P content (Table 5). Dual cultivation had

significantly improved plant nutrient (N and P) uptake

with highest data for the treatment without aerial parts

(Table 6). No significant effect has been found on root

growth and root/shoot ratio but shoot growth of

U. bojeri seedlings was significantly improved with

L. bojeriana without aerial parts. Ectomycorrhizal

colonization was significantly increased when U.

bojeri seedlings were cultivated with L. bojeriana

without aerial parts (Table 6). This positive impact

was also recorded on the composition of ectomycor-

rhizal communities with the same RFLP types (except

for UA3) as those found in the control treatment (UA1,

UA2 and UA4) and two others only detected with the

presence of L. bojeriana seedlings (Table 7).

With E. camaldulensis soil, dual cultivation treat-

ments significantly improved soil pH, nitrogen con-

tent, and enzymatic activities with highest effects

found in L. bojeriana seedlings without aerial parts for

soil nitrogen content and FDA activity (Table 5).

Opposite effects have been found for soil P content

and soil organic matter (depressive effect provided by

L. bojeriana seedlings without aerial parts). Dual

cultivation treatments have enhanced the growth of U.

bojeri seedlings and ectomycorrhizal colonization but

no significant differences have been found between

both L. bojeriana treatments (with or without aerial

parts) and no effects have been recorded on the root/

shoot values (Table 6). The presence of L. bojeriana

seedlings allowed the development of some RFLP

types not detected in the control treatment (UA1, UA2,

UA3, UA4), increased the establishment of UB6 but

limited UB4 multiplication (Table 7).

For the P. patula soil origin, dual cultivation

treatments significantly improved soil P content and

enzymatic activities, whereas the presence of entire

L. bojeriana seedlings significantly decreased soil

nitrogen and organic matter contents (Table 5).

U. bojeri shoot growth and leaf foliar contents (N, P)

have been significantly promoted by L. bojeriana

seedlings (entire or not) (Table 6), and ectomycorrhi-

zal colonization was higher in the dual cultivation

treatment involving L. bojeriana seedlings without

aerial parts (Table 6). Only UB6 RFLP type was

detected in all the treatments, whereas UC3 recorded

in the control treatment was absent in the dual

cultivation treatments (Table 7). An opposite pattern

was found with UA1 and UA4 RFLP types (Table 7).

Discussion

This study clearly shows that (1) the introduction of

exotic tree species induces significant changes in the

soil chemical characteristics, microbial activities and

Restoring native forest ecosystems

123

Page 82: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

Ta

ble

5E

ffec

to

fL

.bo

jeri

an

a/U

.bo

jeri

succ

essi

on

(pre

-cu

ltiv

atio

nw

ith

L.b

oje

ria

na

and

du

alcu

ltiv

atio

nw

ith

L.b

oje

ria

na

seed

lin

gs

wit

hae

rial

par

tso

rw

ith

ou

tae

rial

par

ts)

on

soil

chem

ical

char

acte

rist

ics

and

enzy

mat

icac

tiv

itie

s

Tre

atm

ents

pH

H2O

So

lP

4T

ota

lN

5T

ota

lO

M6

FD

A7

Ac

P8

Alk

P9

Bu

lkso

il

Co

ntr

ol1

5.7

10

(0.0

1)

a11

2.0

0(0

.06

)a

0.0

22

(0.0

01

)a

4.2

0(0

.06

)a

32

.0(6

.4)

a4

98

.8(3

1.9

)a

27

4.6

(6.2

)a

L.

bo

jeri

an

a2

5.9

(0.0

1)

b4

.47

(0.0

9)

b0

.02

4(0

.00

1)

a6

.33

(0.0

4)

b4

6.9

(1.4

)ab

1,0

46

.4(5

2.1

)b

35

9.5

(11

3.7

)ab

L.

bo

jeri

an

aW

A3

6.2

(0.0

2)

c5

.50

(0.1

1)

c0

.10

3(0

.00

1)

b9

.65

(0.0

3)

c5

7.5

(3.6

)b

1,3

34

.5(8

2.6

)c

38

3.7

(22

.1)

b

U.

bo

jeri

soil

Co

ntr

ol

5.4

(0.0

1)

b5

.35

(0.0

3)

a0

.30

1(0

.00

1)

a7

.32

(0.0

1)

a5

.2(0

.36

)a

71

5.6

(19

.5)

a4

04

.1(1

1.6

)a

L.

bo

jeri

an

a5

.4(0

.01

)b

6.8

0(0

.06

)c

0.4

12

(0.0

01

)b

8.3

2(0

.04

)b

49

.8(3

.4)

b9

80

.7(2

3.4

)b

51

2.2

(22

.3)

b

L.

bo

jeri

an

aW

A5

.3(0

.02

)a

6.3

2(0

.06

)b

0.4

23

(0.0

01

)c

8.7

2(0

.07

)c

63

.5(2

.2)

c1

,04

4.3

(24

.9)

b5

82

.5(1

7.7

)b

E.

cam

ald

ule

nsi

sso

il

Co

ntr

ol1

5.3

(0.0

07

)a

9.2

3(0

.03

)c

0.0

54

(0.0

01

)a

15

.76

(0.0

9)

b6

.1(1

.6)

a1

,21

3.5

(19

.9)

a2

14

.3(5

.6)

a

L.

bo

jeri

an

a2

6.3

(0.0

09

)c

4.4

3(0

.09

)b

0.0

64

(0.0

02

)b

15

.80

(0.0

6)

b2

1.4

(3.1

)b

1,4

47

.2(4

8.1

)b

41

7.1

(26

.3)

b

L.

bo

jeri

an

aW

A3

5.4

(0.0

06

)b

3.7

0(0

.06

)a

0.0

71

(0.0

01

)c

14

.25

(0.0

3)

a6

8.3

(5.3

)c

1,5

97

.6(8

.3)

c3

94

.4(4

3.6

)b

P.

pa

tula

soil

Co

ntr

ol

6.2

(0.0

1)

a3

.36

(0.0

9)

a0

.08

7(0

.00

1)

b1

4.4

7(0

.09

)b

22

.2(3

.8)

a5

58

.3(5

5.2

)a

28

8.5

(4.5

)a

L.

bo

jeri

an

a6

.3(0

.01

)a

7.6

0(0

.11

)c

0.0

73

(0.0

01

)a

14

.05

(0.0

3)

a1

00

.4(8

.6)

c1

,25

7.1

(37

.5)

b5

67

.9(1

8.3

)c

L.

bo

jeri

an

aW

A6

.2(0

.01

)a

4.4

0(0

.06

)b

0.0

90

(0.0

01

)b

14

.68

(0.0

6)

b6

6.4

(4.4

)b

1,5

94

.9(4

9.3

)c

33

1.4

(14

.5)

b

1U

.b

oje

riw

ith

ou

tp

re-

and

du

alcu

ltiv

atio

nw

ith

L.

bo

jeri

an

a.

2P

re-c

ult

ivat

ion

wit

hL

.b

oje

ria

na

and

du

alcu

ltiv

atio

nw

ith

L.

bo

jeri

an

ase

edli

ng

sw

ith

aeri

alp

arts

.3

Pre

-

cult

ivat

ion

wit

hL

.b

oje

ria

na

and

du

alcu

ltiv

atio

nw

ith

L.

bo

jeri

an

ase

edli

ng

sw

ith

ou

tae

rial

par

ts.

4S

olu

ble

ph

osp

ho

rus

(mg

kg

-1).

5T

ota

ln

itro

gen

(%).

6T

ota

lo

rgan

icm

atte

r

(%).

7T

ota

lm

icro

bia

lac

tiv

ity

(lg

of

hy

dro

lyze

dF

DA

h-

1g

-1

of

soil

).8

Aci

dp

ho

sph

atas

eac

tiv

ity

(lg

p-n

itro

ph

eno

lg

-1

of

soil

h-

1).

9A

lkal

ine

ph

osp

hat

ase

acti

vit

y(l

gp-

nit

rop

hen

ol

g-

1o

fso

ilh

-1).

10

Sta

nd

ard

erro

ro

fth

em

ean

.11

Dat

ain

the

sam

eco

lum

nan

dfo

rea

chso

ilo

rig

info

llo

wed

by

the

sam

ele

tter

are

no

tsi

gn

ifica

ntl

yd

iffe

ren

t

acco

rdin

gto

the

New

man

–K

euls

test

(p\

0.0

5)

R. Baohanta et al.

123

Page 83: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

on ectomycorrhizal communities, (2) exotic-invaded

soil significantly reduces the early growth and ecto-

mycorrhization of U. bojeri seedlings, and (3) ecto-

trophic early-successional shrub species such as

L. bojeriana could lower these negative effects

provided by E. camaldulensis and P. patula by

facilitating ectomycorrhizal establishment and conse-

quently improved the U. bojeri early growth.

Numerous studies have reported that the introduc-

tion of exotic tree species has an environmental impact

on soil characteristics (i.e., soil nutrient contents,

water dynamics, etc.) (Smith et al. 2000; Sicardi et al.

2004) but with opposite results on soil biofunctioning

indicators. For instance, Sicardi et al. (2004) reported

that the conversion of pasture land to planted Euca-

lyptus grandis forest decreased FDA hydrolysis, acid

and alkaline phosphatase activities that are directly

involved in the transformation of soil organic matter.

On the opposite, other studies have shown higher

availability of nitrogen in exotic-invaded soils

(Kourtev et al. 1999; Ehrenfeld et al. 2001). Our

results are in accordance with these previous studies

for soil N contents. However, we report higher rates of

acid phosphatase activity under exotic plant species

(P. patula and E. camaldulensis) that probably result

from the more acid conditions encountered under

these two exotic species and in contrast suppress

alkaline phosphatase activities (Acosta-Martinez and

Tabatai 2000; Kramer and Green 2000). These results

are in accordance with those of Kourtev et al. (2002) as

the higher rates of acid phosphatase reflected the

organic-rich horizons with large amounts of recalci-

trant compounds which accumulate under E. camal-

dulensis and P. patula.

All these biological changes have resulted to a

lowest early growth of U. bojeri seedlings and in

particular to a decrease of ectomycorrhiza formation.

A previous study suggested that Pinus spp. was enable

to associate with native fungi in exotic habitats leading

to unsuccessful establishment when ECM fungi are

lacking (Mikola 1970). It agrees with our data where

this tree species selected a few ectomycorrhizal

Table 6 Effect of L. bojeriana/U. bojeri succession (pre-culti-

vation with L. bojeriana and dual cultivation with L. bojerianaseedlings with aerial parts or without aerial parts) on the growth

and ectomycorrhizal colonization of U. bojeri seedlings in soils

collected under Uapaca bojeri, Eucalyptus camaldulensis, Pinuspatula and from a bulk soil after 5 month culture in glasshouse

conditions

Treatments SB4 RB5 RB:SB6 N7 P8 ECM9

Bulk soil

Control1 131 (11)10 a11 113 (12) a 0.88 (0.13) b 0.89 (0.06) a 71.1 (7.3) a 36 (2.1) a

L. bojeriana2 277 (11) b 140 (10) ab 0.51 (0.04) a 3.02 (0.12) b 253.4 (10.9) b 42 (6) a

L. bojeriana WA3 309 (26) b 166 (3) b 0.55 (0.04) ab 3.08 (0.27) b 332.1 (29.1) b 90.3 (3.2) b

U. bojeri soil

Control 125 (15) a 295 (35) a 2.37 (0.16) b 0.85 (0.1) a 94.1 (9.9) a 73.7 (3.2) a

L. bojeriana 222 (38) ab 242 (38) a 1.21 (0.33) a 2.14 (0.32) b 197.7 (34.1) b 78 (2.1) a

L. bojeriana WA 332 (19) b 219 (39) a 0.67 (0.14) a 3.58 (0.19) c 303.9 (14.1) c 90.7 (2.4) b

E. camaldulensis soil

Control1 83 (0.9) a 27 (4) a 0.34 (0.08) a 0.65 (0.07) a 62.3 (7.3) a 16.3 (2.4) a

L. bojeriana2 233 (41) b 99 (6) b 0.45 (0.09) a 2.30 (0.41) b 194.6 (35.5) b 65.3 (3.3) b

L. bojeriana WA3 250 (42) b 129 (12) b 0.57 (0.17) a 3.17 (0.57) b 268.6 (44.9) b 79.3 (4.1) b

P. patula soil

Control 85 (12) a 119 (10) a 1.42 (0.12) b 0.65 (0.09) a 58.9 (8.7) a 29.3 (5.5) a

L. bojeriana 233 (9) b 146 (27) a 0.62 (0.11) a 2.28 (0.10) b 181.3 (5.7) b 30.3 (2.4) a

L. bojeriana WA 333 (66) b 127 (7) a 0.41 (0.08) a 3.90 (0.78) b 278.1 (53.9) b 65.3 (1.5) b

1 U. bojeri without pre- and dual cultivation with L. bojeriana. 2 Pre-cultivation with L. bojeriana and dual cultivation with

L. bojeriana seedlings with aerial parts. 3 Pre-cultivation with L. bojeriana and dual cultivation with L. bojeriana seedlings without

aerial parts. 4 Shoot biomass (mg dry weight). 5 Root biomass (mg dry weight). 6 Root:shoot ratio. 7 N leaf mineral content (mg per

plant). 8 P leaf mineral content (mg per plant). 9 Ectomycorrhizal colonization (%). 10 Standard error of the mean. 11 Data in the

same column and for each soil origin followed by the same letter are not significantly different according to the Newman–Keuls test

(p \ 0.05)

Restoring native forest ecosystems

123

Page 84: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

symbionts such as Russula exalbicans. This ectomy-

corrhizal genus was largely distributed in tropical

areas (Ducousso et al. 2004; Riviere et al. 2006;

Diedhiou et al. 2010) and frequently recorded under

tropical tree species (Riviere et al. 2005, 2006). In

contrast to pine, it has been suggested that Eucalyptus

spp. (i.e., E. robusta) was able to contract ectomycor-

rhizal associations in their introduction area with most

of the native ectomycorrhizal symbionts (Tedersoo

et al. 2007). Our results partially corroborated these

data since ectomycorrhizal community associated

with U. bojeri seedlings grown in soil collected under

E. camaldulensis was more diverse than that found in

soil sampled under P. patula. However, E. camaldul-

ensis has negatively influenced the ectomycorrhizal

establishment and consequently U. bojeri seedling

growth largely than that which has been measured

with P. patula soil. It is well known that Eucalyptus

drastically alters the vegetation development where

Eucalyptus litter accumulates through the release of

allelochemicals (del Moral and Muller 1970). Hence,

this allelopathic effect could limit the U. bojeri growth

seedling and in particular root system development

leading to a lower ectomycorrhiza establishment.

Uapaca bojeri seedlings growing in soil collected

under U. bojeri adult tree showed much higher

ectomycorrhizal infection and growth than those

growing in the soil collected at a distance from

established ectomycorrhizal vegetation. These data

are consistent with results of previous works where it

has been demonstrated that a lack of ectomycorrhizal

infection distant from ectomycorrhizal vegetation or

from adult tree that provides ectomycorrhizal propa-

gules to the young seedlings could influence nutrient

uptake and growth of seedling (Baxter and Dighton

2001; Lilleskov et al. 2002; Dickie and Reich 2005;

Kisa et al. 2007). Moreover, it has been suggested that

a rapid and early integration of seedlings into

ectomycorrhizal mycelium radiating from mother

plants could significantly improve survival and growth

Table 7 Relative abundance of RFLP types harvested in

U. bojeri seedlings in the cultural patterns with L. bojeriana(pre-cultivation with L. bojeriana and dual cultivation with

L. bojeriana seedlings with aerial parts or without aerial parts)

in soils collected under Uapaca bojeri, Eucalyptus camaldul-ensis, Pinus patula and from a bulk soil after 5 month culture

in glasshouse conditions

Treatments Relative abundance of RFLP types (%)

UA1 UD1 UA2 UA3 UC3 UA4 UB6 UC2 UB5 UB4

Bulk soil

Control1 0.0 0.0 0.0 0.0 89.4 0.0 0.0 3.1 7.5 0.0

L. bojeriana2 26.5 0.0 27.9 0.0 0.0 0.0 7.4 0.0 0.0 38.2

L. bojeriana WA3 19.3 0.0 49.5 0.0 0.0 0.0 0.0 0.0 0.0 31.2

U. bojeri soil

Control 51.5 0.0 43.0 3.7 0.0 1.8 0.0 0.0 0.0 0.0

L. bojeriana 13.0 0.0 18.5 0.0 19.6 19.6 29.3 0.0 0.0 0.0

L. bojeriana WA 14.7 0.0 16.7 0.0 11.8 22.5 34.3 0.0 0.0 0.0

E. camaldulensis soil

Control1 0.0 11.9 0.0 0.0 58.7 0.0 11.9 0.0 0.0 17.5

L. bojeriana2 23.8 0.0 0.0 20.6 0.0 12.8 42.8 0.0 0.0 0.0

L. bojeriana WA3 20.2 0.0 12.1 19.2 0.0 25.3 23.2 0.0 0.0 0.0

P. patula soil

Control 0.0 63.2 0.0 0.0 20.8 0.0 16.0 0.0 0.0 0.0

L. bojeriana 22.6 0.0 0.0 0.0 0.0 28.3 49.1 0.0 0.0 0.0

L. bojeriana WA 17.8 0.0 0.0 0.0 0.0 35.6 46.6 0.0 0.0 0.0

1 U. bojeri without pre- and dual cultivation with L. bojeriana. 2 Pre-cultivation with L. bojeriana and dual cultivation with

L. bojeriana seedlings with aerial parts. 3 Pre-cultivation with L. bojeriana and dual cultivation with L. bojeriana seedlings

without aerial parts. UA1: Russula earlei, UD1: Bondarcevomyces taxi, UA2: Amanita sp., UA3: Telephoroid mycorrhizal sp.,

UC3: Russula exalbicans, UA4: Uncultured ECM homobasidiomycete Clone E2, UB6: Boletellus projectellus, UC2: Boletusrubropunctus, UB5: Coltricia perennis, UB4: Xerocomus chrysenteron

R. Baohanta et al.

123

Page 85: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

of seedlings (Janos 1980, 1996; Onguene and Kuyper

2002). Our data support these observations with

U. bojeri in a Madagascarian highland forest and

showed that this tree species acts as a mother tree or

nurse tree by promoting ectomycorrhizal formation and

seedling growth. High root/shoot ratio has been iden-

tified as an important factor allowing plants to exploit

reduced resource availability due to patchiness in

distribution, both for water and nutrients (Reader et al.

1992). These high ratios would be of great importance

in the regeneration process of native tree species

especially during periods of drought or where nutrient

resources are heterogeneously distributed. Hence, the

exotic tree species (P. patula and E. camaldulensis)

could limit the growth of U. bojeri young regeneration,

whereas the presence of U. bojeri mother tree facilitated

the early development of U. bojeri seedlings.

In tropical forests, one of the main biological

processes that ensure recovery rates of tree species

depends on the amount and activity of mycorrhizal

inoculum. Ectomycorrhizal mycelia radiating from

mother tree roots function as a source of ectomycorrhi-

zal infection for neighboring host plants and more

particularly for young tree regeneration (Jonsson et al.

1999; Matsuda and Hijii 2004; Nara 2005). In addition

plants could become connected to a common mycor-

rhizal network that could be highly beneficial for growth

and fitness of seedlings (Nara 2005). When ectomycor-

rhizal potential (abundance and diversity of ectomy-

corrhizal propagules) is lowered following natural or

anthropogenic disturbance (Allen 1987; Jones et al.

2003), seedling establishment is limited and it is

necessary to reinforce ectomycorrhizal infection poten-

tial. It has been previously demonstrated that a

herbaceous ectomycorrhizal perennial of prairies, He-

lianthemum bicknellii, could permit the survival of

ectomycorrhizal propagules and create patches of high

ectomycorrhizal infection potential that facilitate the

establishment of Quercus, an ectomycorrhizal tree

species (Dickie et al. 2004). From the present study,

similar effects have been provided by the ectomycor-

rhizal shrub species, L. bojeriana. Among ectotrophic

early-successional plants recorded in the studied area,

Leptolaena genus was highly represented and facilitated

ectomycorrhizal infection and growth of U. bojeri

seedlings but also enhanced soil chemical characteris-

tics and enzymatic activities. Since L. bojeriana shared

ectomycorrhizal fungi with U. bojeri (i.e. Russula

earlei, Amanita sp., etc.), this shrub species has

significantly enhanced ectomycorrhizal colonization

of U. bojeri seedlings. This nursing effect was more

particularly recorded in the treatments with exotic-

invaded soils. In the P. patula and E. camaldulensis

soils, L. bojeriana stimulated U. bojeri total growth by

2.39 and 3.49, respectively, whereas this positive

effect was 1.39 with the U. bojeri soil. This result

supports the hypothesis that facilitation generally

increasing in importance with increasing abiotic stress

(Liancourt et al. 2005). In addition N, P nutrient uptake

of U. bojeri seedlings was significantly enhanced in the

dual cultivation treatments. Foliar N and P contents

were significantly correlated with ectomycorrhizal

colonization. Hence, by facilitating ectomycorrhizal

propagule multiplication, L. bojeriana enhanced ecto-

mycorrhizal infection of U. bojeri that is known to

improve plant nutrient uptake (Dickie et al. 2002). In

addition, U. bojeri nutrition may benefit from the

ectomycorrhizal network radiating from L. bojeriana

root systems that explores a larger volume of soil than

U. bojeri alone. These connections could lead to N and P

or carbon transfers between U. bojeri and L. bojeriana

seedlings via mycorrhizal linkages (Simard et al. 1997).

No significant effect has been recorded between treat-

ments with entire L. bojeriana seedlings and L. bojeri-

ana seedlings without aerial parts. It suggests that no

competitive interactions occur between each plant

species. The association in a common mycelial network

of each plant species has probably lowered the cost of

establishing mycorrhizal infection (Newman 1988).

This study provides evidence that L. bojeriana can

facilitate the ectomycorrhizal infection of U. bojeri

and mitigates the negative effects of the introduction

of exotic tree species on the early growth and

ectomycorrhizal formation of the native tree species.

However, the mechanisms involved in this nursing

effect have to be elucidated since multiple abiotic and

biotic factors are involved. From a practical point of

view, the use of ectotrophic early-successional shrub

species has to be considered in tropical areas to

improve the performances of reafforestation programs

with native tree species.

References

Acosta-Martinez V, Tabatai MA (2000) Enzyme activities in a

limed agricultural soil. Biol Fert Soil 31:85–91

Agerer R (1987–1996) Colour atlas of ectomycorrhizae. Ein-

horn-Verlag Eduard Dietenberger, Schwabisch Gmund

Restoring native forest ecosystems

123

Page 86: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

Agerer R (1995) Anatomical characteristics of identified ecto-

mycorrhizas: an attempt towards a natural classification.

In: Varma A, Hock B (eds) Mycorrhiza: structure, function,

molecular biology and biotechnology. Springer, Berlin,

pp 687–734

Alef K (1998) Estimation of the hydrolysis of fluorescein

diacetate. In: Alef K, Nannipieri P (eds) Methods in applied

soil microbiology and biochemistry. Academic Press,

London, pp 232–233

Allen MF (1987) Re-establishment of mycorrhizas on Mount

St Helens: migration vectors. Trans Br Mycol Soc 88:

413–417

Ashton IW, Hyatt LA, Howe KM, Gurevitch J, Lerdau MT

(2005) Invasive species accelerate decomposition and litter

nitrogen loss in a mixed deciduous forest. Ecol Appl

15:1263–1272

Aubert G (1978) Methodes d’Analyse des sols. Edition CRDP,

Marseille, p 360

Batten K, Scow K, Davies K, Harrison S (2006) Two invasive

plants alter soil microbial community composition in ser-

pentine grasslands. Biol Invasions 8:217–230

Baxter JW, Dighton J (2001) Ectomycorrhizal diversity alters

growth and nutrient acquisition of grey birch (Betulapopulifolia) seedlings in host-symbiont culture conditions.

New Phytol 152:139–149

Brundrett MC (1991) Mycorrhizas in natural ecosystems. In:

Macfayden A, Begon M, Fitter AH (eds) Advances in

ecological research, vol 21. Academic Press, London,

pp 171–313

Callaway RM, Pennings SC (2000) Facilitation may buffer

competitive effects: indirect and diffuse interactions

among salt marsh plants. Am Nat 156:416–424

Callaway RM, Ridenour WM (2004) Novel weapons: invasive

success and the evolution of increased competitive ability.

Front Ecol Environ 2:436–443

del Moral R, Muller CH (1970) The allelopathic effects of

Eucalyptus camaldulensis. Am Midl Nat 83:254–282

Dickie IA, Reich PB (2005) Ectomycorrhizal fungal commu-

nities at forest edges. J Ecol 93:244–255

Dickie IA, Koide RT, Steiner KC (2002) Influence of estab-

lished trees on mycorrhizas, growth and nutrition of

Quercus rubra seedlings. Ecol Monogr 72:505–521

Dickie IA, Guza RC, Krasewski SE, Reich PB (2004) Shared

ectomycorrhizal fungi between a herbaceous perennial

(Helianthemum bicknellii) and oak (Quercus) seedlings.

New Phytol 164:375–382

Diedhiou AG, Selosse M-A, Galiana A, Diabate M, Dreyfus B,

Ba AM, de Faria SM, Bena G (2010) Multi-host ectomy-

corrhizal fungi are predominant in a Guinean tropical

rainforest and shared between canopy trees and seedlings.

Environ Microbiol 12:2219–2232

Dray S, Dufour AB (2007) The ade4 package: implementing the

duality diagram for ecologists. J Stat Soft 22:1–20

Ducousso M, Bourgeois C, Buyck B, Eyssartier G, Vincelette

M, Rabevohitra R, Bena G, Randrihasipara L, Dreyfus B,

Prin Y (2004) The last common ancestor of Sarcolaenaceae

and Asian dipterocarp trees was ectomycorrhizal before the

India-Madagascar separation, about 88 million years ago.

Mol Ecol 13:231–236

Duponnois R, Plenchette C, Prin Y, Ducousso M, Kisa M, BaAM, Galiana A (2007) Use of mycorrhizal inoculation to

improve reafforestation process with Australian Acacia in

Sahelian ecozones. Ecol Eng 29:105–112

Ehrenfeld JG, Kourtev PS, Huang WS (2001) Changes in soil

functions following invasions of exotic understory plants in

deciduous forests. Ecol Appl 11:1287–1300

Faye A, Krasova-Wade T, Thiao M, Thioulouse J, Neyra M,

Prin Y, Galiana A, Ndoye I, Dreyfus B, Duponnois R

(2009) Controlled ectomycorrhization of an exotic legume

tree species Acacia holosericea affects the structure of root

nodule bacteria community and their symbiotic effective-

ness on Faidherbia albida, a native Sahelian Acacia. Soil

Biol Biochem 41:1245–1252

Franco AC, Nobel PS (1988) Interactions between seedlings of

Agave deserti and the nurse plant Hilaria rigida. Ecology

69:1731–1740

Gade DW (1996) Deforestation and its effects in highland

Madagascar. Mt Res Dev 16:101–116

Hawkes CV, Wren IF, Herman DJ, Firestone MK (2005) Plant

invasion alters nitrogen cycling by modifying the soil

nitrifying community. Ecol Lett 8:976–985

Janos DP (1980) Vesicular-arbuscular mycorrhizae affect

lowland tropical rain forest plant growth. Ecology 61:

151–162

Janos DP (1996) Mycorrhizas, succession and rehabilitation of

deforested lands in the humid tropics. In: Frankland JC,

Magan N, Gadd GM (eds) Fungi and environment change.

Cambridge University Press, Cambridge, pp 129–161

Johansson JF, Paul LR, Finlay RD (2004) Microbial inter-

actions in the mycorrhizosphere and their significance

for sustainable agriculture. FEMS Microbiol Ecol 48:

1–13

John MK (1970) Colorimetric determination in soil and plant

material with ascorbic acid. Soil Sci 68:171–177

Jones MD, Durall DM, Cairney JWG (2003) Ectomycorrhizal

fungal communities in young forest stands regenerating

after clearcut logging. New Phytol 157:399–422

Jonsson L, Dahlberg A, Nilsson MC, Karen O, Zackrisson O

(1999) Continuity of ectomycorrhizal fungi in self-regen-

erating boreal Pinus sylvestris forests studied by comparing

mycobiont diversity on seedlings and mature trees. New

Phytol 142:151–162

Kisa M, Sanon A, Thioulouse J, Assigbetse K, Sylla S, Spichiger

R, Dieng L, Berthelin J, Prin Y, Galiana A, Lepage M,

Duponnois R (2007) Arbuscular mycorrhizal symbiosis

can counterbalance the negative influence of the exotic tree

species Eucalyptus camaldulensis on the structure and

functioning of soil microbial communities in a Sahelian

soil. FEMS Microbiol Ecol 62:32–44

Kivlin SN, Hawkes CV (2011) Differentiating between effects

of invasion and diversity: impacts of aboveground plant

communities on belowground fungal communities. New

Phytol 189:526–535

Kourtev PS, Huang WZ, Ehrenfeld JG (1999) Differences in

earthworm densities and nitrogen dynamics in soils under

exotic and native plant species. Biol Invasions 1:237–245

Kourtev PS, Ehrenfeld JG, Haggblom M (2002) Exotic plant

species alter the microbial community structure and func-

tion in the soil. Ecology 83:3152–3166

Kramer S, Green DM (2000) Acid and alkaline phosphatase

dynamics and their relationship to soil microclimate in a

semiarid woodland. Soil Biol Biochem 32:179–188

R. Baohanta et al.

123

Page 87: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques

Liancourt P, Callaway RM, Michalet R (2005) Stress tolerance

and competitive-response ability determine the outcome of

biotic interactions. Ecology 86:1611–1618

Lilleskov EA, Hobbie EA, Fahey TJ (2002) Ecto- mycorrhizal

fungal taxa differing in response to nitrogen deposition also

differ in pure culture organic nitrogen use and natural

abundance of nitrogen isotopes. New Phytol 154:219–231

Marx DH (1991) The practical significance of ectomycorrhizae

in forest establishment. Ecophysiology of ectomycorrhiz-

aeof forest trees, Marcus Wallenberg Foundation Sympo-

sia proceedings 7:54–90

Matsuda Y, Hijii N (2004) Ectomycorrhizal fungal communities

in an Abies firma forest, with special reference to ecto-

mycorrhizal associations between seedlings and mature

trees. Can J Bot 82:822–829

Mikola P (1970) Mycorrhizal inoculation in afforestation. Int

Rev For Res 3:123–196

Nara K (2005) Ectomycorrhizal networks and seedling estab-

lishment during early primary succession. New Phytol

169:169–178

Newman EI (1988) Mycorrhizal links between plants: their

functioning and ecological significance. Adv Ecol Res

18:243–270

Nicholas KB, Nicholas HB (1997) Genedoc: a toll for editing

and annotating multiple sequence alignments. Distributed

by the authors

Niering WA, Whittaker RH, Lowe CH (1963) The saguaro: a

population in relation to environment. Science 142:15–23

Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation

of available phosphorus in soils by extraction with sodium

bicarbonate. Circular, vol 939. US Department of Agri-

culture, Washington, DC, p 19

Onguene NA, Kuyper TW (2002) Importance of the ectomy-

corrhizal network for seedling survival and ectomycorrhiza

formation in rain forests of south Cameroon. Mycorrhiza

12:13–17

Ouahmane L, Hafidi M, Kisa M, Boumezzough A, Thioulouse J,

Plenchette C, Duponnois R (2006) Some Mediterranean

plant species (Lavandula spp. and Thymus satureioides) act

as ‘‘plant nurses’’ for the early growth of Cupressus at-lantica. Plant Ecol 185:123–134

Parrot A (1925) Le reboisement de Madagascar par le moyen

des forets de ‘‘fokon olona’’. Bulletin Economique (An-

tananarivo) 1–2:55–57

Phillips JM, Hayman DS (1970) Improved procedures for

clearing and staining parasitic and vesicular-arbuscular

mycorrhizal fungi for rapid assessment of infection. Trans

Br Mycol Soc 55:158–160

R Development Core Team (2010) R: a language and environ-

ment for statistical computing. R Foundation for Statistical

Computing, Vienna, Austria. ISBN: 3-900051-07-0.

http://www.R-project.org/

Reader RJ, Jalili A, Grime JP, Spencer RE, Matthews N (1992)

A comparative study of plasticity in seedling rooting depth

in drying soil. J Ecol 81:543–550

Rejmanek M (2000) Invasive plants: approaches and predic-

tions. Aust Ecol 25:497–506

Remigi P, Faye A, Kane A, Deruaz M, Thioulouse J, Cissoko M,

Prin Y, Galiana A, Dreyfus B, Duponnois R (2008) The

exotic legume tree species Acacia holosericea alters

microbial soil functionalities and the structure of the ar-

buscular mycorrhizal community. Appl Environ Microb

74:1485–1493

Riviere T, Natarajan K, Dreyfus B (2005) Spatial distribution of

ectomycorrhizal Basidiomycete Russula subsect. Foeten-

tinae populations in a primary dipterocarp rainforest.

Mycorrhiza 16:143–148

Riviere T, Diedhiou AG, Diabate M, Senthilarasu G, Natarajan

K, Ducousso M, Verbeken A, Buyck B, Dreyfus B, Bena G,

Ba AM (2006) Diversity of ectomycorrhizal Basidiomy-

cetes in West African and Indian tropical rain forests.

Mycorrhiza 17:415–428

Scarano FR (2002) Structure, function and floristic relationships

of plant communities in stressful habitats marginal to the

Brazilian Atlantic Rainforest. Ann Bot 90:517–524

Schinner F, Ohlinger R, Kandeler E, Margesin R (1996)

Methods in soil biology. Springer, Berlin

Schreiner RP, Mihara KL, Mc Danield H, Benthlenfalvay GJ

(2003) Mycorrhizal fungi influence plant and soil functions

and interactions. Plant Soil 188:199–209

Sicardi M, Garcia-Prechac F, Frioni L (2004) Soil microbial

indicators sensitive to land use conversion from pastures to

commercial Eucalyptus grandis (Hill ex Maiden) planta-

tions in Uruguay. Appl Soil Ecol 27:125–133

Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM,

Molina R (1997) Netb transfer of carbon between ecto-

mycorrhizal tree species in the field. Nature 388:579–582

Smith S, Read J (2008) Mycorrhizal symbiosis, 3rd edn. Aca-

demic Press, London, p 800

Smith OH, Petersen GW, Needelman BA (2000) Environmental

indicators of agroecosystems. Adv Agron 69:75–97

Styger E, Rakotondramasy HM, Pfeffer MJ, Fernandes ECM,

Bates DM (2007) Influence of slash-and-burn farming

practices on fallow succession and land degradation in the

rainforest region of Madagascar. Agric Ecosyst Environ

119:257–269

Tedersoo L, Suvi T, Beaver K, Koljalg U (2007) Ectomycor-

rhizal fungi of the Seychelles: diversity patterns and host

shifts from the native Vateriopsis seychellarum (Diptero-

carpaceae) and Intsia bijuga (Caesalpiniaceae) to the

introduced Eucalyptus robusta (Myrtaceae), but not Pinuscaribaea. New Phytol 175:321–333

Terwilliger J, Pastor J (1999) Small mammals, ectomycorrhizae,

and conifer succession in beaver meadows. Oikos

85:83–94

Thebaud C, Simberloff D (2001) Are plants really larger in their

introduced ranges? Am Nat 157:231–236

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins

DG (1997) The ClustalX windows interface: flexible

strategies for multiple sequence alignment aided by quality

analysis tools. Nucl Acids Res 24:4876–4882

White TJ, Burns T, Lee S, Taylor J (1990) Amplification and

direct sequencing of fungal ribosomal RNA genes for

phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ,

White TJ (eds) PCR protocols: a guide to methods and

applications. Academic Press, San Diego, pp 315–322

Restoring native forest ecosystems

123

Page 88: PRODUCTIONS SCIENTIFIQUES - BIBLIOTHEQUE et …biblio.univ-antananarivo.mg/pdfs/ramanankieranaHeriniaina2_SN_HDR... · succession végétale et sur le développement des arbres endémiques